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RESUMEN 

Este trabajo investiga la relación predicha entre la estructura química y la percepción olfativa 

utilizando algoritmos de aprendizaje automático. La colección contiene 44 descriptores de olor 

para 5,855 moléculas, cada una representada por su SMILES isomérico. Los datos fueron 

recopilados de bases de datos públicas y privadas y limpiados tras un exhaustivo 

preprocesamiento. Para traducir los SMILES a un lenguaje comprensible para el aprendizaje 

automático, se aplicaron las Morgan Fingerprints, creando dos conjuntos de datos con dos 

valores de radio diferentes (2 y 3). Tres algoritmos de aprendizaje automático —Random 

Forest, XGBoost y TabNet— fueron entrenados y evaluados utilizando métricas que incluyen 

Hamming Loss, AUROC, F1-score y Top-k True Skill Statistics ajustadas. Para abordar el 

desbalance multietiqueta del conjunto de datos, se implementó MLSMOTE, lo que mejoró 

significativamente la capacidad de generalización de los modelos. Se aplicaron un ANOVA de 

dos vías y una prueba de Tukey HSD para evaluar la significancia estadística de las 

interacciones entre el modelo y el conjunto de datos, identificando a XGBoost entrenado con 

el conjunto de datos MLSMOTE R3B2048 como el modelo de mejor desempeño. Este modelo 

fue validado adicionalmente utilizando un conjunto de datos externo de compuestos de cacao. 

Los resultados muestran que el aprendizaje automático, y específicamente XGBoost, puede 

predecir con precisión los atributos sensoriales. Esto abre la puerta a avances en la creación de 

fragancias y sabores y proporciona una alternativa basada en datos a las técnicas 

convencionales de categorización de olores. 

 

Palabras clave: Aprendizaje automático, Clasificación multietiqueta, Predicción de aromas, 

SMILES isoméricos, Huellas digitales de Morgan (Morgan Fingerprints), XGBoost, Aumento 

de datos, MLSMOTE, Descriptores olfativos, Predicción de perfiles sensoriales  
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ABSTRACT 

This work investigates the predicted link between chemical structure and olfactory perception 

using machine learning algorithms. The collection contains 44 odor descriptors for 5,855 

molecules, each of which is represented by its isomeric SMILES. It was collected from public 

and private databases and cleaned after extensive preprocessing. To translate SMILES into a 

machine learning language, Morgan Fingerprints were applied creating two datasets with two 

different radius values (2 and 3). Three machine learning algorithms: Random Forest, 

XGBoost, and TabNet were trained and evaluated using metrics including Hamming Loss, 

AUROC, F1-score, and adjusted Top-k True Skill Statistics.  To address the dataset’s multi-

label imbalance, MLSMOTE was implemented, significantly improving the models’ 

generalization ability. A two-way ANOVA and Tukey HSD test valued the statistical 

significance of model and dataset interactions, identifying XGBoost trained on the MLSMOTE 

R3B2048 dataset as the best-performing model. This model was further validated using an 

external dataset of cacao compounds. The results show that machine learning, and specifically 

XGBoost, can accurately predict sensory attributes. This opens the door for advancements in 

fragrance and taste creation and provides a data-driven alternative for conventional odor 

categorization techniques.  

 

Key words: Machine Learning, Multi-label Classification, Aroma Prediction, Isomeric 

SMILES, Morgan Fingerprints, XGBoost, Data Augmentation, MLSMOTE, Olfactory 

Descriptors, Sensory Profile Prediction 
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INTRODUCTION 

The prediction of aroma profiles from molecular characteristics is a growing field of 

study due to its impact on various industries, such as fragrances, food, and pharmaceuticals. 

These industries often develop aromas and flavors using a traditional trial-and-error method, 

which, besides being time-consuming and costly, is highly subjective. Saini and Ramanathan 

(2022) argue that odor is a psychological construct since its classification relies on verbal 

descriptions provided by individuals, which can be influenced by factors such as age, culture, 

experience, and the evaluator’s vocabulary. 

To overcome this limitation, machine learning has proven to be more accurate in 

classifying aromatic profiles, as they rely on the intrinsic properties of molecules (Sisson et al., 

2024). Furthermore, predictive models not only improve efficiency in product development 

but also facilitate the creation of new odor and flavor combinations that are tailored to 

consumer preferences (Keller et al., 2017). In this regard, machine learning undoubtedly has 

the potential to accelerate innovation, reduce costs, and expedite the discovery of new 

compounds, fragrances, and flavors, establishing itself as a key tool for optimizing and 

advancing the sensory industry. 

