
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

The Fractional Einstein Equations

Proyecto de investigación

Miguel Francisco Mena Larrea

Ernesto Contreras, Ph.D.

Director de Trabajo de Titulación

Nicola di Teodoro, Ph.D.

Codirector de Trabajo de Titulación

Trabajo de titulación presentado como requisito

para la obtención del titulo de Maǵıster en F́ısica
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Nombre del Decano del Colegio de Posgrados: Daŕıo Niebieskikwiat
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Resumen

En este trabajo se investiga las ecuaciones de campo de Einstein (EFE) utilizan-

do una nueva derivada fraccionaria que modifica el operador de Riemann-Liouville,

estableciendo un marco consistente para el cálculo fraccionario en relatividad gene-

ral. La derivada propuesta resuelve problemas asociados con el operador de Caputo

y Riemann-Liouville estándar. Derivamos las EFE fraccionarias en espacio-tiempos

de 2 + 1 y 3 + 1 dimensiones, asumiendo métricas estáticas y con simetŕıas circu-

lar y esférica. Como caso de estudio, evaluamos la solución del agujero negro de

Bañados-Teitelboim-Zanelli (BTZ), mostrando que para parámetros fraccionarios

cercanos a uno, corresponde a un agujero negro BTZ cargado con una constan-

te cosmológica anisotrópica. Además, en cosmoloǵıa examinamos soluciones con

factores de escala polinomiales, relevantes para épocas dominadas por materia y

radiación, discutiendo las implicaciones para la densidad de enerǵıa, la presión y

la ecuación de estado en el contexto de modificaciones fraccionarias.

Palabras clave: Derivada fraccionaria, Relatividad General, Agujero negro BTZ,

Cosmoloǵıa fraccionaria.
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Abstract

In this study, we investigate Einstein’s field equations (EFE) using a novel

fractional derivative that modifies the Riemann-Liouville operator to ensure a

consistent framework for fractional calculus in General Relativity. The proposed

derivative resolves issues with the Caputo and the standard Riemann-Liouville de-

rivative. We derive fractional EFE in both 2 + 1 and 3 + 1 dimensional spacetimes,

assuming static and circularly symmetric metrics. As a case study, we evaluate the

Bañados-Teitelboim-Zanelli (BTZ) black hole solution, showing that for fractional

parameters close to one, it corresponds to a charged BTZ black hole with an an-

isotropic cosmological constant. Additionally, in Cosmology, we examine solutions

with polynomial scale factors relevant to matter- and radiation-dominated epochs,

discussing the implications for energy density, pressure, and the equation of state

in the context of fractional modifications.

Keywords: Fractional derivative, General Relativity, BTZ black hole, Fractional

Cosmology.
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Índice general

1. Introduction 12

2. Fractional Calculus 17

2.1. Riemann-Liouville fractional derivative . . . . . . . . . . . . . . . . 18

2.2. Caputo fractional derivative . . . . . . . . . . . . . . . . . . . . . . 20

2.3. Modified fractional derivative . . . . . . . . . . . . . . . . . . . . . 21

3. The Banados-Teitelboim-Zanelli Solution 25

3.1. Fractional Einstein Equations . . . . . . . . . . . . . . . . . . . . . 27

3.1.1. Fractional BTZ Black Hole . . . . . . . . . . . . . . . . . . . 29

4. Cosmology 34



9

4.1. Solutions in 2 + 1 dimensional Cosmology . . . . . . . . . . . . . . 35

4.1.1. Matter-dominated Universe . . . . . . . . . . . . . . . . . . 38

4.1.2. Radiation-dominated Universe . . . . . . . . . . . . . . . . . 42

4.2. Solutions in 3 + 1 dimensional Cosmology . . . . . . . . . . . . . . 45

4.2.1. Matter-dominated Universe . . . . . . . . . . . . . . . . . . 47

4.2.2. Radiation-dominated Universe . . . . . . . . . . . . . . . . . 50

5. Conclusions 54

Bibliography 56
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Caṕıtulo 1

Introduction

In recent years, fractional calculus has gained significant traction across va-

rious fields due to the added flexibility it provides in modeling the dynamics of

complex physical phenomena as it introduces memory effect, which contrasts with

the local operators used in classic theories. This non-locality has made fractional

calculus particularly attractive for applications in a wide range of areas, including

gravitational physics, where it offers the potential for a renormalizable model of

quantum gravity [1–4]. A natural question arises: how does the introduction of

fractional operators influence General Relativity, Einstein field equations, black

hole solutions and cosmological models, particularly in addressing key challenges

within the current cosmological framework.

In this study, we aim to explore the consequences of fractional gravity to Gene-

ral Relativity and the field of Cosmology and whether it can provide a competitive

description with the added non-locality the fractional operator inherits. We analyze
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whether this theory can potentially address the current challenges of the standard

cosmological model while maintaining consistency with it at cosmological-scale

observations.

There are two primary ways to incorporate fractional operators into a gravi-

tational theory. The most common approach, known as Last Step Modification,

applies fractional field equations after deriving the cosmological field equations,

offering a non-fundamental but simpler methodology. The second approach, First

Step Modification, introduces fractional derivatives from the outset, establishing a

fractional geometric framework. Calcagni’s renormalizable theories fall in the latter

category and thus the difficulty in finding exact solutions [1]. It involves genera-

lizing all derivatives of integer order to derivatives of arbitrary (real or complex)

order, when defining the Christoffel symbols [4].

Γµ
νλ =

1

2
gµδ(Dνgδλ + Dλgδν −Dδgνλ), (1.1)

where µ, ν = 0, 1, 2, 3 are space-time indices and Dν stands for the fractional

derivative with respect to the coordinate ν which in the classical limit coincides

with the usual derivative operator, namely Dν → ∂ν (details about this limit

can be found in the next chapter). Note that if we define the fractional covariant

derivative ∇̃ of a (k, l)-rank tensor T as

∇̃σT
µ1µ2···µk
ν1ν2···νl = DσT

µ1µ2···µk
ν1ν2···νl + Γµ1

σλT
λµ2···µk
ν1ν2···νl + Γµ2

σλT
µ1λ···µk
ν1ν2···νl + · · ·

− Γλ
σν1

T µ1µ2···µk

λν2···νl − Γλ
σν2

T µ1µ2···µk

ν1λ···νl − · · · (1.2)
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it is compatible with the metric in the sense that [4]

∇̃µgνρ = 0. (1.3)

The Riemann tensor, Ricci tensor, and Ricci scalar can now be defined as [4]

Rρµσν = DσΓα
µν −DνΓα

µσ + Γτ
µνΓα

στ − Γτ
µσΓα

ντ (1.4)

Rµν = DσΓσ
µν −DνΓσ

µσ + Γτ
µνΓσ

στ − Γτ
µσΓσ

ντ (1.5)

R = gµνRµν . (1.6)

It is worth emphasizing that Eqs. (1.1)-(1.6) correspond to straightforward genera-

lizations because we only replaced the usual derivative operator with the fractional

one. Indeed, these expressions serve as a good starting point because, as mentioned

earlier, we are assuming that the “standard” geometry only emerges in the limit

where Dµ coincides with ∂µ. Of course, it would be interesting to start from first

principles, such as considering, the definition of the Riemann tensor

R(X, Y ) = [∇̃X , ∇̃Y ] −∇[X,Y ] (1.7)

where [X, Y ] is the Lie bracket of vector fields and [∇X ,∇Y ] is the commutator of

differential operators. However, this raises other questions about what fractional

Lie brackets are or how to generalize the commutator between vector fields in such

a way that yields (1.4). Another question is whether these commutators obey a

certain fractional Jacobi identity that leads to the Bianchi identity, namely

∇̃[αR
λ
βγ]δ = 0. (1.8)
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Answering these questions is not trivial, given the lack of the usual Leibniz rule

for fractional operators. Indeed, a Leibniz rule exists for fractional derivatives,

but it contains an infinite series of classical derivatives of the functions involved,

making it difficult to handle [5–7]. The intention of this work is not to answer

these questions but rather to leave open the possibility of exploring these details

in future work.

