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RESUMEN

Este proyecto se centra en mejorar la experiencia de los usuarios en el portal para desarrolladores de
Riot, optimizando la creacién de aplicaciones que interactiian de manera eficiente y segura con todas
sus API. Para lograr este objetivo, se ha implementado un modelo de inteligencia artificial basado en
BERT y MLP, disenado para detectar aplicaciones potencialmente no deseadas o spam. Al analizar
los detalles de cada aplicacion, el modelo predice si la aplicaciéon debe ser aprobada o rechazada. El
modelo propuesto demostro excelentes resultados de rendimiento, alcanzando una precision del 91.34%,
un puntaje F1 de 91.69% y un ROC AUC de 91.33%. Estas métricas resaltan la fuerte capacidad del
modelo para clasificar aplicaciones con alta precisién y sensibilidad, minimizando falsos positivos y
falsos negativos. Ademas, la tendencia constante a la baja en las graficas de pérdida de entrenamiento
y validacién a lo largo de cada época muestra un aprendizaje efectivo y una generalizacién robusta a
datos no vistos. Este enfoque no solo mejora el proceso de creacion de aplicaciones y reduce el tiempo
de aprobacién, sino que también refuerza la seguridad de la plataforma al mitigar los riesgos de spam,
garantizando una experiencia fluida tanto para desarrolladores como para usuarios.

Palabras clave: applications, spam, BERT, MLP, Naive Bayes, models, APIs.



ABSTRACT

This project focuses on improving the user experience on Riot’s developer portal by streamlining the
creation of applications that interact efficiently and securely with all its API's. To achieve this goal,
an artificial intelligence model based on BERT and MLP has been implemented, designed to detect
potentially unwanted or spam applications. By analyzing the details of each application, the model
predicts whether the application should be approved or rejected. The proposed model demonstrated
excellent performance results, achieving an accuracy of 91.34%, an F1 score of 91.69%, and an ROC
AUC of 91.33%. These metrics highlight the model’s strong ability to classify applications with high
precision and recall, minimizing false positives and negatives. Moreover, the consistent downward
trend in training and validation loss graphs over each epoch shows effective learning and robust
generalization to unseen data. This approach not only improves the application creation process and
reduces the approval time but also strengthens platform security by mitigating spam risks, ensuring a
seamless experience for both developers and users.

Key words: applications, spam, BERT, MLP, Naive Bayes, models, APIs.
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Optimizing Developer Experience: BERT and MLP
for Spam Detection in
Gaming Applications submissions

Felipe Grijalva, Senior Member, IEEE, Angel-Molina, Member, IEEE

Abstract—This project focuses on improving the user
experience on Riot’s developer portal by streamlining
the creation of applications that interact efficiently and
securely with all its API’s. To achieve this goal, an
artificial intelligence model based on BERT and MLP
has been implemented, designed to detect potentially
unwanted or spam applications. By analyzing the details
of each application, the model predicts whether the
application should be approved or rejected.

The proposed model demonstrated excellent perfor-
mance results, achieving an accuracy of 91.34%, an F1
score of 91.69%, and an ROC AUC of 91.33%. These
metrics highlight the model’s strong ability to classify
applications with high precision and recall, minimizing
false positives and negatives. Moreover, the consistent
downward trend in training and validation loss graphs
over each epoch shows effective learning and robust
generalization to unseen data.

This approach not only improves the application cre-
ation process and reduces the approval time but also
strengthens platform security by mitigating spam risks,
ensuring a seamless experience for both developers and
users.

Index Terms—applications, spam, BERT, MLP, Naive
Bayes, models, APIs.

I. INTRODUCTION

HE current growth of players and third-party de-

velopers across various games in recent years has
been overwhelming. As a result, websites from renowned
companies in the gaming industry, such as Riot Games [1],
provide platforms where third-party companies can access
statistics and real-time data to help players improve their
performance and enhance the overall gaming experience.

However, this constant growth has introduced new chal-
lenges for both the company and third-party developers.
One major issue is the presence of unwanted applications,
commonly referred to as spam, on their developer portal.
The current validation process for newly created applica-
tions can take anywhere from days to weeks, negatively
affecting the user experience and increasing the likelihood
of errors. This situation underscores the need for an
automated solution.

