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RESUMEN

Este trabajo investiga la relacion predicha entre la estructura quimica y la percepcion olfativa
utilizando algoritmos de aprendizaje automatico. La coleccion contiene 44 descriptores de olor
para 5,855 moléculas, cada una representada por su SMILES isomérico. Los datos fueron
recopilados de bases de datos publicas y privadas y limpiados tras un exhaustivo
preprocesamiento. Para traducir los SMILES a un lenguaje comprensible para el aprendizaje
automatico, se aplicaron las Morgan Fingerprints, creando dos conjuntos de datos con dos
valores de radio diferentes (2 y 3). Tres algoritmos de aprendizaje automatico —Random
Forest, XGBoost y TabNet— fueron entrenados y evaluados utilizando métricas que incluyen
Hamming Loss, AUROC, Fl-score y Top-k True Skill Statistics ajustadas. Para abordar el
desbalance multietiqueta del conjunto de datos, se implement6 MLSMOTE, lo que mejord
significativamente la capacidad de generalizacion de los modelos. Se aplicaron un ANOVA de
dos vias y una prueba de Tukey HSD para evaluar la significancia estadistica de las
interacciones entre el modelo y el conjunto de datos, identificando a XGBoost entrenado con
el conjunto de datos MLSMOTE R3B2048 como el modelo de mejor desempeio. Este modelo
fue validado adicionalmente utilizando un conjunto de datos externo de compuestos de cacao.
Los resultados muestran que el aprendizaje automadtico, y especificamente XGBoost, puede
predecir con precision los atributos sensoriales. Esto abre la puerta a avances en la creacion de
fragancias y sabores y proporciona una alternativa basada en datos a las técnicas

convencionales de categorizacion de olores.

Palabras clave: Aprendizaje automatico, Clasificacion multietiqueta, Prediccion de aromas,
SMILES isoméricos, Huellas digitales de Morgan (Morgan Fingerprints), XGBoost, Aumento

de datos, MLSMOTE, Descriptores olfativos, Prediccion de perfiles sensoriales



ABSTRACT

This work investigates the predicted link between chemical structure and olfactory perception
using machine learning algorithms. The collection contains 44 odor descriptors for 5,855
molecules, each of which is represented by its isomeric SMILES. It was collected from public
and private databases and cleaned after extensive preprocessing. To translate SMILES into a
machine learning language, Morgan Fingerprints were applied creating two datasets with two
different radius values (2 and 3). Three machine learning algorithms: Random Forest,
XGBoost, and TabNet were trained and evaluated using metrics including Hamming Loss,
AUROC, F1-score, and adjusted Top-k True Skill Statistics. To address the dataset’s multi-
label imbalance, MLSMOTE was implemented, significantly improving the models’
generalization ability. A two-way ANOVA and Tukey HSD test valued the statistical
significance of model and dataset interactions, identifying XGBoost trained on the MLSMOTE
R3B2048 dataset as the best-performing model. This model was further validated using an
external dataset of cacao compounds. The results show that machine learning, and specifically
XGBoost, can accurately predict sensory attributes. This opens the door for advancements in
fragrance and taste creation and provides a data-driven alternative for conventional odor

categorization techniques.

Key words: Machine Learning, Multi-label Classification, Aroma Prediction, Isomeric
SMILES, Morgan Fingerprints, XGBoost, Data Augmentation, MLSMOTE, Olfactory

Descriptors, Sensory Profile Prediction
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INTRODUCTION

The prediction of aroma profiles from molecular characteristics is a growing field of
study due to its impact on various industries, such as fragrances, food, and pharmaceuticals.
These industries often develop aromas and flavors using a traditional trial-and-error method,
which, besides being time-consuming and costly, is highly subjective. Saini and Ramanathan
(2022) argue that odor is a psychological construct since its classification relies on verbal
descriptions provided by individuals, which can be influenced by factors such as age, culture,
experience, and the evaluator’s vocabulary.

To overcome this limitation, machine learning has proven to be more accurate in
classifying aromatic profiles, as they rely on the intrinsic properties of molecules (Sisson et al.,
2024). Furthermore, predictive models not only improve efficiency in product development
but also facilitate the creation of new odor and flavor combinations that are tailored to
consumer preferences (Keller et al., 2017). In this regard, machine learning undoubtedly has
the potential to accelerate innovation, reduce costs, and expedite the discovery of new
compounds, fragrances, and flavors, establishing itself as a key tool for optimizing and
advancing the sensory industry.

In this work, we aim to evaluate the performance of machine learning and deep learning
models to predict the olfactory descriptors of molecules based on their SMILES
representations. The dataset was compiled from multiple public sources and curated to include
5,855 molecules labeled with 44 standardized aroma descriptors. The models analyzed include
Random Forest, XGBoost, and TabNet, each evaluated under different configurations of
Morgan Fingerprints (radius 2 and 3) and with and without the application of the MLSMOTE
data augmentation technique to mitigate label imbalance. To guarantee reliable model

comparison, statistical tests (ANOVA and Tukey HSD) and stratified cross-validation were
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also used in this study. The findings show that XGBoost had the greatest overall performance
across the following metrics: Hamming Loss, AUROC, Top 2 TSS, Top 5 TSS, Precision,
Recall, and F1-Score when trained on the SMOTE-augmented dataset using Morgan
Fingerprints with radius 3. This suggests that XGBoost has the ability to provide precise and

broadly applicable aroma prediction in multi-label classification scenarios.



13

LITERATURE REVIEW

Predicting olfactory perception from molecular structures has been a longstanding
challenge in sensory research. Conventional methods depend on Quantitative Structure-Odor
Relationship (QSOR) models, which correlate molecular properties (molecular weight,
functional groups, etc.) with statistical techniques such as principal component analysis (PCA)
and multiple linear regression (MLR) (Saini & Ramanathan, 2022). But according to Keller et
al. (2017) the nonlinearity and complex relationships between molecular structure and odor
perception are a frequent problem for QSQR models. Advances in machine learning (ML) and
deep learning have made it possible to create more reliable prediction models by automatically
identifying patterns in large data bases using techniques like Random Forests, Support Vector
Machines (SVMs), and Graph Neural Networks (GNNs) (Sanchez-Lengeling et al., 2019).

A key study by Keller et al. (2017) developed a machine learning model that utilizes
chemoinformatic descriptors of odor molecules to predict sensory attributes. The study
predicted odor intensity and semantic descriptors such as “sweet”, “fruity”, and “spicy”. They
discovered that linear models and Random Forest performed well in capturing important
chemical characteristics associated with sensory perception.

Another approach to odor prediction using machine learning was introduced by Saini
& Ramathan (2022). They identified the relationship between odor and chemical structure
using a multi-label classification approach. They used Random Forest, Binary Relevance, and
Classifier Chains models to predict several olfactory descriptors from chemical
representations. They emphasized the complexity of QSOR modeling, highlighting that small
structural changes can drastically alter perceived odors.