Now, by considering (1.1)-(1.6) as the starting point, we have two routes to ob-

tain Einstein’s field equations: i) solving the variational problem from the Einstein-

Hilbert action or ii) considering the Einstein field equations as a starting point by

using (1.5) and (1.6). If we start from the Einstein-Hilbert action, we encounter,

after variations with respect to the metric, the boundary term

δgµνOµν = ∇σ(gµνδΓσ
µν − gµσδΓρ

µρ) (1.9)

that vanishes in the case of ordinary derivatives but generally does not vanish

when fractional operators are used (see [4] for details). By contrast, if we consider

the Einstein field equations as fundamentals, the boundary term is (apparently)

absent, and we have

Rµν −
1

2
R = κ2Tµν . (1.10)

Note that if (1.8) is true, is straightforward to show that ∇̃µ(Rµν − 1
2
gµνR) =

0, from which ∇̃µT
µν = 0 which means that the energy-momentum tensor in

(1.10) is conserved in the fractional sense. Regardless of the case, in this work,

we will consider (1.10) as true meaning that, in order to be compatible with the
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equations obtained from the Einstein-Hilbert action, the energy-momentum tensor

must be conceived as a quantity that contains the matter sector and the corrections

introduced by Oµν , that is,

Tµν → Tµν + Oµν . (1.11)

This work is organized as follows. The next chapter 2, introduces the formal

aspects of the new fractional derivative. Next, in chapter 3, we deduce the set of

Einstein field fractional equations for the BTZ black hole. In chapter 4 we deduce

the equations for Friedmann type spacetime Cosmology. In particular, we explore

the consequences of assuming material and radiation dominance in flat metric

k = 0 as a solution to the fractional equations. Finally, the last chapter is devoted

to some final comments and remarks.
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Caṕıtulo 2

Fractional Calculus

In this chapter, we present the basic definition and notation related to fractional

calculus used in this study. As we aim for this work to be as self-contained as

possible, we will start with the definitions of the Caputo and Riemann-Liouville

derivatives to lay the groundwork for our new fractional derivative.

Let us start with the definition of the Riemann integral which plays a central

role in the definition of the fractional derivatives used here.

Definition 2.1. The Riemann–Liouville fractional integral of order α > 0 is given

by (see [5–7])

(Iαa+h) (x) =
1

Γ(α)

∫ x

a

h(t)

(x− t)1−α
dt, x > a. (2.1)

We denote by Iαa+(L1) the class of functions h, represented by the fractional integral

(2.1) of a summable function, that is h = Iαa+φ, where φ ∈ L1(a, b). A description
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of this class of functions was provided in [5, 7].

Theorem 2.2. A function h ∈ Iαa+(L1), α > 0, if and only if its fractional integral

Is−α
a+ h ∈ ACs([a, b]), where s = [α] + 1 and (Is−α

a+ h)(k)(a) = 0, for k = 0, . . . , s− 1.

In Theorem 2.2, ACs([a, b]) denotes the class of functions h, which are continuously

differentiable on the segment [a, b], up to order s − 1 and h(s−1) is absolutely

continuous on [a, b]. By removing the last condition in Theorem 2.2, we obtain a

class of functions that admit a summable fractional derivative. (See [5, 7])

Definition 2.3 (see [7]). A function h ∈ L1(a, b) has a summable fractional deri-

vative
(
Dα

a+h
)

(x) if

(
Is−α
a+ h

)
(x) ∈ ACs([a, b]),

where s = [α] + 1.

2.1. Riemann-Liouville fractional derivative

Definition 2.4. Let
(
Dα

a+h
)

(x) denote the fractional Riemann–Liouville de-

rivative of order α > 0 (see [5–7])

(Dα
a+h) (x) =

(
d

dx

)s
1

Γ(s− α)

∫ x

a

h(t)

(x− t)α−s+1
dt

=

(
d

dx

)s (
Is−α
a+ h

)
(x), (2.2)



19

where s = [α] + 1, x > a [α] denotes the integer part of α and Γ is the gamma

function.

When 0 < α < 1 , then (2.2) takes the form

(Dα
a+h) (x) =

d

dx

(
I1−α
a+ h

)
(x). (2.3)

Note that, when α → 1, we recover the typical derivative operator [5–7].

The semigroup property for the composition of fractional derivatives does not

generally hold (see [6, Sect. 2.3.6]). In fact, the property:

Dα
a+

(
Dβ

a+h
)

= Dα+β
a+ h, (2.4)

holds whenever

h(j)(a+) = 0, j = 0, 1, . . . , s− 1, (2.5)

and h ∈ ACs−1([a, b]), h(s) ∈ L1(a, b) and s = [β] + 1. Thus, we can write this

result in the following:

Lemma 2.5. Consider h ∈ ACs−1([a, b]) and h(s) ∈ L1(a, b) then,

Dα
a+

(
Dβ

a+

)
h = Dβ

a+

(
Dα

a+

)
h, (2.6)

holds whenever

h(j)(a+) = 0, j = 0, 1, . . . , s− 1, (2.7)
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where s = [β] + 1.

Demostración. This proof can be found in [6, Section 2.3.6].

Remark 2.6. It is worth noticing that the Riemann-Liouville derivative of a

constant is not zero. However, in the limit process, it behaves as expected.

ĺım
α→1

(Dα
a+1) (x) = ĺım

α→1

(x− a)−α

Γ(1 − α)
= 0. (2.8)

2.2. Caputo fractional derivative

Definition 2.7. Let α ≥ 0 and m = [α]. We can then define the Caputo deri-

vative [5–7] cD
α
a+ as

cD
α
a+f = Im−α

a+

(
d

dx

)m

f, (2.9)

when

(
d

dx

)m

f ∈ L1[a, b].

Note that Caputo derivative of a constant is zero, as expected. This presents

an advantage when constructing Christoffel symbols because, for example, if the

metric depends only on the radial coordinate, its derivative with respect to ti-

me vanishes (something that would not occur when using the Riemann-Liouville

derivative). However, the use of Caputo is problematic when constructing the term

cD
β
0+(r−2

cD
α
0+r

2) = − 2α

Γ(1 − α)Γ(3 − α)

∫ r

0

t−α−1

(r − t)β
dt (2.10)

because it fails to converge when r → 0 and α > 0. One option is to contemplate the



21

Riemann integral from a certain point a > 0. As we will see later, this term arises

naturally from Christoffel symbols for metrics that are circularly and spherically

symmetric. However, this approach introduces additional challenges because the

solution becomes approximate rather than exact, requiring numerical computation

for a given fixed a. Moreover, when employing standard derivatives, this issue is

absent, and our aim here is to ensure that our equations inherit all the desirable

properties. Now, although the Riemann-Liouville derivative does not diverge in

this case, it is not useful for deriving the Einstein equations, because, as we saw

earlier, the derivative of a constant is not zero. For this reason, we propose a

modification to the Riemann-Liouville operator such that its action on a constant

vanishes, as we see in what follows.

2.3. Modified fractional derivative

Definition 2.8. Consider q1(x, α) a continuous function, q2(x, α) a continuously

differentiable function on x and let
(
(q1,q2)Dα

a+h
)

(x) =
(
qDα

a+h
)

(x) denote the

q-weighted fractional Riemann-Liouville derivative of order α > 0. For

q1, q2 ∈ ACs(R)

(
qDα

a+h
)

(x) = q1(x, α)

(
d

dx

)s

q2(x, α)
(
Is−α
a+ h

)
(x), (2.11)

where s = [α] + 1, x > a and [α] denotes the integer part of α with 0 < α < 1

and ĺım
α→1

q1(x, α) = ĺım
α→1

q2(x, α) = 1. As we will see later, for convenience we take
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q2(x, α) = (x− a)α−1 so then (2.11) takes the form

(
qDα

a+h
)

(x) = q1(x, α)

(
d

dx

)
(x− a)α−1

(
I1−α
a+ h

)
(x). (2.12)

It is not diffficult to see that the operator is linear; however, the central moti-

vation for considering this operator is that, although it has a structure similar to

that of the Riemann-Liouville operator, the derivative of a constant is zero

(
qDα

a+1
)

(x) = 0 (2.13)

Another consequence arises when we differentiate polynomials. If we consider a =

0, P (x) = xn and x, n > 0,

(
qDα

0+P (x)
)

(x) =
nq1(x, α)xn−1Γ(n + 1)

Γ(n− α + 2)
, (2.14)

and ĺım
α→1

(
qDα

0+P (x)
)

(x) = nxn−1.

As in the case of the Riemann-Liouville operator, the semigroup property for

the composition of fractional derivatives is generally not satisfied; however, the

following lemma is useful

Lemma 2.9. Consider q2(x, α) ∈ ACs([a, b]× (0, 1)), h ∈ ACs−1([a, b]) and h(s) ∈

L1(a, b) then,

qDα
a+

(
qDβ

a+

)
h = qDβ

a+

(
qDα

a+

)
h, (2.15)

holds whenever

h(j)(a+) = 0, j = 0, 1, . . . , s− 1, (2.16)



23

where s = [β] + 1.

