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Resumen

La teorfa cuéntica de campos no conmutativos (NCQFT, por sus siglas en inglés) proporciona un
marco para explorar los efectos gravitacionales cudnticos mediante la introduccién de un pardametro
no conmutativo * que cuantiza el espaciotiempo. Aunque este enfoque se alinea con la naturaleza
cuantizada del espaciotiempo a escalas de Planck, tratar *” como un tensor de fondo fijo conduce
a una violacién explicita de la simetria de Lorentz, planteando desafios tedricos. Motivada por la
necesidad de reconciliar la NCQFT con la simetria de Lorentz y los principios de la teoria efectiva
de campos, esta tesis propone un mecanismo en el que #* es modulado dindmicamente por campos
escalares regidos por lagrangianos del modelo de sine-Gordon y del modelo lineal sigma. El modelo
logra una violaciéon espontdnea de la invariancia de Lorentz, asegurando que 6*” se anule a bajas
energias debido a efectos inducidos por instantones y se active a altas energias. La consistencia del
modelo se demuestra a través de su compatibilidad con el mapa de Seiberg-Witten, las Extensiones
del Modelo Estandar y la conservacién de energia-momentum y espin-momentum angular en el limite
de Minowski de los espaciotiempos de Riemann-Cartan.

Palabras clave: Teoria cuantica de campos no conmutativos, violaciéon espontanea de la invari-
ancia de Lorentz, geometria no conmutativa, extensiones del Modelo Estédndar, espaciotiempos de

Riemann-Cartan.



Abstract

Noncommutative quantum field theory (NCQFT) provides a framework for exploring quantum grav-
itational effects by introducing a noncommutative parameter 6#” that quantizes spacetime. While
this approach aligns with the quantized nature of spacetime at the Planck scales, treating 6#” as a
fixed background tensor leads to explicit Lorentz symmetry violation, raising theoretical challenges.
Motivated by the need to reconcile NCQFT with Lorentz symmetry and effective field theory prin-
ciples, this thesis proposes a novel mechanism where 8#” is dynamically modulated by scalar fields
governed by sine-Gordon and Linear Sigma Model Lagrangians. The model achieves spontaneous
Lorentz invariance violation, ensuring 6#” vanishes at low energies through instanton-induced effects
and activates at high energies. The consistency of the model is demonstrated through its compatibility
with the Seiberg-Witten map, Standard Model Extension, and the conservation of energy-momentum
and spin-angular momentum in the Minkowski limit of Riemann-Cartan spacetimes.

Key words: Noncommutative Quantum Field Theory, Spontaneous Lorentz Invariance Violation,

Noncommutative Geometry, Standard Model Extensions, Riemann-Cartan spacetimes.
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Chapter 1

Introduction

1.1 Motivation and Background

Noncommutative quantum field theory (NCQFT) provides a foundational framework for incorporating
quantum properties of spacetime, both algebraically and topologically, making it a powerful candidate
for investigating quantum gravity effects near the Planck scale [7, 9, 30]. The motivation for adopting
NCQFT stems from the need to reconcile quantum mechanics and general relativity, as both theories
predict that spacetime should exhibit a discrete structure due to quantum effects of gravity. At
distances on the order of the Planck length, spacetime is expected to deviate from a smooth manifold
and acquire a quantized structure—a behavior that NCQFT aims to capture effectively.

At an algebraic level, NCQFT introduces quantization directly through a generalization of the
Heisenberg uncertainty principle, extending it to spacetime coordinates via a noncommutative pa-
rameter 0"¥. Specifically, NCQFT imposes a noncommutative relation on spacetime coordinates [7,
30]:

[2h, "] = 0, (1.1)

which implies a fundamental limit to the precision with which spacetime intervals can be measured
independently. The mathematical foundation of this approach draws on noncommutative geometry,
particularly the work of Landi and Connes [7, 24], and utilizes the deformation quantization framework
developed by Bayen [3, 22, 28]. In this setting, spacetime observables are treated as operator-valued
functions of a C* —algebra which captures the “fuzzy” geometry at small scales.

Topologically, NCQFT also yields a distinctive structure. The introduction of the noncommutative

12
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parameter 0*¥ modifies the topology of spacetime, effectively “smearing” points within a characteristic
length scale set by 6#. This leads to a nonlocal behavior where points within a certain region cannot
be distinguished topologically, aligning with the anticipated lattice-like behavior of spacetime near the
Planck scale [7, 21, 24].

Despite its appeal, NCQFT faces significant theoretical challenges that have limited its adoption.
One primary difficulty is its apparent incompatibility with Lorentz symmetry in its conventional for-
mulation, which traditionally treats 8*” as a fixed background tensor, explicitly breaking Lorentz
invariance [4, 23]. This explicit breaking of Lorentz symmetry raises concerns about the physical via-
bility of NCQF'T, as it conflicts with key principles of both quantum field theory and relativity. Another
major problem is that computing physical observables within a noncommutative algebra of fields is
mathematically demanding. Due to this difficulties, Seiberg and Witten postulate a reparametriza-
tion capable of turning a noncommutative Lagrangian into a commutative Standard Model Extension
(SME). Although the theoretical challenges remain in this reparametrized form, as shown by Carroll
[4] and Kostelecky [23], NCQFT can retain theoretical consistency if interpreted within a framework of
spontaneous (SLIV) rather than explicit Lorentz invariance violation (ELIV). In the SLIV framework,
the noncommutative parameter 0#” is promoted to a dynamical field that acquires a non-zero vac-
uum expectation value, thereby breaking Lorentz symmetry spontaneously by following the dynamic
equations describing §#¥. This approach allows the theory to remain invariant under passive Lorentz
transformations while only active Lorentz transformations are affected [4] following the energy scale.
Most importantly, by considering a SLIV theory, Kostelecky has shown that all conservation laws are
upheld, as well as the CPT theorem. Moreover, it has also been shown that within this framework,
one can construct a well-defined gravity sector part of the effective Lagrangian, thus incorporating the
quantum effects of gravity [23].

Carroll demonstrated that NCQFTs with an effective SLIV structure can be represented as a subset
of SMEs that includes terms for Lorentz violation in the form of background fields [4, 6]. A major goal
of this work is to develop a mechanism that enables NCQFT to operate as an SLIV SME theory in line
with the insights provided by Carroll and Kostelecky. We propose a model where 8#” is modulated
dynamically by scalar fields ¢* that acquire energy-dependent vacuum expectation values. These scalar
fields are governed by specific dynamics, such as those of the sine-Gordon or Linear Sigma models,
which allow for spontaneous symmetry breaking and instanton effects [11, 26, 27]. Moreover, both of

these proposed models can be quadratically approximated by a harmonic oscillator; thus, they can be
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evaluated analytically with minor correction factors [31].

By incorporating instanton solutions, we demonstrate that at low energies, the expectation values
(p®) vanish due to instanton-induced symmetry restoration, leading to (#**) = 0 and preserving
Lorentz invariance. At high energies, where instanton effects are suppressed, (¢%) becomes non-zero,
resulting in (##") # 0 and the emergence of Lorentz-violating effects. This energy-dependent behavior
ensures that Lorentz violation is absent at low energies, consistent with experimental constraints,
while allowing for possible observable effects at higher energies. Moreover, by dynamically modulating
0# the model achieves spontaneous Lorentz violation without introducing explicit breaking terms or
extra gauge symmetries, maintaining compatibility with the Seiberg-Witten map [29] and Kostelecky’s
framework [23].

This work contributes to the ongoing search for a quantum gravity framework by proposing an
NCQFT-based model that integrates spontaneous Lorentz violation and aligns with the structure of
Riemann-Cartan spacetimes. By addressing the challenges associated with Lorentz invariance and
providing a mechanism for its spontaneous breaking, the model offers a viable avenue for reconciling

quantum mechanics and general relativity.

1.2 Structure of the Thesis

This thesis is organized into five chapters, each building upon the previous one to develop a compre-
hensive understanding of the proposed framework for a SLIV NCQFT.

Chapter 1: Introduction

The introductory chapter is dedicated to providing the motivation and background for the study,
with the challenges in reconciling NCQFT with Lorentz invariance due to the fixed noncommutativity
parameter 6*" being highlighted. The need for a mechanism that allows for energy-dependent noncom-
mutativity is outlined, enabling Lorentz symmetry to be preserved at low energies and spontaneously
broken at high energies. The chapter is structured to present the objectives and contributions of the
thesis, with emphasis placed on the goal of integrating SLIV into NCQFT in a manner consistent with
established theoretical frameworks.

Chapter 2: Theoretical Background

Chapter 2 is focused on reviewing the essential theoretical concepts and mathematical tools neces-
sary for the thesis. An overview of noncommutative geometry and its application in quantum field the-

ory is provided, including the formulation of NCQFT and the role of the noncommutativity parameter
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0. The Weyl-Wigner quantization method and the construction of x-gauge theories are discussed,
providing the foundation for understanding how gauge theories are formulated on noncommutative
spaces. The Seiberg-Witten map, which relates noncommutative gauge theories to their commutative
counterparts by representing noncommutative gauge theories as SMEs, is introduced. The concept
of spontaneous Lorentz invariance violation is explored, with its role in SMEs and compatibility with
Riemann-Cartan spacetimes being highlighted, such as the conservation of the energy-momentum,
spin-density tensor, and CPT theorem. The mathematical tools needed for the computations in Chap-
ter 3 are also introduced, including the semiclassical approximation and instanton solutions, which
form the focus of Chapter 3. Limitations such as the Derrick-Hobart theorem are addressed, with a
workaround using the ultralocal limit being explored. Finally, the first and second Bogomolny equa-
tions are discussed as viable approaches to compute the properties on instantons in the ultralocal
limit.

Chapter 3: Modulating the Noncommutativity Parameter

Chapter 3 is dedicated to presenting the proposed mechanism for dynamically modulating the
noncommutativity parameter *”. The theoretical framework in which 6*" is expressed as a function
of scalar fields ¢®, allowing it to acquire energy-dependent behavior, is presented. Two scalar field
models, the sine-Gordon model and the Linear Sigma Model, are explored in detail by relating them
to results obtained from the quantum harmonic oscillator. The dynamics of these models, including
spontaneous symmetry breaking and instanton effects, are analyzed to explain how they lead to the
desired modulation of ##”. The role of instantons in restoring symmetry at low energies and induc-
ing spontaneous Lorentz violation at high energies is discussed. By examining these models, it is
demonstrated how scalar fields can be employed to achieve an energy-dependent 8*”, addressing the
challenges identified in the introduction and producing the desired SLIV NCQFT.

Chapter 4: Consistency of the Model and Its Limitations

Chapter 4 is focused on analyzing the theoretical consistency of the proposed model. The com-
patibility of the proposed model with the assumptions made, such as the ultralocal limit, the dilute
gas approximation, and the cluster decomposition principle, is analyzed. Additionally, the compat-
ibility of the model with the Seiberg-Witten map, despite the modulation of 6V, is assessed. The
alignment of the model with Kostelecky’s framework for spontaneous Lorentz violation, particularly in
the context of Riemann-Cartan spacetimes and the conservation of fundamental physical quantities, is

discussed. Potential limitations of the model are addressed to ensure its theoretical robustness, while
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areas requiring further investigation are identified.

Chapter 5: Conclusion

The final chapter is devoted to summarizing the key contributions and findings of the thesis.
The significance of dynamically modulating *” in NCQFT and the manner in which this approach
addresses the challenges of explicit Lorentz violation are reflected upon. The implications of integrating
spontaneous Lorentz invariance violation into NCQFT are highlighted, with the broader impact of the

proposed framework being emphasized.