This proposal presents a machine learning solution com-
bining BERT (Bidirectional Encoder Representations from
Transformers) [2] and MLP (Multi-Layer Perceptron) [3]

to determine whether applications can be approved by
analyzing their descriptions. We used a newly curated
dataset of application descriptions for training and testing.
Our latest results demonstrate significant improvements
in detection accuracy and processing efficiency compared
to other techniques, such as keyword detection or models
like Naive Bayes, making this approach a viable solution
to the current spam detection challenge.

This paper is organized into five sections on Background
and Previous Work, Methodology, Experimental Results,
Conclusions, and Acknowledgment.

II. BACKGROUND AND PREVIOUS WORK

To better understand the proposed solution, this section
reviews a previous model implementation and relevant
technologies. It starts by exploring past work on spam
detection, specifically the use of a Naive Bayes model for
evaluating application descriptions. We then shift focus to
more recent advancements, highlighting the use of BERT
and MLP models.

The Naive Bayes model offered valuable insights; however,
its performance is limited by the simplicity of its feature
extraction process and its inability to capture complex
relationships within the data. As a result, it struggles to
accurately detect unwanted applications, leading to higher
rates of false positives and false negatives.

On the other hand, BERT (Bidirectional Encoder Repre-
sentations from Transformers) is a model developed to
pre-train deep, bidirectional text representations using
unlabeled data. What sets it apart from traditional models
is its ability to account for both left and right context in
every layer|[2].

The architecture of the pre-trained BERT model requires
only a single additional output layer for fine-tuning, al-
lowing it to be used for different tasks such as question
answering and language inference, with minimal changes to
its structure[2]. Figure 1 shows how the model transforms
the input data.
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Figure 1. Bert model for classification

MLP is a reliable choice for classification problems. A
multilayer perceptron is a model that takes a set of input
values and produces the corresponding output values. This
process is achieved by combining several simpler functions,
with each function representing a different transformation
of the input[4]. Figure 2 offers a quick overview of the
components involved in the classification structure.

Output layer Hidden layers

Input layers @

Figure 2. MLP model with two hidden layers

III. METHODOLOGY

This section outlines the entire process, from gathering data
on all available applications to performing pre-processing
and using machine learning models to generate a binary
classification output.

A. Data preprocessing

It is important to understand how the data are stored
on developer.riotgames.com [5]. Figure 3 illustrates the

current process of a user submitting an application request.
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Figure 3. Application submit process

The dataset used contains roughly 87,000 applications
records. These records are classified into several distinct
statuses: approved, rejected, not verified, pending, and
disabled. Figure 4 displays how applications are divided
in the Data base.

Rejected

Pending

A a

Figure 4. Applications by status

Not verified

Approved

To preprocess the dataset, we must ensure there are no
undesired entries with undefined or missing descriptions.
We employ an under-sampling approach, selecting the same
number of approved entries (around 10,555) as the rejected
ones. This results in a balanced dataset, consisting only
of the status and description columns. Figure 5 shows a
balanced dataset.
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Figure 5. Dataset balanced with approved and rejected apps

With a balanced dataset, we then focus on cleaning and
transforming the text. We consider only applications with
valid descriptions, removing those with UUIDs [6], entries
that consist solely of dates, sequences of numbers without
context, and applications with only URLs.

Then, a lemmatization process is applied by using WordNet
Lemmatizer [7]. Lemmatization connects words with similar
meanings by reducing them to a common base form,
enhancing the accuracy and efficiency of tools like chatbots
and search engines. Its primary objective is to transform a
word into its root form, known as a lemma. For instance,
the verb "running" would be reduced to "run'[8]. Figure
6 illustrates the entire preprocessing flow.

Remove text with:

uuids

Urls

| drives

driven

Lemmatization

|
|
|
|
|
|
|
|
|
: WordMNet Lemmatizer]

;

Preprocessing process

Figure 6. Preprocessing process
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Lemmatization and the selection of only the best descrip-
tions have resulted in an imbalanced dataset. Therefore,
rebalancing is necessary before splitting the data into
training, validation, and testing sets.