Demostración. The proof can be followed using the formula

(
qDα

a+h
)

(x) = q1(x, α)
[( d

dx

)s

q2(x, α)
] (

Is−α
a+ h

)
(x) + q2(x, α) (Dα

a+h) (x)

(2.17)

and the result of lemma 2.5

Note that, up to this point, the weight q2 is general. However, to avoid singu-

larities in (2.10), it is convenient to consider

q2(x, α) =
1

q1(x, α)
= (x− a)1−α. (2.18)

Indeed, in this case we obtain

Dβ
0+(r−2Dα

0+r
2) = − 4r−β−αβΓ(1 − α)

Γ(4 − α)Γ(2 − α− β)
(2.19)

At this point, some comments are in order. First, note that we have used different

fractional indices that translates to using α to define the Christoffel symbols in

(1.1) and β to define the curvature tensor (1.4). Indeed, this is the most general way

to consider fractional Einstein equations. Furthermore, if they are considered equal

a priori, the result of (2.19) does not lead to the result obtained with the ordinary

derivative in the limit. Second, the result obtained with the classical derivative

is achieved if β → 1 is taken before α → 1, otherwise, the expression diverges.

Of course, this introduces a hierarchy in how the classical limit is recovered: first
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turning off non-locality in curvature, and then in the Christoffel symbols.

In the next section, we derive the Einstein field equation for a static and cir-

cularly symmetric metric by assuming the weights in (2.18) and taking a = 0. To

make the equations readable, we use the notation

(qDα
0+)r ≡ dα. (2.20)
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Caṕıtulo 3

The Banados-Teitelboim-Zanelli

Solution

In this section we seek solutions to the field equations, which in this case

translates to dealing with a system of 10 integro-differential equations as each

fractional derivative operator involves an integral, as shown in the previous chapter.

The standard approach to reducing the number of equations to be solved is to

assume a system with certain symmetries and a particular parameterization for

the metric. For instance, in 3 + 1 spacetime dimensions, the simplest assumption

is a spherically symmetric and static system, whose line element is given by

ds2 = −F (r)dt2 + G(r)dr2 + r2dθ2 + r2 sin2 θdϕ2. (3.1)
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As is known (and expected), Einstein equations depend only on the radial coor-

dinate. However, it is worth mentioning that some non-zero Christoffel symbols

explicitly contain the coordinate θ, which does not appear in the final result owing

to Leibniz’s rule and trigonometric identities. However, as stated above, in fractio-

nal calculus there is no standard Leibniz’s rule but a relation involving an infinite

series in derivatives which is not trivial to deal with. In this regard, we have to

either find the convergence of the series (which is not trivial) or impose constraints

to ensure the classical limits. For example, in the case of (3.1) we encounter the

terms

D3

(
D3 sin2 θ

sin2 2θ

)
+

D3(D3 sin2 θ)

sin2 θ
= −2 (3.2)(

D3 sin2 θ

sin2 θ

)2

−D3

(
D3 sin2 θ

sin2 2θ

)
+

D3(D3 sin2 θ)

sin2 θ
= 0, (3.3)

where D3 is the fractional derivative with respect to θ, that come from the compu-

tation of the G22 and G33 of the Einstein tensor (note that, if we assume D3 =

∂3 = ∂/∂θ the constraints are automatically satisfied). One way to avoid this

“polar angle problem” is by studying a toy model such as Einstein’s equations in

2 + 1 dimensional spacetime where for circularly symmetric and static situations

the metric reads

ds2 = −F (r)dt2 + G(r)dr2 + r2dϕ2 (3.4)

There has been a significant amount of research focused on the study of three-

dimensional gravity [8–10]. These models provide valuable insights into their higher-
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dimensional analogs, specially when it comes to exploring concepts or techniques

that are directly intractable in four or more dimensions, providing a testing ground

for techniques such as holography, perturbation methods, and the renormalization

of gravitational theories. Furthermore, models in three dimensions, such as the

BTZ black hole solution, have played a crucial role in exploring thermodynamic

properties, quantum aspects of black holes and the holographic framework [11–13],

bridging insights to higher-dimensional settings.

3.1. Fractional Einstein Equations

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 2 + 1 dimensional metric

ds2 = −F (r)dt2 + G(r)dr2 + R(r)dϕ2, (3.5)

from (1.1), (1.5), (1.6), and (1.10), with the convention that the index α is used

in the definition of the Christoffel symbols and β in the definition of the Riemann

tensor. Note that, because the metric is a function of the radial coordinate, only

terms involving the fractional derivative with respect to the radius will persist.
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Using (2.20), the fractional Einstein field equations can be written as

−T 0
0 = − (dαF )2

32πF 2G
+

dαFdαG

32πFG2
+

dβ (G−1dαF )

32πF
− dβ (F−1dαF )

32πG

−dβ (R−1dαR)

32πG
− dβ (G−1dαR)

32πR
(3.6)

T 1
1 = − (dαF )2

32πF 2G
+

dαFdαG

32πFG2
+

dβ (G−1dαF )

32πF
− dβ (F−1dαF )

32πG
+

dαFdαR

32πFGR

+
dαGdαR

32πG2R
− (dαR)2

32πGR2
+

dβ (G−1dαR)

32πR
− dβ (R−1dαR)

32πG
(3.7)

T 2
2 =

dβ (F−1dαF )

32πG
+

dβ (G−1dαF )

32πF
− dαGdαR

32πG2R
+

(dαR)2

32πGR2

+
dβ (R−1dαR)

32πG
− dβ (G−1dαR)

32πR
. (3.8)

It is worth noticing that the dimensions of the field equations change depending

on the choice of weights (q1, q2). However, with the choice in equation (2.18), the

dimensions of the fractional derivative of the metric are length−α. Consequently,

the dimensions of the Einstein equations are length−2α and length−α−β so thus,

when α → 1 and β → 1 we obtain the correct dimensions (in natural units).

From a physical standpoint, this means that we must be careful when assigning

the meaning of each component of the fractional Einstein tensor Gµν to match

the energy-momentum tensor Tµν . More precisely, in the standard case, we assign

T µ
ν = (ρ,−pr,−pt) with ρ, pr and pt as the energy density, radial pressure and

tangential pressure, respectively, and each quantity has dimensions of length−2

but when applying fractional operators it is convenient to redefine

dα → Ξα−1dα (3.9)

dβ → Ξβ−1dβ (3.10)
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with Ξ, some quantity with dimensions of length (which can be taken as a cons-

tant associated with some characteristic length of the model under study) so that

{ρ, pr, pt} have the correct dimensions.

The next step in the program is to solve the set of fractional derivatives (3.6)-

(3.8) with R = r2 so we must solve the problem of solving three integro-differential

equations with five unknowns, namely, {ρ, pr, pt, F,G} which represents a non-

trivial challenge. We can try by following the routes we explore in standard General

Relativity, namely

1. Provide an equation of state relating ρ and pr and a suitable anisotropic

function.

2. Consider a matter sector based on fundamental fields.

3. Provide some geometric restrictions

4. Consider a vacuum solution.

3.1.1. Fractional BTZ Black Hole

The standard Einstein field equations in 2 + 1 dimensions admit a black hole

solution with negative cosmological constant [14, 15]. It is the only non-trivial

vacuum solution since in 2 + 1 dimensions the metric is completely determined

by the mass-energy distribution and without a cosmological constant (Λ = 0) the

solution is locally flat.
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The solution was originally derived from the Einstein-Hilbert action [14]

S =

∫ √
−g(R− 2Λ)d2xdt (3.11)

with negative cosmological constant (Λ = −1/ℓ2) and metric.

ds2 = −N2dt2 + N−2dr2 + r2
(
Nϕdt + dϕ

)2
(3.12)

with lapse N(r) and angular shift Nϕ(r)

N2(r) = −M +
r2

ℓ2
+

J2

4r2
, Nϕ(r) = − J

2r2
(3.13)

and constants of integration M and J appearing and corresponding to mass and

angular momentum, respectively. This solution serves as a natural analog to the

classical black hole to study key features without the unnecessary complications

and more manageable equations. As discussed previously, the BTZ model has been

extensively inspiring studies in quantum gravity, black hole thermodynamics, and

holography, owing to its simplicity and theoretical richness.

The metric further simplifies considering a non-rotating black hole J = 0, which

in the static and circularly symmetric regime, reads

ds2 = −
(
−M +

r2

ℓ2

)
dt2 +

1(
−M + r2

ℓ2

)dr2 + r2dϕ2, (3.14)

which corresponds to the static BTZ black hole with event horizon rH = ℓ
√
M .