Chapter 2

Theoretical Background

“In these days the angel of topology and the devil of abstract algebra fight for the soul of

each individual mathematical domain.” - Hermann Weyl

2.1 Noncommutative Geometry and Quantum Field Theory

2.1.1 Noncommutative Geometry

The development of modern mathematics has enabled a profound abstraction of geometric concepts,
allowing for the independent study of space and geometry as fundamental mathematical structures.
Classical analytic geometry can be decomposed into these two essential components: the underlying
space that serves as a foundation for mathematical discourse, and the framework that enables the
construction and analysis of geometric objects within that space. In its most elementary manifestation,
this structure is realized through Euclidean space, which provides the mathematical foundation for
Euclidean geometry. Within this framework, geometric objects such as lines can be represented through
continuous endomorphisms of the space, forming an algebra of functions characterized by specific
operational properties.

The intimate relationship between algebraic structures and spatial properties enables the inves-
tigation of spatial characteristics through the geometric properties of their associated algebras. For
example, the behavior of parallel structures within an algebra can reveal fundamental properties of the
underlying space, such as curvature or torsion. This correspondence achieves particular significance

in the context of C*-algebras, where the relationship becomes bijective: the algebraic structure and

17
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its corresponding space uniquely determine each other up to isomorphism. This fundamental duality

finds its rigorous expression in the Gel’fand-Naimark theorem, which establishes:

Theorem 2.1.1 (Gel’fand—Naimark) Let A be a C*-algebra and Prim A its primitive spectrum.
Consider the algebra of continuous, possibly operator-valued, functions C(Prim A). Then, A is isomet-
rically *-isomorphic to C(Prim A).

Furthermore, given any topological space M and a primitive spectrum PrimC(M), M is homeo-

morphic to the primitive space PrimC(M).

This theorem implies that, given an algebra A, its underlying space can be constructed as Prim A.
Similarly, given a topological space M, its overlying algebra can be constructed as C(M). Hence, space
and algebra are equivalent in the sense that one cannot exist without the other, and all properties
are uniquely determined by the corresponding pair of space and algebra. In this framework, space,
algebra, and geometry are entirely equivalent, with space and algebra as duals, and geometry as their
holistic study.

Noncommutative geometry extends this duality by generalizing the concept of algebras. Specifi-
cally, as the name suggests, noncommutative geometry involves the holistic study of the space-algebra
duality when the C*-algebra is noncommutative. The Gel’fand-Naimark theorem applies only to
commutative algebras, but Landi and Connes successfully generalized this result to noncommutative
algebras. While there is no standalone “Noncommutative Gel’fand-Naimark theorem,” Landi [24] and
Connes [7] dedicate entire books to proving this generalization and exploring its implications. This
generalization is neither trivial nor straightforward, yet it preserves the space-algebra duality [7, 24].
Thus, noncommutative geometry refers to the comprehensive study of noncommutative algebras and
their corresponding spaces, termed noncommutative spaces.

Although Landi’s book extensively covers the properties of noncommutative geometry, our primary
interest lies in a specific result: topological indistinguishability. Following Landi’s findings, some
topological properties of primitive spaces can be described. The crucial property for this work is
that if A is a commutative algebra, its primitive space is a Hausdorff space. Conversely, if A is a
noncommutative algebra, its primitive space is a Kolmogorov space [24].

Generally, a Hausdorff space is well-suited for describing physical phenomena because any collection
of points is topologically distinguishable [21]. In a Hausdorff space, the spatial properties of any object
can be precisely determined, such as position and trajectory. By contrast, a Kolmogorov space lacks

this property; certain collections of points are not topologically distinguishable [21]. In fact, some
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collections of distinguishable points cannot be separated and are always contained in the same open
sets [21]. This results in regions of space that are fuzzy, causing objects to become delocalized. Such
delocalization is desirable in quantum theory, as beyond a certain scale, space itself should become
delocalized. Therefore, constructing a quantum field theory over a noncommutative space, aptly termed
Noncommutative Quantum Field Theory (NCQFT), aligns with the goals of this work.

To further explore the topological structure of noncommutative spaces, we consider a result by

Landi [24]:

Proposition 2.1.2 (Partially Ordered Topological Space) Let M be at least a Kolmogorov space,

equipped with a partial order < over the set. We can then define a basis for a topology as follows:

Az)={yeM|y=<z}, VreM.
Thus, (M, T) forms a topological space known as a partially ordered topological space.

In other words, given any Kolmogorov space we can establish a new topological basis for the space,
transforming it into a partially ordered topological space. This is interesting because, a partially
ordered topological space can be characterized by two disjoint sets of points: singleton points, which
do not precede any other points, and non-singleton points, which precede some other points. Non-
singleton points cannot be topologically distinguished from the set of singletons they precede [21, 24].
Consequently, a partially ordered topological space defines a lattice space where singletons form the
boundaries of lattice cells, and non-singleton points occupy the interiors of these cells. The lattice
structure is more easily visualized by representing the partially ordered topological space as a Hasse

diagram.

Definition 2.1.3 (Hasse Diagram for a Partially Ordered Topological Space) Let (M, 75) be
a partially ordered topological space. For x,y,z € M, the Hasse diagram is constructed by applying the

following rules:

o If x <y, then x is at a lower level than y.

o [fx <y and there is no z such that x < z < y, then x is immediately below y, and these points

are connected by a link.
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For example, consider the set Z with the partially-ordered topological basis

Aw;) ={zi}, Ay) ={zi,yi,zipa}, €L

Its Hasse diagram is represented as follows:

Yi—2 Yi—1 Yi Yit+1

Ti—2 Ti—1 Tq Tit1 Lit2

Figure 2.1: Hasse diagram for the set Z

From this diagram, it is evident that no non-singleton y; can be topologically distinguished from
the singletons {x;, z;11} since we cannot construct an open set that contains y; without also containing
{2, x;41}. The singletons {x;, 2,11} serve as the boundaries of the lattice cell, while the non-singletons
y; act as the interior points. In this manner, partially ordered topological spaces define a lattice

structure.

Proposition 2.1.4 Let A be a noncommutative C*-algebra. Then Prim A is homeomorphic to a

partially ordered topological space M .

This proposition, proved in Landi’s work [24], reveals the topological structure of noncommutative
spaces. They behave similarly to lattice spaces, where each point has a neighborhood such that
all points within it are topologically indistinguishable. Therefore, it is more accurate to refer to
noncommutative spaces as noncommutative lattices [24].

Thus, we have constructed a noncommutative space or lattice and its associated noncommutative
algebra. The next component that we need to construct a quantum field theory is to quantize the
algebra [32]. In the next section, we will explore this process of constructing a quantum field theory

starting from a noncommutative algebra. The result would be a noncommutative quantum field theory

(NCQFT).
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2.1.2 Noncommutative Quantum Field Theory

Many different procedures for constructing a NCQFT exist, such as the Weyl-Wigner quantization
or the Drinfeld Twist quantization. It is important to note that all of these procedures produce the
same NCQFT, although they require different mathematical structures and starting points [1, 22].
Nonetheless, they all fall within Bayen’s framework of deformation quantization of Poisson structures
[3]. The most notable difference between the Weyl-Wigner and Drinfeld quantizations is that they
produce gauge theories in which the group action is applied in different ways, x—gauge and twist-gauge
respectively. Nonetheless, it has been shown that these mechanisms of group action are equivalent [10].
In fact, given one of these gauge theories, the other can be constructed within the same framework

[10] in what is termed a x-twist gauge.

Weyl-Wigner Quantization

In this work, we focus on the Weyl-Wigner quantization as it is the most straightforward approach and
produces gauge theories that are directly compatible with the Seiberg-Witten map, x—gauge theories.
The Weyl-Wigner quantization is implemented through a three-step approach. First, we construct
a noncommutative algebra that introduces topological indistinguishability into the underlying space.
Second, we construct an algebra of fields over R?. Finally, we find a quantization procedure that maps
operators in the noncommutative algebra to fields in the algebra over R?. This process results in a
quantum field theory that is one-to-one equivalent to the noncommutative algebra, thereby forming a
NCQFT. This construction is possible because, by imposing the Dirac—von Neumann postulates and
a simple set of axioms on C*-algebras, quantum theories can be constructed within the C*-algebra
formalism [14, 32]. Imposing these conditions allows us to construct a subspace of the C*-algebra,
known as the space of bounded linear operators BL, which forms a Hilbert space [14, 32].

To begin, we construct Rg, the noncommutative space analogous to Euclidean space R<.

Definition 2.1.5 (]Rg) Let A be a noncommutative C*—algebra generated by a set of self-adjoint

operators {x', ..., x%} with real spectra. These operators satisfy the commutation relation

[x#, z¥] = 10",

where 0*¥ is an element of 0, an antisymmetric d X d matriz with real coefficients. Then, Prim A

18 homeomorphic to a noncommutative space denoted Rg, where the generators of the algebra serve as
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the coordinates of the space. This space is the noncommautative analogue of R%.
Furthermore, the dimensions of the noncommutative lattice cells are determined by the coefficients

o1

)

At Az” = 0 = |orr |2,

Here, 6 is known as the noncommutative parameter, as it controls the degree of noncommutativity
between the coordinate operators.
Next, we construct a suitable algebra of fields. For Weyl-Wigner quantization, the most appropriate

choice is a Schwartz space of fields.
Definition 2.1.6 (Schwartz space) Let f be a field such that f € C*°(R™,C). The Schwartz space
S(R™,C) is defined as the space of fields f for which, for any multi-indices o and B in N, and a
derivation D, the seminorm:
17l = sup [ (DPF) (@)] < oo
LERP

The Schwartz space is advantageous because, for any field in this space, the Fourier transform is an

automorphism. That is, for any field f, it can be identified with its Fourier transform:

Flk) = / APz e % £(z). (2.1)

This property enables the definition of the Weyl symbol 7/[ f] of a field f, where 7/[ f] is known as

Weyl operator of the Wigner field f:

%ﬂ:/d%fwwﬂ. (2.2)

Most notably, the Weyl symbol has the property that the complex exponential field is mapped to the

complex exponential operator:

Va4 [eikﬂi} = ek’ (2.3)

This does not precisely mean that complex exponentials are eigenfunctions of the Weyl symbol since
the Weyl operator eikiﬁ’i, which is operator-valued, inhabits a different space than the Wigner field

e*i#" which is complex-valued.
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Since the Weyl symbol can be thought as an integral transform, we can define a kernel of the

transformation, denoted A(z), we have:

N D i1 od . P ~ N
A(z) = / (gﬁ)];e‘kix o=k’ o [f] = / P2 f(2)A (). (2.4)

The kernel of this transform can be understood as a mixed basis between operators and fields. There-
fore, the Wigner field f is the coordinate space representation of its Weyl operator 7/[ f], the Weyl
operator being in the noncommutative algebra Rg. This means that the Weyl operators conform a
representation of the algebra Rg.

Thereafter, the noncommutativity parameter is introduced once we consider the product of two

Weyl operators, this product will contain a term of the form of a product of two kernels A, which in

this case, by the Baker-Campbell-Hausdorff formula is:

. . dPr 4Pk ; N LA /209 bk ik at ikl
A(x)A(y)//W(%)D/ AP 2ol (FHK):7" A ()e1/20% bk o—ihia —ikly (2.5)

or if we assume that 6 is invertible:

N N 1 A —2i(071) (z—2) (y—2)?
A@)Ay) = m/dDzA(z)e (07),; (=) =27 (2.6)

The next step is to introduce a derivation such that we can define differential operators. The

derivation 9; defined by a set of commutation relations:
0na7] =3, [0:.0] =0, (2.7)
so that for a Weyl operator and the kernel we have:
0 7111] = / adif(@)Aw) = # [0:f] [0, A)] = —0,A). (2.8)

By using the definition of the Weyl operators we can now define a trace Tr uniquely by integration
over spacetime, this is possible because in a Schwartz space, operators are trace class [8]. That is, the

trace of any Weyl operator is finite and independent of basis or representation:

Te ¥ [f] :/dsz(x), TrA(z) = 1. (2.9)
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This allow us to define an inverse transformation to the Weyl symbol in terms of the trace:
flz) =Te(7[f]A(z)), Tr(A(@)A(y)) =6 (x —y). (2.10)

This inverse is known as the Wigner transformation. Therefore the kernel A allows us to construct
a one-to-one correspondance between Wigner fields and Weyl operators, given the eponymous Weyl-
Wigner correspondance, the core of the Weyl-Wigner quantization.