As part of a machine learning framework, XGBoost was used in "Data-Driven
Elucidation of Flavor Chemistry" (Kou et al., 2023) to predict olfactory perceptions based on

the chemical structures of molecules. When it came to managing high-dimensional chemical
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datasets and enhancing prediction accuracy, XGBoost was very helpful. The outcomes showed
that this model was able to identify intricate patterns in olfactory data, which made them useful
for studying taste chemistry and creating new aromatic chemicals.

Sanchez-Lengeling et al. (2019) used GNNs to predict perceptual odor similarities,
which significantly outperformed QSOR models. Their research not only showed that deep
learning captures better perceptual relationships, resulting in predictions that are more accurate
and broadly applicable, but it also has demonstrated great performance in fields such as
bioinformatics and cheminformatics, indicating its potential application in odor prediction.

Additionally, TabNet, a deep learning model developed by Arik & Pfister (2021), was
proposed as a new method for tabular data learning. TabNet improves feature interpretability
and learning efficiency by using sequential attention mechanisms, in contrast to conventional
decision tree-based models like Random Forest and XGBoost.

To assess the performance of odor prediction models, researchers employed different
metrics whether the task is classification or regression. The micro-averaged Fl-score is
commonly used for multi-label classification because it balances precision and recall, making
sure there is a fair evaluation across all odor labels (Saini & Ramanathan, 2022). For Graph
Neural Networks and Random Forest models, authors used the AUROC (Area Under the
Receiver Operating Characteristic Curve) to evaluate how effectively they differentiate odor

descriptors (Sanchez-Lengeling et al., 2019).

METHODOLOGY

Datasets and Preprocessing Operations.

The database used in this study was built by combining both public and private datasets.
ChemTasteDB, FlavorDB, Goodscents, [IFRA 2019, Keller, Leffingwell, and Sharma 2021b

were among the public datasets that were sourced from GitHub and compiled in the Pyrfume
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repository (2024), for more information about the databases see annex 2. Two more datasets
related to distilled rum and gin were included in order to expand the variety of aroma profiles
(Camilo et al., 2023). These were provided by researchers from Universidad de los Andes
(UNIANDES) based on previous studies. The databases included key information for each
molecule, such as CAS number, compound name, [IUPAC name, PubChem CID, SMILES
notation, and odor descriptors. Initially, the dataset contained 361,640 molecules. However,
after preprocessing the data, such as filtering duplicates, eliminating blank data, the database

comprised 5,855 observations.

SMILES (Simplified Molecular Input Line Entry System) is a linear notation that uses
ASCII character strings to uniquely and unambiguously describe molecular structures. There
are two main variants of SMILES: Canonical SMILES that provide a standardized
representation of the molecule’s two-dimensional structure, without including information
about chirality or isotope specification, and Isomeric SMILES, which in addition to basic
connectivity, incorporate details about stereoisomeric configuration and isotope specification,
allowing a more comprehensive description of the molecule’s three-dimensional structure
(Weininger, 2022). For this study, Isomeric SMILES were chosen as they provide more
detailed structural information, which may enhance model performance by improving the

accuracy of odor descriptors predictions.

PubChemPy Python library was used to integrate chemical data of Isomeric SMILES
and to verify those already recorded. The PubChem database, which contains comprehensive
information on chemical substances, is accessible through this library. PubChemPy is a Python
package that serves as a wrapper for the PubChem REST API, enabling users to connect with

the PubChem database and get chemical compound data with ease (Ggamana, 2024). This tool
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simplifies the search for chemical compounds by name, substructure, chemical standardization,

graphical representation, and obtaining detailed chemical properties.

Since various sources utilized different terminology to refer to the same odor quality,
descriptor names were first standardized to eliminate repetition across datasets. Similar
descriptors were grouped under a unified label (e.g., Fruity, Non-citrusy fruity, and Tropical-
fruity were all classified as Fruity). The frequency of occurrences for each unified description
was then quantified by creating a frequency table. Ninety percent of the cumulative frequency's
descriptors were chosen. This process led to a final set of 44 different descriptors, being Sweet
the descriptor with the highest frequency in the database, 3068 times, and Vanilla-like the last

descriptor appearing 63 times. This is graphically represented in Graph 1.

Figure 1
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The next step in the study involved SMILES representations to a proper interpretation
by machine learning models. Morgan Fingerprints was chosen for molecular feature extraction

based on its effectiveness in prior studies. It has demonstrated success in a variety of machine
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learning techniques, such as random forests, graph neural networks, and classifier chains

(Keller et al., 2017; Sanchez-Lengeling et al., 2019; Saini & Ramanathan, 2022).

The Morgan Fingerprints methodology is a graph-based molecular representation
system that uses the molecule's SMILES notation to record its structural properties and
connections. This approach, which is incorporated into the RDKit library, uses the Extended-
Connectivity Fingerprints (ECFP) method, which views the bonds between molecules as
connections and atoms as nodes in a graph. This enables the use of a hashing algorithm to
generate unique IDs (Rogers & Hahn, 2010). Morgan fingerprints are more informative than
other fingerprinting methods such as PubChem fingerprints or FP2 fingerprints because they
can flexibly capture chemical structures by considering substructures of different sizes through
a radius parameter (Zhou & Skolnick, 2024). According to Zhou and Skolnik (2024), a bit of
2048 and a radius of 2 offer an optimal balance between computational efficiency and
information richness. This study, however, also wanted to analyze whether adjusting the radius
parameter could improve odor prediction in machine learning models. To compare their effects,
two separate databases were generated: one utilizing a radius of 2 and another one with a radius
of 3, while maintaining a bit size of 2048 in both cases. It is important to mention that both
databases have the same molecules, the only difference is the parameters on the Morgan
Fingerprints. The databases will be referred to as R2B2048 for the first one and R3B2048 for
the second database. The process is visually represented in Graph 2 and the final database can

be found in Annex 5.

Figure 2

Preprocessing flowchart
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To validate the performance of the optimal model-database combination, the selected
model was evaluated using a new, independent dataset provided by Universidad de los Andes
(UNIANDES) from FlavorDB2 (FlavorDB2, 2025), consisting of 276 molecules found in
cacao. This dataset went through the same preprocessing steps as both datasets R2B2048 &
R3B2048, but to ensure the proper functionality of the model when applied to new data, the
cacao dataset was aligned with the 47 descriptors previously selected during preprocessing of
the original dataset. However, only 35 of those descriptors were present in the cacao data. This
reduction was due to the absence of certain descriptors in the cacao samples that were available
in the original dataset; for instance, descriptors like A/liaceous were present in the original
dataset but not in the cacao set. Consequently, just the overlapping descriptors were kept,
giving the two datasets a straightforward uniform representation.

After aligning the descriptors, the best-performing machine learning model identified
through the two-way ANOVA and Tukey analysis, was evaluated by training it exclusively
with the original dataset and then testing it with the cacao dataset. This method was created to
mimic a real-world situation in which the model comes upon completely fresh, unseen data.
The objective was to evaluate the model's performance and capacity for generalization when

used on a customized dataset with varying aromatic profiles and chemical compositions.
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It’s important to mention that the fingerprint parameters used for this new dataset were selected
based on the optimal ratio determined by the prior ANOVA analysis.