Alternatively, the BTZ black hole can be thought of as a solution of Einstein’s
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equation without cosmological constant but supported by a matter sector given

by T µ
ν = 1

8πℓ2
diag(1, 1, 1). In this work, instead of trying to solve the set (3.6)-

(3.8), we assume (3.14) as a solution to the fractional equations and explore the

behavior of the corresponding fractional matter sector. Before proceeding with the

calculation, we would like to point out that the choice of a metric that solves

the classical (non-fractional) Einstein equations is made for simplicity. One could

attempt to use a metric that depends on the fractional parameters and coincides

with BTZ in the appropriate limit. However, although we explored this approach,

we did not find a metric simpler than the BTZ.

After using (3.14) in the fractional equations, we obtain expressions for the

matter sector that are not included here due to their length, as they involve hy-

pergeometric functions and are not particularly illuminating. Furthermore, since

our focus is on the behavior near the realm of General Relativity, we consider the

solution’s behavior for α, β close to one. By expanding in series for these parame-

ters, we find that for fractional parameters approaching one, the standard notions

of space-time as described by General Relativity are recovered. This approach

allows us to understand how deviations from classical general relativity manifest

while emphasizing the consistency with the well-established classic theory

−T 0
0 =

1

8πℓ2

(
1 +

β − 1

2(α− 1)

)
+

M(β − 1)

16πr2(α− 1)
+ O (α− 1, β − 1) (3.15)

T 1
1 =

1

8πℓ2

(
1 − β − 1

2(α− 1)

)
− M(β − 1)

16πr2(α− 1)
+ O (α− 1, β − 1) (3.16)

T 2
2 =

1

8πℓ2

(
1 +

β − 1

2(α− 1)

)
+

M(β − 1)

16πr2(α− 1)
+ O (α− 1, β − 1) . (3.17)
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At this point some comments are in order. First, note that expressions (3.15-

3.17) underscore the critical requirement of preserving hierarchy in the fractional

parameters when taking the limit to recover the classic solution. Notably, it is

essential that β approaches 1 prior to α, as β must reach this value first to en-

sure the correct limiting process. Second, around this limit, the introduction of

non-locality leads to a small correction in the cosmological constant. In fact, the

asymptotic behavior corresponds to a solution with an anisotropic cosmological

constant. Finally, the second term in the matter sector ∝ r−2 is reminiscent of the

charged BTZ black hole solution with line element [16]

F =
1

G
= −M +

r2

ℓ2
− Q2

2
ln

r

r0
, (3.18)

where Q represents the electric charge of the black hole and r0 is an arbitrary refe-

rence scale. Solving the Einstein Field Equations for this metric the matter sector is

−T 0
0 =

1

8πℓ2
+

Q2

32πr2
(3.19)

T 1
1 =

1

8πℓ2
− Q2

32πr2
(3.20)

T 2
2 =

1

8πℓ2
+

Q2

32πr2
. (3.21)

Upon comparing (3.15-3.17) with equations (3.19-3.21), we establish the identi-

fication Q2 = 2M(β − 1)/(α − 1). We can conclude, then, that the non-locality

introduced by the fractional derivative leaves traces in the classical results, provi-

ding anisotropy to the cosmological constant and an effective electric charge. This

result resembles, to some extent, the Kaluza-Klein mechanism (see [17], for exam-
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ple), where a gravitational theory in 5-dimensional spacetime leads to a theory

of gravity coupled with electrodynamics in 4-dimensional spacetime after compac-

tification. In this case, compactification is replaced by non-locality. We want to

emphasize that the mechanism described here is unrelated to Kaluza-Klein, but

the resemblance is interesting.

At this stage, after analyzing our initial fractional solution, we observe that

certain simplifications typical of classical physics, such as the absence of radial de-

pendence, do not occur in the fractional case. This prompts us to consider whether

the observed non-homogeneity arises from the application of fractional derivatives

to the r2 scaling of angular distances. However, implementing an isotropic coordi-

nate system, as is done for the Schwarzschild black hole [18,19], results in metrics

that are analytically intractable when approached via fractional integrals. In con-

trast, cosmology, specially cosmology in flat spatial geometry, benefits from the

simplicity of the spatial part dx2 + dy2 + dz2 being Euclidean, and the complexity

of the universe’s expansion is entirely captured by the time-dependent scale factor.
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Caṕıtulo 4

Cosmology

Observational data from astrophysical and cosmological probes has established

that baryonic matter constitutes only about 15 % of the total matter content of

the universe, with the remainder attributed to a mysterious ’dark matter’ (DM)

component. Some evidence include the kinematics of spiral galaxies [20–22], cos-

mic microwave background and large-scale structure observations [23, 24], among

many others. However, despite extensive efforts [25,26] no direct detection of dark

matter particles has been made. This has spurred the exploration of alternative

explanations, including modifications to General Relativity that do not rely solely

on standard particle candidates [27,28].

Modified gravity theories have emerged as promising alternatives to explain

the late-time acceleration of the universe [29–32], as well as to try to alleviate the

H0 tension and the cosmological constant ’dark energy’ (DE) problem to better

align with observational data. Fractional calculus has shown potential in these
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areas by modifying the Friedmann equations, describing inflationary cosmologies

in both FLRW and Bianchi metrics [32, 33], and even proposing the replacement

of the cosmological constant with fractional dissipative forces [31, 34, 35]. Recent

work has also explored the possibility that the elusive dark matter component is

replaced by the mathematical structure of fractional gravity [36, 37], suggesting

a deeper connection between non-locality and the fundamental properties of the

universe. This is mainly because, in fractional Cosmology, standard evolution of

the cosmic species densities has been found to depend on the fractional parameters

of the theory [31,33,36,37].

This study sets itself apart from prior research in fractional cosmology, which

have primarily centered around last-step modifications and fractional effective ac-

tions. In contrast, our study emphasize first-step modifications directly to EFE,

which, to our knowledge, has been largely confined to the Minkowski universe due

to the mathematical complexity of fractional differential operators. By applying

the fractional framework and leveraging its inherent non-locality coherently at a

foundational level to the Einstein Field Equations, this approach has the poten-

tial to yield novel insights or results, offering a fresh perspective on gravitational

theory and cosmological modeling.

4.1. Solutions in 2 + 1 dimensional Cosmology

Cosmological models have also been generalized to lower-dimensional spaceti-

me [38–41] in an attempt to answer Universe’s large-scale homogeneity problem.
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The presence of horizons around any comoving observer determines a maximum

possible coherence radius over which one might expect homogeneity [41]. All stan-

dard Friedmann models predict the existence of horizons, except in the case of

an empty Universe. However, it has been shown that models of isotropic, matter-

dominated universes in 2+1 dimensions do not exhibit horizons [41]. This has

consequently increased interest in exploring models that extend beyond the stan-

dard cosmological framework. More recently, these lower-dimensional cosmological

models have been utilized to explore the cosmic holographic principle [42,43].

The 2+1 Friedmann type (spatially homogeneous and isotropic) cosmological

model line element is [40]

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dθ2

)
(4.1)

where a(t) is the scale factor and k = −1, 0, 1 for hyperbolic, flat and circular

two-dimensional spatial geometry, respectively. The corresponding Einstein field

equations are [9]

2πρ =

(
ȧ

a

)2

+
k

a2
(4.2)

2πp = − ä

a
, (4.3)

where ρ is the energy density and p the pressure of the fluid. The corresponding

energy conservation equation is [9]

d

dt

(
ρa2

)
+ p

d

dt

(
a2
)

= 0. (4.4)
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A matter-dominated Universe follows the dust EoS p = 0. Thus, the energy con-

servation equation states ρa2 = const. In standard Friedmann fashion the scale

factor can now be derived from the first field equation (4.2).

a(t) = a0 ±
√

2M − k (t− t0) (4.5)

where M = πρ0a
2
0. For a radiation-dominated Universe p = 1

2
ρ. According to (4.4)

ρa3 = const. The complete scale factor solution can be found in [9]. For early times

a ∝ t2/3.

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 2 + 1 dimension cosmological metric. For simplicity, consider the

Cartesian flat metric (k = 0)

ds2 = dt2 − A(t)
(
dx2 + dy2

)
(4.6)

where A(t) = a(t)2 is the squared scale factor. The scale factor is hidden in A

so that the classic Leibniz rule is not unintentionally applied in the context of

fractional calculus. The advantage of using Cartesian coordinates is that only terms

involving the fractional derivative with respect to time will persist. This is not true

for the standard metric (4.1) where additional radial fractional derivatives appear,

their effects are discussed in appendix A. The convention is that the index α is

used in the definition of the Christoffel symbols. Using the notation (2.20)

Γ0
11 = Γ0

22 =
dαA

2

Γ1
01 = Γ2

02 =
dαA

2A
.