The final step of this procedure is to unveil the form of the product between two Weyl operators:

T (VAP A®) = —praeegr [[ 4P aPfiatre C )

where we can now introduce a product known as the Groenewold-Moyal product * with the property:

PN gl = H[f *g). (2.12)

Therefore, we can write the familiar form of the Groenewold-Moyal product in its integral representa-

tion:

D Dy . i S
f@)xg(z) = / / (gﬁ)kD (;)’2 Flk)g (K — k) e (/207 ki gl (2.13)

or in differential form [2, 30]:
) w9(o) = f(o e (35097 ) oo 214

This gives us some more insight on the form of the non-locality characteristic of noncommutative
space. The product of two fields at any given point is influenced by all other points in space as per
the integral form of the product *, or all derivatives as per the differential form.

The result of Weyl-Wigner quantization is that we are able to represent the noncommutative algebra
Rg as a quantum field theory where the products between the fields is replaced by the Groenewold-
Moyal product [2, 28, 30]. For example, the Lagrangian for a p* scalar theory could be written as:

T J S S
L= S0up*0"p— SmPox o= 1 * px px§, (2.15)

where we have used hatted fields ¢ to remind the reader that these fields are commutative fields
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embedded into noncommutative space Rg by using the star product *.

Finally, although this construction assumes that 6 is constant, it can be generalized for any form
of # by considering deformation quantization of an appropriate Poisson structure by following the
Kontsevich procedure [1, 22, 28, 30]. This result is paramount for this work, as the model that we will

propose will amount as allowing 6 to be dynamic over spacetime.

*-Gauge Theory

The extension of NCQFT to gauge theories initially appears straightforward. Starting with a tradi-
tional gauge theory, such as a Yang-Mills theory, one replaces all products in the Lagrangian between
matter and gauge fields with the noncommutative x-product, as we have done for the ¢* scalar La-

grangian. For instance, in the case of Quantum Electrodynamics (QED), the Lagrangian becomes:
* L = wyx 7, T L - [y
QED:§M/)*7 D,ﬂp—mw*z/}—@FW*F . (2.16)

However, this straightforward extension encounters a significant issue. The theory is no longer invariant

under the gauge group U(1). Under a gauge transformation U, the matter fields transform as:

* ). (2.17)

=
<

x> (UT) « (U0) #

To address this problem, the action of the gauge group must be modified in terms of the *-product,

to produce a x—gauge. The gauge transformation for & is redefined as:
SEab(x) i= iw(x) T % P(x). (2.18)
The gauge transformation U is then expressed as:

n

W (@) ko xw (@) T, T, = e O UK U = U S U =10 (219)

.

U(x) =Y
n=0

3

This ensures that gauge symmetry is restored:
i*@%qz*UI*U*z[):zZ*qﬂ (2.20)

Moreover, as it is clear from the definition of the Groenewold-Moyal product, computing any
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physical observable in terms of products of fields is mathematically challenging. Thus, the Seiberg-
Witten map allows for the reparametrization of the NCQFT into a SME, such that physical observables
can be computed using standard techniques. This is a major advantage of x—gauge theories, as they

can be directly mapped via the conjectured relationship.

Seiberg-Witten Map

The Seiberg-Witten map posits that the noncommutative fields A and 1[) can be expressed in terms of
their commutative counterparts A and v [1, 18] by identifying gauge orbits. Hence, this relationship is
unique modulo the gauge orbits of the theory. This relationship is determined by solving the following

highly non-trivial differential equation:

b (A+ 00 A, + 0u1p) = (A, 9) + S50 (A, ), (2.21)

by performing small variations in term of 8# results in the following differential equation in terms of
the matter field ¢, gauge connection A and the covariant derivative D, [1]:

N

o6H
ooy

_ %5(9#%# . (aﬂz + Duz[;) . (2.22)

It is important to remark that given this differential equation, it could be thought that introducing a
dynamic *¥ would produce a different reparametrization of A and zﬁ than when 6*” is constant. This
is not the case, since the reparametrization works in the same way as long as both theories have the
same gauge orbits, they will be mapped to the same gauge theory [1]. Thus, we have an important
constraint in the form of 6# whatever the modulation is proposed, it should no introduce extra gauge
symmetries.

Explicit solutions are generally unknown for most gauge theories. However, for simple gauge groups,

such as U(1), which describes QED, the solution can be obtained perturbatively in terms of §#*:

o 1 o

Ap=A4,-350 PAq (054, + Fp,) + O(62),
) ) (2.23)
V=19 — 507 4051 + O(67).

This reparametrization casts the theory into a form consistent with the Standard Model Extension

(SME), where noncommutative effects appear as additional terms in the Lagrangian. Thus, for non-
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commutative QED (NCQED), it can be expressed, via the Seiberg-Witten map as [4, 15]:

1. -~ )
LEgp — LQED, sw :§WWNDM/J —myp — ZF;LVF“

L. aff y L. af Tt

- gzq@ Foppy" Dpyp + que Fopby" Dgy
1 _

- quoaﬁFaﬁW (2.24)
1 1

— §q9aﬁFaHF5VFW + gqa@fﬂmﬂmyFW +0(6?)

= Lqep(¥,A) + Luv(8,¢, A) :== LqrD, sumE,

which is precisely the definition of a SME which are characterized by being composed of a Standard

Model Lagrangian and a Lorentz Invariance Violating sector [6, 23].

2.2 Standard Model Extensions, Riemann-Cartan Spacetimes
and Conservation Laws

What is interesting about the Seiberg-Witten map is that the resulting effective Lagrangian describes
a SME as defined by Kostelecky [4, 6, 23]. An SME is an effective Lagrangian that is composed of at
least two different sectors. The first sector is a Standard Model Lagrangian, while the second sector
contains all possible Lorentz-violating terms constructed in terms of the fields of the first sector. This
second sector is modulated by a tensor, which in our case for a NCQFT is simply 6#%, called the

coefficient for Lorentz violation:

Lsme (Y, A) == Lsm(, A) + Lriv (0,9, A). (2.25)

By reinterpreting Lorentz invariance under the framework of Riemann-Cartan theories in the vierbein
formalism, these Seiberg-Witten-type effective Lagrangians that derive from NCQFT theories can be
shown to remain invariant under passive Lorentz transformations, while not under active Lorentz
transformations [4]. This result stems directly from the inclusion of the noncommutative parameter ¢
in the Lorentz-violating sector of the Lagrangian. Then, it can be shown that 6 transforms correctly
as a 2-form under passive transformations but transforms as a constant under active transformations,
hence introducing Lorentz Invariance Violation (LIV) [4, 23].

An important result by Kostelecky and Carroll is that if this Lorentz violation is spontaneous



28

(SLIV), rather than explicit (ELIV), then the quantum theory described by the Lagrangian is com-
patible with Riemann-Cartan spacetimes [4, 23]. Compatibility means that the theory upholds the
CPT theorem, as well as all conservation laws and currents. Moreover, it can be shown that in a SLIV
theory, we are able to construct the Bianchi identities and, from there, construct an action for gravity
such as the Hilbert-Einstein action or the Palatini action [23]. In fact, it is expected that an SME
must contain a pure gravity sector [23]. Thus, in general we can write a SME Lagrangian as being

composed of two sectors, matter and gravity:

»CSME (/(/)7 Aa 9, eZ? Wz,b) = Cmatter(wa Av 9) + »Cgravity(ez,v wzb)’

Lmatter (¢7 Aa 9) = LSM (¢7 A) + LLIV(Ha w7 A)a

(2.26)

where ey, is the vierbein and wzb is the spin conection in Riemann-Cartan spacetimes.
The problem here is that even though Carroll and Kostelecky conjecture that a mechanism to turn
NCQFT into a SLIV theory could be constructed, they do not introduce any candidates for such a

mechanism. The main objective of this work is to introduce a mechanism to turn NCQFT into a SLIV

theory compatible with Kostelecky’s results.

2.2.1 Riemann-Cartan Theory and Conservation Laws

The significance of Riemann-Cartan theory, as a generalization of General Relativity, is that it is
constructed using the vierbein formalism. Hence, it allows incorporating a spinorial representation
into the usual group of symmetries of General Relativity GL(4,R) needed to incorporate matter fields,

as well as allowing for a mathematical distinction between passive and active transformations [23].

a

In the vierbein formalism, gravitational fields are taken to be the vierbein e,

and their spin connec-

tion w2t

i, where Latin indices are local reference frames and Greek indices are global reference frames.

Then, the corresponding Riemann-Cartan spacetimes are described in terms of both a curvature ten-
sor RY v and a torsion tensor T;i\u' The usual General Relativity spacetimes, such as the Minkowski
spacetime, can be obtained by setting the torsion and curvature tensors to 0. This more general
framework allows introducing dynamical torsion and curvature as propagation of the vierbein and spin
connection [23]. Another interesting aspect is that, in this formalism, active transformations behave
like local gauge transformations. Therefore, Lorentz invariance violation under active transformations
is equivalent to local gauge invariance violation [23].

The study of conservation laws in the presence of spontaneous Lorentz invariance violation (SLIV)
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requires understanding the behavior of the energy-momentum tensor and related conservation laws
when Lorentz symmetry is broken through vacuum expectation values of tensor fields. Here, active
transformations affect the localized fields, while passive transformations change the reference frame.
The following presentation outlines these derivations and emphasizes the conclusion that under SLIV
in active transformations, the dynamics of the Lorentz-breaking tensor ensure the conservation of
energy-momentum and spin-density tensors [6, 23].

For the moment, we consider a 1-tensor k, responsible for the SLIV for simplicity. It is important
to remember that our model requires a 2-tensor 0¥ but as we will see, the following results are
independent of the rank of the tensor responsible for the SLIV.

In this case, the Lorentz-violating action Sy v component of the matter sector Spatter can be
expressed as the passive-covariant integral of the coefficient k, for Lorentz violation with an operator
J*, that is:

Sriv D /d4$€]€xjm, (2.27)

where J¥ is the associated operator, written in terms of the vierbein, spin connection, and SM fields.
Moreover, e stands for the determinant of the vierbein field. For NCQFT, this term would simply
be ef,,J", as seen for example in the Lagrangian Lqrp, sme. This form guarantees that the theory
remains invariant under passive Lorentz transformations [23]. Following this construction, the Lorentz-

violating terms in the matter action can be expressed as:
Suv = /d4$€kxjr(fy7€5Dufy)a (2.28)

where J? involves the matter fields f, and their covariant derivatives e D, in the vierbein formalism.
This structure ensures consistency with the vierbein and spin connection to maintain general coordinate
invariance [23]. When all fields and background structures, including the coefficients for Lorentz

violation, are varied, the variation of the matter action becomes:
1
5SLv = / d*ze (Te””eya(kz + iSw“achw#“b + eJ””cSkr) , (2.29)

where T*" is the energy-momentum tensor, and S,,* 4 is the spin-density tensor in Riemann-Cartan
spacetimes [23]. We now have two different cases that could induce such varition, infinitesimal active

or passive Lorentz transformations.



