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RESUMEN

Los tiburones y las atunes desempenan un papel fundamental en los ecosistemas marinos, pero
sus poblaciones estan disminuyendo debido a la sobrepesca y la pérdida de habitat. Se necesitan
urgentemente métodos de monitoreo precisos y no invasivos para guiar estrategias de conservacion
efectivas. En este estudio, proponemos un sistema de detecciéon automatizada basado en YOLO
disenado para identificar con precisién tiburones (especificamente tiburones sedosos y tigres) y atunes
en videos submarinos grabados en las Islas Galapagos. Nuestro conjunto de datos de entrenamiento se
construyo a partir de dos clips de video de un minuto, uno centrado en tiburones sedosos y el otro en
tiburones tigre y atunes, obteniendo 229 imégenes anotadas. Usamos el 90% de estas imdgenes para el
entrenamiento y el 10% para la prueba, aplicando un procedimiento de validacion cruzada de 5 pliegues.
Cada modelo fue entrenado durante 30 épocas, y se evaluaron varias arquitecturas de YOLO (por
ejemplo, YOLOv8 Medium y YOLOv9 Medium) basédndose en la precisién promedio (mAP@50) y la
velocidad de inferencia. Entre las configuraciones probadas, YOLOv9 Medium logré la mayor mAP@50
(95.83%), mientras que YOLOv8 Medium proporcioné un buen equilibrio entre precisién y eficiencia
computacional, alcanzando un mAP@50 de 94.20%. Al ajustar la tasa de procesamiento de fotogramas
(por ejemplo, de 20 fotogramas por segundo a 1 fotograma por segundo), el sistema se puede optimizar
para monitoreo en tiempo real o casi en tiempo real. Para evitar la contaminacion de datos, el
entrenamiento y la evaluacién se realizaron en clips de video distintos. Nuestros resultados indican
que los marcos de deteccion basados en YOLO pueden facilitar un monitoreo eficiente y confiable
de tiburones y atunes, proporcionando una herramienta poderosa para esfuerzos de conservacion
informados y la gestion sostenible de dreas marinas protegidas.

Palabras clave: YOLO, Visién por Computadora, Tiburones, Atunes, Deteccion de Especies,
Ecosistemas Marinos, Deteccion de Objetos.



ABSTRACT

Sharks and tunas play a pivotal role in marine ecosystems, yet their populations are declining due to
overfishing and habitat loss. Accurate, non-invasive monitoring methods are urgently needed to guide
effective conservation strategies. In this study, we propose a YOLO-based automated detection system
designed to accurately identify sharks (specifically silky and tiger sharks) and tunas in underwater
videos recorded in the Galapagos Islands. Our training dataset was constructed from two one-minute
video clips—one focusing on silky sharks and the other on tiger sharks and tunas—yielding 229
annotated images. We used 90% of these images for training and 10% for testing, applying a 5-fold
cross-validation procedure. Each model was trained for 30 epochs, and multiple YOLO architectures
(e.g., YOLOv8 Medium and YOLOv9 Medium) were evaluated based on mean Average Precision
(mAP@50) and inference speed. Among the tested configurations, YOLOv9 Medium achieved the
highest mAP@50 (95.83%), while YOLOv8 Medium provided a strong balance between accuracy and
computational efficiency, attaining a mAP@50 of 94.20%. By adjusting the frame processing rate
(e.g., from 20 frames per second to 1 frame per second), the system can be optimized for real-time
or near real-time monitoring. To avoid data contamination, training and evaluation were conducted
on distinct video clips. Our results indicate that YOLO-based detection frameworks can facilitate
efficient, reliable monitoring of sharks and tunas, providing a powerful tool for informed conservation
efforts and sustainable management of marine protected areas.