(4.7)
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While a different index, β is used in further derivation in the definition of the

Riemann tensor

R0
110 = R0

220 = −dβ(dαA)

2
+

(dαA)2

4A

R1
010 = R2

020 = −dβ (A−1dαA)

2
− (dαA)2

4A2

R1
221 = −R2

121 = −(dαA)2

4A
,

(4.8)

where α < β < 1 as seen in (2.19). With these considerations, the fractional

Einstein field equations are succinctly expressed

T 0
0 = −(dαA)2

8πA2
− dβ (A−1dαA)

4π
+

dβ (dαA)

4πA
(4.9)

T 1
1 = T 2

2 =
(dαA)2

8πA2
+

dβ (A−1dαA)

4π
. (4.10)

The next step in the program is to solve equations (4.9) and (4.10). We will not

derive the scale factor as in standard 2+1 Cosmology as it represents a non-trivial

challenge of integro-differential equations. Instead the scale factor for matter and

radiation-dominated eras are considered in order to analyze the effects of non-

locality as introduced by the fractional derivative.

4.1.1. Matter-dominated Universe

The scale factor for matter-dominated 2+1 Universe is time proportional a ∝ t

(4.5). Thus, the squared scale factor is A ∝ t2. For simplicity, taking A =
(

t
t0

)2

,
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where t0 is a reference time, and solving (4.9) and (4.10) gives

ρ(t) = − 2t−2α

πΓ(4 − α)2
+

t−α−βαΓ(1 − α)

πΓ(4 − α)Γ(2 − α− β)
+

t−α−β(α− 2)

π(α− 3)Γ(4 − α− β)

(4.11)

p(t) = − 2t−2α

πΓ(4 − α)2
+

t−α−βαΓ(1 − α)

πΓ(4 − α)Γ(2 − α− β)
. (4.12)

The application of the new fractional derivative of order α, β results in the expres-

sions (4.11) and (4.12) for energy density and pressure. In the limit α, β → 1 the

classic energy density and pressure for 2 + 1 matter-dominated flat Universe are

recovered

ĺım
α,β→1

ρ(t) =
1

2πt2
(4.13)

ĺım
α,β→1

p(t) = 0 (4.14)

in natural units. By performing a series expansion in (4.11) and (4.12) around

α = 1 and β = 1 deeper insight is gained about the implications of the fractional

parameters in the solution

ρ(t) =
1

2πt2
+

β − 1

2πt2(α− 1)
+ O (α− 1, β − 1) (4.15)

p(t) =
β − 1

2πt2(α− 1)
+ O (α− 1, β − 1) . (4.16)

Equations (4.15) and (4.16) emphasize the importance of maintaining the hie-

rarchy among the fractional parameters when taking the limit to retrieve the clas-

sical solution with β approaching one first. Around this limit, the introduction of

non-locality leads to a small pressure in the dust and a slight modification of the
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density profile. This effect is reminiscent of the Van der Waals EoS, where correc-

tions are introduced to account for particle interactions and deviations from ideal

behavior. Similarly, the fractional derivative introduces subtle corrections that re-

present minimal internal interactions within the dust, thereby aligning the model

more closely with real matter that interacts.

To further elucidate the implications of the fractional derivative within the

material sector, the full expressions for ρ(t), p(t) in (4.11) and (4.12) are plotted

in Fig.4.1 for α < β < 1 very close to the classic limit. Notice, as β → 1, Fig.4.1a

and Fig.4.1b better approximate classic dust density and pressure. Conversely, as

β → α, the deviation increases since α ∼ β in (4.15) and (4.16) shifts density and

pressure.

(a) Density (b) Pressure

Figura 4.1: Fractional energy density (a) and pressure (b) functions with respect
to time for a 2 + 1 matter-dominated Universe. α is fixed at 0,99 and β varies.

If non-locality indeed plays a role in shaping the dynamics of the cosmic fluids,

then a modification in the Equation of State (EoS) becomes necessary to account

for the corrections beyond the perfect fluid approximation. Often the perfect fluids

in Cosmology obey the EoS p = ωρ. For dust, in a matter-dominated Universe
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ω = 0. From equations (4.11) and (4.12)

ω(t) = 1 − t−α−β(α− 2)

ρ(t)π(α− 3)Γ(4 − α− β)
. (4.17)

To have, in the limit α, β → 1 the classic EoS recovered

ĺım
α,β→1

ω(t) = 0. (4.18)

Particularly, using the expansions (4.15) and (4.16) around the classic limit

ω = 1 − 1

1 +
(
β−1
α−1

) + O (α− 1, β − 1) , (4.19)

it becomes clear that the relationship between density and pressure is strongly

influenced by the fractional parameters and that β → 1 prior to α to ensure classic

convergence. Moreover, outside the classic limit, there is a small time-dependency

in the EoS (4.17).

Dust (2 + 1) a(t) 2πρ(t) 2πp(t) ω(t)

(α, β) → (1, 1) t 1
t2

0 0

(α, β) = (0,9, 0,91) t 2,56
t1,81

-0,83
t1,8

1,61
t1,81

-0,83
t1,8

1 − 1
2,68−0,87t0,01

(α, β) = (0,9, 0,95) t 2,23
t1,85

-0,83
t1,8

1,25
t1,85

-0,83
t1,8

1 − 1
2,28−0,85t0,05

(α, β) = (0,9, 0,99) t 1,9
t1,89

-0,83
t1,8

0,9
t1,89

-0,83
t1,8

1 − 1
1,91−0,83t0,09

Cuadro 4.1: Various fractional expressions for energy density, pressure and dust
EoS rounded to two decimal places. In (α, β) → (1, 1), β → 1 is taken before
α → 1

Explicit results for some α, β close to one are presented in the following Tab.4.1,
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where it is clear that classic zero expressions such as pressure and ω EoS propor-

tionality factor for dust acquire a time dependency. Energy density on the other

hand, has its already time dependent expression altered.

4.1.2. Radiation-dominated Universe

The scale factor for a radiation-dominated 2 + 1 Universe is a ∝ t2/3 proportio-

nal for early times [9]. Then, the squared scale factor A ∝ t4/3. For instance, take

A =
(

t
t0

)4/3

where t0 is a reference time to solve (4.9) and (4.10)

ρ(t) = −
2t−2αΓ(7

3
)2

9πΓ(10
3
− α)2

+
t−α−βαΓ(7

3
)Γ(1 − α)

3πΓ(10
3
− α)Γ(2 − α− β)

+
t−α−β(3α− 4)Γ(7

3
)

3π(3α− 7)Γ(10
3
− α− β)

(4.20)

p(t) = −
2t−2αΓ(7

3
)2

9πΓ(10
3
− α)2

+
t−α−βαΓ(7

3
)Γ(1 − α)

3πΓ(10
3
− α)Γ(2 − α− β)

(4.21)

Now the application of the fractional derivative results in expressions (4.20) and

(4.21) for energy density and pressure. Note that the power laws remain the same as

(4.11) and (4.12), only proportionality factors have changed. In the limit α, β → 1

the classic energy density and pressure for 2 + 1 radiation-dominated Universe are

recovered as well.

ĺım
α,β→1

ρ(t) =
2

9πt2
(4.22)

ĺım
α,β→1

p(t) =
1

9πt2
, (4.23)
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in natural units. The series expansion in (4.20) and (4.21) around α = 1 and β = 1

yield

ρ(t) =
2

9πt2
+

β − 1

3πt2(α− 1)
+ O (α− 1, β − 1) (4.24)

p(t) =
1

9πt2
+

β − 1

3πt2(α− 1)
+ O (α− 1, β − 1) , (4.25)

which also suggest a hierarchy in the limits needs to be considered in (4.24) and

(4.25) for a convergence to the classic solutions (4.22) and (4.23). As discussed in

the previous section, the larger β is with respect to α, the additional term repre-

sents a minor correction, which aligns with the behavior under consideration. For

radiation expressions ρ(t), p(t) are plotted for certain α < β < 1 values in Fig.4.2.

(a) Density (b) Pressure

Figura 4.2: Fractional energy density (a) and pressure (b) functions with respect
to time for a 2 + 1 radiation-dominated Universe. α is fixed at 0,99 and β varies.

