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Resumen

En este trabajo se investiga las ecuaciones de campo de Einstein (EFE) utilizan-
do una nueva derivada fraccionaria que modifica el operador de Riemann-Liouville,
estableciendo un marco consistente para el calculo fraccionario en relatividad gene-
ral. La derivada propuesta resuelve problemas asociados con el operador de Caputo
y Riemann-Liouville estandar. Derivamos las EFE fraccionarias en espacio-tiempos
de 2+ 1y 3+ 1 dimensiones, asumiendo métricas estaticas y con simetrias circu-
lar y esférica. Como caso de estudio, evaluamos la solucién del agujero negro de
Banados-Teitelboim-Zanelli (BTZ), mostrando que para parametros fraccionarios
cercanos a uno, corresponde a un agujero negro BTZ cargado con una constan-
te cosmoldgica anisotropica. Ademas, en cosmologia examinamos soluciones con
factores de escala polinomiales, relevantes para épocas dominadas por materia y
radiacién, discutiendo las implicaciones para la densidad de energia, la presion y

la ecuacién de estado en el contexto de modificaciones fraccionarias.

Palabras clave: Derivada fraccionaria, Relatividad General, Agujero negro BTZ,

Cosmologia fraccionaria.



Abstract

In this study, we investigate Einstein’s field equations (EFE) using a novel
fractional derivative that modifies the Riemann-Liouville operator to ensure a
consistent framework for fractional calculus in General Relativity. The proposed
derivative resolves issues with the Caputo and the standard Riemann-Liouville de-
rivative. We derive fractional EFE in both 2+ 1 and 3+ 1 dimensional spacetimes,
assuming static and circularly symmetric metrics. As a case study, we evaluate the
Banados-Teitelboim-Zanelli (BTZ) black hole solution, showing that for fractional
parameters close to one, it corresponds to a charged BTZ black hole with an an-
isotropic cosmological constant. Additionally, in Cosmology, we examine solutions
with polynomial scale factors relevant to matter- and radiation-dominated epochs,
discussing the implications for energy density, pressure, and the equation of state

in the context of fractional modifications.

Keywords: Fractional derivative, General Relativity, BTZ black hole, Fractional

Cosmology.
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Capitulo 1

Introduction

In recent years, fractional calculus has gained significant traction across va-
rious fields due to the added flexibility it provides in modeling the dynamics of
complex physical phenomena as it introduces memory effect, which contrasts with
the local operators used in classic theories. This non-locality has made fractional
calculus particularly attractive for applications in a wide range of areas, including
gravitational physics, where it offers the potential for a renormalizable model of
quantum gravity [1-4]. A natural question arises: how does the introduction of
fractional operators influence General Relativity, Einstein field equations, black
hole solutions and cosmological models, particularly in addressing key challenges

within the current cosmological framework.

In this study, we aim to explore the consequences of fractional gravity to Gene-
ral Relativity and the field of Cosmology and whether it can provide a competitive

description with the added non-locality the fractional operator inherits. We analyze
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whether this theory can potentially address the current challenges of the standard
cosmological model while maintaining consistency with it at cosmological-scale

observations.

There are two primary ways to incorporate fractional operators into a gravi-
tational theory. The most common approach, known as Last Step Modification,
applies fractional field equations after deriving the cosmological field equations,
offering a non-fundamental but simpler methodology. The second approach, First
Step Modification, introduces fractional derivatives from the outset, establishing a
fractional geometric framework. Calcagni’s renormalizable theories fall in the latter
category and thus the difficulty in finding exact solutions [1]. It involves genera-
lizing all derivatives of integer order to derivatives of arbitrary (real or complex)

order, when defining the Christoffel symbols [4].

1
Ion = 59“5(Du9& + Digsv — Dsgun), (1.1)

where p,v = 0,1,2,3 are space-time indices and D, stands for the fractional
derivative with respect to the coordinate v which in the classical limit coincides
with the usual derivative operator, namely D, — 0, (details about this limit
can be found in the next chapter). Note that if we define the fractional covariant

derivative V of a (k,l)-rank tensor 1" as

VUT#1#2"'Hk — DO_TI»LIHZ"'HIC 4 ng\T/\mmuk 4 FgQATﬂl)\"'le 4o

vive--yg viv-yg vive-y viva-yg

_ TN ks A pEapche (1.2)

oV Avg-y ove T VA
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it is compatible with the metric in the sense that 4]

vugup = 0. (13)

The Riemann tensor, Ricci tensor, and Ricci scalar can now be defined as [4]

Rppor = Dol — DU, + 1,0 =TI, (1.4)
R, = D,I7,—DJI, +1, o =T, 17 (1.5)
R = ¢"R,. (1.6)

It is worth emphasizing that Egs. — correspond to straightforward genera-
lizations because we only replaced the usual derivative operator with the fractional
one. Indeed, these expressions serve as a good starting point because, as mentioned
earlier, we are assuming that the “standard” geometry only emerges in the limit
where D,, coincides with 0,. Of course, it would be interesting to start from first

principles, such as considering, the definition of the Riemann tensor
R(X,Y) =[Vx,Vy] = Vixy (1.7)

where [X, Y] is the Lie bracket of vector fields and [V x, Vy] is the commutator of
differential operators. However, this raises other questions about what fractional
Lie brackets are or how to generalize the commutator between vector fields in such
a way that yields . Another question is whether these commutators obey a

certain fractional Jacobi identity that leads to the Bianchi identity, namely

Va5 = 0. (1.8)
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Answering these questions is not trivial, given the lack of the usual Leibniz rule
for fractional operators. Indeed, a Leibniz rule exists for fractional derivatives,
but it contains an infinite series of classical derivatives of the functions involved,
making it difficult to handle |5{{7]. The intention of this work is not to answer
these questions but rather to leave open the possibility of exploring these details

in future work.

Now, by considering — as the starting point, we have two routes to ob-
tain Einstein’s field equations: i) solving the variational problem from the Einstein-
Hilbert action or ii) considering the Einstein field equations as a starting point by
using and . If we start from the Einstein-Hilbert action, we encounter,

after variations with respect to the metric, the boundary term
69" O, = Vo (g" 0Ty, — g7 0T ) (1.9)

that vanishes in the case of ordinary derivatives but generally does not vanish
when fractional operators are used (see [4] for details). By contrast, if we consider
the Einstein field equations as fundamentals, the boundary term is (apparently)

absent, and we have

R, — =R = k*T,,. (1.10)

2

Note that if |) is true, is straightforward to show that @#(R’“’ — %g“”R) =
0, from which @NTW = 0 which means that the energy-momentum tensor in
(1.10]) is conserved in the fractional sense. Regardless of the case, in this work,

we will consider ((1.10) as true meaning that, in order to be compatible with the
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equations obtained from the Einstein-Hilbert action, the energy-momentum tensor
must be conceived as a quantity that contains the matter sector and the corrections

introduced by O,,, that is,

T,LLI/ — Tuu + Oyz/- (111)

This work is organized as follows. The next chapter [2] introduces the formal
aspects of the new fractional derivative. Next, in chapter [3, we deduce the set of
Einstein field fractional equations for the BTZ black hole. In chapter [d we deduce
the equations for Friedmann type spacetime Cosmology. In particular, we explore
the consequences of assuming material and radiation dominance in flat metric
k = 0 as a solution to the fractional equations. Finally, the last chapter is devoted

to some final comments and remarks.
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Capitulo 2

Fractional Calculus

In this chapter, we present the basic definition and notation related to fractional
calculus used in this study. As we aim for this work to be as self-contained as
possible, we will start with the definitions of the Caputo and Riemann-Liouville

derivatives to lay the groundwork for our new fractional derivative.