Key words: YOLO, Computer Vision, Sharks, Tunas, Species Detection, Marine Ecosystems, Object
Detection.
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Monitoring Tunas and Sharks Using YOLO Models
in the Galapagos Islands

Diego Morales, Noel Pérez Pérez Colegio de Ciencias e Ingenierias “El Politécnico”,
Universidad San Francisco de Quito USFQ),
Campus Cumbayad, Casilla Postal 17-1200-841, Quito, Ecuador
Email: dsmorales@estud.usfq.edu.ec, nperez@usfq.edu.ec

Abstract—Sharks and tunas play a pivotal role in
marine ecosystems, yet their populations are declining
due to overfishing and habitat loss. Accurate, non-
invasive monitoring methods are urgently needed to
guide effective conservation strategies. In this study,
we propose a YOLO-based automated detection system
designed to accurately identify sharks (specifically silky
and tiger sharks) and tunas in underwater videos
recorded in the Galapagos Islands. Our training dataset
was constructed from two one-minute video clips—one
focusing on silky sharks and the other on tiger sharks
and tunas—yielding 229 annotated images. We used 90%
of these images for training and 10% for testing, applying
a 5-fold cross-validation procedure. Each model was
trained for 30 epochs, and multiple YOLO architectures
(e.g., YOLOv8 Medium and YOLOvV9 Medium) were
evaluated based on mean Average Precision (mAP@50)
and inference speed. Among the tested configura-
tions, YOLOvV9 Medium achieved the highest mAP@50
(95.83%), while YOLOv8 Medium provided a strong
balance between accuracy and computational efficiency,
attaining a mAP@50 of 94.20%. By adjusting the frame
processing rate (e.g., from 20 frames per second to 1
frame per second), the system can be optimized for
real-time or near real-time monitoring. To avoid data
contamination, training and evaluation were conducted
on distinct video clips. Our results indicate that YOLO-
based detection frameworks can facilitate efficient,
reliable monitoring of sharks and tunas, providing a
powerful tool for informed conservation efforts and
sustainable management of marine protected areas.

Index Terms—YOLO, Computer Vision, Sharks, Tunas,
Species Detection, Marine Ecosystems, Object Detec-
tion.

I. INTRODUCTION

Object detection and tracking have become essen-
tial tools in various real-world scenarios such as
surveillance [4], assistive technologies, microscopy,
and notably, marine species monitoring [1]. In the
marine environment, apex predators like sharks
and economically valuable species such as tunas
play a vital role in maintaining the balance and
health of marine ecosystems. Their population
dynamics influence prey communities and over-
all biodiversity. However, sharks and tunas are
under increasing pressure from overfishing and

habitat loss, leading to alarming declines in their
populations [2].

Silky sharks (Carcharhinus falciformis) and tiger
sharks (Galeocerdo cuvier) are particularly sus-
ceptible to these threats. Both species inhabit the
waters around the Galapagos Islands—a UNESCO
World Heritage site—and contribute significantly
to the ecological balance of this marine ecosystem
[5]. Despite the ecological importance and conser-
vation status of these species, their monitoring
has traditionally relied on labor-intensive and
time-consuming methods such as manual counting
and tagging. Such approaches are not only costly
and prone to human error but may also disturb
the animals and potentially alter their natural
behaviors [4].

To address these limitations, recent advances in
computer vision and deep learning have enabled
the development of automated detection and track-
ing systems capable of analyzing large volumes of
underwater imagery. Among these, YOLO (You
Only Look Once) models have emerged as a
popular choice due to their real-time inference
speeds and high detection accuracy. YOLO-based
frameworks have been successfully applied to de-
tect marine fauna, offering a promising avenue for
non-invasive, scalable, and efficient data collection
[6].

In this study, we focus on the application of
advanced YOLO models (YOLOv8 and YOLOV9)
for detecting silky sharks, tiger sharks, and tunas
in underwater video footage from the Galapagos
Islands. By leveraging a dataset derived from care-
fully curated video clips, we implement a 5-fold
cross-validation protocol and train for multiple
epochs to ensure robust model performance. Our
goal is to identify a YOLO-based detection system



that not only achieves high accuracy (measured
by mean Average Precision, mAP) but can also
operate at inference speeds that support real-
time or near real-time monitoring. This approach
facilitates the large-scale, continuous monitoring
of shark and tuna populations, providing vital
information that can guide conservation strategies,
support sustainable fisheries management, and
ultimately help maintain the ecological integrity
of marine protected areas.