Data Augmentation.

To start working on the machine learning algorithms, it was necessary to assess the
dataset’s balance. For this purpose, metrics like MeanIR and IRLbl were employed; MeanIR
measures the overall imbalance across labels, whereas IRLbI assesses the imbalance at the label
level. Additionally, visual tools and representations such as histograms of label distribution
and a co-occurrence matrix were implemented to analyze correlations between the labels in the
dataset (Keller et al., 2017). This imbalance ratio according to Noorhalim et al. (2019), can be
classified into three categories: mild imbalance, when this ratio is less than three; medium
imbalance, when the ratio is between three and six; and finally, when the ratio is more than six,

1s considered as extreme imbalance ratio.

Machine learning models generally typically assume a balanced distribution of classes.
A data augmentation method known as the Multi-Label Synthetic Minority Over-Sampling
Technique (MLSMOTE) was studied to solve this problem. Sukhwani (2021) claims that
MLSMOTE is a development of the Synthetic Minority Over-Sampling Technique (SMOTE),
which was created especially for multi-label classification issues. MLSMOTE is designed to
handle data where each instance may be linked with multiple labels at the same time, whereas
SMOTE creates fresh synthetic samples for minority classes in single-label classification tasks.
This is especially useful in cases where certain combinations of labels are infrequent, which

could lead to biased models with reduced generalization ability.

MLSMOTE starts with identifying minority class instances, unlike conventional
oversampling methods, MLSMOTE creates new observations based on real data to avoid

overfitting, instead of simply replicating these instances. Once minority instances are
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identified, MLSMOTE applies a K-Nearest Neighbors (KNN) algorithm to find similar
samples within the feature space. From these neighbors, the algorithm interrogates new
synthetic data points by combining feature values in a weighted manner (Sukhwani, 2021). By
guaranteeing that synthetic instances are uniformly dispersed throughout the data space instead
of being grouped in one area as happens with duplication techniques, this procedure aids in
producing more realistic samples. One of the main characteristics of MLSMOTE is that it
maintains the correlation between labels, which means that new samples are produced based

on the relational structure of labels in the dataset as well as numerical properties.

A notable discrepancy in the dataset was found by the label imbalance analysis. With a
Mean Imbalance Ratio (MeanIR) of 6.1, it can be concluded that the dataset exhibited a severe
class imbalance. Some labels are much less common than the dominating sweet label (3,068
samples), based on the Imbalance Ratio per Label (IRLbl). Most labels contain fewer than
1,000 samples, according to a label distribution histogram Graph 2, with the most common

labels being Sweet, Fragrant, and Fruity.

Figure 3

Label Frequency Distribution Histogram before MLSMOTE
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Furthermore, stronger relationships between frequently occurring labels were also highlighted

using a label co-occurrence matrix shown as a heatmap in Graph 3.

Figure 4

Heatmap: Label co-occurrence matrix
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The co-occurrence matrix shows strong relationships between broad descriptors such
as Fruity, Sweet, Fragrant, and Fresh, as previously mentioned, which frequently appear
together across molecules. In contrast, descriptors like Sulfuric or Septic show low co-

occurrence, indicating specificity.

The co-occurrence matrix shows strong relationships between broad descriptors such
as Fruity, Sweet, Fragrant, and Fresh, reinforcing the results of the label imbalance analysis.
This not only affects individual label frequencies but also shapes how often descriptors appear

together.

To address the imbalance, MLSMOTE was applied to generate synthetic samples and

balance the label distribution. A total of 2,000 synthetic samples were generated to enhance



the dataset's representation within the classification task.
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As a result, the Imbalance Ratio per

Label (IRLbI) (Annex 1) and Mean Imbalance Ratio (MeanIR) was reduced to 3.7633 (Table

1), which made it possible to continue creating machine

learning models with a more evenly

distributed set of labels. This is also shown on the Frequency Distribution Histogram in Graph

4.

Table 1:

Results of MeanIR metrics before and after applying MLSMOTE fto the datasets

MeanlIR
Before MLSMOTE 6.1005
After MLSMOTE 3.7633
Figure 5
Label Frequency Distribution Histogram after MLSMOTE
Label Frequency Distribution Histogram after MLSMOTE

Label Frequencv

It’s important to mention that to evaluate the impact of SMOTE on model performance, a test

run was conducted for each model using both the first original dataset (R2B247) and the first

dataset processed with MLSMOTE (R2B247 MLSMOTE).
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Dataset division.

In machine learning, the division of datasets into training, validation and test is crucial for
developing models that generalize unseen data. One of the best practices is to use the 80-10-
10 ratio, allocating 80% for the training set, 10% for the validation, and 10% for the test,
preventing issues like overfitting and having more reliable performance metrics (Sumalatha et
al., 2024). Since the dataset on this research with the imbalanced ratio couldn’t satisfy that all
labels were evenly split on all the sections, Keller et al. uses the 80-20 subsets, being 80%
(6,284 labels) for the training and 20% (1,571 labels) for the testing, and this also works
perfectly for the model and becomes effective because it won’t leave each subset too small,
and also maximizes the training data (2017). It is important to mention that since a fivefold
stratified cross-validation technique will be used for developing a better model, the validation

process is no longer necessary because it is already integrated within the training phase.

Machine Learning Models.

For the machine learning algorithms, three algorithms were decided to analyze. The first
one is TabNet, a deep learning architecture designed to work with tabular data proposed by
Sercan O. Arik and Tomas Pfister in 2019. This model, unlike others from deep learning, uses
sequential attention to choose which features to reason from at each decision step, enabling
interpretability and more efficient learning as the learning capacity is used for the most salient
features (Arik & Pfister, 2021). One of the principal advantages of TabNet, and the reason it
was selected for this study, is its ability to outperform neural network and decide three variants
on a wide range of unsaturated tabular datasets in performance. Arik & Pfister (2021) mention
that this model provides interpretable feature attributions and offers detailed insight into the

overall behavior of TabNet. Another important contribution from this model is focused on



24

tabular data, where the demonstration of self-supervised learning is significantly improving

performance when a large amount of unlabeled data is available.

Complex multi-label classification issues also can be handled using the Random Forest
algorithm, a machine learning method based on an ensemble of several decision trees. In this
method a random sample of the dataset is used to train each tree, and the final predictions are
derived by voting or averaging each tree separately. One Random Forest model can predict
several classes at once in multi-label issues without having to handle each label independently.
By enabling each sample to belong to many categories and assigning labels based on the sum
of the predictions from separate trees, Random Forest effectively manages multi-label

classification (Clare & King, 2001).