Furthermore, before applying any machine learning model,
it is necessary to encode the target label, which represents
the application’s status. This step simplifies the classifica-
tion process. The labels are converted from "approved"
(1) and "rejected" (6) to (1) for approved and (0) for
rejected. Figure 7 illustrates the fields and values used
to train the models.

lemmatized_description status_id

0 admin / password : team10h11 / lol_10h11 ! the... 1

1 (i apologize if you receive this application ... 1

2 early we received a interim api code for testi... 1

3 paul bunyan communication host a gaming event ... 1

4 the main priority of our web app is to gather .. 1
15241 i 'm making a lol tournament on small tourname... 0
15242 this description includes future feature this ... 0
15243 five stack is a team-building and matchmaking ... 0
15244 lol fantasy gg is a free fantasy sport website... 0
15245 this application will not need to use an api k... 0

Figure 7. Dataset with encoded status

The dataset distribution consists of 80% for training
purposes, 10% for model validation, and 10% for final
performance testing. Table 1 displays the number of
samples allocated to each process.

Table 1
DATA SPLIT DISTRIBUTION

Process Samples | Percentage %
Total samples 15246 100
Training samples 12196 79.99
Validation samples 1525 10.00
Testing samples 1525 10.00

B. Language model

The language model used is BERT, as mentioned in the
first section. This model requires the data to be prepared
for training. We selected the "bert-base-uncased’ tokenizer
[9] with a lowercase configuration to ensure consistent
treatment of words. For instance, 'Dog’ and ’dog’ are
treated as the same.

Furthermore, PyTorch DataLoaders [10] are used to man-
age batching and sampling during the training, validation,
and testing processes. We constructed a tensor dataset with
a RandomSampler [11] to ensure effective stochastic



gradient descent, introducing variability that enhances
the model’s generalization capability on the training data.
Additionally, a SequentialSampler [12] is used for the
validation and testing data to ensure a deterministic and
ordered evaluation process.

The PyTorch Datal.oader class is a utility class that is
used to load data from a dataset and create mini-batches
for training deep learning models. [13]

Additionally, we considered freezing the lower layers of
BERT. This approach offers several advantages, including
resource optimization, reduced risk of overfitting, retention
of pretrained knowledge, and greater flexibility during
training. Specifically, resource optimization is crucial, as
the BERT model contains numerous parameters. Fine-
tuning all its layers would increase the training time by
approximately 14 hours for this project.

Freezing the lower layers further decreases overfitting, as
it encourages the model to focus on learning patterns that
are specific to the task at hand, instead of adapting to
low-level, generalizable features. This, in turn, enhances
the model’s ability to generalize to unseen data.

Furthermore, pretrained knowledge is particularly valuable
for leveraging the vast, generalizable insights embedded in
the pretrained model, while simultaneously adapting its
behavior for a specific application. In addition, flexibility
during training helps reduce both training and compu-
tational costs. This flexibility allows for testing various
training configurations (e.g., hyperparameters, learning
rates, batch sizes) without the computational burden of
fine-tuning the entire model, resulting in a reduction of
training time by up to 12 hours.

To analyze the model’s interpretability, we employed a
word cloud plot. This visualization technique allows for
a quick and intuitive understanding of the most frequent
terms or concepts in the dataset, highlighting key features
that influence the model’s decisions. By generating a word
cloud based on the text data or predictions, we were able
to visually identify dominant patterns or biases, which can
guide further refinement of the model. Figure 8 illustrate
the words for approved status.

Word Cloud of Descriptions (status_id = 1)

summoner: T
]- |Teague

egend
Userlot help [ make

p ]_tlme . '. :
account
stats app lication t C ﬁt

discord—

Figure 8. Word cloud of approved descriptions
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Moreover, this approach provides an easy-to-understand
summary of the data distribution. The word cloud plot,
therefore, serves as both an analytical tool and a means of
presenting data in a digestible format. Figure 9 illustrate
the words for rejected status.

Word Cloud of Descriptions (status_id = 0)
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Figure 9. Word cloud of rejected descriptions
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C. BERT with MLP Classification

We have incorporated an hybrid model combining BERT
with a Multilayer Perceptron (MLP) for sequence classifi-
cation tasks.

Following BERT’s output, the MLP model learns to
map input features to specific class labels by adjusting
its weights during training through backpropagation and
gradient descent. The model consists of two fully connected
layers, with hidden sizes of 256 and 128 units, respectively.