II. MATERIALS AND METHODS
A. YOLO-based Detection Methods

YOLO (You Only Look Once) is a single-stage
object detection framework that jointly learns
object localization and classification. Instead of
employing separate region proposal and classi-
fication steps, YOLO divides the input image
into a grid and directly predicts bounding boxes,
objectness scores, and class probabilities. This
approach enables real-time inference speeds, which
is advantageous for continuous underwater video
analysis, where large volumes of data must be
processed efficiently.

B. YOLOwS and YOLOwv9 Architectures and Configurations

Recent YOLO variants, such as YOLOvS8 and
YOLOVY, incorporate architectural enhancements
aimed at improving detection accuracy and robust-
ness in challenging conditions. Key innovations
include Cross Stage Partial Networks (CSPNet) for
efficient gradient propagation, Feature Pyramid
Networks (FPN), and Path Aggregation Networks
(PANet) for effective multi-scale feature fusion, as
well as advanced activation functions like Mish.
These enhancements provide improved sensitivity
to small, partially occluded objects, which is
particularly advantageous for detecting marine
species in underwater environments.

In this study, we evaluate several configurations of
YOLOvS8 and YOLOv9 models. Each configuration
differs in terms of model capacity and complexity,
reflecting a trade-off between accuracy and infer-
ence speed. Smaller variants (e.g., Nano, Tiny)
are optimized for faster inference and reduced
computational overhead, making them suitable for
real-time applications on constrained hardware.
Larger variants (e.g., Medium, Large, X-Large)
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have increased parameter counts and deeper ar-
chitectures, often yielding higher accuracy but
requiring more computational resources.

Table I provides an overview of the specific
YOLOv8 and YOLOv9 model configurations used
in this paper, along with their approximate num-
ber of parameters. These parameter counts serve
as a guideline for understanding the resource re-
quirements and potential performance differences
between models.

Table I

YOLOV8 AND YOLOV9 MODEL CONFIGURATIONS AND
APPROXIMATE NUMBER OF PARAMETERS

Model Configuration | Approx. #Parameters
YOLOvS8-n Nano ~ 3.2M
YOLOvVS8-s Small ~ 11.2M
YOLOv8-m Medium ~ 25.9M
YOLOvS-1 Large ~ 46.4M
YOLOvV8-x X-Large ~ 68.2M
YOLOv9-t Tiny ~ 3.3M
YOLOV9-s Small ~ 12.0M
YOLOvV9-m Medium ~ 27.5M
YOLOvV9-c Compact ~ 24.4M
YOLOvV9-e Efficient ~ 20.0M

C. Non-Mazimum Suppression (NMS)

Multiple bounding boxes often overlap around
the same object. To refine these raw predictions,
Non-Maximum Suppression (NMS) is applied.
NMS selects the bounding box with the highest
confidence score for each detected object and
discards overlapping, redundant boxes based on
Intersection-over-Union (IoU) thresholds. This
process yields cleaner and more accurate final
detections.

D. Proposed Method

The proposed method leverages YOLOvS8 and
YOLOv9 architectures to detect silky sharks
(Carcharhinus falciformis), tiger sharks (Gale-
ocerdo cuvier), and tunas in underwater video
footage from the Galapagos Islands. The pipeline
comprises:

label=0)

1) Input Preprocessing: Underwater video
clips are sampled at a chosen frame rate to
generate individual frames for analysis.

2) Feature Extraction and Detection:
The selected YOLO models (YOLOvVS or

YOLOV9) receive frames as input, extracting



features across multiple scales and predicting
bounding boxes and class probabilities.

3) Post-processing: NMS is applied to remove
duplicate detections and yield final bounding
boxes for each identified shark or tuna.

E. Dataset and Annotation

The training dataset was derived from two one-
minute underwater video clips recorded in the
Galapagos Islands. One video primarily featured
silky sharks, while the other contained tiger sharks
and tunas. From these videos, a total of 229 frames
were extracted. Each frame was annotated using
RoboFlow, assigning bounding boxes and class
labels (silky shark, tiger shark, tuna) to all visible
targets.