In Fig.4.2a and Fig.4.2b fractional energy density and pressure also deviate

from the classic expressions as β → α. While curves β → 1 are closer to the
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classic density and pressure. Thus, fractional parameters require the same balance

discussed in the previous matter-dominate Universe case. Namely, that parameters

α, β approach 1 but are separated enough to maintain the hierarchy between them.

Fractional calculus applied to the Einstein field equations during the radiation-

dominated era mimics the behavior of the matter-dominated era seen in Fig.4.1.

There is an increase in density and pressure values that fades with increasing time,

converging toward the classic solution.

In a radiation-dominated Universe p = 1
2
ρ with ω = 1

2
. From equations (4.20)

and (4.21)

ω(t) = 1 −
t−α−β(3α− 4)Γ(7

3
)

ρ(t)3π(3α− 7)Γ(10
3
− α− β)

. (4.26)

To have, in the limit α, β → 1 the EoS recovered

ĺım
α,β→1

ω(t) =
1

2
. (4.27)

Specifically, employing the expansions (4.24) and (4.25) in the vicinity of the clas-

sical limit,

ω = 1 − 1

2 + 3
(
β−1
α−1

) + O (α− 1, β − 1) , (4.28)

ensuring convergence to the classical behavior requires β → 1 before α. Outside

this limit ω(t) is also time-dependent. Like for dust, non-locality acting on radiation

seems to slightly alter its behavior over time.
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Radiation (2 + 1) a(t) 2πρ(t) 2πp(t) ω(t)

(α, β) → (1, 1) t2/3 4
9t2

2
9t2

1
2

(α, β) = (0,9, 0,91) t2/3 1,37
t1,81

-0,39
t1,8

1,1
t1,81

-0,39
t1,8

1 − 1
5,08−1,44t0,01

(α, β) = (0,9, 0,95) t2/3 1,13
t1,85

-0,39
t1,8

0,86
t1,85

-0,39
t1,8

1 − 1
4,18−1,44t0,05

(α, β) = (0,9, 0,99) t2/3 0,89
t1,89

-0,39
t1,8

0,62
t1,89

-0,39
t1,8

1 − 1
3,29−1,44t0,09

Cuadro 4.2: Various fractional expressions for energy density, pressure and
radiation EoS rounded to two decimal places. In (α, β) → (1, 1), β → 1 is taken
before α → 1

Explicit results for some α, β close to one are presented in Tab.4.2 to better

appreciate the change in energy density, pressure and EoS.

4.2. Solutions in 3 + 1 dimensional Cosmology

Building on the cosmological results in 2+1 dimensions derived in the previous

section, we observe that adopting Cartesian coordinates allows us to circumvent

the r2 angular scaling factor in the metric, yielding a more straightforward so-

lution. Similarly, in 3 + 1 dimensional cosmology, the coordinate transformation

circumvents not only the angular scaling r2 but also resolves the “polar angle pro-

blemı̈ntroduced by the sin2 θ term and the complexities that arise from applying

the fractional Leibniz’s rule to trigonometric functions, as discussed in the previous

chapter.

This simplification arises due to the convenient structure of the cosmological
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metric in the case of a spatially flat geometry (k = 0), where the spatial part of

the metric depends solely on the scaling factor a(t), in contrast to standard polar

coordinates (see appendix B). In the application of fractional calculus to FLRW

equations with spatially flat geometry in 3+1 dimensions the calculations are thus

greatly simplified.

ds2 = dt2 − A(t)
(
dx2 + dy2 + dz2

)
, (4.29)

where A(t) = a(t)2 is the squared scale factor. Applying the notation (2.20) con-

vention maintains that the index α is used in the definition of the Christoffel

symbols

Γ0
11 = Γ0

22 = Γ0
33 =

dαA

2

Γ1
01 = Γ2

02 = Γ3
03 =

dαA

2A
.

(4.30)

and β in the definition of the Riemann tensor

R0
110 = R0

220 = R0
330 = −dβ(dαA)

2
+

(dαA)2

4A

R1
010 = R2

020 = R3
030 = −dβ (A−1dαA)

2
− (dαA)2

4A2

R1
221 = R1

331 = R2
332 = −(dαA)2

4A

R2
121 = R3

131 = R3
232 =

(dαA)2

4A
,

(4.31)

where α < β < 1. With these considerations, the fractional Einstein field equations
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are succinctly expressed

T 0
0 = −3dβ (A−1dαA)

32π
+

3dβ (dαA)

32πA
(4.32)

T 1
1 = T 2

2 = T 3
3 =

(dαA)2

16πA2
+

3dβ (A−1dαA)

32π
+

dβ (dαA)

32πA
. (4.33)

The next step is to solve the set of fractional derivatives (4.32) and (4.33). We

assign T µ
ν = (ρ,−p,−p,−p) with ρ, p, as energy density and pressure.

4.2.1. Matter-dominated Universe

The scale factor for matter-dominated 3+1 Universe is proportional to t2/3 [44].

Thus, the squared scale factor is A ∝ t4/3. Taking, for simplicity, A =
(

t
t0

)4/3

with

reference time t0, and solving (4.32) and (4.33) results in

ρ(t) =
t−α−βαΓ(7

3
)Γ(1 − α)

8πΓ(10
3
− α)Γ(2 − α− β)

+
t−α−β(3α− 4)Γ(7

3
)

8π(3α− 7)Γ(10
3
− α− β)

(4.34)

p(t) = −
t−2αΓ(7

3
)2

9πΓ(10
3
− α)2

+
t−α−βαΓ(7

3
)Γ(1 − α)

8πΓ(10
3
− α)Γ(2 − α− β)

−
t−α−β(3α− 4)Γ(7

3
)

24π(3α− 7)Γ(10
3
− α− β)

.

(4.35)

When α, β → 1 the classic energy density and pressure for 3+1 matter-dominated

Universe are recovered.

ĺım
α,β→1

ρ(t) =
1

6πt2
(4.36)

ĺım
α,β→1

p(t) = 0 (4.37)
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in natural units. The series expansion in (4.34) and (4.35) around the classic limit

α = 1 and β = 1 yield

ρ(t) =
1

6πt2
+

β − 1

8πt2(α− 1)
+ O (α− 1, β − 1) (4.38)

p(t) =
β − 1

8πt2(α− 1)
+ O (α− 1, β − 1) , (4.39)

maintaining the hierarchy requirement of α < β as α, β → 1 necessary for the

classic convergence. As in the 2 + 1 model the inclusion of non-locality induces

a small pressure within the dust and results in a subtle alteration of the density

profile. Full fractional expressions ρ(t) and p(t) are plotted in Fig.4.3 under this

prescription.

(a) Density (b) Pressure

Figura 4.3: Fractional energy density (a) and pressure (b) functions with respect
to time for a 3 + 1 matter-dominated Universe. α is fixed at 0,99 and β varies.

Similar to the lower dimensional model, Fig.4.3a and Fig.4.3b, show a departure

from classic density and pressure as β → α and fractional parameters get closer.

In contrast, β → 1 reduces the deviation. It seems non-locality by the fractional

operator similarly affects energy density and pressure values for small t in 3 + 1
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dimensions. Notably an apparent non-negligible dust pressure plays a role, specially

in the early Universe.

The non-local nature of the theory impacts the ideal cosmic fluid and its EoS.

The EoS p = 0 for dust would be henceforth altered. Specifically, the propor-

tionality constant ω is now, according to (4.34) and (4.35) time dependant with

dependency

ω(t) = 1 −
4t−α−β(3α− 4)Γ(7

3
)

ρ(t)24π(3α− 7)Γ(10
3
− α− β)

−
t−2αΓ(7

3
)2

ρ(t)9πΓ(10
3
− α)2

(4.40)

where in the classic limit α, β → 1 the EoS recovered.

ĺım
α,β→1

ω(t) = 0. (4.41)

By considering the expansions (4.38) and (4.39) near the classical limit,

ω = 1 − 1

1 + 6
8

(
β−1
α−1

) + O (α− 1, β − 1) , (4.42)

implying the relationship between density and pressure is highly sensitive to the

fractional parameters. To achieve convergence towards the classical solution, it is

again crucial that β approaches 1 before α.