In this work, we aim to evaluate the performance of machine learning and deep learning 

models to predict the olfactory descriptors of molecules based on their SMILES 

representations. The dataset was compiled from multiple public sources and curated to include 

5,855 molecules labeled with 44 standardized aroma descriptors. The models analyzed include 

Random Forest, XGBoost, and TabNet, each evaluated under different configurations of 

Morgan Fingerprints (radius 2 and 3) and with and without the application of the MLSMOTE 

data augmentation technique to mitigate label imbalance. To guarantee reliable model 

comparison, statistical tests (ANOVA and Tukey HSD) and stratified cross-validation were 
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also used in this study. The findings show that XGBoost had the greatest overall performance 

across the following metrics: Hamming Loss, AUROC, Top 2 TSS, Top 5 TSS, Precision, 

Recall, and F1-Score when trained on the SMOTE-augmented dataset using Morgan 

Fingerprints with radius 3. This suggests that XGBoost has the ability to provide precise and 

broadly applicable aroma prediction in multi-label classification scenarios. 
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LITERATURE REVIEW 

Predicting olfactory perception from molecular structures has been a longstanding 

challenge in sensory research. Conventional methods depend on Quantitative Structure-Odor 

Relationship (QSOR) models, which correlate molecular properties (molecular weight, 

functional groups, etc.) with statistical techniques such as principal component analysis (PCA) 

and multiple linear regression (MLR) (Saini & Ramanathan, 2022). But according to Keller et 

al. (2017) the nonlinearity and complex relationships between molecular structure and odor 

perception are a frequent problem for QSQR models. Advances in machine learning (ML) and 

deep learning have made it possible to create more reliable prediction models by automatically 

identifying patterns in large data bases using techniques like Random Forests, Support Vector 

Machines (SVMs), and Graph Neural Networks (GNNs) (Sanchez-Lengeling et al., 2019). 

A key study by Keller et al. (2017) developed a machine learning model that utilizes 

chemoinformatic descriptors of odor molecules to predict sensory attributes. The study 

predicted odor intensity and semantic descriptors such as “sweet”, “fruity”, and “spicy”. They 

discovered that linear models and Random Forest performed well in capturing important 

chemical characteristics associated with sensory perception.  

Another approach to odor prediction using machine learning was introduced by Saini 

& Ramathan (2022). They identified the relationship between odor and chemical structure 

using a multi-label classification approach. They used Random Forest, Binary Relevance, and 

Classifier Chains models to predict several olfactory descriptors from chemical 

representations.  They emphasized the complexity of QSOR modeling, highlighting that small 

structural changes can drastically alter perceived odors.  

As part of a machine learning framework, XGBoost was used in "Data-Driven 

Elucidation of Flavor Chemistry" (Kou et al., 2023) to predict olfactory perceptions based on 

the chemical structures of molecules. When it came to managing high-dimensional chemical 
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datasets and enhancing prediction accuracy, XGBoost was very helpful. The outcomes showed 

that this model was able to identify intricate patterns in olfactory data, which made them useful 

for studying taste chemistry and creating new aromatic chemicals.  

Sanchez-Lengeling et al. (2019) used GNNs to predict perceptual odor similarities, 

which significantly outperformed QSOR models. Their research not only showed that deep 

learning captures better perceptual relationships, resulting in predictions that are more accurate 

and broadly applicable, but it also has demonstrated great performance in fields such as 

bioinformatics and cheminformatics, indicating its potential application in odor prediction. 

Additionally, TabNet, a deep learning model developed by Arık & Pfister (2021), was 

proposed as a new method for tabular data learning. TabNet improves feature interpretability 

and learning efficiency by using sequential attention mechanisms, in contrast to conventional 

decision tree-based models like Random Forest and XGBoost.  

To assess the performance of odor prediction models, researchers employed different 

metrics whether the task is classification or regression. The micro-averaged F1-score is 

commonly used for multi-label classification because it balances precision and recall, making 

sure there is a fair evaluation across all odor labels (Saini & Ramanathan, 2022). For Graph 

Neural Networks and Random Forest models, authors used the AUROC (Area Under the 

Receiver Operating Characteristic Curve) to evaluate how effectively they differentiate odor 

descriptors (Sanchez-Lengeling et al., 2019).  

METHODOLOGY 

Datasets and Preprocessing Operations.  

The database used in this study was built by combining both public and private datasets. 

ChemTasteDB, FlavorDB, Goodscents, IFRA_2019, Keller, Leffingwell, and Sharma_2021b 

were among the public datasets that were sourced from GitHub and compiled in the Pyrfume 
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repository (2024), for more information about the databases see annex 2. Two more datasets 

related to distilled rum and gin were included in order to expand the variety of aroma profiles 

(Camilo et al., 2023). These were provided by researchers from Universidad de los Andes 

(UNIANDES) based on previous studies. The databases included key information for each 

molecule, such as CAS number, compound name, IUPAC name, PubChem CID, SMILES 

notation, and odor descriptors. Initially, the dataset contained 361,640 molecules. However, 

after preprocessing the data, such as filtering duplicates, eliminating blank data, the database 

comprised 5,855 observations.  

 SMILES (Simplified Molecular Input Line Entry System) is a linear notation that uses 

ASCII character strings to uniquely and unambiguously describe molecular structures. There 

are two main variants of SMILES: Canonical SMILES that provide a standardized 

representation of the molecule’s two-dimensional structure, without including information 

about chirality or isotope specification, and Isomeric SMILES, which in addition to basic 

connectivity, incorporate details about stereoisomeric configuration and isotope specification, 

allowing a more comprehensive description of the molecule’s three-dimensional structure 

(Weininger, 2022). For this study, Isomeric SMILES were chosen as they provide more 

detailed structural information, which may enhance model performance by improving the 

accuracy of odor descriptors predictions.  