To ensure a robust evaluation and prevent data
contamination, no frames from the test videos
were included in the training process. Specifically,
90% of the 229 annotated images were used for
training, while the remaining 10% constituted the
test set. This split ensured that the training and
testing processes were isolated, allowing reliable
assessment of model generalization.

F. Training Protocol and Experimental Setup

A 5-fold cross-validation strategy was implemented
to enhance model reliability and reduce overfitting.
The training dataset was partitioned into five
folds, with four folds used for training and one
for validation in each iteration. This process was
repeated such that each fold served as a validation
set once.

Each model (YOLOv8 and YOLOvV9 configura-
tions) was trained for 30 epochs. The Adam
optimizer with a cosine annealing scheduler was
employed, and weight decay regularization was
applied to promote stable convergence and prevent
overfitting. After training, the best model weights
were selected based on validation metrics, such

as mean Average Precision (mAP) at 0.50 IoU
threshold (mAP@50).

Two distinct sets of videos (10-second and 15-
second clips), not used in training, were reserved
for testing. These clips enabled a realistic evalua-
tion of model performance under field conditions,
assessing the potential for false positives, over-
counting, or missed detections.
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G. Inference Speed and Real-time Considerations

Initial model evaluations were conducted at 20
frames per second (fps) to analyze short test videos
(10-15 seconds). However, the frame sampling rate
can be reduced to 1 fps for real-time or near real-
time deployments, allowing the system to run
efficiently on moderate hardware. Adjusting the
frame rate provides flexibility: high fps for short
clips and peak activity detection, and lower fps
for continuous long-term monitoring with reduced
computational cost.

H. Hardware and Software Configuration

All experiments were carried out on a workstation
equipped with an NVIDIA GeForce GTX 1660
Ti GPU (16 GB RAM) and an Intel Core i7
processor. The models were implemented using
Python 3.8, PyTorch 1.8, OpenCV, and related
libraries (NumPy, Matplotlib). This hardware-
software configuration ensured a balance between
computational efficiency and cost, enabling both
training and inference tasks.

1. Evaluation Metrics

Model performance was assessed using mAP@50,
which measures the accuracy of predicted bound-
ing boxes at an IoU threshold of 0.50. Additionally,
the more stringent mAP@50-95 metric was con-
sidered, providing a comprehensive view of model
performance across multiple IoU thresholds.

Per-video analyses examined detection counts,
inference times, and occurrence of false positives
or overcounting. Confusion matrices, precision-
recall curves, and example detection frames were
also generated to provide qualitative insights
into model behavior, guiding the selection of the
best-performing YOLO configuration for practical
deployment.

III. RESULTS AND DISCUSSION

Following the established experimental setup, the
detection performance of the proposed YOLO-
based method was validated under conditions in-
tended to simulate real-time monitoring scenarios.
A 5-fold cross-validation procedure was employed
on the training dataset, and multiple configura-
tions of YOLOv8 and YOLOV9 were examined.
The evaluation metrics included the mean Average



Precision at a 0.50 IoU threshold (mAP@50)
and at multiple IoU thresholds (mAP@50-95),
providing both a broad and detailed perspective
on detection accuracy and localization quality.

A. Performance of the Proposed Method

Table II presents the mAP@50 and mAP@Q50-
95 results for various YOLOv8 and YOLOv9
configurations. YOLOv9 Medium achieved the
highest mAP@50 (95.83%), indicating strong local-
ization capabilities. When considering mAP@50-
95, YOLOv8 Medium achieved the best score
(67.03%), suggesting it provides a balanced trade-
off between detection accuracy and robustness
across different IoU thresholds.

Table II
MAP Scorgs FOR YOLOV8 AND YOLOV9 MODELS.