Let us start with the definition of the Riemann integral which plays a central

role in the definition of the fractional derivatives used here.

Definition 2.1. The Riemann-Liouville fractional integral of order av > 0 is given

by (see [5-7])

(T8eh) (2) = (1a) / ’ ; f%)l_a dt, ©>a. (2.1)

We denote by I%, (L) the class of functions h, represented by the fractional integral

(2.1)) of a summable function, that is h = I% ¢, where ¢ € Ly(a,b). A description
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of this class of functions was provided in [5,[7].

Theorem 2.2. A function h € I3, (L1),a > 0, if and only if its fractional integral
I57%h € AC*([a,b]), where s = [a]+1 and (I5,*h)®(a) = 0, for k=0,...,s—1.

In Theorem[2.2] AC*([a, b]) denotes the class of functions h, which are continuously
differentiable on the segment [a,b], up to order s — 1 and A~V is absolutely
continuous on [a, b]. By removing the last condition in Theorem [2.2 we obtain a

class of functions that admit a summable fractional derivative. (See [5,7])

Definition 2.3 (see [7]). A function h € L(a,b) has a summable fractional deri-

vative (D2 h) () if
(I;7°h) (x) € AC*([a, 1)),

where s = [a] + 1.

2.1. Riemann-Liouville fractional derivative

Definition 2.4. Let (D% k) (z) denote the fractional Riemann—Liouville de-

rivative of order a > 0 (see [5-7])

D)) = (1) 1y [ o

- <%>s (I37°h) (), (2:2)
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where s = [a] + 1,2 > a [a] denotes the integer part of o and I' is the gamma

function.

When 0 < oo < 1, then (2.2) takes the form

d

T

(D3h) () = o (I5°h) (@). (23)

Note that, when o« — 1, we recover the typical derivative operator [5H7].

The semigroup property for the composition of fractional derivatives does not

generally hold (see |6, Sect. 2.3.6]). In fact, the property:
o (Dloh) = DsFh, (2.4)
holds whenever
h9(a) =0, j=0,1,...,s—1, (2.5)

and h € AC*Y([a,b]), h®) € Li(a,b) and s = [B] + 1. Thus, we can write this

result in the following:

Lemma 2.5. Consider h € AC* *([a,b]) and h®) € Ly(a,b) then,
D2, (Df+) h=D? (D2,)h, (2.6)

holds whenever

h)(a*) =0, j=0,1,...,5—1, (2.7)
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where s =[] + 1.

Demostracion. This proof can be found in [6, Section 2.3.6]. O

Remark 2.6. It is worth noticing that the Riemann-Liouville derivative of a

constant is not zero. However, in the limit process, it behaves as expected.

—

lim (D2,1) (2) = Tim S =Y g (2.8)

a—1 a—1 F(l — Oé)

2.2. Caputo fractional derivative

Definition 2.7. Let @ > 0 and m = [a]. We can then define the Caputo deri-
vative [5-7] (D2, as
o A\"
cD:-O- = Iﬁ (%) f7 (29)

X

when (%)mf € Ly[a,b].

Note that Caputo derivative of a constant is zero, as expected. This presents
an advantage when constructing Christoffel symbols because, for example, if the
metric depends only on the radial coordinate, its derivative with respect to ti-
me vanishes (something that would not occur when using the Riemann-Liouville

derivative). However, the use of Caputo is problematic when constructing the term

200 T t—a—l
DP (r2.Dg 1) = — / dt 2.10
o Do) = S T TG —a) ) 1) (2.10)

because it fails to converge when r — 0 and o > 0. One option is to contemplate the
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Riemann integral from a certain point a > 0. As we will see later, this term arises
naturally from Christoffel symbols for metrics that are circularly and spherically
symmetric. However, this approach introduces additional challenges because the
solution becomes approximate rather than exact, requiring numerical computation
for a given fixed a. Moreover, when employing standard derivatives, this issue is
absent, and our aim here is to ensure that our equations inherit all the desirable
properties. Now, although the Riemann-Liouville derivative does not diverge in
this case, it is not useful for deriving the Einstein equations, because, as we saw
earlier, the derivative of a constant is not zero. For this reason, we propose a
modification to the Riemann-Liouville operator such that its action on a constant

vanishes, as we see in what follows.

2.3. Modified fractional derivative

Definition 2.8. Consider ¢;(z, ) a continuous function, gs(z, ) a continuously
differentiable function on z and let ({2 D% h)(z) = (D% h) (z) denote the
g-weighted fractional Riemann-Liouville derivative of order a > 0. For

qi1, 92 € ACS(R)

_ d\°*
("Dg+h) (z) = a1 (2, @) (£> @2z, @) (I:7°h) (2), (2.11)
where s = [a] + 1,2 > a and [a] denotes the integer part of a with 0 < a < 1

and lim ¢ (z,a) = lim go(z, ) = 1. As we will see later, for convenience we take
a—1 a—1
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¢@(z,a) = (x — a)* ! so then takes the form
(D30) (@) = (o) () =0 (en) @ (212

It is not diffficult to see that the operator is linear; however, the central moti-
vation for considering this operator is that, although it has a structure similar to

that of the Riemann-Liouville operator, the derivative of a constant is zero
("D 1) (z) =0 (2.13)

Another consequence arises when we differentiate polynomials. If we consider a =

0, P(x) = 2™ and z,n > 0,

nqi(z,a)x™ T(n + 1)
I'n—a+2) ’

(“D§. P(x)) (z) = (2.14)

and lim (“Dg; P(z)) (z) = na" .

a—1

As in the case of the Riemann-Liouville operator, the semigroup property for
the composition of fractional derivatives is generally not satisfied; however, the

following lemma is useful

Lemma 2.9. Consider q(z,a) € AC*([a,b] x (0,1)), h € AC*~Y([a,b]) and h(*) €
Li(a,b) then,
"D ("DL ) h="DY, ("D%) b, (2.15)

holds whenever

h(j)(aJr) =0, 57=0,1,...,5s—1, (2.16)
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where s =[] + 1.

Demostracion. The proof can be followed using the formula

(TD2, 1) (z) = u(x, ) [ (%)S oz, a)] (I57°h) (2) + @, a) (D2, h) ()

(2.17)

and the result of lemma 2.5 m

Note that, up to this point, the weight ¢, is general. However, to avoid singu-

larities in ([2.10]), it is convenient to consider

@z, a) = P~ =(x—a) " (2.18)

Indeed, in this case we obtain

4r=P=2BD(1 — a)

8 —2na .2\
DL D) =~ e

(2.19)

At this point, some comments are in order. First, note that we have used different
fractional indices that translates to using a to define the Christoffel symbols in
and [ to define the curvature tensor . Indeed, this is the most general way
to consider fractional Einstein equations. Furthermore, if they are considered equal
a priori, the result of does not lead to the result obtained with the ordinary
derivative in the limit. Second, the result obtained with the classical derivative
is achieved if § — 1 is taken before o — 1, otherwise, the expression diverges.