PubChemPy Python library was used to integrate chemical data of Isomeric SMILES 

and to verify those already recorded. The PubChem database, which contains comprehensive 

information on chemical substances, is accessible through this library.  PubChemPy is a Python 

package that serves as a wrapper for the PubChem REST API, enabling users to connect with 

the PubChem database and get chemical compound data with ease (Gqamana, 2024). This tool 
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simplifies the search for chemical compounds by name, substructure, chemical standardization, 

graphical representation, and obtaining detailed chemical properties. 

Since various sources utilized different terminology to refer to the same odor quality, 

descriptor names were first standardized to eliminate repetition across datasets. Similar 

descriptors were grouped under a unified label (e.g., Fruity, Non-citrusy fruity, and Tropical-

fruity were all classified as Fruity). The frequency of occurrences for each unified description 

was then quantified by creating a frequency table. Ninety percent of the cumulative frequency's 

descriptors were chosen. This process led to a final set of 44 different descriptors, being Sweet 

the descriptor with the highest frequency in the database, 3068 times, and Vanilla-like the last 

descriptor appearing 63 times. This is graphically represented in Graph 1.   

Figure 1 

Descriptors frequency in the Data Base 

 

The next step in the study involved SMILES representations to a proper interpretation 

by machine learning models. Morgan Fingerprints was chosen for molecular feature extraction 

based on its effectiveness in prior studies. It has demonstrated success in a variety of machine 
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learning techniques, such as random forests, graph neural networks, and classifier chains 

(Keller et al., 2017; Sanchez-Lengeling et al., 2019; Saini & Ramanathan, 2022).  

The Morgan Fingerprints methodology is a graph-based molecular representation 

system that uses the molecule's SMILES notation to record its structural properties and 

connections. This approach, which is incorporated into the RDKit library, uses the Extended-

Connectivity Fingerprints (ECFP) method, which views the bonds between molecules as 

connections and atoms as nodes in a graph. This enables the use of a hashing algorithm to 

generate unique IDs (Rogers & Hahn, 2010).  Morgan fingerprints are more informative than 

other fingerprinting methods such as PubChem fingerprints or FP2 fingerprints because they 

can flexibly capture chemical structures by considering substructures of different sizes through 

a radius parameter (Zhou & Skolnick, 2024). According to Zhou and Skolnik (2024), a bit of 

2048 and a radius of 2 offer an optimal balance between computational efficiency and 

information richness. This study, however, also wanted to analyze whether adjusting the radius 

parameter could improve odor prediction in machine learning models. To compare their effects, 

two separate databases were generated: one utilizing a radius of 2 and another one with a radius 

of 3, while maintaining a bit size of 2048 in both cases. It is important to mention that both 

databases have the same molecules, the only difference is the parameters on the Morgan 

Fingerprints. The databases will be referred to as R2B2048 for the first one and R3B2048 for 

the second database. The process is visually represented in Graph 2 and the final database can 

be found in Annex 5.  

Figure 2 

Preprocessing flowchart 
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Performance with Cacao Molecules. 

To validate the performance of the optimal model-database combination, the selected 

model was evaluated using a new, independent dataset provided by Universidad de los Andes 

(UNIANDES) from FlavorDB2 (FlavorDB2, 2025), consisting of 276 molecules found in 

cacao. This dataset went through the same preprocessing steps as both datasets R2B2048 & 

R3B2048, but to ensure the proper functionality of the model when applied to new data, the 

cacao dataset was aligned with the 47 descriptors previously selected during preprocessing of 

the original dataset. However, only 35 of those descriptors were present in the cacao data. This 

reduction was due to the absence of certain descriptors in the cacao samples that were available 

in the original dataset; for instance, descriptors like Alliaceous were present in the original 

dataset but not in the cacao set. Consequently, just the overlapping descriptors were kept, 

giving the two datasets a straightforward uniform representation.  

After aligning the descriptors, the best-performing machine learning model identified 

through the two-way ANOVA and Tukey analysis, was evaluated by training it exclusively 

with the original dataset and then testing it with the cacao dataset. This method was created to 

mimic a real-world situation in which the model comes upon completely fresh, unseen data. 

The objective was to evaluate the model's performance and capacity for generalization when 

used on a customized dataset with varying aromatic profiles and chemical compositions.  
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It’s important to mention that the fingerprint parameters used for this new dataset were selected 

based on the optimal ratio determined by the prior ANOVA analysis.  

Data Augmentation. 

To start working on the machine learning algorithms, it was necessary to assess the 

dataset’s balance. For this purpose, metrics like MeanIR and IRLbl were employed; MeanIR 

measures the overall imbalance across labels, whereas IRLbl assesses the imbalance at the label 

level. Additionally, visual tools and representations such as histograms of label distribution 

and a co-occurrence matrix were implemented to analyze correlations between the labels in the 

dataset (Keller et al., 2017). This imbalance ratio according to Noorhalim et al. (2019), can be 

classified into three categories: mild imbalance, when this ratio is less than three; medium 

imbalance, when the ratio is between three and six; and finally, when the ratio is more than six, 

is considered as extreme imbalance ratio.  

Machine learning models generally typically assume a balanced distribution of classes. 