Model mAP@50 (%) | mAP@50-95 (%)
YOLOvVO-t 93.26 67.14
YOLOVO-s 95.68 66.69
YOLOV9-m 95.83 66.61
YOLOVO-c 95.37 65.99
YOLOvO-e 94.97 62.93
YOLOv&n 94.16 64.95
YOLOvV&s 95.07 65.53
YOLOv&m 94.20 67.03
YOLOV&1 94.55 66.60
YOLOVE=x 95.04 66.00

Confusion matrices (Figs. 1 and 2) for YOLOvS8
Medium and YOLOv9 Medium provide insights
into class-specific performance. The matrices are
structured for four classes: Silky Shark, Tiger
Shark, Tuna, and Background. Darker shades
appear along the diagonal for the shark and
tuna classes, indicating correct classifications. For
the Background class, the darkest cell occurs at
the Background-Tuna intersection, reflecting the
underlying frequency and class distribution in the
dataset rather than a systematic model bias.

Precision-Recall (PR) curves (Figs. 3 and 4) show
the relationship between precision and recall,
allowing the selection of optimal confidence thresh-
olds depending on conservation goals. Higher
precision thresholds reduce false positives, critical
for accurate population estimates, while higher
recall thresholds ensure that most individuals
are detected, even at the expense of occasional
misclassifications.
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Confusion Matrix Normalized

True

Figure 1. Confusion matrix for YOLOv8 Medium.

Confusion Matrix Normalized

Figure 2. Confusion matrix for YOLOv9 Medium.

B. Performance of the Proposed Method in the Experimen-
tal Setup

To evaluate real-world applicability, the models
were tested on two short, unseen videos (10s
and 15s), described in Table III. While YOLOvS8
Medium and YOLOv9 Medium closely matched
expected species counts without introducing spuri-
ous results, certain other configurations produced
false positives or overcounts. These differences
underscore the importance of evaluating models
on realistic scenarios rather than relying solely on
aggregate metrics.

Qualitative analyses further supported these find-
ings. Figure 5 illustrates scenarios where some
models introduced false positives or overcounting,
reinforcing the need for careful model selection.



PER-VIDEO DETECTION COUNTS AND DETECTION TIMES FOR YOLOV8 AND YOLOV9 MODELS.

Table ITI

max width=

14

2*Model test__tiger_ tunas.mp4 test__silkies.mp4 2*False Positive
Tuna Tiger Shark Silky Shark Time (s) | Tuna Tiger Shark Silky Shark Time (s)
Expected >20 1 0 - 0 0 2 - :
YOLOvV9 Tiny 23 1 0 96.39 0 0 2 66.29 )\
YOLOvV9 Small 24 1 0 125.34 0 0 2 85.54 \
YOLOvV9 Medium 27 1 0 182.78 0 0 2 108.97 )\
YOLOvV9 Compact 27 2 0 244.27 0 0 2 122.82 Yes (Ov
YOLOvV9 Efficient 27 1 0 425.20 0 0 2 222.97 )\
YOLOvS8 Nano 20 1 0 85.96 0 0 2 41.66 )\
YOLOvVS Small 25 1 1 122.65 1 0 2 54.46 Yes (False
YOLOv8 Medium 26 1 0 174.80 0 0 2 83.61 \
YOLOVS Large 26 1 0 189.25 0 0 2 118.82 \
YOLOvVS X-Large 28 1 1 250.41 0 0 3 159.36 Yes (Overcount,

Precision-Recall Curve

1.0
—— silky-shark 0.901

tiger-shark 0.995
—— tuna 0.929

08 = all classes 0.942 MAP@0.5

Precision
o
o

o
IS

0.2

0.0

Recall
Figure 3. Precision-Recall curve for YOLOv8 Medium.

Precision-Recall Curve

1.0
—— silky-shark 0.892

tiger-shark 0.995
—— tuna 0.944

08 w—all classes 0.943 MAP@0.5

0.6

Precision

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Precision-Recall curve for YOLOv9 Medium.

Conversely, successful detections are shown in
Figs. 6 and 7, where YOLO-based models accu-
rately identified silky sharks, tiger sharks, and
tunas. These examples highlight the performance
stability of top-performing configurations like

YOLOv8 Medium and YOLOv9 Medium.