However, it remains the case that outside this limit ω(t) is time-dependant,

with an slightly evolving EoS over time. Similarly, a non-negligible dust interaction

stands out and decays over time. Explicit ρ(t) and p(t) expressions for some α, β

are presented in Tab.4.3 regarding the change in energy density, pressure and EoS.
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Dust (3 + 1) a(t) 8πρ(t) 8πp(t) ω(t)

(α, β) → (1, 1) t2/3 4
3t2

0 0

(α, β) = (0,9, 0,91) t2/3 2,06
t1,81

1,52
t1,81

-0,78
t1,8

0,74 − 0,38t0,01

(α, β) = (0,9, 0,95) t2/3 1,7
t1,85

1,15
t1,85

-0,78
t1,8

0,68 − 0,46t0,05

(α, β) = (0,9, 0,99) t2/3 1,34
t1,89

0,8
t1,89

-0,78
t1,8

0,59 − 0,58t0,09

Cuadro 4.3: Various fractional expressions for energy density, pressure and dust
EoS rounded to two decimal places. In (α, β) → (1, 1), β → 1 is taken before
α → 1.

The presented solution highlights intriguing deviations from the standard cold

dark matter (CDM) model, traditionally characterized by pressureless dust (p =

0). The apparent nonlocality, arising from the fractional operator and tuned with

the parameters α, β, affects both energy density and pressure values proportio-

nally. These effects might align with current cosmological observations, which in-

creasingly supports deviations from the traditional assumption on the “coldness”

of dark matter. For instance, recent studies derive an equation of state for dark

matter [45, 46] where constrains from observational data impose a non-zero pres-

sure component.

4.2.2. Radiation-dominated Universe

The scale factor for radiation dominated 3 + 1 Universe is proportional to

t1/2 [44]. Thus, the squared scale factor is A ∝ t. For instance, taking A = t
t0

with
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reference time t0, and solving (4.32) and (4.33) gives

ρ(t) =
3t−α−βα

32π(α2 − 3α + 2)Γ(2 − α− β)
+

3t−α−β(α− 1)

32π(α− 2)Γ(3 − α− β)
(4.43)

pr(t) = − t−2α

16πΓ(3 − α)2
+

3t−α−βα

32π(α2 − 3α + 2)Γ(2 − α− β)
− t−α−β(α− 1)

32π(α− 2)Γ(3 − α− β)
.

(4.44)

When α, β → 1 the classic energy density and pressure for 3 + 1 radiation-

dominated Universe are recovered.

ĺım
α,β→1

ρ(t) =
3

32πt2
(4.45)

ĺım
α,β→1

p(t) =
1

32πt2
, (4.46)

in natural units. The series expansion in (4.43) and (4.44) around the classic limit

α = 1 and β = 1 yield

ρ(t) =
3

32πt2
+

3(β − 1)

32πt2(α− 1)
+ O (α− 1, β − 1) (4.47)

p(t) =
1

32πt2
+

3(β − 1)

32πt2(α− 1)
+ O (α− 1, β − 1) , (4.48)

maintaining the hierarchy requirement upon α and β to converge to (4.45) and

(4.46). Full fractional expressions ρ(t) and p(t) are plotted in Fig.4.4 under this

consideration.

Analogous to the matter-dominated case Fig.4.4a and Fig.4.4b depict how va-

riations in the fractional parameters for the Christoffel symbols and curvature

impact the energy density, consistent with expectations from the 2 + 1 radiation-
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(a) Density (b) Pressure

Figura 4.4: Fractional energy density (a) and pressure (b) functions with respect
to time for a 3 + 1 radiation-dominated Universe. α is fixed at 0,99 and β varies.

dominated model.

Again, considering the properties of the cosmic fluid altered by the non-local

nature of the theory, the ideal EoS p = 1
3

for radiation varies. Specifically, the

proportionality constant ω is, according to (4.43) and (4.44)

ω(t) = 1 −
t−α−β(3α− 4)Γ(7

3
)

ρ(t)6π(3α− 7)Γ(10
3
− α− β)

−−
t−2αΓ(7

3
)2

ρ(t)9πΓ(10
3
− α)2

(4.49)

time dependant as well, with classic limit α, β → 1 recovering the EoS

ĺım
α,β→1

ω(t) =
1

3
. (4.50)

Using the expansions (4.47) and (4.48) near the classical limit,

ω = 1 − 2

3 + 3
(
β−1
α−1

) + O (α− 1, β − 1) , (4.51)

also shows that the density-pressure relationship is affected by the fractional pa-



53

rameters, and that β must approach 1 before α to ensure classical convergence.

Radiation (3 + 1) a(t) 8πρ(t) 8πp(t) ω(t)

(α, β) → (1, 1) t1/2 3
4t2

1
4t2

1
3

(α, β) = (0,9, 0,91) t1/2 1,34
t1,81

1,24
t1,81

-0,46
t1,8

0,93 − 0,34t0,01

(α, β) = (0,9, 0,95) t1/2 1,06
t1,85

0,96
t1,85

-0,46
t1,8

0,90 − 0,43t0,05

(α, β) = (0,9, 0,99) t1/2 0,78
t1,89

0,69
t1,89

-0,46
t1,8

0,88 − 0,58t0,09

Cuadro 4.4: Various fractional expressions for energy density, pressure and
radiation EoS rounded to two decimal places. In (α, β) → (1, 1), β → 1 is taken
before α → 1.

Explicit ρ(t) and p(t) expressions for some α, β are presented in Tab.4.4 exem-

plifying the change in energy density, pressure and EoS.

The presented solution introduces intriguing modifications to the standard des-

cription of the matter sector during the radiation-dominated era, where the dy-

namics are typically characterized by well-established power laws governing the

evolution of density perturbations. The incorporation of nonlocality, through a

fractional operator parameterized by α and β slightly alters these traditional po-

wer laws by introducing time proportional changes to energy density and pres-

sure. Although radiation’s contribution to the late-time evolution of the universe

is negligible, cosmological models incorporating power-law corrections provide a

compelling fit to recent observational data [47]. These findings suggest the neces-

sity of revisiting the standard framework, particularly during earlier epochs when

radiation played a dominant role in shaping the dynamics of cosmic expansion.
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Caṕıtulo 5

Conclusions

The application of fractional calculus in General Relativity presents a challen-

ge not only for theoretical physics but also for applied mathematics, making it an

area worth investigating because of its potential to address theoretical issues. Ad-

ditionally, with astronomical and cosmological observations reaching high precision

levels, there is now an opportune time to test theories beyond General Relativity.

With this potential in mind, our work was dedicated to exploring the feasibility of

formulating a set of fractional Einstein field equations for a specific parameteriza-

tion of the metric, similar to the approach used with classical derivative operators.

To accomplish this, we examined the general metric of a static and circu-

larly symmetric 2+1-dimensional spacetime to derive the set of specific equations.

However, we encountered a challenge when using either the Riemann-Lioville or

Caputo operators, rendering it impossible to obtain the equations for solving. To

address this issue, we introduced a weighted Riemann-Liouville derivative. The
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introduction of weights into the derivative serves a dual purpose. First, it enables

the definition of a Riemann-Liouville derivative such that the derivative of a cons-

tant is zero, mirroring classical derivations. This is crucial in constructing Einstein

equations, as utilizing the standard definition of the Riemann-Liouville operator

could result in equations depending on undesired coordinates. For example, a static

spacetime metric might yield equations depending on time owing to the standard

Riemann-Liouville derivative of a constant not being zero. Building upon this new

definition, we derived a set of integro-differential equations to solve.

As a specific example, we investigated the static Bañados-Teitelboim-Zanelli

metric, a vacuum solution of the Einstein field equations with a negative cosmo-

logical constant, to determine if it also satisfies the fractional equations. We find

that the solution for fractional parameters close to one leads to a solution with

an anisotropic cosmological constant and an effective charge. In other words, the

solution is similar to that of a charged BTZ, but with an anisotropic cosmological

constant. Based on this result, we conclude that the non-locality introduced by the

fractional parameters acts as a kind of Kaluza-Klein mechanism. Exploring the im-

plications of our findings in a cosmological scenario could yield valuable insights,

particularly regarding their alignment with the cosmological observations.

Cosmology in flat space-geometry yields another fruitful example since a con-

venient change of variables allows for 3 + 1 fractional equations. We find that

introducing fractional derivatives from the outset influences the evolution of cos-

mic species’ matter sector. This framework modifies the standard cosmological

model, with decelerated power-law behaviors, which can be fine-tuned by carefully



56

selecting the fractional parameters. These findings merit further research, combi-

ning observational data to determine whether a couple of fractional parameters

close to one can account for discrepancies in the standard model. Considering that

the classic results are fully recovered as α, β → 1, allowing for an emergent theory

of General Relativity.
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[15] M. Bañados, M. Henneaux, C. Teitelboim, and J. Zanelli, Phys. Rev. D 48,

1506 (1993).

[16] C. Mart́ınez, C. Teitelboim, J. Zanelli, Phys. Rev. D, 61, 1040130 (2000).