The first hidden layer, with 256 units, is sufficiently large
to capture a significant amount of the complex features
extracted by BERT. The second hidden layer, with 128
units, acts as a dimensionality reduction step. Reducing the
number of units in this layer helps control overfitting and
ensures that the model remains efficient, avoiding excessive
complexity and computational cost.

In addition, we set up ReLU (Rectified Linear Unit)
activations. The function returns 0 if it receives any
negative input, but for any positive value x it returns that
value back[14]. This introduces nonlinearity to the network,
allowing it to model complex, nonlinear relationships
between inputs and outputs. By applying ReLU after each
linear layer, the network can capture intricate patterns
in the data that would be unachievable with only linear
transformations.

Moreover, we incorporated the regularization technique
dropout, which helps mitigate overfitting in neural net-
works by limiting complex co-adaptations on the training
data. The term "dropout" describes the process of ran-
domly removing units (both hidden and visible) from the
network during training[15].



In this model, a dropout rate of 0.5 is applied during each
training step, meaning that half of the neurons in the
dropout layer are randomly ignored. This helps reduce the
network’s capacity to memorize specific patterns in the
training data, encouraging better generalization to unseen
data.

D. Training

The training process incorporates several core components,
including the AdamW optimizer, a learning rate scheduler,
and early stopping. Table II displays the hyperparameters
used for this model.

Table II
MoDEL HYPERPARAMETERS
Hyperparameter Value
BERT Model bert-base-uncased
MLP Hidden Units 256 - 128
Dropout Rate 0.5
Optimizer AdamW
Learning Rate 3e-6
Weight Decay 0.07
Early Stopping 5

AdamW optimizer is a stochastic optimization method
that modifies the conventional weight decay implementa-
tion in Adam by decoupling it from the gradient update
process[16]. It computes a per-parameter learning rate
using the gradients first and second moments, offering
improved weight decay management.

The weight decay is set to 0.07 for L2 regularization,
also known as a penalty function, which helps prevent the
model from overfitting by penalizing large weights.

The learning rate is set to 3 x 1079, a small value
specifically chosen to avoid disrupting the pre-learned
weights from BERT.

Moreover in the training process is to establish the warm-up
steps and the learning rate scheduler.

The warm-up steps help the AdamW optimizer begin
with smaller learning rates and gradually increase them,
preventing overshooting during the initial training phases.
We implement this by using a base value of 0.01, multiplied
by the number of steps, equal to 1% of the total training
steps.

The learning rate scheduler adjusts dynamically during
training, varying the learning rate based on the training
progress instead of keeping it constant. After the warm-up
phase, the learning rate decreases linearly to zero by the
end of training, helping to stabilize the training process
and improve convergence.
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Next, we define the training loop, which is designed to
iteratively process the dataset for a specified number of
100 epochs. During each epoch, the model is trained on
batches of data, with the loss computed and used to adjust
the model’s weights through backpropagation. The loop
continues until all batches have been processed.

At the end of each epoch, the model is evaluated on the
validation dataset to assess its performance on unseen
data. During this validation step, the model’s accuracy
and loss are calculated, offering insights into how well the
model generalizes. This process is essential for determining
whether the model is overfitting or underfitting.

Finally, we implement the early stopping process. This
technique monitors the validation accuracy, and if it does
not improve after a specified number of epochs (defined
by the patience parameter, set to five), training is halted
early to avoid unnecessary computations. This process
helps ensure that the model generalizes well and does not
become overly specialized to the training set.

IV. RESULTS

To establish a baseline for model performance, we initially
evaluated the task using a Naive Bayes classifier. Table
IIT presents the results for this model.

Table I1T
RESULT METRICS FOR NAIVE BAYES

Metric | Value | Percentage %

Accuracy | 0.7626 76.26

F1 Score 0.79 79
Recall 0.79 79

The results of the Naive Bayes model highlight a noticeable
gap in false positives and false negatives. Although the
model achieves a respectable accuracy of 0.7626 and solid
Fl-score and recall values of 0.76, the presence of 505 false
positives and 273 false negatives indicates that the model
struggles to effectively distinguish between the positive and
negative classes. Figure 10 shows the results using the
Naive Bayes classifier.

Confusion Matrix - Naive Bayes

1400

1200

1000

Actual

Predicted

Figure 10. Confusion matrix for baseline result with Naive Bayes



The hybrid BERT with MLP model was evaluated using
key metrics such as accuracy [17], F1 score [18], and ROC
AUC [19].

