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RESUMEN
En este estudio se compararon los métodos para la reducción de dimensionalidad para mejorar la
precisión de la evaluación sísmica, para lo cual se introdujeron los principios básicos de los algoritmos
PCA, LLA, SVM, KNN posteriormente se estableció un modelado para analizar las características
de respuesta de fallas para cada atributo. Los resultados dieron a conocer que integrales muestran
que SVM ofrece un mejor equilibrio en la clasificación para datos con un margen claro entre clases,
logrando un menor número de errores de clasificación (falsos positivos y negativos) y un F1-Score
más alto en comparación con Random Forest y KNN, PCA es la técnica de reducción de dimensional
dad presenta un impacto significativo en el rendimiento de los clasificadores por sus características de
respuesta a la falla al tiempo. Se concluye que PCA es el método más eficaz para la reducción de la
dimensionalidad y SVM el clasificador de alto desempeño.

Palabras clave: evaluación sísmica, PCA, SVM.
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ABSTRACT
In this study, dimensionality reduction methods were compared to improve the accuracy of seismic
evaluation. For this purpose, the basic principles of the PCA, LLA, SVM, and KNN algorithms
were introduced, and a modeling process was subsequently established to analyze fault response
characteristics for each attribute. The results revealed that integrals show that SVM offers better
balance in classification for data with a clear margin between classes, achieving a lower number of
classification errors (false positives and negatives) and a higher F1-Score compared to Random Forest
and KNN. PCA stands out as the dimensionality reduction technique with a significant impact on the
performance of classifiers due to its response characteristics to faults over time. It is concluded that
PCA is the most effective method for dimensionality reduction, and SVM is the high-performance
classifier.

Key words: Seismic evaluation, PCA, SVM.
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Resumen—This study explored different dimensionality
reduction methods to enhance the accuracy of seismic
evaluations. The principles behind algorithms such as
PCA, LLA, SVM, and KNN were introduced, followed
by a modeling process to analyze how each attribute
responds to faults. The findings showed that SVM
stands out for its ability to classify data with clear class
margins, resulting in fewer errors (both false positives
and negatives) and a higher F1-Score compared to
Random Forest and KNN. Among the dimensionality
reduction techniques, PCA proved to be the most
effective, significantly boosting classifier performance
by capturing important fault response patterns over
time. In summary, PCA emerged as the best method
for reducing dimensionality, while SVM excelled as the
top-performing classifier.

Index Terms—Seismic evaluation, PCA, SVM.

Introduction

According to information provided by the World
Health Organization (WHO), between 1998 and
2017, around 750,000 people worldwide died due
to earthquakes [11]. Given this scenario, it is
necessary to predict earthquakes by implementing
preventive measures, as seismology is capable of
predicting severe earthquakes with a magnitude
>5 [2]. Currently, there are volcanic seismology
databases; however, these are often restricted,
while publicly available data usually only provide
seismograms without key information such as lo-
cation, start points, or event endpoints. Restricted
databases often involve a manual labeling process
for seismic events, which is time-consuming and
typically includes a small number of records (fewer
than a thousand), lacking balance for certain types
of events [11]. Nowadays, artificial intelligence
enables better predictions of these phenomena
through the use of learning algorithms [13].

The improvement in computer hardware has led
to the emergence of machine learning methods
based on waveform data in the field of seismology,
significantly improving the extraction of features

from input data samples [19]. Seismic signal
processing can be classified into three stages: data
acquisition, processing, and interpretation. During
volcanic activity, the generated signals allow for
the identification of different types of events [4].

Long-period events (LP) refer to periods longer
than 2 seconds and occur during the eruptive
phase of shield-type and stratovolcanoes with
calderas. They are associated with fluid movement
within conduits. A correlation has been found
between gas emissions and VLP (very long period)
events, as well as episodes of deformation caused
by the accumulation and migration of molten
material due to VLP occurrences. Observations
from various volcanoes have confirmed a link
between gas emissions and VLP events [9].