30

If we consider the previous variation to be induced by an infinitesimal active Lorentz transformation
parametrized by €®®, then the relevant infinitesimal changes in the vierbein, spin connection, and
coefficients for Lorentz violation take the form:

1
e, = —€"pe,t,  dw, ™ = —e"w, P + €Pw, e + Oue™, Ok, = —56‘“’ (X(an)” oky- (2.30)

By substituting these variations into the expression for §Spatter and simplifying, we obtain the sym-

metry condition for the energy-momentum tensor:
T — T, = (Da - T[fa) S 4 e (X )" Y (2.31)

This indicates that the antisymmetric part of the energy-momentum tensor depends on the spin-density
tensor and the coefficients for Lorentz violation [23]. In the limit of flat Minkowski spacetime, this

equation simplifies to:

OM — O = 9,5, + k, (X[Hu])w s, (2.32)

where O#¥ is the canonical energy-momentum tensor, and S¢*¥ is the canonical spin-density tensor
[23]. This equation corresponds to the conservation of spin-angular momentum.
On the other hand, if the variation was induced by an infinitesimal passive Lorentz transformation
parametrized by €”, then the variations are given by Lie derivatives:
de, = Lee,” =€,0,€"+0,e,%€", (5wuab = L'gwuab = wyabaﬂe” + &,wuabe”,

(2.33)
Sk = Lokiy = €0, ks

Substituting these into the variation of the action and simplifying results in the covariant conservation

law:

1
(D — TH\) Tety + T2 T\ + 5Rabwqwgb — J*D,k, = 0. (2.34)

In the case of a Minkowski spacetime, where curvature and torsion are absent, this equation simplifies

to:

0,0 = J 0 ks, (2.35)

which corresponds to the conservation of energy-momentum. Both of these conservation laws derived

here are compatible and consistent in the Minkowski spacetime limit [23]. Furthermore, a discussion
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of their consistency and compatibility with general Riemann-Cartan spacetimes can be found in [23].

Now, in an SLIV theory, the spontaneous Lorentz invariance violation leaves the associated con-
served currents unaffected. Thus, both conservation laws remain conserved, absent of terms depending
on k% [23]. This can be seen directly from the fact that the variation of Spyy is absent of terms con-
taining 0 f*, since k; in the case of SLIV must follow the equations of motion, therefore the action
must also lack terms deriving from 0k, [23]. That is, in the case of SLIV theory, the conservation laws

are reduced to

O — O = 0,5, 9,0 =0, (2.36)

since this result is independent on the rank of the tensor responsible for the SLIV, it remains valid in
the case for SMEs deriving from NCQFT.

The results presented in these derivations indicate that the conservation of energy-momentum and
spin-angular momentum are preserved in the presence of SLIV. This conservation is ensured as long as
the coefficients for Lorentz violation correspond to vacuum expectation values that satisfy their dynam-
ical equations of motion [23]. Furthermore, the ability to construct the Einstein-Hilbert action within
the SME framework underscores that gravitational dynamics remain consistent with the modified
Bianchi identities, enabling the formulation of gravitational field equations that incorporate Lorentz-
violating effects. This comprehensive compatibility of conservation laws and geometric consistency is
what Kostelecky means when he states that theories with SLIV are compatible with Riemann-Cartan
spacetimes. The SME thus confirms that conserved quantities involving both energy-momentum and
spin-angular momentum are maintained under SLIV, as long as the dynamics of the Lorentz-violating
tensors adhere to their governing equations.

The final symmetry to be preserved by following Kostelecky’s framework is the CPT symmetry.
This symmetry can only be understood in the Minkowski limit of Riemann-Cartan spacetimes, as its
generalization to curved spacetimes is still unknown [23]. In the Minkowski limit, it is a well-known
fact that CPT violation is tied directly to the form of the coefficients for Lorentz violation. In our case,
0" has only two Lorentz indices and is therefore classified as CPT-even under Kostelecky’s framework.

This means that the CPT theorem is upheld even in the presence of SLIV [6, 23].
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2.3 Semiclassical Approximation in Quantum Field Theory
and Instantons

The semiclassical approximation is a fundamental tool in quantum field theory that bridges the gap
between classical field theories and their quantum counterparts. It allows for the exploration of quan-
tum phenomena by considering quantum fluctuations around classical solutions of the field equations.
This approximation is particularly powerful when dealing with non-perturbative effects that cannot
be captured by standard perturbation theory, such as tunneling processes mediated by instantons. In
this section, we present the theoretical framework of the semiclassical approximation, focusing on its

properties and the role of finite action solutions in dominating the path integral.

2.3.1 Semiclassical Approximation

The starting point of the semiclassical approximation is the path integral formulation of quantum
field theory, where the generating functional Z[.J] is expressed as an integral over all possible field

configurations:

A /Dga exp {z [S[go] +/d4x J(x)ap(x)} } (2.37)

where S[p] is the action functional of the field ¢(z), and J(z) is an external source. Then, the

vacuum-to-vacuum transition amplitude without sources is given by:
2[0] = / D19 = lim (0,410, ~1). (2.38)
— 00

In the semiclassical approximation, we expand the action around classical solutions @¢(x) that ex-

tremize the action, satisfying the classical equations of motion:

=0. (2.39)

$P=Pcl

We then write the field as ¢(z) = pa(x)+n(x), where n(x) represents the quantum fluctuations around
the classical solution. Substituting this expansion into the action and expanding to second order in 7,

we obtain:
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The linear term in 7 vanishes due to the classical equations of motion, simplifying the expansion. The
quadratic term represents the leading contribution of quantum fluctuations, and higher-order terms

are neglected in the semiclassical approximation. The path integral then becomes:

iSlal U T T

This integral is Gaussian and can be formally evaluated, leading to:

)] h . (2.42)

The determinant arises from integrating over the quantum fluctuations and represents the quantum

n(x)n(y)} : (2.41)

Pel

) 528
Z|0] = eSlal | det [ —————
0 l <6¢<x>w<y>

corrections to the classical action, this is precisely the form in which we will compute the tunneling
amplitude of instantons in this work.

The semiclassical approximation is based on several key properties. Firstly, in the limit where
i — 0, the exponential e*31¥/" becomes rapidly oscillating unless S[g] is stationary. Therefore, the
path integral is dominated by field configurations near the classical solutions ¢, that extremize the
action. Secondly, the approximation assumes that quantum fluctuations 7n(x) around the classical
solution are small and can be treated perturbatively. This is valid when the action S[pq] is large
compared to ki, ensuring that the exponential factor does not suppress the contributions from classical
paths. Thirdly, the classical solutions considered must have finite action to contribute significantly to
the path integral. Finite action ensures that the exponential factor e**[¥<1/" does not vanish or become
infinite, making the contribution from ¢, meaningful.

Finite action solutions, such as instantons, play a crucial role in the semiclassical approximation
because they dominate the path integral in certain regimes. These solutions are non-perturbative and

cannot be accessed through standard perturbation theory around the trivial vacuum. The importance

of finite action solutions arises from the exponential weighting in the path integral:

Z[0] ~ eiSleal/ (1 4 O(h)). (2.43)

When S[p.] is large compared to %, the phase oscillations in the exponent can lead to constructive or
destructive interference, depending on the path. However, paths near the classical solution contribute

coherently, reinforcing their dominance in the path integral. Finite action solutions often correspond
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to tunneling processes between different vacua or topological sectors of the theory.

2.3.2 Instantons

Instantons are non-trivial finite action solutions to the Euclidean equations of motion that are localized
in Euclidean spacetime. They possess several important properties. They represent tunneling events
that connect different vacua of the theory and are inherently non-perturbative, as they cannot be
expanded in powers of the coupling constant. Their key property relies on the fact that their Euclidean

action is finite:

1
Silpme] = / diug {Q(ausam i) + V(omen) | < 00, (2.44)

where we use the Euclidean metric 0,,0" = 0*70,,0, and the Wick rotation 7 = —it. Instantons often
carry a topological charge or winding number that classifies the solution, an integer-valued quantity
that remains invariant under continuous deformations of the field configuration [5, 25, 27]. Although
this topological property is instrumental in our understanding of instantons, it is only important in
gauge theories. Therefore, we have chosen to omit it here, as the proposed models in this work involve
only non-gauge scalar theories.

Another important aspect of instantons is that they represent well-localized configurations in Eu-
clidean space. That is, they manifest as sharp perturbations localized in a comparatively small region.
This perturbations are stable and persistent. This is the motivation behind calling them pseudo-

particles [25].

Schema for Instantons

Incorporating instanton effects into quantum field theories involves several key steps and can be done
by following this schema:

1. Identifying Instanton Solutions

Firstly, we need to identify instanton solutions by solving the Euclidean equations of motion for

the field ¢(z). The equation to be solved is:

dSE[¢]
5('0(:1:) P=Pinst

=0, (2.45)

where Sg[p] is the Euclidean action obtained by performing a Wick rotation (¢ — —i7) on the

Minkowski action. This equation represents the stationary points of the Euclidean action, and its
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solutions @i,st(2) are the instanton configurations. These solutions must satisfy appropriate bound-
ary conditions, typically approaching different minima of the potential at Euclidean time infinities to

ensure finite action:

im g (7) = ¢x, (2.46)

rz—+oo

where @4 are the vacuum states of the theory.
2. Calculating the Classical Action
Secondly, we calculate the classical action by evaluating the Euclidean action for the instanton

solution:

1
SE[QPinst] = /d4$ |:2(8,uS0inst aN(Pinst) + V(Qpinst) . (247)

This integral computes the total action associated with the instanton configuration over Euclidean
spacetime. Calculating the classical action is essential because it quantifies the leading-order contri-
bution of the instanton to the path integral. Moreover, the action corresponds directly to the energy
of the configuration in Euclidean spacetime.

3. Computing the Tunneling Amplitude and Fluctuation Determinant

Thirdly, we compute the tunneling amplitude associated with the instanton transition between

vacua:

<S0+‘6_7—H/h|¢7> _ N/DQOC_SE[SainSt]/hy (248)

where the functional measure [Dy] represents functional integration with respect to all functions ¢
that satisfy the boundary conditions for instantons. Moreover, IV is a normalization constant. Now,

we can consider ¢ to be composed of pinst plus some fluctuation 7 such that
L)0(-%') = @inst + Z Cnﬁn(-r)y (249)
n

where 7 represents eigenfunctions of the second variation §2Sg [©inst]. The tunneling amplitude can

then be expressed as [5, 26, 31]:

N|=

(pile M) = Nem5elomd/M [det (~0,0" + V" (oimst))] 2 (2.50)

where the determinant accounts for quantum fluctuations around the instanton configuration.

4. Considering Multi-instanton Contributions and Applying the Dilute Gas Approxi-
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mation

In the dilute gas approximation, we assume that instantons are rare, widely separated, and non-
interacting. This approximation allows us to treat the instantons as a “gas” of non-overlapping, isolated
events. This introduces a correction factor such that the tunneling amplitude becomes proportional

to:
An
/ day - -da, = (2.51)
a1<-<an n:
where A represents the collective coordinate of the instantons, such as position. The dilute gas ap-

proximation is crucial for our work because, under this approximation, the correlation functions are

significantly affected by the instanton contributions [11].

2.3.3 The Derrick-Hobart Theorem

The Derrick-Hobart theorem is a fundamental result in classical field theory that places stringent
constraints on the existence of stable, localized, finite-energy solutions—Ilike instantons—in scalar field
theories. Specifically, the theorem states that in spatial dimensions greater than or equal to two,
nontrivial static solutions of finite energy cannot exist for a wide class of scalar field theories with
canonical kinetic terms. This theorem has significant implications for the construction of models that
rely on such solutions, necessitating alternative approaches to circumvent its restrictions.