The results give us an accuracy of 91.34%, indicating that it

correctly classified the majority of instances in the dataset.

While accuracy is an important metric, it can be misleading
when class distributions are imbalanced. Therefore, to
gain a more comprehensive understanding of the model’s

performance, we also consider the F1 score and ROC AUC.

Table IV displays the results of the trained model.

Table IV
REsuLT METRICS FOR BERT AND MLP
Metric Value | Percentage %
Accuracy 0.9134 91.34
F1 Score 0.9169 91.69
ROC AUC | 0.9133 91.33

The F1 score an impressive value of 0.9169, demonstrating
the model’s strong ability to correctly classify both positive
and negative samples while minimizing false positives and
false negatives. This result is especially important in tasks
where both precision and recall are crucial, such as binary

classification problems with imbalanced class distributions.

Furthermore, the ROC AUC score of 0.9133 indicates that
the model became very fruitful at distinguishing between
the two classes (approved vs. rejected). An ROC AUC
value close to 1.0 signifies that the model can make accurate
predictions across a range of decision thresholds.

Moreover, the graph depicting the training and validation
loss shows a consistent downward trend across epochs,
indicating effective learning by the model. As the number
of epochs increases, both losses decrease, suggesting that
the model is progressively minimizing errors and refining
its predictions.

The training loss consistently remains lower than the
validation loss throughout the process, which is a positive

sign of the model’s ability to generalize without overfitting.

This suggests that the model is not memorizing the training
information given but is instead learning generalizable
patterns. Figure 11 display the validation and train loss
trend over different epochs during the training process.
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Figure 11. Validation vs Train loss during epochs

In addition, the validation accuracy graph shows a sharp
increase during the initial epochs, indicating that the
model effectively captures key patterns early in the training
process. Figure 12 illustrates the behavior of accuracy
across different epochs.

Validation Accuracy

2 4 6 8 10

Figure 12. Validation accuracy

The Receiver Operating Characteristic (ROC) curve
provides a visual comparison between sensitivity know as
true positive rate and the false positive rate across various
classification thresholds. With an Area Under the Curve
know as AUC of 0.9133, the hybrid model demonstrates
strong ability to distinguish between classes.

An AUC value close to 1.0 indicates that the model in effect
can distinguishes between the positive and negative classes,
significantly outperforming random guessing. The ROC
curve’s deviation from the diagonal line further reinforces
the model’s strong performance, highlighting its ability to
reliably classify instances and make confident predictions
across various decision thresholds. This confirms the robust-
ness and reliability of the BERT + MLP hybrid model in
differentiating between the approved and rejected classes.



Figure 13 illustrates the ROC curve performance through-
out the training period.

Receiver Operating Characteristic (ROC) Curve
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Figure 13. ROC curve

V. CONCLUSION

By combining BERT’s contextual feature extraction with
the multi-layer perceptron’s classification capabilities, the
hybrid model delivers a balanced and highly effective
solution, outperforming simpler models in both precision
and recall. This architecture showcases the advantages of
leveraging deep learning models for complex classification
tasks, where traditional approaches may fall short.

The hybrid model demonstrates effective learning, as
evidenced by the consistent decrease in both training and
validation loss over multiple epochs. The stable gap between
these losses indicates that the model generalizes well to
unknown data.

The high validation accuracy (91.34%) and ROC AUC
score (0.9133) confirm the model’s strong ability to dis-
tinguish between the two classes (approved vs. rejected)
with high confidence, making it well-suited for further
implementation in the Riot developers portal.

The F1 score of 0.9169 underscores the model’s balanced
precision, which is critical for this project, where both false
positives and false negatives carry significant consequences.
This balance demonstrates that the BERT + MLP hybrid
architecture effectively captures complex patterns while
maintaining strong predictive performance across both
positive and negative classes, reducing the risk of biased
predictions.

The early improvement in validation accuracy, followed
by plateauing after the 4th epoch, indicates efficient
convergence. The combination of a learning rate scheduler
with warm-up steps, dropout, and weight decay ensures
stable training while mitigating overfitting.

The early stopping mechanism, triggered by validation
accuracy, further enhances stability by preventing unneces-
sary overtraining, making the model both computationally
efficient and performance-optimized.
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