In the study by Jaramillo et al. (2014) [8], the
characteristics of long-period seismic events ge-
nerated by the Coto volcano were investigated
to understand their evolution. In the frequency
domain, it was determined that LP events oc-
curred at frequencies below 10 Hz, while VT
(volcano-tectonic) events evolved between 0 and
20 Hz. Additional records were also analyzed for
the detection of zones unrelated to LP or VT
events, showing evolution between 15 and 35 Hz.
The results highlighted the need to improve the
false alarm rate for detecting these events using
a whitening processor (adaptive predictor) and
a Bayesian processor based on likelihood ratios,
which detects Gaussian processes of interest (seis-
mic signals) amidst white and colored Gaussian
noise.

Regarding volcano-tectonic events, Ortiz et al.
(2019) [12] emphasized that methods based on
characterizing background noise and detecting
changes in the evolution of volcanic seismic signals
often lack prior information regarding the sources
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and structures traversed by transient seismic
waves. Additionally, new studies have adapted
neuroscience methods such as Self-Organizing
Maps (SOM), combined with decomposition tech-
niques like Singular Spectrum Analysis, to identify
specific evolutionary patterns.

In the study by Bucio et al. (2022), a seismic alarm
system was designed to detect P waves, capable
of providing alerts tens of seconds in advance.
Thanks to the characteristics of P waves, their
low intensity, and greater capacity to propagate
destructive waves over distances between Mexico
City and the epicenter zone, seismic predictions
were significantly improved [3].

Vaezi and Baan’s research (2015) [14] evaluated
seismic events when they reached seismological
stations, finding distinct characteristics due to
differing internal volcanic pathways. The acqui-
sition system was studied using the STA/LTA
algorithm, designed to detect seismic events within
recorded seismograms. Each detected event was
saved in a file containing a signal that extended
10 seconds before and after the detected event,
enabling experts to estimate noise levels and thus
reduce false positives.

To simplify data while retaining as much relevant
information as possible, dimensionality reduction
is a key process for managing data, as excessive
data handling can lead to noise, overfitting in
machine learning models, and other issues [10].

To reduce data dimensions, PCA is a multivariate
analysis technique that, through axis rotation,
decomposes eigenvalues and eigenvectors. This
allows transforming high-dimensional data into
lower dimensions while retaining original data
classifications and reducing feature dimensions
[17].

Similarly, for nonlinear dimensionality reduction,
Locally Linear Embedding (LLE) is one of the
most important techniques in data mining. It
maintains as much key information as possible
in a low-dimensional vector space. Its learning
algorithm is local linear embedding (LLE) [17].
Chang et al. [16] used a series of SR methods based
on LLE to predict HR image patches through the
geometric structure captured from LR image space,
using SR methods based on sparse representation.

Spectral clustering methods are gaining popularity
and are applied across various fields due to their
high performance. However, they have limitations,
such as spectral embedding and rotation not
contributing to a globally optimal solution. These
methods are also time-consuming and have high
computational complexity [15].

Theoretical Framework

The analysis and classification of seismic signals
generated by volcanic activity form the core of
this study. To address the complexities inherent
in seismic data, this project integrates advanced
methodologies in signal processing, dimensionality
reduction, and machine learning. The theoretical
framework guiding this research is organized into
four key components: seismic signal processing,
dimensionality reduction techniques, classification
algorithms, and evaluation metrics.