Consider a real scalar field ¢(x) described by the energy functional:

E[y)] :/de Bawawpﬂf(@) . (2.52)

We seek static solutions ¢(x) that minimize the energy, satisfying the Euler-Lagrange equation:

oF dV
=-0"9,p+ — =0. 2.53
5(,0(I) HSD d(p ( )

To understand the Derrick-Hobart theorem, we consider the scaling properties of the energy functional.
Assume that ¢(x) is a finite-energy solution described by an energy functional with non-negative kinetic
and potential terms. We perform a scale transformation by introducing a parameter A > 0 and defining

a scaled field:

ea(z) = p(Az). (2.54)
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The energy of the scaled field is:

1
Eleal = [ aPe | 30,0100 + Vi) (2.59)

We compute the kinetic and potential energies separately under this scaling. For the kinetic term we
have:

1
Eiinloa] = 5 /de D 0" o

1
==X [ dPx0,p(\x) 0" p(Nx
33 [ 0,000 9 p(ra) -

1.,
= 5A%\ D/dDyauso(y) Mp(y)

= A27D£Ekin [410]7

where we have changed variables to y = Az and used d”xz = A\=PdPy. Similarly, the potential energy

scales as:

Epoul] = / 4PV (o (2))

_ / P2V (p(Ar)

(2.57)
32 [ a2y v(ew)
= )‘_DEpot[<P]~
Therefore, the total energy of the scaled field configuration is:
Elpa] = Buinlpa] + Epot[pa] = A27P Bun[] + AP Eporle] = E(V). (2.58)

We see that the energy is a function of the scaling parameter A\, and its behavior is determined by the
dimensionality D of the system. To determine if ¢(x) is a stationary point under scaling, we consider

the derivative of the energy with respect to A at A = 1:

dE(X) d (2D -D
N L \e-pg \PE
N dA( in[©] + ot [¢])

A=1

= (2= DN P Byanlg] = AP Bpanlgl| (2:59)

= (2 = D) Exin[] — DEpot[p]-
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For p(x) to be a stationary point under scaling, this derivative must vanish:
(2 = D)Exin[p] = DEpot[¢] = 0. (2.60)

This is known as Derrick’s scaling condition. We need to analyze the behavior of this scaling condition
considering three different dimensionalities D = 1,2 or D > 3

For D = 1, the condition becomes:
(2 = 1) Exin[p] — 1Epot[¢p] =0 = Einl] — Epot[¢] = 0. (2.61)

Since both Eiin[p] > 0 and Epot[e] > 0, this condition can be satisfied by nontrivial solutions where
Exin[p] = Epot[#]. In one spatial dimension, nontrivial finite-energy static solutions can exist because
the energy functional can attain a minimum.

For the marginal case D = 2, the scaling condition simplifies to:
(2 — 2)Exin[¢] — 2Epot[@] =0 = —2E 0[] =0 = Epoi[p] = 0. (2.62)
This implies that the potential energy must vanish:

Bpaliel = [ dP2V(pla)) =0, (2.63)

If V(¢) > 0, this can only occur if V(¢(x)) = 0 almost everywhere in the integration measure.
Therefore, the field must reside in the minima of the potential almost everywhere, leading to a trivial
solution. Consequently, nontrivial finite-energy static solutions do not exist in D = 2 unless the
potential permits V' (¢) = 0 for nontrivial ¢(z).

For n > 3, the coefficient (2 — D) is negative. The scaling condition becomes:
DEpot[¢] = (2 — D) Exin[¢]. (2.64)

Since (2 — D) < 0 for D > 3, the right-hand side is negative. However, Eyot[¢] > 0, which implies
that Exin[¢] < 0, contradicting the fact that Fyin[p] > 0. Therefore, the scaling condition cannot be
satisfied unless both Fyin[p] = Epot[¢] = 0, leading to a trivial solution like for the marginal case.

Therefore, the Derrick-Hobart theorem demonstrates that in scalar field theories with canonical
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kinetic terms, nontrivial, finite-energy, static solutions are unstable and cannot exist in spacetime di-
mensions D > 2. This result is significant because it constrains the types of finite-energy solutions that
can be supported in such theories. To construct stable, localized solutions in higher dimensions, one
must consider theories with modified kinetic terms, include gauge fields, or explore other mechanisms
to circumvent the limitations imposed by the theorem.

One viable approach is to modify the theory or consider specific limits where the assumptions of
the theorem no longer apply. A particularly effective method is the ultralocal limit, where spatial
derivatives are neglected, effectively reducing the dimensionality of the theory to 0 + 1, thus allowing
for the existence of instantons as per the theorem. In the next section, we will explore the ultralocal
limit in detail and demonstrate how it enables the construction of scalar field theories that incorporate

instanton effects while overcoming the limitations set by the Derrick-Hobart theorem.

2.4 The Ultralocal Limit

The concept of the ultralocal limit in quantum field theory, developed by Klauder, provides an alterna-
tive framework to the traditional treatment of scalar field theories by focusing on configurations where
spatial fluctuations are suppressed. This approach is crucial for addressing the challenges posed by the
Derrick-Hobart theorem, which prohibits the existence of nontrivial finite-energy solutions in scalar
field theories for dimensions n > 2. In the ultralocal limit, the Lagrangian is modified such that only
temporal fluctuations remain significant, effectively reducing the field theory to a 0 + 1-dimensional
system where instanton solutions can manifest as they do in quantum mechanics. This section explores
the theoretical underpinnings of the ultralocal limit and its implications, drawing heavily on the work
by Klauder, Francisco and Gamboa [12, 13, 19, 20].

To introduce the ultralocal limit, consider the standard kinetic term of a scalar field theory:
1
Liin = 5 (0updp). (2.65)

We can define the characteristic length of spatial and temporal fluctuations as:

1

— ~

T

(9,5(,0

¥

—~

1|V
b L M

(2.66)

Next, we introduce an infrared cutoff ¢ that modulates the spatial sector by proposing the following
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effective Lagrangian [13, 19, 20]:
1 00 / 2n
_ 2 2n
Lo, kin = 5(6&0) + T;:O Cn <L) (V). (2.67)

Choosing an appropriate ¢ such that % < 1, the effective Lagrangian can be simplified to exclude

spatial fluctuations within a region of size £3:
1 2
L1, kin = 5(5}4,0) . (2.68)

This is known as the ultralocal approximation or limit. This limit allows for the existence of instantons
in scalar field theories by reducing the dimensionality of the theory, thus avoiding the constraints of
the Derrick-Hobart theorem. The applicability of this limit to our model will be explicitly examined

in a later section, where the characteristic fluctuation times and lengths will be fine-tuned.

Smearing and Operator-Valued Distributions

The principal characteristic of the ultralocal limit is the vanishing of spatial fluctuations. That is,
fields located in space evolve independently at each point in space [19, 20]. Consider a field operator
o(x,t) defined over a space of arbitrary dimensionality. In ultralocal models, the Hamiltonian H is
defined without terms involving spatial derivatives, such as V(z,t). The ultralocal property of this
Hamiltonian implies that the dynamics of the field at each point x are independent of the dynamics at
any other point. At a fixed spatial point Z, the field behaves as a purely time-dependent field z(t).
To reconstruct a well-behaved spacetime field, we use spatial smearing with respect to a real test
function f(x) with compact support Z € 2 C R™. By convolution, the ultralocal fields ¢z(t) within
the compact support €2 are transformed into a spacetime field that exhibits spatial correlation within

Q, an operator-valued distribution [16]:

o 1) = /Q (1) (@) dE. (2.69)

This test function serves to average out local fluctuations and make p(x,t), with x € Q serving as a
spatial coordinate, well-behaved in the context of quantum theory as an operator-valued distribution
[16, 19, 20]. The function f(x) ensures that while the field ¢z(t) remains independent at different

spatial points, the smeared field ¢(x,t) can still exhibit spatial homogeneity in observables within €.
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This homogeneity does not imply interaction between points; rather, it reflects a uniform response
across space when considering smeared observables [16, 19, 20]. Since ) is compact, this homogeneity
is valid only within a finite region and at a specific time, preserving causality. True independence is
retained for observables with disjoint supports for their smearing functions [12, 19, 20].

The physical significance of this construction is that in the ultralocal limit, the n 4+ 1-dimensional
field theory reduces to a collection of independent 0 + 1-dimensional quantum systems [13, 19, 20].
Each point = behaves as if governed by its own time evolution without spatial influence. The test
function f(z) integrates over these independent systems, creating a smeared field that, when observed,
appears homogeneous across space [19, 20] and gives an analogous representation to ¢(x,t).

This approach implies that non-perturbative effects in such theories, including phenomena like
instantons, can be analyzed by studying their counterparts in simpler quantum mechanical systems.
For this work, we are not interested in the explicit form of the smearing function or the smeared field
©(x, t) but rather in the result that, in the ultralocal limit, the dynamics of fields can be studied as a
reduced dimensionality problem in quantum mechanics, accounting for the loss of degrees of freedom

by assuming spatial homogeneity within a compact subspace.

2.4.1 Instantons in the Ultralocal Limit

Following the discussion of the previous section, we will now compute the general form of instanton
solutions in a scalar field theory in the ultralocal limit. To this end, consider the standard form of the

Euclidean scalar field Lagrangian in the ultralocal limit:

Lu= 5007 +V(g). (2.70)

Then, its action would be

su= [artu= [ar (3002 + 7). (271)

By performing the first variation over the action for this Lagrangian, we can find the generic equation
of motion for a scalar field as:

6Su =0 = 2p—0,V =0. (2.72)
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This is precisely the form of the classical equations of motion of a particle moving over the potential
—V by making the identification ¢ <> x. Moreover, by making this identification, we see that the

action transforms into the Euclidean action for instanton solutions in a quantum mechanical system:

- / dril, = / dr (;(m)uvm)). (2.73)

In this way, we see that the reduced dimensionality of the ultralocal limit of our scalar field theory
is equivalent to a quantum mechanical system. Therefore, instantons in the ultralocal limit have the
same form as its quantum mechanical analogues with the identification = < ¢.

By applying Noether’s theorem on the 7-translation invariance of the system, we find that the total

energy must be conserved:
1
5(&@)2 —V(p) =0 = 0:Pinst = V2V (@inst) (2.74)

This equation is known as the first Bogomolny equation and it is the differential equation that char-

acterizes instanton solutions [25]. This is an integrable equation whose solution is then:

d
/7‘” = i/dr. (2.75)
V2V (p)
Moreover, this equation also allows us to compute its action, or equivalently in Euclidean spacetime,

its energy, in what is called the second Bogomolny equation:

S[Soinst} == Q/dT V(Sainst) = /dT (aTSDinst)Q = E[@inst} (276)

In this work, we will use this equation to derive the general form of the instanton solutions for
the proposed models in the ultralocal limit. This produces time-dependent instantons, their spacetime
counterparts are obtained by performing the appropriate smearing to create an operator-valued dis-
tribution [16, 19, 20] in such a way that their spatial behavior is homogeneous. In this work, we will
not perform the smearing explicitly, but we will use this fact to check for the consistency of the model

proposed.



Chapter 3

Model

3.1 Modulation of Noncommutative Parameter via Scalar Fields

The proposed model, termed Modulated Noncommutative Quantum Field Theory (MNCQFT), intro-
duces a dynamic mechanism for the noncommutativity parameter #¥. In NCQFT, 64" is treated as
a fixed background parameter. However, MNCQFT allows 6*" to evolve dynamically through mod-
ulation by scalar fields ¢* residing in a moduli space. This modulation is mathematically expressed

as:

0 (@) = 3 9t ()0, (3.1)

where 0% are elements from a basis of antisymmetric matrices, forming the linear space © to which 6**
belongs. This framework allows 8# to vary according to energy scales, controlled by the behavior of
the scalar fields ¢®. Moreover, it is important to recall that although we suggest that this fields exist
outside of the Minkowski spacetime of the SM, they modify the behavior of the theory directly since
they would appear in all terms of the SLIV sector of the SME where the matter fields are required to
be contracted with 6#¥.

The objective of allowing #*¥ to be dynamic is to recover the following expected behavior incorpo-
rating non-perturbative effects via the semiclassical approximation, the expectation value of the scalar

fields behaves as follows:
| epaa=0 = @) =0,
(¢") (3.2)
(") E>a #0 = (0"") #0.