Of course, this introduces a hierarchy in how the classical limit is recovered: first
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turning off non-locality in curvature, and then in the Christoffel symbols.

In the next section, we derive the Einstein field equation for a static and cir-
cularly symmetric metric by assuming the weights in (2.18) and taking a = 0. To

make the equations readable, we use the notation

("D, ), = d*. (2.20)
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Capitulo 3

The Banados-Teitelboim-Zanelli

Solution

In this section we seek solutions to the field equations, which in this case
translates to dealing with a system of 10 integro-differential equations as each
fractional derivative operator involves an integral, as shown in the previous chapter.
The standard approach to reducing the number of equations to be solved is to
assume a system with certain symmetries and a particular parameterization for
the metric. For instance, in 3 + 1 spacetime dimensions, the simplest assumption

is a spherically symmetric and static system, whose line element is given by

ds* = —F(r)dt* + G(r)dr* + r*d6* + r? sin® 0d¢°. (3.1)
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As is known (and expected), Einstein equations depend only on the radial coor-
dinate. However, it is worth mentioning that some non-zero Christoffel symbols
explicitly contain the coordinate 6, which does not appear in the final result owing
to Leibniz’s rule and trigonometric identities. However, as stated above, in fractio-
nal calculus there is no standard Leibniz’s rule but a relation involving an infinite
series in derivatives which is not trivial to deal with. In this regard, we have to
either find the convergence of the series (which is not trivial) or impose constraints
to ensure the classical limits. For example, in the case of we encounter the

terms

.2 : 2
D?s;n 7 D3(1?32sm 0) _ (3.2)
sin” 20 sin” 6
D3 SiDZQ 2 D3 sin29 Dg(Dg SiIl2 0)
——— | =D =0 3.3
( sin? @ ) 3< sin? 26 - sin? 0 ’ (3:3)

where Ds is the fractional derivative with respect to #, that come from the compu-
tation of the G9s and (g3 of the Einstein tensor (note that, if we assume D3 =
03 = 0/00 the constraints are automatically satisfied). One way to avoid this
“polar angle problem” is by studying a toy model such as Einstein’s equations in
2 4+ 1 dimensional spacetime where for circularly symmetric and static situations

the metric reads

ds* = —F(r)dt* + G(r)dr® + r*d¢? (3.4)

There has been a significant amount of research focused on the study of three-

dimensional gravity [8-10]. These models provide valuable insights into their higher-
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dimensional analogs, specially when it comes to exploring concepts or techniques
that are directly intractable in four or more dimensions, providing a testing ground
for techniques such as holography, perturbation methods, and the renormalization
of gravitational theories. Furthermore, models in three dimensions, such as the
BTZ black hole solution, have played a crucial role in exploring thermodynamic
properties, quantum aspects of black holes and the holographic framework [11H13],

bridging insights to higher-dimensional settings.

3.1. Fractional Einstein Equations

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 2 + 1 dimensional metric
ds* = —F(r)dt* + G(r)dr* + R(r)d¢?, (3.5)

from (1.1), (1.5), (1.6), and (|1.10]), with the convention that the index « is used

in the definition of the Christoffel symbols and g in the definition of the Riemann
tensor. Note that, because the metric is a function of the radial coordinate, only

terms involving the fractional derivative with respect to the radius will persist.
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Using ([2.20)), the fractional Einstein field equations can be written as

(d°F)?  d°Fd°G  d°(G~Ld°F) dP (F~'d°F)

0
—To T3 2G| B2nFGE T 32iF 322G
_d’(R7'd°R)  d°(G'd°R) (36)
327G 327 R )
- (dF)? . d*Fd°G . d°(G~'d*F)  d° (F~'d°F) N d*Fd°R
! 327 F2G | 320 FG? 327 F 327G 32rFGR
d°Gd*R  (d°R)* N d° (G~'d*R) d’(R"'d°R) 37
327G2R 327G R? 327 R 327G '
- d° (F~1d*F) N d° (G'd°F) d°Gd°R . (d*R)?
2 327G 321 F 32rG2R  32nGR?
d’(R~'d*R) d’ (G~'d"R) (3.8)
327G 327R '

It is worth noticing that the dimensions of the field equations change depending
on the choice of weights (¢, ¢2). However, with the choice in equation , the
dimensions of the fractional derivative of the metric are length™®. Consequently,
the dimensions of the Einstein equations are length™2® and length—*=* so thus,
when @« — 1 and f — 1 we obtain the correct dimensions (in natural units).
From a physical standpoint, this means that we must be careful when assigning
the meaning of each component of the fractional Einstein tensor G, to match
the energy-momentum tensor 7),,. More precisely, in the standard case, we assign
TH = (p,—pr, —p¢) with p, p, and p; as the energy density, radial pressure and
tangential pressure, respectively, and each quantity has dimensions of length—2

but when applying fractional operators it is convenient to redefine

d* — =elge (3.9)

d’ — =P (3.10)
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with =, some quantity with dimensions of length (which can be taken as a cons-
tant associated with some characteristic length of the model under study) so that

{p, pr, 0t} have the correct dimensions.

The next step in the program is to solve the set of fractional derivatives —
(3.8) with R = 7? so we must solve the problem of solving three integro-differential
equations with five unknowns, namely, {p, p,,p:, F, G} which represents a non-
trivial challenge. We can try by following the routes we explore in standard General

Relativity, namely
1. Provide an equation of state relating p and p, and a suitable anisotropic
function.
2. Consider a matter sector based on fundamental fields.
3. Provide some geometric restrictions

4. Consider a vacuum solution.

3.1.1. Fractional BTZ Black Hole

The standard Einstein field equations in 2 + 1 dimensions admit a black hole
solution with negative cosmological constant [14,/15]. It is the only non-trivial
vacuum solution since in 2 4+ 1 dimensions the metric is completely determined
by the mass-energy distribution and without a cosmological constant (A = 0) the

solution is locally flat.
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The solution was originally derived from the Einstein-Hilbert action [14]
S = /\/—_g(R — 2N)d*zdt (3.11)
with negative cosmological constant (A = —1/?) and metric.
ds® = —Ndt* + N=2dr? + r* (N?dt + dg)” (3.12)

with lapse N(r) and angular shift N?(r)

Ny = M+ D Ney = =L (3.13)

2 4r? 2r2
and constants of integration M and J appearing and corresponding to mass and
angular momentum, respectively. This solution serves as a natural analog to the
classical black hole to study key features without the unnecessary complications
and more manageable equations. As discussed previously, the BTZ model has been

extensively inspiring studies in quantum gravity, black hole thermodynamics, and

holography, owing to its simplicity and theoretical richness.

The metric further simplifies considering a non-rotating black hole J = 0, which

in the static and circularly symmetric regime, reads

2
ds* = — (—M + 1) dt* + (M;dﬁ + r2de?, (3.14)

e =

which corresponds to the static BTZ black hole with event horizon rg = ¢v M.