The latest model in use, XGBoost (Extreme Gradient Boosting), is a machine learning
model based on decision trees that has been improved for speed and efficiency. It adopts a
boosting technique in which several trees are trained one after the other, with each new tree
focusing on fixing the mistakes of the one before it. Techniques including early pruning and
effective management of missing data are used to increase accuracy and decrease overfitting
(Sanz, 2024). Because it manages complex relationships between labels, XGBoost is helpful
for these kinds of multi-label classification tasks. It is also quicker than the earlier mentioned
Random Forest or Neural Network techniques due to its parallelization and optimization
features. Because of its balance between accuracy, interpretability, and computational

economy, XGBoost was utilized in this model.

The performance of Random Forest and XGBoost were evaluated using n=100 and
n=300 for each dataset while maintaining the same default hyperparameters. This approach
ensures consistent conditions across both models, allowing for a more accurate performance

assessment.
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Evaluation Metrics.

Proceeding with the model’s performance metrics, it is essential to choose the most
appropriate since it will evaluate and understand the model’s behavior, especially in multi-
label classification tasks. Archaya in his article talks that accuracy is a more comprehensive
performance evaluation and represents the proportion of correctly predicted instances out of
the total instances, in other words, it is used to know the ability of a model to correctly classify
data points, regardless of the prediction performance by class or label. Recall is another metric
used to assess the model's capacity to detect all relevant instances, demonstrating how well it
captures positive cases. In multi-label cases, recall is calculated for each label and summed,
indicating the model's ability to retrieve all relevant labels across occurrences (2024).
Hamming Loss on the other side is a measure of the proportion of labels that are improperly
predicted, measuring the percentage of misclassified labels, indicating how many incorrectly
label assignments occur on average; a lower Hamming Loss suggests better performance. F1-
Score is the fourth evaluation metric in use to measure the model’s accuracy, combining and
balancing precision and recall, so with a high F1-Score means it is good at both identifying
relevant instances and minimizing false positives (Acharya, 2024). The performance metric
Area Under the ROC Curve (AUROC) evaluates a model's capacity to differentiate between
classes, in this case aromatic profiles. The True Positive Rate (TPR) and False Positive Rate
(FPR) at different decision thresholds are compared using the Receiver Operating
Characteristic (ROC) curve as its foundation. AUROC is notably beneficial in issues with
imbalanced classes since it does not rely on a set classification threshold. Multi-label
classification can be adapted using strategies such as One-vs-Rest (OvR), which calculates a
ROC curve for each label relative to the rest, or One-vs-One (OvO), which compares each pair
of labels individually; the latter strategy was utilized in this study. The lasts evaluation metrics

is the Top-5 TSS and Top-2 TSS, meaning Top-k True Skill Statistics (TSS) evaluate the
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model's performance based on its ability to correctly predict the true labels within its top-k
predictions (Yoon & Lee, 2022). Top-5 TSS assesses whether the true label is among the
model's top five predicted labels, while Top-2 TSS checks within the top two predictions. This
last evaluation was included since in the challenge the authors are referencing, they include
this metric, and it was decided to use for a comparison between a global challenge on this topic
and the current situation, with the opportunity to improve the evaluation metrics’ results. The

formulas of each metric can be found in Annex 6.

Stratified Cross-Validation: Evaluating Generalizability and Robustness.

To evaluate the performance of Random Forest, XGBoost and TabNet algorithms with
another verification method, stratified cross-validation was used. According to, Szeghalmy &
Fazekas (2023), the stratified cross-validation (SCV) is a robust version of the common k-folds
cross-validation where the labels are randomly splited in to the folds, but the variability in the
distribution can affect the strength of the validation, so the best way to solve this is using the
SCV where in every fold follows a similar distribution to the original distribution. This
validation helps to determine which of the models is having better performance by evaluating
it acrros different folds with similar conditions. Although, the number of folds (k-value) goes
from 5-10, for this study a 5-folds SCV was selected, to ensure a consistent proportion in all
the sets of training and testing, and give a more consistent evaluation of the models. (Prusty et
al., 2022).

Hypothesis and means test.

To evaluate the effects of the database and machine learning model on performance, a two-
way ANOVA was conducted. This statistical method was chosen because it allows for the
examination of both main effects of radius on molecular representation and model and their
interaction effect, determining whether the model’s performance varies depending on the

dataset used. The stratified cross-validation process provided the data used in this analysis. A
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five-fold cross-validation was performed for every combination of database type and machine
learning model, and the outcomes of F1-score of each fold were saved. As a result, thirty data
points in total were examined. The F1-score metric was selected because it is particularly useful
in multi-label classification tasks, it provides a balanced evaluation of both precision and recall.
This balance is essential when a model must correctly identify not just whether labels are
present, but also how many and which ones, making it well-suited for complex multi-label
problems (Bénédict et al., 2021). The data and combinations used for the ANOVA analysis can
be found in Annex 2.

However, before applying ANOVA, its assumptions (normality, homogeneity of variances,
and independence of residuals) were tested to ensure the reliability of statistical conclusions.
The initial study showed violations of normality and homoscedasticity so, to ensure the validity
of the ANOVA assumptions, a Box-Cox transformation was applied to the response variable.
The estimated lambda (L) value was 3.27, which was rounded to A = 3 for practical purposes.
The Box-Cox transformation is commonly used to correct non-normal distributions in
parametric tests by applying an optimal power transformation, ensuring that ANOVA
assumptions are met (Sureiman & Mangera, 2020). After the transformation, residual analysis
confirmed improved normality and variance homogeneity, ensuring the validity and reliability

of ANOVA results. The Hypothesis for the Two-Way Anova is shown in Table 2.

Table 2

Hypotheses for Two-Way ANOVA

Hypotesis Type Null Hypotesis (Ho) Alternative Hypotesis (Hi)

Effect of radius on
The radius on molecular representation | The radius on molecular representation
molecular
does not affect performance. affects performance.
representation

Effect of Model The model does not affect performance. The model affects performance.
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Interaction exists between the model
Interaction No interaction between the model and
and the radius on molecular
(Radius * Model) the radius on molecular representation.
representation.

Table 1 summarizes the null and alternative hypotheses tested in the two-way ANOVA,
including

the effects of the database, the model, and their interaction. The significance level for each
hypothesis was set at a = 0.05. If the p-value is less than or equal to 0.05, the null hypothesis
is rejected, indicating a statistically significant effect. On the contrary, if the p-value is greater
than 0.05, there is not enough evidence to reject the null hypothesis.

If the two-way ANOVA returns statistically significant results, a Tukey’s Honestly
Significant Difference (HSD) test will be conducted as a post hoc analysis to identify which
specific group means differ from each other. The Tukey HSD test determines the differences
between each pair of means and compares it to a critical value. This method effectively controls
the family-wise error rate, ensuring that the probability of making at least one Type I error
remains within the predefined significance level (o = 0.05). This makes it possible to compare
all pairwise group means in a meaningful way, which provides a better understanding of the
major differences (Nanda et al., 2021). The hypothesis for the Tukey’s Honestly Significant

Difference is shown in Table 3

Table 3

Hypotheses for Tukey’s Honesty Significant Difference

Hypotesis Type Null Hypotesis (Ho) Alternative Hypotesis (Hx)

Pairwise Mean There is no significant difference There is a significant difference

Comparison between the group means. between at least two group means.
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The performance of the models was evaluated by using multiple evaluation metrics,

including Hamming Loss, AUROC, Top-2 and Top-5 True Skill Statistics (TSS), Precision,

Recall, and F1-score. The models were tested with and without SMOTE to evaluate the impact

of data augmentation on classification performance. Additionally, in Random Forest and

XGBoost models, different tree counts (n=100 and n=300) were analyzed as hyperparameters

and to examine their effect on model robustness and predictive stability. In the following

subsections, we present the experimental results.