This behavior implies that at low energies, the expectation value (p®) vanishes, leading to a zero phys-

43
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ical expectation value for #* and thus suppressing all Lorentz-violating terms in the SME Lagrangian.
As a result, the theory effectively reduces to the Standard Model at low energy scales. Above a critical
energy threshold A, however, (p®) becomes non-zero, yielding a non-zero (8**) and the emergence
of Lorentz-violating interactions. This mechanism introduces SLIV into NCQFT, aligning with the

conditions for compatibility with Riemann-Cartan theory [4, 23].

3.1.1 Scalar Field Models

The decision to modulate 0¥ using scalar fields is motivated by both theoretical considerations and
phenomenological viability. Allowing 8*" to vary independently would necessitate constructing a pure
Yang-Mills-type theory with a complex gauge structure, lacking phenomenological support. By employ-
ing scalar fields, the model avoids introducing new symmetries beyond those present in the Standard
Model, simplifying the theoretical framework while retaining the capacity to explore noncommutative
effects.

Moreover, allowing 6# to vary independently would imply the addition of a gauge symmetry to
the Standard Model (SM). This is undesirable because, under the Seiberg-Witten map, the theory
would necessarily map to a different SME with different gauge orbits. This would jeopardize the
main objective of this work, as it relies on the SME analyzed by Carroll, which is compatible with
Kostelecky’s framework.

Finally, under the ultralocal limit, instantons in scalar field theories are phenomenologically identi-
cal to instantons in non-relativistic quantum mechanics. Therefore, their behavior can be interpreted
intuitively, allowing for the construction of symmetry arguments, which are paramount to achieving
the desired behavior of the model. Additionally, this approach simplifies calculations. Instantons in
non-relativistic quantum mechanics are well-understood mathematically, enabling verification of most
calculations with the literature, particularly references such as [5, 11, 25, 27]. This ensures the model’s
alignment with current scientific understanding. If generalizations are needed, this work provides a
robust foundation due to its simplicity and the strong scientific consensus surrounding instantons in

non-relativistic quantum mechanics.
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3.2 Harmonic Oscillator and Fluctuation Determinant

In this section, we will present the instanton solutions for a quantum harmonic oscillator. This analysis
is essential because, as we will see, most computations can be extended by considering a simple
phenomenological argument.

As explained before, instantons behave as well-localized phenomena. They transition between
different vacuum states within a very short timespan and remain most of their time well-localized in
the vacuum states. Therefore, it is a well-founded assumption to analyze their properties by considering
how they behave within a single vacuum state and introducing a correction factor to account for their
tunneling. That is, we reduce the problem to studying the harmonic oscillator coupled to a correction
factor. Both models we propose can be approximated by the harmonic oscillator at their vacuum
states. Most notably, this approach allows us to compute the fluctuation determinant required for
instantons, after which we consider a correction factor to extend these results to the other proposed
models.

Let us consider the following Euclidean Lagrangian:

1 2
L= 00 + V().
1

Vip) = 517"

(3.3)

We propose the following expansion around events between an initial time —7'/2 and final time T'/2,

with T' — oo, as described in the schema for instantons:

P(7) =+ Y catin(7), (3.4)

where we have substituted ¢i,s¢ With ¢¢ because, for a single vacuum state, we do not have instantons.
Instead, we consider the classical path from the semiclassical approximation. By considering the

fluctuations to be eigenfunctions of the second variation of the action, we have:

[N

<§0f| efTH/h ‘€01> = NB*SE[LPcl]/h [det (—872_ + Vl/ (4/7(:1))} - (35)



46

By choosing eigenfunctions of the second variation, we can now write the fluctuation determinant as:

N [det (<02 + V" ()] % = N 1012

202 —-1/2 V”((pc1)2T2 1/2
:NH(Tzhz) H<1+ 202 ) ’

n

(3.6)

where \,, = T2 h2 + V! (cpc1)2 are the eigenvalues associated with the fluctuations 7,,. Using the fact
that [5, 31]:

—1/2

_/dp —p Th/? 1 (37)

N H (T2h2 > o2 VorTh'

and the hyperbolic sine identity:

sinh(my) = 7ry1;[ (1 + f;) , (3.8)

we can write:

. 10 sinh(V" (¢ e
N[det (~02 + V" (pa))] "/ \/27175 ( V(” (np(cl) }T)>
V”( 2smh V" (a) T)) /2 (39

\/TC]) V" (pa)T/2 _ _QV”(WCI)T 4+ ).
wh

Then as T — oo, at first order we recover:

—1/2 V//(%OCI) 1/2 "
N [det (=02 4+ V" (za))] " = (h> e VI e)T/2 Z AN (3.10)
™

As stated before, due to the phenomenological behavior of instantons, if for a general theory with
degenerate vacuum states N > 2, if it can be approximated as a harmonic oscillator near these vacua,

then we can assume that A will have the same form and will be corrected by a factor K[31]:
AN — KAN, (3.11)

such that the tunneling amplitude is also corrected as:

(prle” ™M @) = KANeSeleal/l, (3.12)
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Moreover, if given the case that we can consider n multi-instanton effects, we will also assume that:
AN — K"AN (3.13)

In this work, we have chosen two models with the required asymptotic behavior near their vacuum
states: a sine-Gordon model and a Linear Sigma Model O(N), ensuring the validity of these assump-

tions.

3.3 Sine-Gordon Model

The first model that we propose is a model based on the sine-Gordon Lagrangian. In this model, we
propose that each scalar field ¢® is described by their own independent sine-Gordon Lagrangian without
mixed interaction terms. Then, the full Lagrangian would be just a summation over the independent
sectors. For this model, we will find that the vanishing of the expectation value of the scalar fields p®
is a result from the acquired symmetry of the topological vacuum |Q2) whose construction is mediated

by the effects of instantons. To this aim, consider the Lagrangian for a particular ¢® given by:

c:;m@wwﬂ—ww,

) (3.14)

I
Vig) = L5 (1 coswy),
where p is a coupling constant setting the scale of the potential, and w determines the periodicity.

Then, in the ultralocal limit its Euclidean Lagrangian becomes:

2

Lo == (0:0) + % (1 - coswe). (3.15)

N | =

Moreover, the sine-Gordon model requires ¢ to be an angular field:

(1) :R— St (3.16)
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Potential for the sine-Gordon Model Quadratic approximation near

2nn
W

— Vip) =f.—2,(1 — cosl(we@))

2nn
———

Vig)
Vig)

——- Quadratic Approximation

1
g2 4
5

=9

Figure 3.1: Potential for the sine-Gordon Model extended in a line with its quadratic approximation

near the minima.

In this case, by imposing the boundary conditions corresponding to tunneling between the degen-

erate vacua:

TEI—IIOO SD - 0 - (p77

. 2

lim o= — = 4.
T—+00 w

we can use the first Bogomolny equation to find the instanton solution

P —
\/%(1—coswgo)
11 at
_ﬁfiﬂi?

1 1 1
2 s+1 s-—1

1 1-—
= +A7= —In i ,
2u 1+ s,
which implies that the instanton solution takes the form:
1 — cos £ / 4 ,
——— 2 = tlT) — B(r) = — arctan (ei“(T*T )) ,
1 + cos =7 w

(3.17)

(3.18)

(3.19)

where 7/ is the time around which the instanton is centered, corresponding to the moduli space of
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instantons in this model. Moreover, in this case, the characteristic time of the instanton is 7o = *

I

sine-Gordon Instanton
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Figure 3.2: Single instanton for the sine-Gordon model.

The action for this instanton is finite and corresponds directly to its energy. Using the action side

of the second Bogomolny equation:

sl = [ ar[3 07 + 5 (1 - cosum)

—0o0
o0 /.1:2
= 2/ dr — (1 — coswp) (3.20)
e W
16 _
= 2 = E[¢]~

This finite action implies significant contributions from instantons in the semiclassical limit. The

contribution taking the form of tunneling between the degenerate vacua of the theory, with amplitude:
(pple ™Mo ) = KANe 2% = ¢, (3.21)

where K is the correction term resulting from approximating the vacuum states of the sine-Gordon
model to the harmonic oscillator. Moreover, due to the symmetry of the model, we will have that the

tunneling amplitude between any two contiguous vacuum states |2Z%) — \W) will be &.
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3.3.1 Construction of the Topological Vacuum and Vanishing Expectation

Value

In order to obtain the desired behavior of a vanishing expectation value, we will consider the tunneling
effects of the instantons. These tunneling effects can be incorporated into the model by constructing

an effective Hamiltonian describing tunneling;:
Hor = Bo 3 INVN| =€ 3 (IN + 1(N| + [N)(N +1]), (3.22)
N N

where |N) represents the different vacuum states admitted by the potential. The periodic potential

allows for a superposition state following Bloch’s theorem [27]:
Q) = AeNN), (3.23)
N

where A is a normalization constant unimportant to this analysis. Moreover, this Bloch state is an

eigenstate of Heg:

Herl) = [Eo S INNN| = €3 (IN + 1(N| + [NYN + 1)) | Y 462 1)
N N IY;

=E, Z IN)(N|AetMe M) — ¢ Z (IN + 1)(N[Ae"M M) + |N)(N + 1|AeM2|M))

N,M N,M (3.24)
= AFE, Z e NON) — A€ (" + e71?) Z e NN
N N

= AEy|Q) — 2AE cos Q|).

The energy expectation value for this state is minimized when €2 = 0, yielding the topological vacuum:
Q=0)=A>|N), (3.25)
N

which represents the symmetrical superposition of all degenerate vacua |N).
From the construction of this topological vacuum state |Q) it is straightforward to see that it is
invariant under the dihedral group Dih(w) = g. Let’s consider first the rotational generator for the

group Ty0t(g), whose action induces a rotation of 27” If we consider the vacuum states |N), then this
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rotation shifts each state N — N + 1:
Trot(9)|N) = [N +1) = Trot(g AZ|N+1 12). (3.26)
On the other hand, if we consider the field ¢, then the action of Tyt (g) is to shift the phase by %’r

2mi

Trot( ) Trot( ) € wlsﬂ‘ (327)

If we remember that T\ (¢)Tiot(g) = 1 since the transformation is unitary, then by a simple symmetry
argument it is straightforward to see that this leads to a vanishing expectation value for the ¢ with

respect to the topological vacuum |Q2):

(@10 | Q) = (Q] The(9)Tror(9) ¢ Thi(9) Tror(g) | Q) =2 (Q | o | Q) =0. (3.28)

Similarly, for the reflection symmetry component of Dih(w) acts on the vacuum states like:

gIN) = 19), (3.29)

rot

Toet(9)IN) = Tlot(9) PTit (9)|N) = Tg AZTE )JPT 5

where P indicates the parity operator and 7}, means n sequential applications of the rotation gener-

ator. In the same way, for the scalar field :
Teet(9)9The(9) = Th (9) PTie(9)p = €@, (3:30)

for some angle ¥(p) that depends on the starting phase of the field ¢. Therefore, we can use the same

argument to show the vanishing expectation value:
Q101 9Q) = (Q] Tret(9)T5(9) ¢ Tret(9)Tihs(g) | Q) = €7N(Q | | ) = 0. (3.31)

These results confirm that at low energies, the expectation value {¢) vanishes due to symmetry restora-
tion from instanton effects, resulting in (0#¥) = 0. At high energies, where we are unable to construct
a vacuum with such symmetry, (%) becomes non-zero, leading to (#**) # 0 and the emergence of

Lorentz violation.
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3.4 Linear Sigma Model

To further explore the modulation of the noncommutativity parameter 6*”, we propose an alternative
model where the scalar fields ¢ are described collectively by a single Lagrangian—the Linear Sigma

22D and d = dim ©, the dimension

Model. This model possesses an O(N) symmetry, where N =
of the antisymmetric matrix space to which 8#” belongs. For clarity and without loss of generality,
we will consider d = 3, so N = 3, corresponding to an O(3) symmetry. The conclusions drawn here
can be generalized to any dimension d such as d = 4 which would be the correct dimensionality for
MNCQFT. In this model, unlike the sine-Gordon model, we will not construct the explicit form of
the topological vacuum |§2). Instead, we will show that the instantons in this model will modify the
two-point correlation function of the theory. Then, the vanishing expectation value for the scalar fields

p® will result from applying the cluster decomposition principle. To this aim, consider the Linear

Sigma Model for N = 3 real scalar fields

3
1 %
52 au V(‘P17<P27<P3)7

i=1

V(' % ¢%) Z (ZWV) :

i=1

(3.32)

Here, ;1 and A are constants that set the scale of spontaneous symmetry breaking and the strength of
the self-interaction, respectively. In this case, the Linear Sigma Model requires that the scalar fields

" be real-valued functions of time:

o'(z) : R —=R. (3.33)

Moreover, as is characteristic for the Linear Sigma model, the potential V' is minimized when the fields
satisfy:

iN2 _ M2
D)= (3.34)

which defines a vacuum manifold with the topology of a sphere S?, reflecting the O(3) symmetry of

the model.
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Potential for the Linear Sigma Model

(d)A

Figure 3.3: Potential for the Linear Sigma Model restricted to two fields.