Seismic Signal Processing

Seismic signals contain rich information about
the dynamic processes occurring within a volcano.
Effective processing of these signals is essential for
extracting meaningful patterns that differentiate
between event types.
Long-Period (LP) Events: LP events are characterized
by their low frequency and extended duration,
commonly associated with the movement of fluids
such as magma or volcanic gases. These events
often precede eruptions, making their detection
and classification critical for early warning systems.
The unique spectral features of LP events, such as
dominant low-frequency peaks, provide vital clues
for their identification.
Volcano-Tectonic (VT) Events: VT events are high-
frequency, short-duration signals caused by rock
fracturing due to tectonic stress. These events are
indicative of structural changes within the volcanic
edifice and can be precursors to eruptive activity
or shifts in volcanic dynamics.
Spectral Decomposition: Transform techniques like the
Fourier Transform and the Wavelet Transform are
used to analyze seismic signals in the frequency
domain. While the Fourier Transform decomposes
signals into their constituent frequencies, the Wa-
velet Transform allows multi-resolution analysis,
capturing both time and frequency information.
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These techniques enable the construction of des-
criptive features that serve as inputs for further
analysis.

Dimensionality Reduction Techniques

Seismic datasets are typically large and high-
dimensional, posing challenges for computational
efficiency and model performance. Dimensionality
reduction techniques simplify data representation
while retaining critical information.
Principal Component Analysis (PCA): PCA is a linear
technique that transforms correlated variables
into a new set of uncorrelated variables, known
as principal components. These components are
ranked by the variance they capture, allowing
the selection of a lower-dimensional representation
that retains most of the data’s information. PCA
is particularly useful for reducing redundancy and
noise in seismic data.
Locally Linear Embedding (LLE): LLE is a non-linear
dimensionality reduction method that preserves
local relationships among data points. By mapping
the data into a lower-dimensional space, LLE
captures complex structures that might be missed
by linear methods. This is especially beneficial
for the analysis of non-linear patterns in seismic
signals.
Spectral Embedding: pectral Embedding leverages
graph-based representations of data to identify
clusters and relationships within high-dimensional
spaces. This method excels at detecting intrinsic
data structures and is instrumental in separating
seismic event classes in a lower-dimensional space.

Classification Algorithms

Supervised machine learning algorithms are em-
ployed to classify seismic events based on the
features extracted during signal processing and
dimensionality reduction.
Support Vector Machines (SVM): SVM identifies an
optimal hyperplane that maximizes the margin
between data points of different classes. It is
particularly effective for linearly separable data
and can be extended to non-linear problems using
kernel functions such as radial basis or polynomial
kernels.
K-Nearest Neighbors (KNN): KNN classifies a data
point based on the majority class of its nearest

neighbors. While simple and intuitive, KNN pro-
vides a valuable benchmark for comparing the
performance of more complex models.
Logistic Regression: Logistic Regression models the
probability of a data point belonging to a specific
class. Its probabilistic nature and simplicity make
it a reliable choice for binary classification tasks,
such as distinguishing between LP and VT events.
Random Forest: Random Forest is an ensemble
learning algorithm that combines multiple decision
trees to improve classification accuracy and robust-
ness. By aggregating predictions from individual
trees, it mitigates overfitting and adapts well to
noisy seismic datasets.

Evaluation Metrics

To ensure the reliability and effectiveness of the
classification models, several evaluation metrics
are used:
F1 Score: The F1 Score balances precision and
recall, making it a critical metric for imbalanced
datasets where false positives and false negatives
carry significant consequences.
Area Under the Curve (AUC): AUC measures the
model’s ability to distinguish between classes, pro-
viding a comprehensive assessment of classification
performance across various decision thresholds.
Accuracy: Accuracy evaluates the proportion of
correct predictions in all instances, serving as a
general indicator of the performance of the model.

Integration of Concepts

The combination of these techniques creates a ro-
bust framework for the detection and classification
of seismic events. Signal processing extracts rele-
vant features, dimensionality reduction simplifies
data representation, and machine learning models
leverage these processed features for accurate
classification. Together, these components enable
real-time monitoring and enhance the predictive
capabilities of volcanic early warning systems,
contributing to the safety and preparedness of
communities surrounding Cotopaxi Volcano.

Materials

The project is based on two critical seismic data-
sets sourced from the Cotopaxi Volcano, Ecuador,
developed and curated under the ESeismic reposi-
tory. These datasets provide a comprehensive basis
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for analyzing volcanic seismic events, facilitating
advanced signal processing, feature extraction, and
machine learning classification tasks. The details
of the databases are outlined below.