Tab Net Model

SMOTE Tab Net.

Table 4

Comparison of the performance of the first dataset without SMOTE (R2B2048) and the first

dataset with SMOTE (R2B2048 MLSMOTE) in the Tab Net model.

Hamming

Top 2

Top 5

Loss AUROC TSS TSS Precision | Recall | F1-score
R2B2048 0.2361 0.5752 0.2134 0.3873 0.2482 0.3500 0.2787
R2B2048 MLSMOTE 0.1498 0.7548 0.3026 0.5114 0.5892 0.2929 0.3913

The model was evaluated using two databases, both with a radius of two, one applying SMOTE

and the other without. Results from TabNet demonstrated significant improvements across

most metrics when SMOTE was applied. Specifically, the AUROC increased from 0.5752 to

0.7548, precision improved from 0.2482 to 0.5892, and the Hamming loss decreased from

0.2361 to 0.1498, indicating that the model predicted fewer incorrect labels compared to the

true labels.




Performance Tab Net.

Table 5

Performance metrics of the Tab Net model on both datasets with MLSMOTE (R2B2048 MLSMOTE and

R3B2048 MLSMOTE)
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Hal‘j:)‘;‘s‘“g AUROC | Top2TSS | Top5TSS | Precision | Recall | Fl-score
R2B2048 SMOTE | 0.1498 0.7548 0.3026 0.5114 0.5892 | 0.299 | 0.3913
R3B2048 SMOTE | 0.1551 0.7642 0.2998 0.5088 0.6031 | 0.2656 | 0.3688

The two databases (radius two and three) were evaluated in the Tab Net algorithm. The

difference in the metrics between both was minimum, because they had a similar development.

However, in the metrics of Hamming loss, Top 2 TSS, Top 5 TSS, Recall and F1-Score that

the database with radius two showed slightly better results, making this one the best to use in

Tab Ne

Table 6

t model.

Stratified Cross Validation Tab Net.

Average performance * standard deviation of the five folds conducted through cross-validation in the Tab Net

model.

Haﬁ‘;‘s‘“g AUROC Top2TSS | Top5TSS | Precision Recall Fl-score
R2B2048_ SMOTE | 0.155£0.001 | 0.662+0.029 | 0.287+0.013 | 0.610+0.009 | 0.601+0.016 | 0.1633+0.047 | 0.2528+0.057
R3B2048_SMOTE | 0.158+0.002 | 0.688+0.018 | 0.293+0.007 | 0.448+0.021 | 0.602+0.004 | 0.169+0.047 | 0.261+ 0.057

The performance of the Tab Net model under five-fold stratified cross-validation revealed

similar outcomes across the two datasets, R2B2048 and R3B2048, with the latter

demonstrating a slight advantage. Stratified Cross Validation results showed an improved

performance in the metrics of AUROC, Top 2 TSS, Precision, Recall and Fl-score for the
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R3B2048 dataset. Overall, the evaluation metrics suggest that the model exhibits a relatively
balanced predictive behavior (F1-Score 0.261+ 0.057 and Precision 0.602+0.004), however,
the recall metric had a low value (0.169+0.047) and this means that the model have a
conservative tendency in identifying true positive instances, which could limit the effectiveness

of the model in cases where sensitivity is critical.

Random Forest Model

SMOTE Random Forest.

Table 7
Comparison of the performance of the first dataset without SMOTE (R2B2048) and the first dataset with

SMOTE (R2B2048 MLSMOTE) in the Random Forest model.

Hamming Top 2 Top § -
Loss AUROC TSS TSS Precision | Recall | F1-score
R2B2048 0.067 0.790 0.503 0.718 0.660 0.433 0.523
R2B2048 MLSMOTE 0.068 0912 0.395 0.608 0.795 0.640 0.709

Model performance was significantly improved by using MLSMOTE, as shown by a
comparison of the dataset without and with SMOTE. In particular, the AUROC metric grew
from 0.790 to 0.912, improving the model's capacity to distinguish between various odor
descriptors. The F1-score also increased from 0.523 to 0.709, suggesting a more equitable
trade-off between recall and accuracy. On the other hand, the Top-5 TSS and Top-2 TSS
decreased from 0.718 to 0.608, indicating that although the model's overall classification
accuracy increased, its capacity to accurately rank the real label among the top five and two

predictions were somewhat weakened.



Performance Random Forest.

Table 8
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Performance metrics of the Random Forest model on the first dataset with MLSMOTE (R2B2048 SMOTE)

with n=100 and n=300

Hamming Top 2 Top § . F1-

Loss AUROC TSS TSS Precision | Recall score

RZBZO:EI(?(I)V[OTE 0.086 0912 0.395 0.608 0.795 0.640 0.709

RZBZO:E?;(?(I)V[OTE 0.085 0.915 0.399 0.608 0.797 0.642 0.711
Table 9

Performance metrics of the Random Forest model on the second dataset with MLSMOTE (R3B2048 SMOTE)

with n=100 and n=300

Hamming Top 2 Top § . F1-

Loss AUROC TSS TSS Precision | Recall score

MBZO:EI(?(I)V[OTE 0.085 0912 0.400 0.605 0.804 0.643 0.714
R3B20:2§§(1)V[OTE 0.084 0916 0.402 0.607 0.807 0.646 0.717

The effect of increasing the number of trees from 100 to 300 was analyzed for both
R2B2048 SMOTE and R3B2048 SMOTE datasets. The results showed a marginal
improvement in AUROC scores across both datasets, while the F1-score increased slightly,
indicating a minor yet consistent enhancement in classification performance. Meanwhile, there
were very slight changes in Top-2 and Top-5 TSS, indicating that the influence of a larger tree

count on ranking accuracy was minimal.

Stratified Cross Validation Random Forest.
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Average performance * standard deviation of the five folds conducted through cross-validation in the Random

Forest model.
HaIIj:)I;ISIHg AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score
RZBZO:S&?})V[OTE 0.084+0.002 | 0.917+£0.002 | 0.398+0.012 | 0.610£0.009 | 0.802+0.013 | 0.640+0.004 | 0.712+0.005
R3B20:3§§(1)VIOTE 0.082+0.002 | 0.916+£0.004 | 0.396+0.013 | 0.606+0.009 | 0.817+0.011 | 0.653+0.007 | 0.726+0.008

The five-fold stratified cross-validation results show the Random Forest model’s stability and

strong classification performance across different dataset partitions. With n = 300, both

datasets (R2B2048 SMOTE and R3B2048 SMOTE) showed high AUROC scores and low

Hamming Loss, suggesting a low percentage of incorrectly categorized labels and potent

discriminating potential.