Alternatively, the BTZ black hole can be thought of as a solution of Einstein’s
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equation without cosmological constant but supported by a matter sector given

by T = 87352 diag(1,1,1). In this work, instead of trying to solve the set (3.6)-

(13-8), we assume (3.14) as a solution to the fractional equations and explore the

behavior of the corresponding fractional matter sector. Before proceeding with the
calculation, we would like to point out that the choice of a metric that solves
the classical (non-fractional) Einstein equations is made for simplicity. One could
attempt to use a metric that depends on the fractional parameters and coincides
with BTZ in the appropriate limit. However, although we explored this approach,

we did not find a metric simpler than the BTZ.

After using in the fractional equations, we obtain expressions for the
matter sector that are not included here due to their length, as they involve hy-
pergeometric functions and are not particularly illuminating. Furthermore, since
our focus is on the behavior near the realm of General Relativity, we consider the
solution’s behavior for «, 8 close to one. By expanding in series for these parame-
ters, we find that for fractional parameters approaching one, the standard notions
of space-time as described by General Relativity are recovered. This approach
allows us to understand how deviations from classical general relativity manifest

while emphasizing the consistency with the well-established classic theory

+O0(a-1,4-1) (3.15)

1 B—1 M(3—1)
T = 872 (1 T 1)) T om2a—1)

T, = ! (1—25_1) M(@B-1) +0(a—1,-1) (3.16)

2 (0 —1) o 167r2(a — 1)
_ 1 p—1 M(B—1)
T22 82 <1+ 2(04_1)> 167r2(a — 1) +O0(a—1,-1). (3.17)
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At this point some comments are in order. First, note that expressions (3.15
3.17)) underscore the critical requirement of preserving hierarchy in the fractional
parameters when taking the limit to recover the classic solution. Notably, it is
essential that § approaches 1 prior to a, as # must reach this value first to en-
sure the correct limiting process. Second, around this limit, the introduction of
non-locality leads to a small correction in the cosmological constant. In fact, the
asymptotic behavior corresponds to a solution with an anisotropic cosmological

2

constant. Finally, the second term in the matter sector o< r~* is reminiscent of the

charged BTZ black hole solution with line element [16]

1 2 Q® r
Pt oyl " 3.18
G te Ty (3.18)

where () represents the electric charge of the black hole and r( is an arbitrary refe-

rence scale. Solving the Einstein Field Equations for this metric the matter sector is

1 Q?

0o _
~1o = 8?2 + 3272 (3.19)
1 0?
1 _
o= 8Tl2  327r2 (3.20)
12
2 _
(R (3.21)

Upon comparing (3.153.17) with equations (3.1943.21), we establish the identi-
fication Q* = 2M (8 — 1)/(a — 1). We can conclude, then, that the non-locality

introduced by the fractional derivative leaves traces in the classical results, provi-
ding anisotropy to the cosmological constant and an effective electric charge. This

result resembles, to some extent, the Kaluza-Klein mechanism (see [17], for exam-
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ple), where a gravitational theory in 5-dimensional spacetime leads to a theory
of gravity coupled with electrodynamics in 4-dimensional spacetime after compac-
tification. In this case, compactification is replaced by non-locality. We want to
emphasize that the mechanism described here is unrelated to Kaluza-Klein, but

the resemblance is interesting.

At this stage, after analyzing our initial fractional solution, we observe that
certain simplifications typical of classical physics, such as the absence of radial de-
pendence, do not occur in the fractional case. This prompts us to consider whether
the observed non-homogeneity arises from the application of fractional derivatives
to the r? scaling of angular distances. However, implementing an isotropic coordi-
nate system, as is done for the Schwarzschild black hole [18,/19], results in metrics
that are analytically intractable when approached via fractional integrals. In con-
trast, cosmology, specially cosmology in flat spatial geometry, benefits from the
simplicity of the spatial part dz? + dy* + dz* being Euclidean, and the complexity

of the universe’s expansion is entirely captured by the time-dependent scale factor.
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Capitulo 4

Cosmology

Observational data from astrophysical and cosmological probes has established
that baryonic matter constitutes only about 15% of the total matter content of
the universe, with the remainder attributed to a mysterious 'dark matter’ (DM)
component. Some evidence include the kinematics of spiral galaxies [20-22], cos-
mic microwave background and large-scale structure observations [23,24], among
many others. However, despite extensive efforts [25,26] no direct detection of dark
matter particles has been made. This has spurred the exploration of alternative
explanations, including modifications to General Relativity that do not rely solely

on standard particle candidates [27}2§].

Modified gravity theories have emerged as promising alternatives to explain
the late-time acceleration of the universe [29-32], as well as to try to alleviate the
Hy tension and the cosmological constant 'dark energy’ (DE) problem to better

align with observational data. Fractional calculus has shown potential in these
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areas by modifying the Friedmann equations, describing inflationary cosmologies
in both FLRW and Bianchi metrics [32,[33], and even proposing the replacement
of the cosmological constant with fractional dissipative forces [31}34,35]. Recent
work has also explored the possibility that the elusive dark matter component is
replaced by the mathematical structure of fractional gravity [36,37], suggesting
a deeper connection between non-locality and the fundamental properties of the
universe. This is mainly because, in fractional Cosmology, standard evolution of
the cosmic species densities has been found to depend on the fractional parameters

of the theory [31}33}36,37].

This study sets itself apart from prior research in fractional cosmology, which
have primarily centered around last-step modifications and fractional effective ac-
tions. In contrast, our study emphasize first-step modifications directly to EFE,
which, to our knowledge, has been largely confined to the Minkowski universe due
to the mathematical complexity of fractional differential operators. By applying
the fractional framework and leveraging its inherent non-locality coherently at a
foundational level to the Einstein Field Equations, this approach has the poten-
tial to yield novel insights or results, offering a fresh perspective on gravitational

theory and cosmological modeling.

4.1. Solutions in 2 + 1 dimensional Cosmology

Cosmological models have also been generalized to lower-dimensional spaceti-

me [38-41] in an attempt to answer Universe’s large-scale homogeneity problem.
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The presence of horizons around any comoving observer determines a maximum
possible coherence radius over which one might expect homogeneity [41]. All stan-
dard Friedmann models predict the existence of horizons, except in the case of
an empty Universe. However, it has been shown that models of isotropic, matter-
dominated universes in 241 dimensions do not exhibit horizons [41]. This has
consequently increased interest in exploring models that extend beyond the stan-
dard cosmological framework. More recently, these lower-dimensional cosmological

models have been utilized to explore the cosmic holographic principle [42,43].

The 241 Friedmann type (spatially homogeneous and isotropic) cosmological

model line element is [40]

ds? = dt? — a?(t) A 22 (4.1)
1 — kr? '
where a(t) is the scale factor and £k = —1,0,1 for hyperbolic, flat and circular

two-dimensional spatial geometry, respectively. The corresponding Einstein field

equations are [9)

o2mp = <g>2+£ (4.2)

"
omp = —-— 4.3
mp = (4.3)

where p is the energy density and p the pressure of the fluid. The corresponding

energy conservation equation is [9]

d d

(o) i () =0 (14
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A matter-dominated Universe follows the dust EoS p = 0. Thus, the energy con-
servation equation states pa®? = const. In standard Friedmann fashion the scale

factor can now be derived from the first field equation (4.2)).

a(t) = ag £ V2M — & (t — to) (4.5)

where M = wpga2. For a radiation-dominated Universe p = % p- According to (4.4))
pa® = const. The complete scale factor solution can be found in [9]. For early times

a oc t2/3.