MicSigV1 Dataset (Volcanic Seismic Signals)

MicSigV1 is a raw seismic signal dataset con-
taining discrete seismic events recorded at the
Cotopaxi Volcano. It is designed to enable founda-
tional research in signal processing and detection
of volcanic events. ContentThe dataset includes
1187 seismic records divided into five classes of
events:

Long-Period (LP): 1044 samples (87.9 %).
Volcano-Tectonic (VT): 101 samples
(8.5 %).
Regional (REG): 27 samples (2.3 %).
Hybrid (HB): 8 samples (0.7 %).
Icequake (ICE): 7 samples (0.6 %).

SeisBenchV1 Dataset (Feature Benchmark)

SeisBenchV1 is a feature-based dataset derived
from MicSigV1. It includes feature vectors calcula-
ted from the original seismic signals to benchmark
classification algorithms.

ContentEach seismic event is represented by a
feature vector comprising 84 descriptors extracted
from:

Time Domain (13 features):Metrics such
as mean, variance, kurtosis, and energy.
Frequency Domain (21 featu-
res):Computed using power spectral density
and periodogram analysis.
Scale Domain (50 features): Derived using
Wavelet transforms (db10 Daubechies family
up to level 6).

Analysis The dataset highlights the relevance of
features for separating classes such as LP and
VT. Visualization techniques like t-SNE show
distinct clusters corresponding to different stations
and event types, though some overlap remains,
reflecting real-world complexities.//

PurposeThis dataset supports advanced research
in feature selection, dimensionality reduction, and
machine learning classification for seismic events.

Figura 1. Some of the stations from the seismological network
deployed at Cotopaxi volcano. Data for this study have been recorded
at the VC1 and BREF stations. Image provided by IGEPN.

Contribution and Relevance

The ESeismic repository, developed by the Institu-
to Geofísico de la Escuela Politécnica Nacional
(IGEPN), marks a significant advancement in
making Ecuadorian volcanic seismic data publicly
accessible. It provides a well-curated and expertly
labeled dataset for global research, overcoming
traditional barriers of data privacy. Both datasets
serve complementary roles:

MicSigV1 enables foundational signal pro-
cessing and detection research.
SeisBenchV1 facilitates machine learning
applications, especially for feature-based clas-
sification.

Methodology

The methodology employed in this project is desig-
ned to handle the complexity and high dimensiona-
lity of seismic data, ensuring accurate classification
of volcanic seismic events. The process follows
a systematic workflow comprising several stages:
data collection, preprocessing, dimensionality re-
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duction, classification, and evaluation. Below is a
detailed explanation of each stage:

Data Collection

The initial step involves acquiring raw seismic data
from various sources, including repositories and
sensors deployed near the Cotopaxi Volcano. These
datasets often contain noise, outliers, and high-
dimensional features that require preprocessing
for subsequent analysis.

Preprocessing

Normalization: The data is scaled to a common
range to prevent features with larger magnitudes
from dominating the model training process.
Outlier Removal: Extreme values are identified
and filtered to minimize distortion in model per-
formance. This ensures that the dataset accurately
represents the underlying signal characteristics.

Dimensionality Reduction

Given the high dimensionality of seismic data,
dimensionality reduction techniques are applied
to extract meaningful features while minimizing
computational complexity:

PCA (Principal Component Analysis):
A standard PCA technique is applied, re-
taining 95 % of the dataset’s variance. This
method simplifies data structure while preser-
ving essential information.
Locally Linear Embedding (LLE) This
non-linear method captures intricate, local
relationships among data points, respecting
their neighborhood structure.
Spectral Embedding: This graph-based
technique maps data into a lower-dimensional
space, maintaining relationships between
points even in noisy conditions..

Data Transformation

After dimensionality reduction, the data is projec-
ted into a transformed space with fewer dimensions
(e.g., 2D or 3D) for improved interpretability and
enhanced classifier performance. This stage also
ensures that critical patterns in the data are
retained for classification.