A data augmentation method known as the Multi-Label Synthetic Minority Over-Sampling 

Technique (MLSMOTE) was studied to solve this problem. Sukhwani (2021) claims that 

MLSMOTE is a development of the Synthetic Minority Over-Sampling Technique (SMOTE), 

which was created especially for multi-label classification issues.  MLSMOTE is designed to 

handle data where each instance may be linked with multiple labels at the same time, whereas 

SMOTE creates fresh synthetic samples for minority classes in single-label classification tasks. 

This is especially useful in cases where certain combinations of labels are infrequent, which 

could lead to biased models with reduced generalization ability.  

MLSMOTE starts with identifying minority class instances, unlike conventional 

oversampling methods, MLSMOTE creates new observations based on real data to avoid 

overfitting, instead of simply replicating these instances. Once minority instances are 
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identified, MLSMOTE applies a K-Nearest Neighbors (KNN) algorithm to find similar 

samples within the feature space. From these neighbors, the algorithm interrogates new 

synthetic data points by combining feature values in a weighted manner (Sukhwani, 2021). By 

guaranteeing that synthetic instances are uniformly dispersed throughout the data space instead 

of being grouped in one area as happens with duplication techniques, this procedure aids in 

producing more realistic samples.  One of the main characteristics of MLSMOTE is that it 

maintains the correlation between labels, which means that new samples are produced based 

on the relational structure of labels in the dataset as well as numerical properties.   

A notable discrepancy in the dataset was found by the label imbalance analysis. With a 

Mean Imbalance Ratio (MeanIR) of 6.1, it can be concluded that the dataset exhibited a severe 

class imbalance. Some labels are much less common than the dominating sweet label (3,068 

samples), based on the Imbalance Ratio per Label (IRLbl). Most labels contain fewer than 

1,000 samples, according to a label distribution histogram Graph 2, with the most common 

labels being Sweet, Fragrant, and Fruity.  

Figure 3 

Label Frequency Distribution Histogram before MLSMOTE 
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Furthermore, stronger relationships between frequently occurring labels were also highlighted 

using a label co-occurrence matrix shown as a heatmap in Graph 3.  

Figure 4 

Heatmap: Label co-occurrence matrix  

The co-occurrence matrix shows strong relationships between broad descriptors such 

as Fruity, Sweet, Fragrant, and Fresh, as previously mentioned, which frequently appear 

together across molecules. In contrast, descriptors like Sulfuric or Septic show low co-

occurrence, indicating specificity.  

The co-occurrence matrix shows strong relationships between broad descriptors such 

as Fruity, Sweet, Fragrant, and Fresh, reinforcing the results of the label imbalance analysis. 

This not only affects individual label frequencies but also shapes how often descriptors appear 

together. 

To address the imbalance, MLSMOTE was applied to generate synthetic samples and 

balance the label distribution. A total of 2,000 synthetic samples were generated to enhance 
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the dataset's representation within the classification task. As a result, the Imbalance Ratio per 

Label (IRLbl) (Annex 1) and Mean Imbalance Ratio (MeanIR) was reduced to 3.7633 (Table 

1), which made it possible to continue creating machine learning models with a more evenly 

distributed set of labels. This is also shown on the Frequency Distribution Histogram in Graph 

4.  

Table 1: 

Results of MeanIR metrics before and after applying MLSMOTE to the datasets 

 MeanIR 

Before MLSMOTE 6.1005 

After MLSMOTE 3.7633 

Figure 5 

Label Frequency Distribution Histogram after MLSMOTE

 

It’s important to mention that to evaluate the impact of SMOTE on model performance, a test 

run was conducted for each model using both the first original dataset (R2B247) and the first 

dataset processed with MLSMOTE (R2B247_MLSMOTE). 
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Dataset division. 

In machine learning, the division of datasets into training, validation and test is crucial for 

developing models that generalize unseen data. One of the best practices is to use the 80-10-

10 ratio, allocating 80% for the training set, 10% for the validation, and 10% for the test, 

preventing issues like overfitting and having more reliable performance metrics (Sumalatha et 

al., 2024). Since the dataset on this research with the imbalanced ratio couldn’t satisfy that all 

labels were evenly split on all the sections, Keller et al. uses the 80-20 subsets, being 80% 

(6,284 labels) for the training and 20% (1,571 labels) for the testing, and this also works 

perfectly for the model and becomes effective because it won’t leave each subset too small, 

and also maximizes the training data (2017). It is important to mention that since a fivefold 

stratified cross-validation technique will be used for developing a better model, the validation 

process is no longer necessary because it is already integrated within the training phase. 

Machine Learning Models. 

For the machine learning algorithms, three algorithms were decided to analyze. The first 

one is TabNet, a deep learning architecture designed to work with tabular data proposed by 

Sercan O. Arik and Tomas Pfister in 2019. This model, unlike others from deep learning, uses 

sequential attention to choose which features to reason from at each decision step, enabling 

interpretability and more efficient learning as the learning capacity is used for the most salient 

features (Arik & Pfister, 2021). One of the principal advantages of TabNet, and the reason it 

was selected for this study, is its ability to outperform neural network and decide three variants 

on a wide range of unsaturated tabular datasets in performance. Arik & Pfister (2021) mention 

that this model provides interpretable feature attributions and offers detailed insight into the 

overall behavior of TabNet. Another important contribution from this model is focused on 
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tabular data, where the demonstration of self-supervised learning is significantly improving 

performance when a large amount of unlabeled data is available. 