In what follows, we obtain the explicit form of the fractional Einstein field
equations for the 2+ 1 dimension cosmological metric. For simplicity, consider the

Cartesian flat metric (k = 0)
ds* = dt* — A(t) (dz* + dy?) (4.6)

where A(t) = a(t)? is the squared scale factor. The scale factor is hidden in A
so that the classic Leibniz rule is not unintentionally applied in the context of
fractional calculus. The advantage of using Cartesian coordinates is that only terms
involving the fractional derivative with respect to time will persist. This is not true
for the standard metric (4.1)) where additional radial fractional derivatives appear,

their effects are discussed in appendix [A] The convention is that the index « is

used in the definition of the Christoffel symbols. Using the notation ([2.20)

d*A
F?legzzT 17
L (4.7)
F01 - 1j02 =

24
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While a different index, £ is used in further derivation in the definition of the

Riemann tensor

d?(d*A)  (d*A)?
RYjp = Roy = — +

2 4A
d? (A71d*A)  (d*A)?
Rém - R(2)2o - 9 T TAA2 (4.8)
Y R (s
Ryy = — iy = 1A

where @ < f < 1 as seen in (2.19). With these considerations, the fractional

Einstein field equations are succinctly expressed

(d*A)?  d° (A'deA)  dP (d*A)

TP — — 4.

0 SmA2 47 + 4T A (4.9)
(d*A)?  dP (A~1deA)

T =13 sz T - : (4.10)

The next step in the program is to solve equations and . We will not
derive the scale factor as in standard 2+ 1 Cosmology as it represents a non-trivial
challenge of integro-differential equations. Instead the scale factor for matter and
radiation-dominated eras are considered in order to analyze the effects of non-

locality as introduced by the fractional derivative.

4.1.1. Matter-dominated Universe

The scale factor for matter-dominated 241 Universe is time proportional a o< ¢

2
(4.5). Thus, the squared scale factor is A o< t2. For simplicity, taking A = <%) ,
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where t( is a reference time, and solving (4.9) and (4.10)) gives

N = 22 t=*Fal'(1 — a) t=2 P (a - 2)
P = A= ar Aol —a—7)  ra—3Td—a—7)
(4.11)
p(t) = 2w | tPallza) (4.12)

a4 —a)?2  al(d—a)T2—a—f)

The application of the new fractional derivative of order «, 3 results in the expres-
sions (4.11]) and (4.12]) for energy density and pressure. In the limit o, 5 — 1 the
classic energy density and pressure for 2 + 1 matter-dominated flat Universe are

recovered

, 1
ahﬁlgl o) = 27t? (4.13)
lim p(t) = 0 (4.14)

a,f—1

in natural units. By performing a series expansion in (4.11)) and (4.12) around
a =1 and f = 1 deeper insight is gained about the implications of the fractional

parameters in the solution

p(t) = 2;2 + mf(;i jtO-15-1) (4.15)
p(t) = %—FO(@—LB—U. (4.16)

Equations (4.15) and (4.16) emphasize the importance of maintaining the hie-
rarchy among the fractional parameters when taking the limit to retrieve the clas-
sical solution with 8 approaching one first. Around this limit, the introduction of

non-locality leads to a small pressure in the dust and a slight modification of the
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density profile. This effect is reminiscent of the Van der Waals EoS, where correc-
tions are introduced to account for particle interactions and deviations from ideal
behavior. Similarly, the fractional derivative introduces subtle corrections that re-
present minimal internal interactions within the dust, thereby aligning the model

more closely with real matter that interacts.

To further elucidate the implications of the fractional derivative within the

material sector, the full expressions for p(t), p(t) in (4.11)) and (4.12]) are plotted
in Fig[l.1]for « < 8 < 1 very close to the classic limit. Notice, as § — 1, Figld.1a]

and Figld.1D| better approximate classic dust density and pressure. Conversely, as

B — «, the deviation increases since a ~ 3 in (4.15)) and (4.16|) shifts density and

pressure.
2.0
Pfract (5=0.991) Pfract (3=0.991)
L5 Plract (§=0.995) Prract (5=0.995)
3 Pfract (3=0.999) T Pract (8=0.999)
1.0+ 3
R Pclassic Plassic
0.5+
0.0k A A
0.0 1.5 2.0

(a) Density (b) Pressure

Figura 4.1: Fractional energy density (a) and pressure (b) functions with respect
to time for a 2 + 1 matter-dominated Universe. « is fixed at 0,99 and 3 varies.

If non-locality indeed plays a role in shaping the dynamics of the cosmic fluids,
then a modification in the Equation of State (EoS) becomes necessary to account
for the corrections beyond the perfect fluid approximation. Often the perfect fluids

in Cosmology obey the EoS p = wp. For dust, in a matter-dominated Universe
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w = 0. From equations (4.11)) and (4.12)

t=2 (o - 2)
w(t)=1- . 4.17
0= et 30 —a - 5) i
To have, in the limit «, 8 — 1 the classic EoS recovered
lim w(t) = 0. (4.18)

a,f—1

Particularly, using the expansions (4.15)) and (4.16|) around the classic limit

w=1l-———<+0(a-18-1), (4.19)

it becomes clear that the relationship between density and pressure is strongly
influenced by the fractional parameters and that g — 1 prior to « to ensure classic

convergence. Moreover, outside the classic limit, there is a small time-dependency

in the EoS .
Dust (2+1) a(t) | 2mp(t) | 2mp(t) | w(t)
(o, B) — (1,1) t = 0 0
(o, B) = (0,9,0,91) | ¢ ZR-0R | 7S ER | - semawer
(@, 8) =(0,9,0,95) | t | Z55-F% | fo-gr | | — smomom
(0,0) = (0,9,099) | t | A5-0% | 08088 |y Lo

Cuadro 4.1: Various fractional expressions for energy density, pressure and dust
EoS rounded to two decimal places. In («, 5) — (1,1), 5 — 1 is taken before
a—1

Explicit results for some «, § close to one are presented in the following Tab[4.1],
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where it is clear that classic zero expressions such as pressure and w EoS propor-
tionality factor for dust acquire a time dependency. Energy density on the other

hand, has its already time dependent expression altered.

4.1.2. Radiation-dominated Universe

The scale factor for a radiation-dominated 2+ 1 Universe is a o t*/% proportio-

nal for early times [9]. Then, the squared scale factor A oc t*/3. For instance, take

4/3
A= (%) where tg is a reference time to solve 1) and (4.10

0 C27T(E)° ol (DI (1 — ) t=*?(3a — 4)I'(L)
P o0 —a) " B3al(Z—a)T(2—a—pB)  3rBa— N2 —a-j)
(4.20)
() = 267207 (£)? N t=*Pal(D)I(1 — ) (421)

CorT(F—ap  3T(H —a)l2—a -5

Now the application of the fractional derivative results in expressions (4.20)) and

(4.21)) for energy density and pressure. Note that the power laws remain the same as

(4.11)) and (4.12)), only proportionality factors have changed. In the limit o, f — 1

the classic energy density and pressure for 2 4 1 radiation-dominated Universe are

recovered as well.