Classification

The reduced dataset is then fed into classification
models that assign seismic events into predefined
categories:

SVM (Support Vector Machines): This
algorithm identifies an optimal hyperplane
that maximizes the margin between data
classes, ensuring high classification accuracy.
KNN (K-Nearest Neighbors): A simple
yet effective algorithm that assigns classes ba-
sed on proximity to neighboring data points.
Logistic Regression: A probabilistic model
used to classify events into binary categories,
making it a versatile tool for distinguishing
event types.
Random Forest: An ensemble-based method
that utilizes multiple decision trees to classify
seismic events with robustness and resilience
to noise.

Evaluation of Results

The performance of the classification models is
rigorously assessed using the following metrics:

F1-Score: Measures the harmonic mean of
precision and recall, balancing false positives
and false negatives in imbalanced datasets.
AUC (Area Under the Curve): Quantifies
the model’s ability to distinguish between
classes over a range of thresholds.
Accuracy: Represents the proportion of co-
rrectly predicted instances among all predic-
tions, offering a general measure of model
performance.

Results and Discussion

To ensure the robustness of the methodology, the
performance of dimensionality reduction techni-
ques (PCA, Spectral Embedding, and LLE) is
compared based on their impact on classifica-
tion metrics. This comparative analysis provides
insights into the effectiveness of each method
under different conditions and highlights the most
suitable approach for seismic event classification.
PCA stands out as the most reliable and effective
option in this analysis. Similarly, the classifiers Lo-
gistic Regression and Random Forest demonstra-
ted more consistent performance in combination
with different dimensionality reducers.
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Figura 2. AUC Comparison for Different Classifiers and Dimensiona-
lity Reduction Techniques.

Figura 3. Confusion matrix comparison: SVM outperforms Random
Forest with fewer false positives and more true positives, excelling in
accuracy for seismic signal classification.

Confusion matrices reveal that SVM offers better
balance in classification for data with a clear
margin between classes, achieving fewer classifi-
cation errors (false positives and negatives) and
a higher F1-Score compared to Random Forest
and KNN. LLE is effective in capturing nonlinear
structures in the data and projecting them into a
two-dimensional space, providing a better visual
understanding of the distribution and relationships
between classes, which is valuable for exploratory
analysis.

Figura 4. A balance of errors between classes can be observed, sugges-
ting that the model could benefit from hyperparameter adjustments,
class balancing techniques, or even a change in the classification
approach.

A balance of errors between classes can be ob-

served, suggesting that the model could benefit
from hyperparameter adjustments, class balancing
techniques, or even a change in the classification
approach.

Figura 5. In the comparative analysis, dimensionality reduction is
observed to improve the performance of the Random Forest and KNN
models. These results help to understand how feature reduction can
impact outcomes.

Figura 6. The scatter plot shows the grouping of data within a two-
dimensional space using LLE (Locally Linear Embedding). LLE is
useful for reducing the dimensionality of complex data with nonlinear
structures, providing a visualization in a two-dimensional space that
preserves the local relationships between the data.

Figura 7. Regarding the performance of the models and their ability
to differentiate between classes, it was found that SVM presents
advantages over the three compared models. However, it could be
improved with hyperparameter adjustments or additional techniques.

The choice of dimensionality reduction technique
has a significant impact on classifier performance,
and PCA has stood out as the most reliable and
effective option in this analysis. Similarly, the
classifiers Logistic Regression and Random Forest
have shown more consistent performance in com-
bination with different dimensionality reducers,
standing out as the most robust in this context.
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Cuadro I
F1 Score Results and p-values by Dimensionality Reduction

Technique and Classifier.