XGBoost Model

SMOTE XGBoost.

Table 11

Comparison of the performance of the first dataset without SMOTE (R2B2048) and the first dataset with

SMOTE (R2B2048 MLSMOTE) in the XGBOOST model.

Hamming Top 2 Top § -
Loss AUROC TSS TSS Precision | Recall | F1-score
R2B2048 0.066 0.833 0.508 0.728 0.667 0.464 0.547
R2B2048 MLSMOTE 0.086 0.932 0.398 0.616 0.795 0.643 0.711

For the XGBoost model, all the metrics got a better score, except for the Top 2, Top 5 TSS and

hamming loss indicating that its ability to correctly place the actual label in the top five and

two forecasts were a little affected. The model with data augmentation got an improvement
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from 0.833 to 0.932 for AUROC and from 0.547 to 0.711 for F1-score, meaning that precision

and recall are having a good balance.

Performance XGBoost.

Table 12
Performance metrics of the XGBoost model on the first dataset with MLSMOTE (R2B2048 _SMOTE) with

n=100 and n=300

Hamming Top 2 Top § . F1-

Loss AUROC TSS TSS Precision | Recall score

RZBZO:E;E(I)V[OTE 0.086 0.932 0.398 0.616 0.795 0.643 0.711

RZBZO:E?;(?(I)V[OTE 0.081 0.936 0.393 0.611 0.788 0.694 0.738
Table 13

Performance metrics of the XGBoost model on the second dataset with MLSMOTE (R3B2048 SMOTE) with

n=100 and n=300

Ha::)r;lslng AUROC | Top2TSS | Top5TSS | Precision | Recall | Fl-score
RIB20A8 SMOTE L 0.083 0.933 0.404 0.606 0813 | 0652 | 0.724
R3B20:=8§§(1)VIOTE 0.080 0.938 0.397 0.599 0.799 | 0697 | 0.745

About the performance of the model with the different tree count, it can be appreciated that on
both datasets, the best results were gotten with 300 trees, meaning that the model got to
understand and predict better metrics with more trees. The improved metrics were hamming
loss, AUROC, recall and F1-score which are the most important ones. For Top 2, Top 5 TSS
and precision were slightly lower, with a minimal difference. And as an overall for all the
metrics, the highest one is AUROC on both datasets with 300 trees, having 0.936 for

R2B2048 SMOTE, and 0.938 for R3B2048 SMOTE.



Stratified Cross Validation XGBoost.

Table 14

Average performance * standard deviation of the five folds conducted through cross-validation in the
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XGBOOST model.
Haﬁ)l;lsmg AUROC Top 2 TSS | Top 5 TSS Precision Recall Fl1-score
RZBZO:EE(?(?/IOTE 0.081+0.001 | 0.953+0.001 | 0.377+0.012 | 0.547+0.009 | 0.793+0.011 | 0.683+0.006 | 0.734+0.003
R3B20:i}§§(1)\/[OTE 0.080+0.002 | 0.954+0.002 | 0.375+0.001 | 0.548+0.007 | 0.803+0.009 | 0.691£0.004 | 0.742+0.006

Finally, the stratified cross validation with 5-fold was applied to the dataset with the bests

results, which were both with 300 trees. All the performance metrics improved their results

because the model had several attempts to learn the data. The only metrics with lower score

were AUROC on R3B2048 SMOTE, Top 5 TSS on R2B2048 SMOTE, and Recall and F1-

score on both datasets, but the standard deviation is relatively low, so the results remain very

confident.

Two-Way ANOVA

Table 15

Two-Way ANOVA Results for Model and Database Performance.

Effects Valor p
Radius 0.000
Model 0.000
Data Base*Model 0.001
Error
Total

The two-way ANOVA results indicate a significant main effect of the radius on molecular

representation on model performance (p = 0.001), a significant main effect of the model (p =
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0.001), and a significant interaction effect between radius on molecular representation and
model (p = 0.001). These results suggest that the choice of database and model significantly
influence performance, and that the effect of the model varies depending on the radius on

molecular representation used.

Tukey’s Results for Model and Database Interaction.

A Tukey post-hoc test was conducted to determine which model and database combinations
exhibited significant differences in performance. It’s important to mention that in Table 16
‘Mean’ represents the average Fl-score obtained from the cross-validation folds, while the
‘Groups’ indicate that combinations sharing the same letter are not significantly different,

whereas those with different letters show significant differences.

Table 16

Tukey’s Results for Model and Database Interaction with a confidence level of 95%.

Radius*Model Mean Groups
R3B2048 SMOTE XGBoost 0.742460 A
R3B2048 SMOTE Random Forest 0.726152 B
R2B2048 SMOTE Random Forest 0.712678 B
R2B2048 SMOTE XGBoost 0.712331 B
R3B2048 SMOTE Tab Net 0.272458 C
R2B2048 SMOTE Tab Net 0.244475 C

Means that do not share a letter are significantly different.

According to the results, the XGBoost model trained on the R3B2048 SMOTE database had
the greatest mean performance (0.742460) and is in Group A, meaning it is superior to and
substantially different from the other model-radius on molecular representation combinations.

This analysis suggests that the performance is significantly affected by both model and
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database selection, with certain models being more sensitive to changes in the dataset than

others.

Group B includes Random Forest (both R3B2048 and R2B2048 SMOTE) and XGBoost on
R2B2048 SMOTE. While there are no statistically significant differences between them, they

all perform noticeably worse than XGBoost on R3B2048 SMOTE.

However, regardless of whether it was trained on R3B2048 or R2B2048 SMOTE, TabNet

performs the worst and is in Group C, which is quite different from Groups A and B.

Testing with Cacao Database
The results obtained from the validation of robustness and predictive capability of the best-

performing model (XGBoost with R3B2048 SMOTE) are presented in Table 17:

Table 17
Performance metrics of the XGBoost model with the Cacao database with MLSMOTE (R3B2048 SMOTE) with

n=300 considered just for testing

Hamming Loss | AUROC | Top2 TSS | Top STSS | Precision | Recall | F1-score

R3B2048 n=300 0.099 0.944 0.164 0.118 0.042 0.758 0.079

In the Cacao database, the Hamming Loss value of 0.099 is low, indicating that most
predictions do not contain individual label errors. The AUROC of 0.944 is as good as the other
datasets, suggesting that the model effectively distinguishes between positive and negative
classes in this new dataset. However, the Top-2 TSS (0.164) and Top-5 TSS (0.118) values are
quite low, indicating that the model does not correctly assign the most probable aromas in the
first prediction positions. The low precision (0.042) suggests that the model's predictions are

not accurate in a significant number of cases. Despite this, the recall (0.758) is high, indicating
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that the model can identify a significant number of important labels. This imbalance suggests
that the model is conservative in assigning labels when it is very confident, which can be
problematic in applications that require a broader coverage of the aromatic profiles. Lastly, the
Fl-score (0.079) indicates weak overall performance, reflecting a poor balance between

precision and recall in multi-label classification.