[17] J. M. Overduin and P. S. Wesson, Phys. Rept. 283 (1997), 303-380

doi:10.1016/S0370-1573(96)00046-4 [arXiv:gr-qc/9805018 [gr-qc]].



59

[18] T. Mei, On isotropic metric of Schwarzschild solution of Einstein equation.

arXiv preprint (2006): gr-qc/0610112.

[19] N. Lamprou et al, Class. Quantum Grav. 29 025002, (2012)

[20] Rubin, V.C., Ford, W.K. Jr., Thonnard, N. (1980), ApJ, 238, 471.

[21] Salucci, P. Dark Matter in Galaxies: Evidences and Challenges. Found Phys

48, 1517–1537 (2018).

[22] G. Gentile, P. Salucci, U. Klein, D. Vergani, P. Kalberla, The cored distribu-

tion of dark matter in spiral galaxies, Monthly Notices of the Royal Astronomical

Society, Volume 351, Issue 3, July 2004, Pages 903–922.

[23] Markevitch, M., Gonzalez, A. H., Clowe, D., et al. (2004), ApJ, 606, 819

[24] Natarajan, A. (2013). Bounds on Dark Matter from CMB Observations. In:

Cline, D. (eds) Sources and Detection of Dark Matter and Dark Energy in the

Universe. Springer Proceedings in Physics, vol 148. Springer.

[25] Madhavacheril, M et al, Evidence of Lensing of the Cosmic Microwave Back-

ground by Dark Matter Halos, PRL 114, 151302 (2015).

[26] M. Mirzakhani and S. Maludze, Important Results of Different Experiments

in Searching for Dark Matter Using Germanium and Silicon Detectors: A

Comprehensive Review for Detecting Weakly Interacting Massive Particles, ar-

Xiv:2409.08900 (2024).

[27] Adhikari, R., Agostini, M., Ky, N. A., et al. (2017), JCAP, 1, 25.

[28] Salucci, P., Esposito, G., Lambiase, G., et al. (2021), Front. Phys.,8, 603190.



60

[29] E. Gonzales et al, Exact Solutions and Cosmological Constraints in Fractional

Cosmology, Fractal Fract. (2023), 7, 368.

[30] G. Leon et al, Cosmology under the fractional calculus approach: a possible

H0 tension resolution?, PoS (2022) 248.
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Caṕıtulo 6

Apéndices

A. Solutions in 2 + 1 Standard Metric

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 2 + 1 dimension cosmological standard flat metric

ds2 = dt2 − A(t)
(
dr2 + R(t)dθ2

)
(6.1)

where A(t) = a(t)2 is the squared scale factor. The power rule in functions A,R is

hidden so that classic Leibniz rule is not unintentionally applied in the context of

fractional calculus. The convention is that the index α is used in the definition of

the Christoffel symbols and β in the definition of the Riemann tensor. Note that,

because the metric is a function of the radial as well as time coordinate, there will
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be radial and time partial fractional derivatives by the notation (2.20) dαr and dαt .

T 0
0 = −(dαt A)2

8πA2
− dβt (A−1dαt A)

4π
+

dβt (dαt A)

4πA
− F

A
(6.2)

T 1
1 =

(dαt A)2

8πA2
+

dβt (A−1dαt A)

4π
+

G

A
(6.3)

T 2
2 =

(dαt A)2

8πA2
+

dβt (A−1dαt A)

4π
− G

A
(6.4)

where F , G are functions depending only on the radial coordinate r

F =
dβr (R−1dαrR)

8π
+

dβr (dαrR)

8πR
(6.5)

G =
(dαrR)2

8πR2
+

dβr (R−1dαrR)

8π
− dβr (dαrR)

8πR
. (6.6)

With the property that taking R = r2 as usual and then the classic limit α, β → 1

results in both F,G → 0, agreeing with the classic solution, which has no radial

dependency. However, outside the limit, the solutions are radial dependant. See

for instance, the matter-dominated Universe case A ∝ t2 in (6.2)-(6.4)

ρ(r, t) = − 2t−2α

πΓ(4 − α)2
+

t−α−βαΓ(1 − α)

πΓ(4 − α)Γ(2 − α− β)
+

t−α−β(α− 2)

π(α− 3)Γ(4 − α− β)

+
r−α−βαΓ(1 − α)

2πt2Γ(4 − α)Γ(2 − α− β)
− r−α−β(α− 2)

2πt2(α− 3)Γ(4 − α− β)
(6.7)

pr(r, t) = − 2t−2α

πΓ(4 − α)2
+

t−α−βαΓ(1 − α)

πΓ(4 − α)Γ(2 − α− β)
− 2r−2α

πt4Γ(4 − α)2

+
r−α−βαΓ(1 − α)

2πt2Γ(4 − α)Γ(2 − α− β)
+

r−α−β(α− 2)

2πt2(α− 3)Γ(4 − α− β)
(6.8)

pt(r, t) = − 2t−2α

πΓ(4 − α)2
+

t−α−βαΓ(1 − α)

πΓ(4 − α)Γ(2 − α− β)
+

2r−2α

πt4Γ(4 − α)2

− r−α−βαΓ(1 − α)

2πt2Γ(4 − α)Γ(2 − α− β)
− r−α−β(α− 2)

2πt2(α− 3)Γ(4 − α− β)
. (6.9)
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The application of the fractional derivative of order α, β results in the time and

radial dependant expressions (6.7)-(6.9) for energy density, radial pressure and

tangential pressure. In the limit α, β → 1 the classic energy density and pressure

for 2 + 1 matter-dominated Universe are recovered without radial dependencies.

ĺım
α,β→1

ρ(r, t) =
1

2πt2
(6.10)

ĺım
α,β→1

pr(r, t) = 0 (6.11)

ĺım
α,β→1

pt(r, t) = 0, (6.12)

Thus, fractional modifications to the Einstein field equations in standard metric

also recover classic Cosmology. However, having solved the equations also for the

Cartesian metric in section 4.1 with radial independent solutions suggests that the

dependency of radius in (6.7)-(6.9) is merely an effect of the change of coordinates.

B. Solutions in 3 + 1 Standard Metric

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 3 + 1 dimension cosmological FLRW flat metric

ds2 = dt2 − A(t)
(
dr2 + R(t)dθ2 + R(t)S(θ)dϕ2

)
(6.13)

where A(t) = a(t)2 is the squared scale factor, R(r) = r2 and S(θ) = sin2(θ).

The power rule in functions A,R and the trigonometric function S(θ) is hidden so

that classic Leibniz rule is not unintentionally applied in the context of fractional
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calculus. The convention maintains that the index α is used in the definition of

the Christoffel symbols and β in the definition of the Riemann tensor. Note that

there will be radial, time and angular partial fractional derivatives by the notation

(2.20) dαr , dαt and dαθ .

T 0
0 = −3dβt (A−1dαt A)

32π
+

3dβt (dαt A)

32πA
− F

A
− K

AR
(6.14)

T 1
1 =

(dαt A)2

16πA2
+

3dβt (A−1dαt A)

32π
+

dβt (dαt A)

32πA
+

G

A
− L

AR
(6.15)

T 2
2 =

(dαt A)2

16πA2
+

3dβt (A−1dαt A)

32π
+

dβt (dαt A)

32πA
− H

A
+

L

AR
(6.16)

T 3
3 =

(dαt A)2

16πA2
+

3dβt (A−1dαt A)

32π
+

dβt (dαt A)

32πA
− H

A
− L

AR
(6.17)

where F , G and H are functions depending only on the radial coordinate r

F =
(dαrR)2

32πR2
+

dβr (R−1dαrR)

16π
+

dβr (dαrR)

16πR
(6.18)

G =
(dαrR)2

32πR2
+

dβr (R−1dαrR)

16π
− dβr (dαrR)

16πR
(6.19)

H =
(dαrR)2

32πR2
+

dβr (R−1dαrR)

16π
(6.20)

and K and L are functions depending only on the polar angular coordinate θ

K =
dβθ (S−1dαt S)

32π
+

dβθ (dαθS)

32πS
(6.21)

L =
(dαθS)2

32πS2
+

dβθ (S−1dαt S)

32π
− dβθ (dαθS)

32πS
. (6.22)

This set of equations remains unsolved for any scale factor. Simply taking S =

sin(θ)2 is not trivial since the calculation involves infinite series whose convergen-

ce have not yet been demonstrated. Even if we conjecture all r and θ dependencies
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disappear in the classic limit as in 2 + 1 dimensional Cosmology, it remains true

that outside this limit fractional solutions will exhibit such dependencies inherited

by the coordinate system.
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