Temporal analyses of detections provide additional

ecological insights. Figures 8, 9, and 10 show
timeframes of species detections for YOLOvVS
Medium and YOLOv9 Medium. In these fig-
ures, each model’s detection results are coupled
with a corresponding timeframe plot beneath
the detection image. For YOLOv9 Medium, the
timeframe plots are smoother, suggesting more
stable detections over time. This stability can
be crucial in identifying peak activity periods
or seasonal patterns, informing more effective
conservation measures.

Adjusting the frame sampling rate allows flexible
deployment strategies. While initial evaluations
were conducted at 20 frames per second (fps)
for detailed inspection of short clips, reducing
the sampling rate to 1 fps enables continuous,
long-term monitoring with reduced computational
overhead. At this lower frame rate, species remain
within the field of view long enough to ensure
reliable detections, making the method suitable
for sustained monitoring efforts even on moderate
hardware.

Overall, these results demonstrate that the latest
YOLO architectures can effectively detect and
track shark and tuna species in underwater footage.
By providing high accuracy, stable detections over
time, and adaptability in frame processing rates,
the proposed YOLO-based approach emerges as
a valuable non-invasive tool for marine ecosystem
monitoring and conservation planning.

IV. CONCLUSION AND FUTURE WORK

This study presented a YOLO-based detection
system capable of accurately identifying silky
sharks, tiger sharks, and tunas in underwater
video footage from the Galapagos Islands. By



evaluating multiple configurations of YOLOvS8
and YOLOV9 architectures and employing a 5-
fold cross-validation protocol, we identified models
that combine high detection accuracy with robust-
ness and computational efficiency. In particular,
YOLOv8 Medium achieved a favorable balance,
attaining a mAP@50 of 94.20%, while YOLOv9
Medium attained the highest mAP@50 (95.83%).

These models demonstrated reliable performance
on previously unseen videos, maintaining stable
detections over time, and avoiding systematic false
positives or overcounting. Adjusting the frame
processing rate allowed the system to operate in
real-time or near real-time conditions on mod-
erate hardware, providing flexibility for various
deployment scenarios. The results underscore the
potential of automated, computer vision-based
approaches to support marine conservation efforts,
offering a non-invasive, scalable, and cost-effective
tool for monitoring species within marine pro-
tected areas.

Future work will focus on integrating advanced
temporal modeling methods to improve multi-
frame species tracking, enhancing the system’s
ability to follow individuals over time. Addition-
ally, employing dedicated models for each species
will allow customization based on distinct visual
and behavioral characteristics, ensuring a flexible
framework that can scale to include new species
as needed. Finally, test deployments in various
marine protected areas will provide invaluable
insights into performance under a wide range
of environmental conditions, further refining and
validating the system’s utility for conservation and
management purposes.
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4

YOLOv8x (Overcount - 3 Silky Sharks)

YOLOvS8s (False Positive - 1 Silky Shark)

YOLOv9c (False Positive - 1 Tiger Shark)

YOLOv8x (False Positive - 1 Silky Shark)

Figure 5. Examples where certain models introduce false positives or overcounting.
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Figure 6. Successful detections of silky sharks across multiple YOLO-based configurations (YOLOvS8-1, YOLOv8-m, YOLOv8-n, YOLOv9-¢,
YOLOvV9-m, YOLOV9-s).
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YOLOv8-large YOLOv8-medium YOLOv8-nano

YOLOv9-efficient YOLOv9-medium YOLOv9-small

Figure 7. Successful detections of tiger sharks and tunas across various YOLO-based models (YOLOv8-1, YOLOv8-m, YOLOv8-n, YOLOv9-¢,
YOLOvV9-m, YOLOvV9-s).
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Figure 8. Comparative detection and timeframe analysis for silky sharks. Left: YOLOv8 Medium detection and corresponding timeframe.
Right: YOLOv9 Medium detection and timeframe.
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Figure 9. Comparative detection and timeframe analysis for tunas. Left
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YOLOv9 Medium detection and timeframe.
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Figure 10. Comparative detection and timeframe analysis for tiger sharks. Left: YOLOv8 Medium detection and corresponding timeframe.
Right: YOLOv9 Medium detection and timeframe.
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