Jmoolt) = g (4.22)
1
lim p(t) = (4.23)

a,f—1 o2’
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in natural units. The series expansion in (4.20)) and (4.21)) around « = 1 and 8 =1

yield

2, A1
Imt?  3mt?(a— 1)
1 B—1

PO = Gop T Sy 0@ LA, (4.25)

+0(a—1,8-1) (4.24)

which also suggest a hierarchy in the limits needs to be considered in and
for a convergence to the classic solutions and . As discussed in
the previous section, the larger £ is with respect to «, the additional term repre-
sents a minor correction, which aligns with the behavior under consideration. For

radiation expressions p(t), p(t) are plotted for certain o < 8 < 1 values in Fig[t.2]

2.0
Piract (3=0.991) Prract(p=0.991)
L5F Priact (5=0.995) T Piact(p=0.995)
T Prract (8=0.999) T Pract[p=0999)
1.0
Prlassic Prelassic
0.5
0.0 — T
0.0 1.5 2.0 1.5 2.0

t t

(a) Density (b) Pressure

Figura 4.2: Fractional energy density (a) and pressure (b) functions with respect
to time for a 2 + 1 radiation-dominated Universe. « is fixed at 0,99 and 3 varies.

In Figld.2a] and Figld.2h fractional energy density and pressure also deviate

from the classic expressions as [ — «. While curves § — 1 are closer to the
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classic density and pressure. Thus, fractional parameters require the same balance
discussed in the previous matter-dominate Universe case. Namely, that parameters

«, B approach 1 but are separated enough to maintain the hierarchy between them.

Fractional calculus applied to the Einstein field equations during the radiation-
dominated era mimics the behavior of the matter-dominated era seen in Fig[4.1]
There is an increase in density and pressure values that fades with increasing time,

converging toward the classic solution.

In a radiation-dominated Universe p = 1p with w = 3. From equations (4.20)

and (L21)

=P (B — 4)I(L
w(t) =1— (8a 13 I (4.26)
P03 (B0 — (2 —a — B)
To have, in the limit «, 8 — 1 the EoS recovered
lm w(t) — - (4.27)
a1 T '

Specifically, employing the expansions (4.24)) and (4.25) in the vicinity of the clas-

sical limit,

1
wzl—m—FO(a—l,ﬁ—l), (428)

ensuring convergence to the classical behavior requires 5 — 1 before a.. Outside
this limit w(t) is also time-dependent. Like for dust, non-locality acting on radiation

seems to slightly alter its behavior over time.



Radiation (2+1) | a(t) | 2wp(t) | 27wp(t) | w(t)

(a, ) = (1,1) 13 | g 50z 3

(e, 8) = (0,9,0,91) | ¥ | J50-%F | wr-%i% | 1 — spe—rqmon
(e, ) = (0,9,095) | #** | 53-%% | w-gix | | — rr—iqoms
(, ) = (0,9,0,99) | t** | 3fo-%% | wo-gix | | — s55—qmomm

Cuadro 4.2: Various fractional expressions for energy density, pressure and
— (1,1), 8 — 1 is taken

radiation EoS rounded to two decimal places. In («, f3)

before &« — 1
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Explicit results for some «, 8 close to one are presented in Tab4.2] to better

appreciate the change in energy density, pressure and EoS.

4.2. Solutions in 3 + 1 dimensional Cosmology

Building on the cosmological results in 2+ 1 dimensions derived in the previous

section, we observe that adopting Cartesian coordinates allows us to circumvent

the r? angular scaling factor in the metric, yielding a more straightforward so-

lution. Similarly, in 3 + 1 dimensional cosmology, the coordinate transformation

circumvents not only the angular scaling r? but also resolves the “polar angle pro-

blemintroduced by the sin®## term and the complexities that arise from applying

the fractional Leibniz’s rule to trigonometric functions, as discussed in the previous

chapter.

This simplification arises due to the convenient structure of the cosmological
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metric in the case of a spatially flat geometry (k = 0), where the spatial part of

the metric depends solely on the scaling factor a(t), in contrast to standard polar

coordinates (see appendix . In the application of fractional calculus to FLRW

equations with spatially flat geometry in 341 dimensions the calculations are thus

greatly simplified.

ds* = dt* — A(t) (dz® + dy* + d=?)

(4.29)

where A(t) = a(t)? is the squared scale factor. Applying the notation ([2.20]) con-

vention maintains that the index « is used in the definition of the Christoffel

symbols
d“A
F(1)1 = FgQ = Fg3 = 9
d“A
Pop =I5y =T = -
01 02 03 24

and [ in the definition of the Riemann tensor

d’(d*A d*A)?
R(1)1o:RgzozR330:— ( )+< )

2 4A
Rgp = Rigg = Rogp = _dﬁ (A;daA) - (Cifjf
R%m - R%Sl - Rgsz = _(dz_j)Q
R?m = R?31 = Rg:sz = %7

(4.30)

(4.31)

where av < 8 < 1. With these considerations, the fractional Einstein field equations
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are succinctly expressed

3d° (A-1dA)  3d° (d°A)

70 — _ 4.32

0 327 + 327 A (4.32)
d*A)?  3d° (A~*d“A)  d° (d*A)

TV =T2 =73 ( . 4.

! 2 3 167 A2 327 + 327 A (4.33)

The next step is to solve the set of fractional derivatives (4.32)) and (4.33). We

assign TF = (p, —p, —p, —p) with p, p, as energy density and pressure.

4.2.1. Matter-dominated Universe

The scale factor for matter-dominated 3+ 1 Universe is proportional to %2 [44].

4/3
Thus, the squared scale factor is A o< t*/3. Taking, for simplicity, A = (%) with

reference time ¢, and solving (4.32)) and (4.33)) results in

M) 0 Ga—4)r()
A = @ ar@-a-5) @ 5Ga-TT(E-a- ) 3y
N V1 I ' YL N L1
b B Il (R —a)?  8rl(R —a)l2—a—fF) 247@Ba—-T(L —a—p3)

(4.35)

When «, 8 — 1 the classic energy density and pressure for 3+ 1 matter-dominated

Universe are recovered.

1
Ii t) = 4.
Jim p(t) - (4.36)
lim p(t) = 0 (4.37)

a,f—1
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in natural units. The series expansion in (4.34)) and (4.35) around the classic limit

a=1and g =1 yield

o) = 6;2 + wf(; L §+0=15-1) (4.38)
p(t) = %—FO(a—l,ﬁ—l), (4.39)

maintaining the hierarchy requirement of o < 8 as «, § — 1 necessary for the
classic convergence. As in the 2 + 1 model the inclusion of non-locality induces
a small pressure within the dust and results in a subtle alteration of the density

profile. Full fractional expressions p(¢) and p(t) are plotted in Fig{4.3| under this

prescription.
20 . . T . 20
Piract (§=0991) Piract(p=0991)
1.5F ) g 1.5F . )
Piract (§=0995) Piract(p=0995)
T Phract(p=0.209) T Pact[p=0900)
1.0} ’ J 1.0} ’
----- Prlassic ===== Prlasic
05 0.5
0.0f------==
00 1 1 1 - 1 Il 1 1 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
t t
(a) Density (b) Pressure

Figura 4.3: Fractional energy density (a) and pressure (b) functions with respect
to time for a 3 + 1 matter-dominated Universe. « is fixed at 0,99 and 3 varies.