Reducer Classifier F1 Scores (Range) p-value F1
4*PCA SVM 0.885 - 0.942 0.463344

Logistic Regression 0.913 - 0.947 NaN (Base)
KNN 0.913 - 0.959 1.000000
Random Forest 0.906 - 0.972 0.916563

4*LLE SVM 0.897 - 0.913 0.249153
Logistic Regression ∼0.476 0.009701
KNN 0.879 - 0.913 0.249153
Random Forest 0.924 - 0.942 0.916563

4*Spectral Embedding SVM ∼0.476 0.009701
Logistic Regression ∼0.476 0.009701
KNN 0.467 - 0.475 0.011159
Random Forest 0.466 - 0.474 0.007937

These results align with the study by Babiki et
al. (2022) [18], who used a series of correlation
coefficients such as Pearson, Rank, and Mutual
Information (MI) to reduce the attribute set. The-
se coefficients allowed mapping the relationship
between input and output features for three
classes. When calculating seismic attributes, they
found that the Gray Level Co-Occurrence Matrix
(GLCM) and the spectral group of attributes
enabled high seismic prediction accuracy.

Espinoza et al. (2020) analyzed the principal
components of seismic evaluation and determined
that the high dimensionality of the feature vector
caused significant data dispersion. To address this
issue, PCA was used to reduce dimensionality and
computational complexity, achieving an improve-
ment in response time supported by a vector with
features within a smaller dimensional subspace
[15].

To study daily variations in geomagnetism, Han
Peng [5] applied principal component analysis
after harmonic approximation in three stations.
The results revealed that the proportion of the
second component showed concurrent variations
a month before the 2000 Izu Islands earthquake.
Similarly, Guo et al. (2021) [5] conducted a series
of statistical studies on electromagnetic data
within the AETA station using a modified PCA
method. The results showed that 80 % of AETA
stations have a significant relationship between
electromagnetic anomalies and local earthquakes.

Bavikir et al. (2022) [6] concluded that PCA is
more effective when similar types of attributes
are analyzed together. This allows quantifying the
importance of seismic attributes for unsupervised
learning. Thus, PCA has high effectiveness in mea-
suring the contribution of each seismic attribute
to data variability.

In this study, SVM was found to offer better
balance in classification for data with a clear
margin between classes, achieving fewer classifica-
tion errors (false positives and negatives) and a
higher F1-Score compared to Random Forest and
KNN after dimensionality reduction. Harirchian
(2020) [1] found that the SVM method achieved
52 % accuracy in detecting earthquake-induced
damage. A total of 22 performance modifiers were
implemented using machine learning, showing 52 %
accuracy. To improve this rate, it is recommended
to use a k-fold cross-validation technique to verify
the classifier’s model performance.
To reduce the dimensionality of complex data with
nonlinear structures, this research found that LLE
provides a visualization in a two-dimensional space
that preserves local relationships between the data.
Similarly, in the study by Guangui et al. (2023)
[7], seismic attributes in the training dataset were
analyzed, finding that the LLE algorithm has a
better dimensionality reduction effect for nonlinear
data volumes. SVM can effectively highlight fault
response characteristics over time by allowing the
elimination of redundant information, improving
the efficiency of fault interpretation.

Conclusion

This research aimed to integrate advanced techni-
ques of signal processing, dimensionality reduction,
and supervised classification to improve the detec-
tion and classification of volcanic seismic events.
The study found that SVM and PCA demons-
trated the best performance in dimensionality
reduction and as classifiers in seismic evaluation.

Recommendation

For future studies, it is recommended to explo-
re advanced dimensionality reduction techniques
such as t-SNE, UMAP, or deep autoencoders,
while integrating traditional methods like PCA
to achieve more robust representations. It is also
essential to implement modern classifiers, such
as deep neural networks and Transformers, to
enhance seismic event classification and reduce
dependency on feature engineering. Additionally,
hyperparameter optimization and data balancing
techniques like SMOTE should be applied to ad-
dress class imbalance issues. Finally, it is suggested
to integrate these models into real-time monitoring
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systems, ensuring continuous updates and dyna-
mic adaptability to improve early detection and
risk management for seismic events in contexts
such as the Cotopaxi Volcano.
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