Choosing a specific vacuum expectation value spontaneously breaks the O(3) symmetry. Without

loss of generality, we select the vacuum in which only the first component acquires a non-zero value:

G =(1,0,0), v=-. (3.35)

Vo)

This choice simplifies the analysis by reducing the model to one involving only the field ¢ = ¢!,
while the other components correspond to Goldstone modes resulting from the symmetry breaking
whose dynamics are uninteresting for the model at the moment. In this broken-symmetry state, when

applying the ultralocal limit, its Euclidean Lagrangian is

1 A
Lu =509+ (9" - v?)’ (3.36)
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Broken Symmetry Potential for the Linear Sigma Model Quadractic approximation near —v Quadractic approximation near v

—=—- Quadratic Approximation —=—- Quadratic Approximation
' I

Vip)
Vig)
Vi)

— Vip)=4g? —v?)?

==y
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Figure 3.4: Potential for the Linear Sigma Model restricted to a single field after SSM with its quadratic

approximation near the minima.

By imposing the boundary conditions corresponding to tunneling between the degenerate vacua:

lim (1) = —v,

T——00

(3.37)
i olr) =
Then, we can use the first Bogomolny equation to find the instanton solution:
foreiif s
A 2 -2 )
(3.38
1 _
= AT = 21 n? Y
A2 p+v
Which implies that the instanton solution takes the form:
p+v +uv2(r—1") —_ ( M(T B T/)>
— =e = () =vtanh | +——= |, 3.39
Py P(7) 7 (3.39)

where 7’ is the time around which the instanton is centered, corresponding to the moduli space of

— V2

=

instantons in this model. Moreover, in this case, the characteristic time of the instanton is 7
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Linear Sigma Instanton
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Figure 3.5: Single instanton for the Linear Sigma model.

The action for this instanton, like for the sine-Gordon model, is finite and corresponds directly to

its energy. Using the action side of the second Bogomolny equation:

Stel = [ ar |50+ 3 (2 =)
)\ oo
=5 | drlp) (¥*—v?)?
2 LO (3.40)

Thus, the tunneling amplitude will be:

2v2u3
XK

(vyle ™My = KANe™ =, (3.41)

where, just like in the sine-Gordon model, K is the correction term resulting from approximating the
vacuum states of the Linear Sigma model to the harmonic oscillator. Moreover, it is also possible
to compute the amplitude for the transition |v,0,0) — |0,v,0) — |0,0,v), where a non-zero field

transitions to a zero field and vice versa. This tunneling ensures that there is a full mixing of the
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vacuum states of the theory [13], this allows for the full restoration of the O(3) symmetry of the
theory.

Now, for this model it is worthwhile to compute the value of AN explicitly as we will require it to
derive the two-point correlation function induced by instantons. Since we have chosen the model in
such a way that we can approximate each of the vacuum states as a harmonic oscillator, we can write:

1
V” :I: T2 "
NA = (ih”)) eV E2E (3.42)

Therefore, by identifying the components, we can retrieve the normalization constant as:

1

V"' (£r)\ 2
wo (V) o
Thus, the only value that we are missing is the correction factor K. If we recall, instantons possess a
moduli space, a collective coordinate that characterizes instantons but whose value is unimportant for
the theory since observables must be independent from it. For example, the action of the instanton
is independent of this factor. The correction factor K must take into account integration over the
moduli space of the instantons and remove the zero modes. Following a procedure analogous to the

Faddeev-Popov gauge fixing procedure [11, 31], the correction factor is given by:

K- (3

which is computed by excluding all zero-modes Az = 0 from the determinant.

|

det(—02 + V"(+v))
det(—02 + V(7))

= (gﬁi})é (v, ), (3.44)

‘ ‘Aﬁso

3.4.1 Multi-instantons and Dilute Gas Approximation

By analyzing the moduli space of the instantons, we find that, in reality, we should consider the effects
of instantons characterized by a wide set of times 7,,, the collective coordinate. Thus, we postulate
that for a multi-instanton of length n, the correction factor K — K™, such that:

" 7% 1"
NA = (‘”?) eV E/2Km (3.45)
™
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Considering the integration over the moduli space, we compute:

"
T1<...<Tn :

Thus, the tunneling amplitude is modified to account for infinite length multi-instanton chains [31]:

Ke—S@N/mp\™
(ile ™M) = AN Z %

n odd/even (347)
_ ANt (eKexp<—S[¢1T/h> - e—Kexp(—smT/h)) .
2

So that for the dilute gas approximation:

(v_|e ™" |[y_) = AN cosh (eKeXP(*S[ﬁ]T/h)> 7
(3.48)
(vyle ™M [y_) = AN sinh (eK eXP(—S[E]T/h)) .

Double Instanton for the Linear Sigma Model
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Figure 3.6: Double instanton for the Linear Sigma model.
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Triple Instanton for the Linear Sigma Model
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Figure 3.7: Triple instanton for the Linear Sigma model.

3.4.2 Two-Point Correlation Function, Cluster Decomposition and Vanish-

ing Expectation Value

Unlike the sine-Gordon model, we will not construct the explicit form of the topological vacuum |€2),
as the following analysis is independent of this form. The two-point correlation function in the dilute

gas approximation is given by [11]:

1 _sksip Sle 1 _ap
(p(0)p(1)) = m—e 2KSPlexp(=SEDT — L_—ABT

- £ S : (3.49)

where AE = 2K S[p] exp(—S[@]) is the energy difference between the ground state and the first excited

state. As 7 — 00, the correlation function vanishes:

lim (p(0)p(7)) = 0. (3.50)

T—00

Applying the Cluster Decomposition Principle [17], this result implies:

{¢) =0. (3.51)
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This vanishing expectation value arises due to the restoration of symmetry by instanton effects, despite
spontaneous symmetry breaking at the classical level. At high energies, the ultralocal limit no longer
applies because E? < p? is violated, so instanton effects vanish by the Derrick-Hobart theorem,
recovering the desired behavior. For this model, the explicit energy cutoff is A = p.

The validity of the cluster decomposition principle under ultralocal dimensionality restrictions
will be discussed further in the next section. By carefully choosing the coupling constants p and A,

compatibility between these results and the ultralocal framework is achieved.

3.5 Implications for the Modulation of 6*”

As we have seen, with both models—the sine-Gordon model and the Linear Sigma Model—the van-
ishing expectation value of ¢ at low energies leads to a vanishing expectation value of the noncommu-

tativity parameter 0+":

(") = ("0 =0. (3.52)

a

At low energies (E < A), the effects of instantons allow for the Lorentz symmetry to remain unbroken,
hence the theory effectively reduces to the Standard Model. However, at energies above a certain
cutoff A, the expectation value (¢%) can become non-zero due to the suppression of instanton effects,
leading to:

(0") £ 0. (3.53)

Explicitly, this behavior at high energies arises from our inability to construct the topological vacuum
in the sine-Gordon model and the inapplicability of the ultralocal limit in the Linear Sigma Model.
This non-zero expectation value introduces Lorentz-violating terms in the theory, consistent with the

behavior expected in a NCQFT with SLIV. Thus, we recover the desired behavior:

(") p<a =0 = (0") =0,
(¢ (3.54)
(@) E>a #0 = (0") #0.

This energy-dependent behavior of 8#” ensures that Lorentz violation is absent at low energies, in

agreement with experimental observations, while allowing for Lorentz-violating effects to emerge at



60

high energies. This can be seen if we recall the Seiberg-Witten Lagrangian for NCQED:

1 73 o 1 "2
LQED, sw 2521#7‘ Dy —myy — ZF,WF‘

1. 904,6’ Iy L. 9065 fy M

— 3k Fopypv*Dpy + 1l Foupy* Dy
1 _

+ quoaﬁFaﬁw (3.55)
1 1

- quO‘BFaqu,,F’“’ + gqﬂaﬁFaﬁFMF‘“’ + 0(6?)

= Lqep + LLiv ().

Then, below the energy cutoff A, we have (6#) = 0, so that our Lagrangian reduces to:

LQED, sw, E<A = LQED (3.56)

which is manifestly Lorentz invariant. On the other hand, above the energy cutoff A, we have (8#*) #£ 0,
so that:

LQED, sw, E>A = LQED, SME » (3.57)

which is not Lorentz invariant. This behavior is the characteristic signature of a SLIV theory. Thus,

the required behavior to implement the model within Kostelecky’s framework is achieved [4, 6, 23].



Chapter 4

Consistency, Implications and

Limitations

4.1 Compatibility with Ultralocal Limit

Ensuring compatibility with the ultralocal limit is essential for maintaining the stability and consistency
of solutions in field theories like the Linear Sigma Model, particularly when attempting to bypass the
Derrick-Hobart theorem and addressing the issues related to tunneling in infinite space. While the
sine-Gordon model naturally satisfies these requirements due to the compactification of space into S?,
the Linear Sigma Model demands a more thorough analysis. This section outlines the necessary spatial
and temporal constraints for achieving the ultralocal limit.

To apply the ultralocal limit effectively, we must impose constraints on the spatial and temporal

variations of the field. Specifically, the characteristic sizes of these variations are represented by:

1

— ~

T

8,590

¥

—_~

L |ve
b L Lp .

(4.1)

These expressions quantify the inverse time scale T and inverse length scale L over which significant
changes in the field ¢ occur. For the ultralocal limit to be valid, we require that temporal variations

dominate over spatial variations, ensuring that:

1 1
T > 7 o equivalently T < L. (4.2)
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This condition implies that the characteristic time scale of changes in the field is much shorter than the
characteristic spatial scale. Physically, this ensures that the field configuration varies more rapidly in
time than in space, effectively suppressing spatial gradients and emphasizing the temporal dynamics.
This dominance of temporal changes is critical for avoiding the Derrick-Hobart theorem. Thus, by
neglecting spatial variation, we effectively reduce the dimensionality of the theory, bypassing the
Derrick-Hobart Theorem. The mechanism for achieving the ultralocal limit is the insertion of a infrared

cutoff to spatial variation such that when:

¢ < 7-0_1 <T < L<oo = Eeff, kin — ‘Cul, kin» (43)

and the theory admits instatons with characteristic time 7, 1 As we can see, this inequality can always
be satisfied since £ is a free parameter. Thus, we are also justified in applying the ultralocal limit to the
Linear Sigma Model. The problem arises when we consider that for the vanishing of the expectation
value of the scalar field p* we require to further satisfy the Dilute Gas Appoximation and the Cluset

Decomposition Principle requirements.