Similar to the lower dimensional model, Figl4.3a]and Fig/4.3b] show a departure
from classic density and pressure as [ — « and fractional parameters get closer.
In contrast, 5 — 1 reduces the deviation. It seems non-locality by the fractional

operator similarly affects energy density and pressure values for small ¢ in 3 4 1
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dimensions. Notably an apparent non-negligible dust pressure plays a role, specially

in the early Universe.

The non-local nature of the theory impacts the ideal cosmic fluid and its EoS.
The EoS p = 0 for dust would be henceforth altered. Specifically, the propor-
tionality constant w is now, according to (4.34) and (4.35) time dependant with

dependency

w(t) =1- 4B — I e X (4.40)

p(t)24r(Ba —T)T(R —a—B)  p(t)9rl(} — a)?

where in the classic limit «, 5 — 1 the EoS recovered.

lfm w(t) = 0. (4.41)

a,f—1

By considering the expansions (4.38)) and (4.39) near the classical limit,

1
wzl—m—i‘O(O{—l,ﬁ—l), (442)

oa—

|
—

implying the relationship between density and pressure is highly sensitive to the
fractional parameters. To achieve convergence towards the classical solution, it is

again crucial that g approaches 1 before a.

However, it remains the case that outside this limit w(t) is time-dependant,
with an slightly evolving EoS over time. Similarly, a non-negligible dust interaction
stands out and decays over time. Explicit p(t) and p(t) expressions for some «,

are presented in Tab4.3|regarding the change in energy density, pressure and EoS.
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Dust (3+ 1) a(t) | 8wp(t) | 8mp(t) | w(t)
(o, ) — (1,1) 23 | 35 0 0

(o, B) = (0,9,0,91) | ¢2/3 | 2% | L322 078 1 74 038001

(o, B) = (0,9,0,95) | t2/3 | 1L 22978 10,68 — 0,46t%%

(O{, /3) = (079’ 0799) t2/3 117,?;;1) t(1)1+889_(i):71_:788 0,59 - O,58t0’09

Cuadro 4.3: Various fractional expressions for energy density, pressure and dust
EoS rounded to two decimal places. In (o, ) — (1,1), 8 — 1 is taken before
a— 1.

The presented solution highlights intriguing deviations from the standard cold
dark matter (CDM) model, traditionally characterized by pressureless dust (p =
0). The apparent nonlocality, arising from the fractional operator and tuned with
the parameters «, 3, affects both energy density and pressure values proportio-
nally. These effects might align with current cosmological observations, which in-
creasingly supports deviations from the traditional assumption on the “coldness”
of dark matter. For instance, recent studies derive an equation of state for dark
matter [45,/46] where constrains from observational data impose a non-zero pres-

sure component.

4.2.2. Radiation-dominated Universe

The scale factor for radiation dominated 3 + 1 Universe is proportional to

t1/2 |44]. Thus, the squared scale factor is A o ¢. For instance, taking A = % with
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reference time tg, and solving (4.32)) and (4.33) gives

_ 3t 3t (e —1)
A = 32m(a? = 3a +2)I'(2 —a = f) * 327(a — 2)L'(3 —a — f) (4.43)
Ho= o 3 a " (a—1)
p(t) = - 167T(3 — ) ' 32r(a? —3a+ 202 —a—f) 32r(a—-2TB—a—F)

(4.44)

When «,8 — 1 the classic energy density and pressure for 3 + 1 radiation-

dominated Universe are recovered.

i 3
dmoet) = (4.45)
) 1
O}lﬁrglp(t) 32t (4.46)

in natural units. The series expansion in (4.43) and (4.44) around the classic limit

a=1and f =1 yield

p(t) = 32:;2 + 32i(£(; ?1) +O0(a—1,8—1) (4.47)
1 38— 1)

LA -1 4.48
Som2 T Bomtra 1) OO LA, (4.48)

maintaining the hierarchy requirement upon « and [ to converge to (4.45) and
(4.46). Full fractional expressions p(t) and p(t) are plotted in Fig[d.4] under this

consideration.

Analogous to the matter-dominated case Figld.4a] and Fig[4.4D] depict how va-
riations in the fractional parameters for the Christoffel symbols and curvature

impact the energy density, consistent with expectations from the 2 + 1 radiation-
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Figura 4.4: Fractional energy density (a) and pressure (b) functions with respect
to time for a 3 4+ 1 radiation-dominated Universe. « is fixed at 0,99 and [ varies.

dominated model.

Again, considering the properties of the cosmic fluid altered by the non-local

nature of the theory, the ideal EoS p = % for radiation varies. Specifically, the

proportionality constant w is, according to (4.43]) and (4.44))

t=*F(3a —4)I(3) 20T (5)?
A= erBa TR —a—5)  pwerr@—ap

time dependant as well, with classic limit a;, 3 — 1 recovering the EoS

lm w(t) = - (4.50)

a,f—1 g

Using the expansions (4.47)) and (4.48) near the classical limit,

2
wzl—m—i-@(a—l,ﬁ—l), (451)

also shows that the density-pressure relationship is affected by the fractional pa-
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rameters, and that § must approach 1 before a to ensure classical convergence.

Radiation (3+1) | a(t) | 8mp(t) | 8np(t) | w(t)

(a,B) — (1,1) 2| 2 =& .

(o, B) = (0,9,0,91) | ¢/ | B3| L2 046 | g3 (344001

(o, B) = (0,9,0,95) | ¢1/2 | 186 | 896046 1 () 90 — 0,43¢005

(o, B) = (0,9,0,99) | ¢'/2 | 218 | 889 046 | 5,88 — 0,58t

Cuadro 4.4: Various fractional expressions for energy density, pressure and
radiation EoS rounded to two decimal places. In (o, 5) — (1,1), f — 1 is taken
before a — 1.

Explicit p(t) and p(t) expressions for some «,  are presented in Tab[4.4] exem-

plifying the change in energy density, pressure and EoS.

The presented solution introduces intriguing modifications to the standard des-
cription of the matter sector during the radiation-dominated era, where the dy-
namics are typically characterized by well-established power laws governing the
evolution of density perturbations. The incorporation of nonlocality, through a
fractional operator parameterized by « and [ slightly alters these traditional po-
wer laws by introducing time proportional changes to energy density and pres-
sure. Although radiation’s contribution to the late-time evolution of the universe
is negligible, cosmological models incorporating power-law corrections provide a
compelling fit to recent observational data [47]. These findings suggest the neces-
sity of revisiting the standard framework, particularly during earlier epochs when

radiation played a dominant role in shaping the dynamics of cosmic expansion.
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Capitulo 5

Conclusions

The application of fractional calculus in General Relativity presents a challen-
ge not only for theoretical physics but also for applied mathematics, making it an
area worth investigating because of its potential to address theoretical issues. Ad-
ditionally, with astronomical and cosmological observations reaching high precision
levels, there is now an opportune time to test theories beyond General Relativity.
With this potential in mind, our work was dedicated to exploring the feasibility of
formulating a set of fractional Einstein field equations for a specific parameteriza-

tion of the metric, similar to the approach used with classical derivative operators.