Complex multi-label classification issues also can be handled using the Random Forest 

algorithm, a machine learning method based on an ensemble of several decision trees. In this 

method a random sample of the dataset is used to train each tree, and the final predictions are 

derived by voting or averaging each tree separately. One Random Forest model can predict 

several classes at once in multi-label issues without having to handle each label independently. 

By enabling each sample to belong to many categories and assigning labels based on the sum 

of the predictions from separate trees, Random Forest effectively manages multi-label 

classification (Clare & King, 2001).  

The latest model in use, XGBoost (Extreme Gradient Boosting), is a machine learning 

model based on decision trees that has been improved for speed and efficiency. It adopts a 

boosting technique in which several trees are trained one after the other, with each new tree 

focusing on fixing the mistakes of the one before it. Techniques including early pruning and 

effective management of missing data are used to increase accuracy and decrease overfitting 

(Sanz, 2024). Because it manages complex relationships between labels, XGBoost is helpful 

for these kinds of multi-label classification tasks. It is also quicker than the earlier mentioned 

Random Forest or Neural Network techniques due to its parallelization and optimization 

features. Because of its balance between accuracy, interpretability, and computational 

economy, XGBoost was utilized in this model.  

The performance of Random Forest and XGBoost were evaluated using n=100 and 

n=300 for each dataset while maintaining the same default hyperparameters. This approach 

ensures consistent conditions across both models, allowing for a more accurate performance 

assessment. 
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Evaluation Metrics. 

Proceeding with the model’s performance metrics, it is essential to choose the most 

appropriate since it will evaluate and understand the model’s behavior, especially in multi-

label classification tasks. Archaya in his article talks that accuracy is a more comprehensive 

performance evaluation and represents the proportion of correctly predicted instances out of 

the total instances, in other words, it is used to know the ability of a model to correctly classify 

data points, regardless of the prediction performance by class or label. Recall is another metric 

used to assess the model's capacity to detect all relevant instances, demonstrating how well it 

captures positive cases.  In multi-label cases, recall is calculated for each label and summed, 

indicating the model's ability to retrieve all relevant labels across occurrences (2024). 

Hamming Loss on the other side is a measure of the proportion of labels that are improperly 

predicted, measuring the percentage of misclassified labels, indicating how many incorrectly 

label assignments occur on average; a lower Hamming Loss suggests better performance. F1-

Score is the fourth evaluation metric in use to measure the model’s accuracy, combining and 

balancing precision and recall, so with a high F1-Score means it is good at both identifying 

relevant instances and minimizing false positives (Acharya, 2024). The performance metric 

Area Under the ROC Curve (AUROC) evaluates a model's capacity to differentiate between 

classes, in this case aromatic profiles.  The True Positive Rate (TPR) and False Positive Rate 

(FPR) at different decision thresholds are compared using the Receiver Operating 

Characteristic (ROC) curve as its foundation. AUROC is notably beneficial in issues with 

imbalanced classes since it does not rely on a set classification threshold.  Multi-label 

classification can be adapted using strategies such as One-vs-Rest (OvR), which calculates a 

ROC curve for each label relative to the rest, or One-vs-One (OvO), which compares each pair 

of labels individually; the latter strategy was utilized in this study. The lasts evaluation metrics 

is the Top-5 TSS and Top-2 TSS, meaning Top-k True Skill Statistics (TSS) evaluate the 
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model's performance based on its ability to correctly predict the true labels within its top-k 

predictions (Yoon & Lee, 2022). Top-5 TSS assesses whether the true label is among the 

model's top five predicted labels, while Top-2 TSS checks within the top two predictions. This 

last evaluation was included since in the challenge the authors are referencing, they include 

this metric, and it was decided to use for a comparison between a global challenge on this topic 

and the current situation, with the opportunity to improve the evaluation metrics’ results. The 

formulas of each metric can be found in Annex 6.  

Stratified Cross-Validation: Evaluating Generalizability and Robustness.  

To evaluate the performance of Random Forest, XGBoost and TabNet algorithms with 

another verification method, stratified cross-validation was used. According to, Szeghalmy & 

Fazekas (2023), the stratified cross-validation (SCV) is a robust version of the common k-folds 

cross-validation where the labels are randomly splited in to the folds, but the variability in the 

distribution can affect the strength of the validation, so the best way to solve this is using the 

SCV where in every fold follows a similar distribution to the original distribution. This 

validation helps to determine which of the models is having better performance by evaluating 

it acrros different folds with similar conditions. Although, the number of folds (k-value) goes 

from 5-10, for this study a 5-folds SCV was selected, to ensure a consistent proportion in all 

the sets of training and testing, and give a more consistent evaluation of the models. (Prusty et 

al., 2022).  

Hypothesis and means test. 

To evaluate the effects of the database and machine learning model on performance, a two-

way ANOVA was conducted. This statistical method was chosen because it allows for the 

examination of both main effects of radius on molecular representation and model and their 

interaction effect, determining whether the model’s performance varies depending on the 

dataset used. The stratified cross-validation process provided the data used in this analysis. A 
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five-fold cross-validation was performed for every combination of database type and machine 

learning model, and the outcomes of F1-score of each fold were saved. As a result, thirty data 

points in total were examined. The F1-score metric was selected because it is particularly useful 

in multi-label classification tasks, it provides a balanced evaluation of both precision and recall. 