4.1.1 Compatibility with Dilute Gas Approximation and Cluster Decom-

position Principle in the Ultralocal Limit

Beyond the ultralocal limit conditions, the model must also satisfy the requirements for the Dilute Gas
Approximation and the Cluster Decomposition Principle. For the Dilute Gas Approximation to be
valid, the time separation between instantons, 7, must be significantly larger than the characteristic

time of an individual instanton, 79. This condition is expressed as:

2
To ~ £ <T (4.4)
w

This requirement ensures that individual instantons are well-separated in time, preventing overlap
and allowing the approximation of a dilute gas of instantons. The corresponding time scale condition
becomes:

V2

7 <T << L. (45)

Here, T" must be long enough to accommodate multiple well-separated instanton events but still

bounded by L to prevent spatial fluctuations from dominating.
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The Cluster Decomposition Principle necessitates that the time separation 7 between field configu-
rations be large enough so that the two-point correlation function in the time domain vanishes at large
separations. This ensures statistical independence of distant events, which is critical for the physical

interpretation of correlation functions. The condition for this principle is:

2
‘If <AE <, (4.6)

where AF was the energy difference between the ground state and the first excited state for the Linear
Sigma Model used to compute the time-only two-point correlation function. It is noteworthy that AFE
depends on the two arbitrary coupling constants of the model, u and A. For the Linear Sigma Model,

the final conditions take the form:

2
\u[ <KAE'<T<L<oo (4.7)

Due to the dependence of AFE on the coupling constants, we have enough degrees of freedom to
ensure that this inequality is satisfied by appropriately tuning the coupling constants. Specifically, the

relationship between p and A can be expressed as:

\f < (2K S[p] exp(—S[@]))fl = (V2 (857{?;;\3) exp <_23\/)\§/ﬁ> < 1, (4.8)

where ( is the factor obtained when computing the correction factor K for the harmonic oscillator
approximation. Moreover, the flexibility in adjusting these constants ensures that the model can
simultaneously meet the requirements of the ultralocal limit, the Dilute Gas Approximation, and the

Cluster Decomposition Principle.
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Inequality Satisfaction in Log Domain for the Consistency

10°
Not Satisfied

~ 1071 - Critical Region

Satisfied

102

Figure 4.1: Inequality satisfaction in Log domain for the consistency requirement in terms of the

coupling constant.

4.2 Consistency of the Model and Its Limitations

4.2.1 Consistency with the Seiberg-Witten Map and Kostelecky’s Frame-

work

By assuming that ¢*(¢) depends solely on time and neglecting spatial variations, we ensure that 6#¥
remains effectively constant within local spatial neighborhoods at any fixed time, by considering the
smearing of observables [19, 20] to appear constant within the causal neighborhood. This allows us
to apply the Seiberg-Witten map at a fixed energy scale, with 8*” treated as a constant parameter
during the mapping process.

The absence of interactions between the modulating scalar fields and SM fields reinforces the
validity of the Seiberg-Witten map in this context. Since the scalar fields influence only 6*” and do
not introduce additional gauge or matter couplings, the fundamental assumptions underlying the map
remain intact. This separation of the moduli space from Minkowski spacetime preserves the gauge
invariance and locality essential for the Seiberg-Witten map’s applicability.

Moreover, another aspect that supports the compatibility of the model with the Seiberg-Witten
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map relies on the fact that, even if some anomalous behaviors were to be introduced by the model as the
noncommutative parameter depends on spacetime that we have not taken into account in this analysis.
We can still apply Kontsevich’s quantization procedure. This quantization procedure is a generalization
of the Weyl-Wigner quantization used for constructing NCQFT. This quantization procedure can be
done for any arbitrary Poisson structures [1, 3, 22]. Hence, this model would still allow us to construct
a quantum field theory. Moreover, in a work by Aschieri it has also been shown that we can construct
the Seiberg-Witten map for any quantum theory constructed by following Kontsevich’s procedure [1].
Thereafter, since the Seiberg-Witten map depends only on the gauge orbits of the theory and the
target theory, and this model has not introduced any new gauge symmetry, the result from applying
must be the same SME described by Caroll [1, 9]. This SME being compatible with Kostelecky’s
framework.

Moreover, within Kostelecky’s framework, to show the conservation of the stress-energy tensor in
Riemann-Cartan spacetime in theories with SLIV, it is paramount that 6*” remain constant within
a causal neighborhood. We postulate that our ability to reconstruct the spacetime field p(x,t) is
paramount for the consistency of the model proposed. For example, by considering a constant smearing

function f:

1, z€Q,
flx) = (4.9)
0, x¢Q.

This would be inherited to the smeared field ¢%(x,t) and in turn to 6*”(x,t) which would behave as
a constant within €, a causal neighborhood. Thus allowing for consistency with Kostelecky’s results.
Moreover, even if our postulate produced undesired effects. It is noteworthy to state that Kostelecky
postulates that the requirement for the coefficients for Lorentz violation to be constant in a neighbor-
hood could be dropped without affecting the conservation laws. As long as the dynamical coefficients
have integral curves or sufficiently slow spacetime variation, where constancy can be assumed as the
leading approximation [23]. Thus, in both cases our model should remain consistent with Kostelecky’s

framework.

4.2.2 Addressing Potential Limitations

While the model presents a coherent framework, certain limitations require attention. The assumption
that the scalar fields do not interact with SM fields simplifies the model but may need to be exam-

ined for potential indirect effects. For instance, fluctuations in * could, in principle, influence the
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renormalization of SM fields or lead to observable consequences that need to be accounted for. Most
notably, by the effect of a SLIV theory, we introduce an effective cutoff, ultraviolet for the SM sector of
the SME and infrared for the LIV sector. This effects need to be explored further as to avoid possible
incompatibilities with current scientific concensus regarding renormalization.

Furthermore, the assumption that the scalar fields’ dynamics are confined to the moduli space
implies that their equations of motion do not influence Minkowski spacetime. Investigating whether
this separation can be consistently maintained while still allowing for the modulation of spacetime
structure is paramount for the consistency of this model and should be explored further. Most notably,
the ultralocal requirement necessary for the existence of instantons in the proposed models implies a
strict requirement between time T and space L fluctuations in the moduli space. Meanwhile, T and
L behave normally on Minkowski space. It is important to explore the implications of these restricted
scales on Minkowski spacetime, specially, their effects on the phenomenological signatures of the SM.

Another important aspect that should be explored further lies within higher-order effects. Most
notably, although this model has a vanishing expectation value of the noncommutativity parameter,
it is only shown at first order in 6. Further investigation should be done to explore the effects of
higher-order terms that may not have a vanishing expectation value.

Potential phenomenological implications, such as deviations from Lorentz invariance at accessible
energy scales, must be carefully analyzed. Even if the effects are suppressed at low energies, precision
experiments that have been done place stringent constraints on the model [4]. Assessing these implica-
tions will help determine the model’s viability and guide any necessary refinements. Carroll proposes

several experiments that could be done and mentions some of these constrains [4].



Chapter 5

Conclusion

This work has introduced a novel framework for dynamically modulating the noncommutativity param-
eter 0* in NCQFT, enabling the incorporation of SLIV. The key idea was to tie #¥ to the dynamics of
scalar fields ¢® residing in a moduli space external to Minkowski spacetime. By allowing 6*" to evolve
with energy, the model achieves a seamless transition between Lorentz-invariant behavior consistent
with the Standard Model at low energies and Lorentz-violating effects at high energies described by a
Standard Model Extension (SME).

The modulation of 8#” was achieved by expressing it as a linear combination of antisymmetric
matrices 0%, weighted by the scalar fields ¢®. This approach ensures that the behavior of 0#¥ is
governed entirely by the dynamics of the scalar fields, which vary as a function of energy. At low
energies, the vacuum expectation value of the scalar fields vanishes due to the effects of instantons,
leading to (6**) = 0 and the recovery of Lorentz invariance. At high energies, where instanton
effects are suppressed, the scalar fields acquire non-zero expectation values, yielding (6#) # 0 and
introducing Lorentz-violating terms into the theory. This modulation is consistent with the structure
of SMEs providing a natural way to incorporate SLIV in NCQFT.

Two scalar field models were proposed to implement this mechanism: the sine-Gordon model and
the Linear Sigma model. These models were chosen for their well-understood instanton dynamics
and their ability to produce the desired energy-dependent behavior of ¢*. The sine-Gordon model
employs a periodic potential that admits nontrivial topological vacua, allowing for instanton-mediated
transitions that restore symmetry at low energies. The Linear Sigma Model, on the other hand, relies

on spontaneous symmetry breaking to produce degenerate vacua, with instanton solutions ensuring a
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vanishing expectation value for the scalar fields at low energies by the Cluster Decomposition Principle.
In both cases, the models satisfy the conditions required for the ultralocal limit, which suppresses
spatial fluctuations and emphasizes temporal dynamics.

The ultralocal limit played a central role in the theoretical construction of the model, providing
a way to circumvent the Derrick-Hobart theorem, which prohibits stable, finite-energy solutions in
scalar field theories in dimensions n > 2. By suppressing spatial variations and focusing on temporal
fluctuations, the ultralocal limit effectively reduces the dimensionality of the problem, allowing for
the existence of instantons. The constraints on spatial and temporal scales required for the ultralocal
limit were derived explicitly, ensuring compatibility with the dilute gas approximation and the cluster
decomposition principle. These conditions ensured that instanton dynamics remained consistent with
the assumptions of the model, even in the presence of multiple instantons or tunneling events.

The compatibility of the model with the Seiberg-Witten map and Kostelecky’s framework was also
established. In this model, the ultralocal limit ensures that 6" is effectively constant within causal
neighborhoods, allowing the Seiberg-Witten map to be applied without modification. Moreover, by
situating the scalar fields in a moduli space external to Minkowski spacetime, their dynamics do not
interfere with the interactions of Standard Model fields nor they introduce new gauge symmetries,
thus ensuring that the NCQFT is mapped to the correct SME. That is, the proposed models re-
main consistent with Kostelecky’s results on the compatibility of SLIV theories with Einstein-Cartan
spacetimes.

While the model provides a coherent framework for incorporating SLIV in NCQFT, certain lim-
itations and challenges require further investigation. Higher-order corrections to #*” have not been
explored in this work. While the expectation value of §*” vanishes at low energies to first order, it
is possible that higher-order terms could introduce nontrivial effects that need to be analyzed. The
renormalization of the theory, particularly the interplay between the ultraviolet cutoff for Standard
Model fields and the infrared cutoff for Lorentz-violating terms, also presents a challenge. Ensuring
compatibility with the well-established renormalization framework in quantum field theory will be
crucial for the model’s robustness.

Experimental constraints on Lorentz invariance violation also impose significant restrictions on the
model. While the effects of 0#* are suppressed at low energies, precision experiments in particle physics,
astrophysics, and cosmology provide stringent bounds on any deviations from Lorentz invariance.

Carroll and Kostelecky have proposed several experimental tests and outlined the constraints on SME
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parameters, which must be satisfied by this model. Future work should explore the phenomenological
implications of the model, identifying specific experimental signatures that could confirm or falsify its
predictions.

The insights gained from this work suggest several promising directions for future research. Ex-
tending the analysis to higher-dimensional scalar field models or exploring alternative mechanisms for
symmetry breaking could provide additional insights into the behavior of §#* at different energy scales.
Investigating the effects of higher-order corrections and quantum fluctuations on the scalar fields and
their coupling to 6* could refine the model further. Exploring potential experimental signatures of
SLIV, such as deviations in particle dispersion relations or anisotropies in high-energy processes, would
provide a concrete way to test the model’s predictions as well as, set definitive bounds of the effective
energy cutoff A. Finally, generalizing the framework to include modulation of other dynamical param-
eters, such as gauge fields or coupling constants, could expand its applicability to a broader range of

physical phenomena.
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