To accomplish this, we examined the general metric of a static and circu-
larly symmetric 2+1-dimensional spacetime to derive the set of specific equations.
However, we encountered a challenge when using either the Riemann-Lioville or
Caputo operators, rendering it impossible to obtain the equations for solving. To

address this issue, we introduced a weighted Riemann-Liouville derivative. The
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introduction of weights into the derivative serves a dual purpose. First, it enables
the definition of a Riemann-Liouville derivative such that the derivative of a cons-
tant is zero, mirroring classical derivations. This is crucial in constructing Einstein
equations, as utilizing the standard definition of the Riemann-Liouville operator
could result in equations depending on undesired coordinates. For example, a static
spacetime metric might yield equations depending on time owing to the standard
Riemann-Liouville derivative of a constant not being zero. Building upon this new

definition, we derived a set of integro-differential equations to solve.

As a specific example, we investigated the static Banados-Teitelboim-Zanelli
metric, a vacuum solution of the Einstein field equations with a negative cosmo-
logical constant, to determine if it also satisfies the fractional equations. We find
that the solution for fractional parameters close to one leads to a solution with
an anisotropic cosmological constant and an effective charge. In other words, the
solution is similar to that of a charged BTZ, but with an anisotropic cosmological
constant. Based on this result, we conclude that the non-locality introduced by the
fractional parameters acts as a kind of Kaluza-Klein mechanism. Exploring the im-
plications of our findings in a cosmological scenario could yield valuable insights,

particularly regarding their alignment with the cosmological observations.

Cosmology in flat space-geometry yields another fruitful example since a con-
venient change of variables allows for 3 + 1 fractional equations. We find that
introducing fractional derivatives from the outset influences the evolution of cos-
mic species’ matter sector. This framework modifies the standard cosmological

model, with decelerated power-law behaviors, which can be fine-tuned by carefully
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selecting the fractional parameters. These findings merit further research, combi-
ning observational data to determine whether a couple of fractional parameters
close to one can account for discrepancies in the standard model. Considering that
the classic results are fully recovered as «, f — 1, allowing for an emergent theory

of General Relativity.
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Capitulo 6

Apéndices

A. Solutions in 2 + 1 Standard Metric

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 2 4+ 1 dimension cosmological standard flat metric
ds* = dt* — A(t) (dr* + R(t)d6?) (6.1)

where A(t) = a(t)? is the squared scale factor. The power rule in functions A, R is
hidden so that classic Leibniz rule is not unintentionally applied in the context of
fractional calculus. The convention is that the index « is used in the definition of
the Christoffel symbols and £ in the definition of the Riemann tensor. Note that,

because the metric is a function of the radial as well as time coordinate, there will



63
be radial and time partial fractional derivatives by the notation ([2.20]) d® and dy.

(drA)?  d) (A'dpA)  df (dfA)  F

T = — — - — 2
0 8 A2 4 * 4T A A (6:2)
deA?  dP(AYdeA) G
Tl ( t t t ~ )
! 8mA? * 4T + A (6:3)
,  (dRA? | dATdA) G
& 8w A2 + 4 A (6:4)
where F', G are functions depending only on the radial coordinate r
d? (R7'd®R)  dP(d*R)
F = T T r \M'r 6.5
8T + 8TR (65)
d°R)*> d’ (R7'd°R) dP(d°R
G ( T ) T ( T ) _ 7"( T ) (66)
8w R? 8 8TR

With the property that taking R = r? as usual and then the classic limit «, 3 — 1
results in both F,G — 0, agreeing with the classic solution, which has no radial

dependency. However, outside the limit, the solutions are radial dependant. See

for instance, the matter-dominated Universe case A o ¢ in (6.2)-(6.4)

2 2 t=Fal(1 — a) t=2P(a - 2)
Pt = A e P —aT2—a-7)  re -3l —a -5
r=o=fal(1 — «) r=2 (o —2)
+27rt2F(4 —)T2—a—-p) 2nt2(a—3)Td—a—p) (67)
2672 t=*Fal(1 — ) 2r—2
prnl) = A A aT@2—a—F) AT —ap
r=o=fal(1 — a) r=*Pla —2)
T T — ol 2 —a—0) 2 —3rd—a—p 08
2672 t=*Fal(1 — ) 22
nnt) = AT ar T AT a2 —a—f) | AT —a)?
r=fal(1 - a) r—fla—2) (6.9)

24— a)T(2—a—f) 2nt2(a—3)T(4—a—pB)
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The application of the fractional derivative of order «, 3 results in the time and
radial dependant expressions || for energy density, radial pressure and
tangential pressure. In the limit o, 5 — 1 the classic energy density and pressure

for 2 4+ 1 matter-dominated Universe are recovered without radial dependencies.

, 1

N (010
lim p,(r,t) = 0 (6.11)
a,B—1

lim p(r,t) = 0, (6.12)
a,f—1

Thus, fractional modifications to the Einstein field equations in standard metric
also recover classic Cosmology. However, having solved the equations also for the
Cartesian metric in section 4.1 with radial independent solutions suggests that the

dependency of radius in 1) is merely an effect of the change of coordinates.

B. Solutions in 3+ 1 Standard Metric

In what follows, we obtain the explicit form of the fractional Einstein field

equations for the 3 4+ 1 dimension cosmological FLRW flat metric

ds* = dt* — A(t) (dr® + R(t)d6> + R(t)S(0)d¢?) (6.13)

where A(t) = a(t)? is the squared scale factor, R(r) = r? and S(0) = sin*(0).
The power rule in functions A, R and the trigonometric function S(€) is hidden so

that classic Leibniz rule is not unintentionally applied in the context of fractional
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calculus. The convention maintains that the index « is used in the definition of
the Christoffel symbols and £ in the definition of the Riemann tensor. Note that

there will be radial, time and angular partial fractional derivatives by the notation

[E-20) d2, de and dg.

3d) (AT'deA) 3d] (dfA)  F K

= 3ar | 324 A AR (614
dYA?  3d) (A7'dYA)  dP (deA L

no- e S G
dyA)?  3d) (A7'deA) d) (dyA) H L

L = (16t7rfz2 = (327r S t3;7;A> T A AR (6-16)

s (dPA? | 3d)(ATpA)  di(dpA) H L

Iy = 16742 327 T 3004 A AR (6.17)

where F', G and H are functions depending only on the radial coordinate r

(deR)*  d?(R'deR) dl(d2R)

F= et 160 16rR (6.18)
(deR)*  df (R'deR)  dl(d2R)

G 327 R? + 167 167 R (6.19)
(d*R)*  d?(R'd°R)
321 R2 167 (6.20)

and K and L are functions depending only on the polar angular coordinate 6

dy (S~'d¢S)  dj (dyS)

K = 21
327 + 327wS (6.21)
32752 327 3278 '

This set of equations remains unsolved for any scale factor. Simply taking S =
sin(#)? is not trivial since the calculation involves infinite series whose convergen-

ce have not yet been demonstrated. Even if we conjecture all  and 6 dependencies
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disappear in the classic limit as in 2 + 1 dimensional Cosmology, it remains true
that outside this limit fractional solutions will exhibit such dependencies inherited

by the coordinate system.
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