Table 18
Performance metrics of the XGBoost model with the Cacao database with MLSMOTE (R3B2048 SMOTE) with

n=300 considered for training and testing.

Hamming Loss | AUROC | Top2 TSS | Top STSS | Precision | Recall | F1-score

R3B2048 n=300 0.005 0.663 0.248 0.251 1.000 0.155 0.269

To further explore the model’s behavior, the cacao database was also used as both the training
and testing set under the same model and parameters (R3B2048 SMOTE, n=300), with the
results shown in Table 18. Compared to the scenario where the cacao data was used solely for
testing, some key differences emerged. The Hamming Loss dropped significantly from 0.099
to 0.005, indicating fewer errors per label. Precision improved drastically to 1.000, meaning
that all predicted labels were correct, though this came at the expense of recall, which dropped
to 0.155. This shift suggests the model became extremely cautious, only predicting labels when
it was highly certain. Despite a slight improvement in Top-2 TSS (0.248) and Top-5 TSS
(0.251), the Fl-score increased only modestly to 0.269, highlighting the tradeoff between
precision and recall. These results reinforce the observation that while training on the same
dataset improves certain metrics, it can also reduce the model’s ability to generalize and predict

a broader range of relevant labels, limiting its robustness in real world applications.
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DISCUSSION

The present study investigated the efficacy of machine learning models in predicting
aromatic profiles based on molecular characteristics. Three different algorithms: TabNet,
Random Forest, and XGBoost, as well as thorough preprocessing, data augmentation strategies
(MLSMOTE), detailed feature extraction using Morgan Fingerprints with varying radius were

all part of the evaluation.

Initially, the dataset showed a significant label imbalance, with a Mean Imbalance Ratio
(MeanlIR) of 6.1, indicating severe imbalance mostly as a result of the "Sweet" descriptor being
overrepresented. With the implementation of MLSMOTE, this imbalance was successfully
decreased to a MeanlR of 3.7633, improving the predictive performance for all models. This
corroborates Sukhwani's (2021) assertion that improving generalization in imbalanced multi-
label scenarios requires the production of synthetic data. All models showed better metrics
such as AUROC and F1-score, proving that MLSMOTE is a helpful method for addressing

class imbalance issues.

Among the three models, XGBoost achieved the highest mean performance metrics,
according to the two-way ANOVA and the Tukey HSD test. It also showed higher overall
performance, particularly on the R3B2048 dataset with MLSMOTE. This outcome supports
earlier research that demonstrated XGBoost's durability and efficiency in processing high-
dimensional chemical datasets because of its efficient handling of complex relationships

between molecular structure and sensory descriptors (Kou et al., 2023).

On the other hand, TabNet demonstrated much worse performance metrics in both radius-
based datasets. Although its sequential attention processes and interpretability benefits
potentially improve feature usage (Arik & Pfister, 2021), its predictive efficacy was limited in

this specific sensory prediction scenario. Moreover, stratified cross-validation indicated that
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TabNet barely improved predictive metrics like AUROC and accuracy, but it had significant
recall issues, which would limit its usefulness in applications where sensitivity to true positives

1s crucial.

Another significant contribution of the present research involved evaluating the impact of
molecular feature extraction parameters on prediction accuracy. Minimal differences were seen
when comparing Morgan Fingerprints with radius 2 and 3. However, the slightly improved
metrics with radius 2 indicate that this parameter choice could offer a better compromise
between computational efficiency and informational content, resonating with findings by Zhou

and Skolnick (2024).

Cross-validation analysis confirmed the stability and robustness of Random Forest and
XGBoost models, consistently demonstrating high predictive performance and reliability
across data partitions. Additionally, the 5-fold stratified cross-validation (SCV) validated their
generalizability by maintaining consistent label distributions, confirming the suitability of
these models for practical applications in the fragrance and food industries (Szeghalmy &

Fazekas, 2023).

The results of using the external cacao database to validate the optimum model (XGBoost
with R3B2048 SMOTE) were not quite consistent. Its accuracy in diverse classification tasks
was supported by a low Hamming Loss (0.099) and high AUROC (0.944), which demonstrated
great overall discriminating capabilities. Nevertheless, low Top-2 TSS (0.164) and Top-5 TSS
(0.118) values revealed the model's limitations in accurately ranking the most probable
aromatic descriptors. Additionally, although having a high recall (0.758), the poor accuracy
(0.042) demonstrated a cautious approach to label assignment, which limited its usefulness.
Last but not least, a low F1-score (0.079) revealed a poor recall-precision balance, suggesting

that multi-label categorization scenarios might need a lot more work.
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Limitations & Recommendations

Several limitations must be acknowledged. The results were limited since the technical
equipment utilized to run the simulations lacked the computing capacity and processors
necessary to handle more complicated models. Due to time constraints, SMILES was
represented textually; however, the introduction of molecular graphs or learnt embeddings
might enhance the representation of molecules, enabling the model to capture more intricate
structural interactions that impact the perception of odor. As a result, it's possible that certain

crucial structural elements of olfactory senses are not fully represented.

Another limitation was the datasets. Using pre-existing databases raises the possibility of
biases since they can naturally include overrepresented groups of chemical structures or
aromatic descriptions. Also, the size of the dataset, which, for efficient purposes, required the
application of MLSMOTE to introduce artificial data and balance the dataset. Finally, external
validation with the cacao database revealed considerable limitations in precise ranking
accuracy (Top-2 and Top-5 TSS) and overall precision, highlighting the model's limited
transferability and generalization capacity to unseen, specialized datasets.

In order to eliminate the necessity for artificial data augmentation techniques, future research
could focus on creating bigger, naturally balanced datasets from the beginning. Furthermore,
this study only included the 90% of the relevant descriptors, resulting in 44 descriptors out of
the original 476; therefore, future research should include a wider variety of descriptors.
Increasing the number of descriptors and chemical structures might improve model training,

boost performance metrics, and improve prediction accuracy.

Verifying the statistical power of an ANOVA is essential, as low power can make

results less robust and increase the risk of Type Il errors. According to Alade et al. (2024), the
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number of imputations, effect size, and missing data all have an impact on power in a two-
factor ANOVA. Although the study results were encouraging, we were unable to verify the
power of our ANOVA analysis due to time constraints. Therefore, power analysis should be

included in future research planning.

Overall, the present study effectively demonstrated the potential of machine learning
methods in predicting sensory profiles. It highlighted the importance of data preprocessing,
effective feature extraction, and robust algorithmic approaches, notably exemplified by the
XGBoost model. Despite existing limitations, continuous methodological improvement and
integration of larger datasets have great potential to increase predictive accuracy and practical

use in the aromatic profile prediction process.
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CONCLUSIONS

This study demonstrated viability of using machine learning techniques (Random Forest,
TabNet, and XGBoost) for the prediction of aroma descriptors from the molecular structures
(SMILES) after using an encoding of Morgan Fingerprints. Aditionally, among the tested
models with the different databases, XGBoost with the R3B2048 database balanced with
MLSMOTE techniques, showed the best predictive performance.