This balance is essential when a model must correctly identify not just whether labels are 

present, but also how many and which ones, making it well-suited for complex multi-label 

problems (Bénédict et al., 2021). The data and combinations used for the ANOVA analysis can 

be found in Annex 2. 

However, before applying ANOVA, its assumptions (normality, homogeneity of variances, 

and independence of residuals) were tested to ensure the reliability of statistical conclusions. 

The initial study showed violations of normality and homoscedasticity so, to ensure the validity 

of the ANOVA assumptions, a Box-Cox transformation was applied to the response variable. 

The estimated lambda (λ) value was 3.27, which was rounded to λ = 3 for practical purposes. 

The Box-Cox transformation is commonly used to correct non-normal distributions in 

parametric tests by applying an optimal power transformation, ensuring that ANOVA 

assumptions are met (Sureiman & Mangera, 2020). After the transformation, residual analysis 

confirmed improved normality and variance homogeneity, ensuring the validity and reliability 

of ANOVA results. The Hypothesis for the Two-Way Anova is shown in Table 2.  

Table 2 

Hypotheses for Two-Way ANOVA  

Hypotesis Type Null Hypotesis (H₀) Alternative Hypotesis (H₁) 

Effect of radius on 

molecular 

representation 

The radius on molecular representation 

does not affect performance. 

The radius on molecular representation 

affects performance. 

Effect of Model The model does not affect performance. The model affects performance. 
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Interaction 

(Radius * Model) 

No interaction between the model and 

the radius on molecular representation. 

Interaction exists between the model 

and the radius on molecular 

representation. 

 

Table 1 summarizes the null and alternative hypotheses tested in the two-way ANOVA, 

including  

the effects of the database, the model, and their interaction. The significance level for each 

hypothesis was set at α = 0.05. If the p-value is less than or equal to 0.05, the null hypothesis 

is rejected, indicating a statistically significant effect. On the contrary, if the p-value is greater 

than 0.05, there is not enough evidence to reject the null hypothesis.  

If the two-way ANOVA returns statistically significant results, a Tukey’s Honestly 

Significant Difference (HSD) test will be conducted as a post hoc analysis to identify which 

specific group means differ from each other. The Tukey HSD test determines the differences 

between each pair of means and compares it to a critical value. This method effectively controls 

the family-wise error rate, ensuring that the probability of making at least one Type I error 

remains within the predefined significance level (α = 0.05). This makes it possible to compare 

all pairwise group means in a meaningful way, which provides a better understanding of the 

major differences (Nanda et al., 2021). The hypothesis for the Tukey’s Honestly Significant 

Difference is shown in Table 3 

Table 3 

Hypotheses for Tukey’s Honesty Significant Difference 

Hypotesis Type Null Hypotesis (H₀) Alternative Hypotesis (H₁) 

Pairwise Mean 

Comparison 

There is no significant difference 

between the group means. 

There is a significant difference 

between at least two group means. 
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RESULTS 

The performance of the models was evaluated by using multiple evaluation metrics, 

including Hamming Loss, AUROC, Top-2 and Top-5 True Skill Statistics (TSS), Precision, 

Recall, and F1-score. The models were tested with and without SMOTE to evaluate the impact 

of data augmentation on classification performance. Additionally, in Random Forest and 

XGBoost models, different tree counts (n=100 and n=300) were analyzed as hyperparameters 

and to examine their effect on model robustness and predictive stability. In the following 

subsections, we present the experimental results.  

 

Tab Net Model 

SMOTE Tab Net. 

Table 4 

Comparison of the performance of the first dataset without SMOTE (R2B2048) and the first 

dataset with SMOTE (R2B2048_MLSMOTE) in the Tab Net model. 

 Hamming 
Loss AUROC Top 2 

TSS 
Top 5 
TSS Precision Recall F1-score 

R2B2048 0.2361 0.5752 0.2134 0.3873 0.2482 0.3500 0.2787 
R2B2048_MLSMOTE 0.1498 0.7548 0.3026 0.5114 0.5892 0.2929 0.3913 

 

The model was evaluated using two databases, both with a radius of two, one applying SMOTE 

and the other without. Results from TabNet demonstrated significant improvements across 

most metrics when SMOTE was applied. Specifically, the AUROC increased from 0.5752 to 

0.7548, precision improved from 0.2482 to 0.5892, and the Hamming loss decreased from 

0.2361 to 0.1498, indicating that the model predicted fewer incorrect labels compared to the 

true labels.  

 



 
 

30 

Performance Tab Net. 

Table 5 

Performance metrics of the Tab Net model on both datasets with MLSMOTE (R2B2048_MLSMOTE and 

R3B2048_MLSMOTE)  

 Hamming 
Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R2B2048_SMOTE 0.1498 0.7548 0.3026 0.5114 0.5892 0.299 0.3913 
R3B2048_SMOTE 0.1551 0.7642 0.2998 0.5088 0.6031 0.2656 0.3688 

 

The two databases (radius two and three) were evaluated in the Tab Net algorithm. The 

difference in the metrics between both was minimum, because they had a similar development. 