Data augmentation with the creation of synthetic data using MLSMOTE helped
mitigate the imbalance in the data sets, improving the models’ generalizability and predictive
stability, demonstrated in some metrics such as AUROC, Precision, and F1-Score in all the
models of machine learning. Additionally, the stratified cross-validation confirmed the
reliability and the robustness of the XGBoost model, over the other models of Random Forest
and TabNet that were also tested. This emphasizes the high capability of this algorithm to make
a correct multi-label classification in odor prediction.

Furthermore, the Two-Way ANOVA helped to have solid statistical validation,
confirming that there is a significant interaction between the databases with different
parameters of the Morgan fingerprints radius (two and three) with the model type, showing that
it’s necessary to select carefully a database and machine learning algorithm. Moreover, the
Tukey’s test gave statistical validation that the best model to predict is the XGBoost model.

Finally, validation with the test of an independent database (cacao database), allowed
to prove the utility and applicability of the XGBoost model in other areas. This helped to
determine what is working in the algorithm and what else its necessary to improve, to be able
to apply this as an efficient alternative of odor prediction and expand it to use to more

industries, like fragrances and flavors.
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ANNEXES

ANNEX 1: LINK ONE DRIVE CODES

Tesis 2025

*The step-by-step codes are on the “Data Bases” folder

ANNEX 2: LINK DATABASES PYRFUME GITHUB

https://github.com/pyrfume/pyrfume-data/tree/main/

ANNEX 3: RESULTS OF THE IRLBL METRIC BEFORE AND AFTER THE DATA

AUGMENTATION

IRLbl_with MLSMOTE IRLbl_without MLSMOTE

Vanilla-like 48.698413 Musky 15.934211
Winey 39.844156 Vanilla-like 14.163743
Leafy 39.333333 Leafy 12.294416

Camphoraceous | 36.963855 Aldehydic 12.019851

Gourmand 36.52381 | Camphoraceous | 10.716814

Tobacco-like 36.094118 Tobacco-like 10.622807

Musky 35.674419 Gourmand 9.707415
Aldehydic 32.294737 Powdery 9.460938
Powdery 30.68 Winey 9.071161
Ethereal 30.68 Metallic 8.807273
Rancid 28.943396 | Microbiological | 8.238095
Chocolatey 28.146789 Terpenic 8.0599
Metallic 27.890909 Meaty 7.876423

Microbiological | 25.147541 Alliaceous 7.676704



https://estudusfqedu-my.sharepoint.com/:f:/g/personal/gvelez_estud_usfq_edu_ec/Eh541IwTSjBBpHFAIsv7ApoBPKJTOUe3korabBnyv95Cdw?e=lQW766
https://github.com/pyrfume/pyrfume-data/tree/main/

Meaty 23.782946 Roasted 7.592476
Dry 23.6 Chocolatey 7.545171
Alliaceous 21.158621 Dry 7.384146
Phenolic 19.417722 Rancid 6.718447
Foul-smelling 19.175 Phenolic 6.315515
Medicinal-like | 18.593939 | Cabbage-like 6.290909
Terpenic 16.147368 Ethereal 5.606481
Roasted 14.75 Sulfuric 5.358407
Cabbage-like 12.783333 | Medicinal-like | 5.293989
Sulfuric 10.125413 Waxy 5.142251
Baked 9.5875 Fresh 5.040583
Molten 9.268882 Baked 4.968205
Nutty 8.617978 Bitter 4.844
Minty 8.382514 Foul-smelling 4.435897
Septic 8.314363 Minty 4.395644
Musty 8.116402 Molten 4.245399
Waxy 7.826531 Nutty 4.143713
Fresh 7.575309 Septic 3.993405
Sickening 6.941176 Musty 3.766719
Fatty 5.12187 Lemon 3.021834
Earthy 4.932476 Sickening 3.008696
Bitter 4.869841 Fatty 2771167
Lemon 4.763975 Earthy 2.615551
Chemical 4.606607 Chemical 2.218965
Spicy 3.105263 Spicy 1.849561
Woody 1.951654 Woody 1.505283
Herbaceous 1.437002 Fruity 1.232884
Fruity 1.413825 Herbaceous 1.216169
Fragrant 1.203609 Fragrant 1.098911
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ANNEX 4: COMBINATIONS AND DATA USED FOR ANOVA ANALYSIS

Model Data Base Fold number F1 Score MICRO
Random Forest R2B2048 1 0.7068
Random Forest R2B2048 2 0.7158
Random Forest R2B2048 3 0.7176
Random Forest R2B2048 4 0.7059
Random Forest R2B2048 5 0.7171
Random Forest R3B2048 1 0.7169
Random Forest R3B2048 2 0.7326
Random Forest R3B2048 3 0.7232
Random Forest R3B2048 4 0.7214
Random Forest R3B2048 5 0.7363

Tab Net R2B2048 1 0.2138
Tab Net R2B2048 2 0.2451
Tab Net R2B2048 3 0.1764
Tab Net R2B2048 4 0.1522
Tab Net R2B2048 5 0.3407
Tab Net R3B2048 1 0.2559
Tab Net R3B2048 2 0.1819
Tab Net R3B2048 3 0.3456
Tab Net R3B2048 4 0.2235
Tab Net R3B2048 5 0.2959
XGBoost R2B2048 1 0.7107
XGBoost R2B2048 2 0.7123
XGBoost R2B2048 3 0.7175
XGBoost R2B2048 4 0.7094




XGBoost R2B2048 5 0.7117
XGBoost R3B2048 1 0.7370
XGBoost R3B2048 2 0.7433
XGBoost R3B2048 3 0.7502
XGBoost R3B2048 4 0.7356
XGBoost R3B2048 5 0.7460

ANNEX 5: LINK DATABASE CHEMICAL COMPONENTS AND AROMA

PROFILES

https://github.com/ggvvmm/Aroma-Profiles

ANNEX 6: FORMULAS OF EVALUATION METRICS
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Performance
Formula Leyend
Metric

fori=1toN and forj

— TENO)
mismatch_count ltoLify j

Hamming Loss ,
N L +* ﬁ(‘)j then mismatch_count

= mismatch_count + 1

TPR: True Positive Rate

AUROC [ TPR(FPR) dFPR N
FPR: False Positive Rate
NSrop 2: Number of samples where
NS the top 2 predictions include at least
Top 2 TSS Norop2. p=p
TS one true label
TS: Total number of samples
NSrop 5s: Number of samples where
NS the top 5 predictions include at least
Top 5 TSS —Top5 PoPp
TS one true label

TS: Total number of samples



https://github.com/ggvvmm/Aroma-Profiles
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TP: True Positive

TP
Precision —_— o
TP + FP FP: False Positive
TP TP: True Positive
Recall — .
TP +FN FP: False Negative
F1-Score Precision X Recall | -

Precision + Recall