However, in the metrics of Hamming loss, Top 2 TSS, Top 5 TSS, Recall and F1-Score that 

the database with radius two showed slightly better results, making this one the best to use in 

Tab Net model. 

 

Stratified Cross Validation Tab Net. 

Table 6 

Average performance ± standard deviation of the five folds conducted through cross-validation in the Tab Net 

model. 

 Hamming 
Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R2B2048_SMOTE  0.155±0.001 0.662±0.029 0.287±0.013 0.610±0.009 0.601±0.016 0.1633±0.047 0.2528±0.057 

R3B2048_SMOTE  0.158±0.002 0.688±0.018 0.293±0.007 0.448±0.021 0.602±0.004 0.169±0.047 0.261± 0.057 

 

The performance of the Tab Net model under five-fold stratified cross-validation revealed 

similar outcomes across the two datasets, R2B2048 and R3B2048, with the latter 

demonstrating a slight advantage. Stratified Cross Validation results showed an improved 

performance in the metrics of AUROC, Top 2 TSS, Precision, Recall and F1-score for the 
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R3B2048 dataset. Overall, the evaluation metrics suggest that the model exhibits a relatively 

balanced predictive behavior (F1-Score 0.261± 0.057 and Precision 0.602±0.004), however, 

the recall metric had a low value (0.169±0.047) and this means that the model have a 

conservative tendency in identifying true positive instances, which could limit the effectiveness 

of the model in cases where sensitivity is critical. 

 

Random Forest Model 

SMOTE Random Forest. 

Table 7 

Comparison of the performance of the first dataset without SMOTE (R2B2048) and the first dataset with 

SMOTE (R2B2048_MLSMOTE) in the Random Forest model. 

 Hamming 
Loss AUROC Top 2 

TSS 
Top 5 
TSS Precision Recall F1-score 

R2B2048  0.067 0.790 0.503 0.718 0.660 0.433 0.523 
R2B2048_MLSMOTE 0.068 0.912 0.395 0.608 0.795 0.640 0.709 

 

Model performance was significantly improved by using MLSMOTE, as shown by a 

comparison of the dataset without and with SMOTE. In particular, the AUROC metric grew 

from 0.790 to 0.912, improving the model's capacity to distinguish between various odor 

descriptors. The F1-score also increased from 0.523 to 0.709, suggesting a more equitable 

trade-off between recall and accuracy. On the other hand, the Top-5 TSS and Top-2 TSS 

decreased from 0.718 to 0.608, indicating that although the model's overall classification 

accuracy increased, its capacity to accurately rank the real label among the top five and two 

predictions were somewhat weakened.  
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Performance Random Forest. 

Table 8 

Performance metrics of the Random Forest model on the first dataset with MLSMOTE (R2B2048_SMOTE) 

with n=100 and n=300 

 Hamming 
Loss AUROC Top 2 

TSS 
Top 5 
TSS Precision Recall F1-

score 
R2B2048_SMOTE 

n=100 0.086 0.912 0.395 0.608 0.795 0.640 0.709 

R2B2048_SMOTE 
n=300 0.085 0.915 0.399 0.608 0.797 0.642 0.711 

 

Table 9 

Performance metrics of the Random Forest model on the second dataset with MLSMOTE (R3B2048_SMOTE) 

with n=100 and n=300 

 Hamming 
Loss AUROC Top 2 

TSS 
Top 5 
TSS Precision Recall F1-

score 
R3B2048_SMOTE 

n=100 0.085 0.912 0.400 0.605 0.804 0.643 0.714 

R3B2048_SMOTE 
n=300 0.084 0.916 0.402 0.607 0.807 0.646 0.717 

 

The effect of increasing the number of trees from 100 to 300 was analyzed for both 

R2B2048_SMOTE and R3B2048_SMOTE datasets. The results showed a marginal 

improvement in AUROC scores across both datasets, while the F1-score increased slightly, 

indicating a minor yet consistent enhancement in classification performance. Meanwhile, there 

were very slight changes in Top-2 and Top-5 TSS, indicating that the influence of a larger tree 

count on ranking accuracy was minimal.  

 

Stratified Cross Validation Random Forest. 
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Table 10 

Average performance ± standard deviation of the five folds conducted through cross-validation in the Random 

Forest model. 

 Hamming 
Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R2B2048_SMOTE 
n=300 0.084±0.002 0.917±0.002 0.398±0.012 0.610±0.009 0.802±0.013 0.640±0.004 0.712±0.005 

R3B2048_SMOTE 
n=300 0.082±0.002 0.916±0.004 0.396±0.013 0.606±0.009 0.817±0.011 0.653±0.007 0.726±0.008 

 

The five-fold stratified cross-validation results show the Random Forest model’s stability and 

strong classification performance across different dataset partitions. With n = 300, both 

datasets (R2B2048_SMOTE and R3B2048_SMOTE) showed high AUROC scores and low 

Hamming Loss, suggesting a low percentage of incorrectly categorized labels and potent 

discriminating potential.  

 

XGBoost Model 

SMOTE XGBoost. 

Table 11 

Comparison of the performance of the first dataset without SMOTE (R2B2048) and the first dataset with 

SMOTE (R2B2048_MLSMOTE) in the XGBOOST model. 

 Hamming 
Loss AUROC Top 2 

TSS 
Top 5 
TSS Precision Recall F1-score 

R2B2048  0.066 0.833 0.508 0.728 0.667 0.464 0.547 
R2B2048_MLSMOTE 0.086 0.932 0.398 0.616 0.795 0.643 0.711 

 

For the XGBoost model, all the metrics got a better score, except for the Top 2, Top 5 TSS and 

hamming loss indicating that its ability to correctly place the actual label in the top five and 

two forecasts were a little affected. The model with data augmentation got an improvement 
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from 0.833 to 0.932 for AUROC and from 0.547 to 0.711 for F1-score, meaning that precision 

and recall are having a good balance.  

 

Performance XGBoost. 

Table 12 

Performance metrics of the XGBoost model on the first dataset with MLSMOTE (R2B2048_SMOTE) with 

n=100 and n=300 

 Hamming 
Loss AUROC Top 2 

TSS 
Top 5 
TSS Precision Recall F1-

score 
R2B2048_SMOTE 

n=100 0.086 0.932 0.398 0.616 0.795 0.643 0.711 

R2B2048_SMOTE 
n=300 0.081 0.936 0.393 0.611 0.788 0.694 0.738 

 

Table 13 

Performance metrics of the XGBoost model on the second dataset with MLSMOTE (R3B2048_SMOTE) with 

n=100 and n=300 

 Hamming 
Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R3B2048_SMOTE 
n=100 0.083 0.933 0.404 0.606 0.813 0.652 0.724 

R3B2048_SMOTE 
n=300 0.080 0.938 0.397 0.599 0.799 0.697 0.745 

 

About the performance of the model with the different tree count, it can be appreciated that on 

both datasets, the best results were gotten with 300 trees, meaning that the model got to 

understand and predict better metrics with more trees. The improved metrics were hamming 

loss, AUROC, recall and F1-score which are the most important ones. For Top 2, Top 5 TSS 

and precision were slightly lower, with a minimal difference. And as an overall for all the 

metrics, the highest one is AUROC on both datasets with 300 trees, having 0.936 for 

R2B2048_SMOTE, and 0.938 for R3B2048_SMOTE. 
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Stratified Cross Validation XGBoost. 

Table 14 

Average performance ± standard deviation of the five folds conducted through cross-validation in the 

XGBOOST model. 

 Hamming 
Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R2B2048_SMOTE 
n=300 0.081±0.001 0.953±0.001 0.377±0.012 0.547±0.009 0.793±0.011 0.683±0.006 0.734±0.003 

R3B2048_SMOTE 
n=300 0.080±0.002 0.954±0.002 0.375±0.001 0.548±0.007 0.803±0.009 0.691±0.004 0.742±0.006 

 

Finally, the stratified cross validation with 5-fold was applied to the dataset with the bests 

results, which were both with 300 trees. All the performance metrics improved their results 

because the model had several attempts to learn the data. The only metrics with lower score 

were AUROC on R3B2048_SMOTE, Top 5 TSS on R2B2048_SMOTE, and Recall and F1-

score on both datasets, but the standard deviation is relatively low, so the results remain very 

confident. 

 

Two-Way ANOVA  

Table 15 

Two-Way ANOVA Results for Model and Database Performance.  

Effects Valor p 
  Radius 0.000 
  Model 0.000 
  Data Base*Model 0.001 
Error  
Total  

 

The two-way ANOVA results indicate a significant main effect of the radius on molecular 

representation on model performance (p = 0.001), a significant main effect of the model (p = 
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0.001), and a significant interaction effect between radius on molecular representation and 

model (p = 0.001). These results suggest that the choice of database and model significantly 

influence performance, and that the effect of the model varies depending on the radius on 

molecular representation used.  

 

Tukey’s Results for Model and Database Interaction. 

A Tukey post-hoc test was conducted to determine which model and database combinations 

exhibited significant differences in performance. It’s important to mention that in Table 16 

‘Mean’ represents the average F1-score obtained from the cross-validation folds, while the 

‘Groups’ indicate that combinations sharing the same letter are not significantly different, 

whereas those with different letters show significant differences.  

Table 16 

Tukey’s Results for Model and Database Interaction with a confidence level of 95%. 

Radius*Model Mean Groups 

R3B2048_SMOTE XGBoost 0.742460 A   

R3B2048_SMOTE Random Forest 0.726152  B  

R2B2048_SMOTE Random Forest 0.712678  B  

R2B2048_SMOTE XGBoost 0.712331  B  

R3B2048_SMOTE Tab Net 0.272458   C 

R2B2048_SMOTE Tab Net 0.244475   C 

Means that do not share a letter are significantly different. 

According to the results, the XGBoost model trained on the R3B2048 SMOTE database had 

the greatest mean performance (0.742460) and is in Group A, meaning it is superior to and 

substantially different from the other model– radius on molecular representation combinations. 

This analysis suggests that the performance is significantly affected by both model and 
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database selection, with certain models being more sensitive to changes in the dataset than 

others.  

Group B includes Random Forest (both R3B2048 and R2B2048 SMOTE) and XGBoost on 

R2B2048 SMOTE. While there are no statistically significant differences between them, they 

all perform noticeably worse than XGBoost on R3B2048 SMOTE. 

However, regardless of whether it was trained on R3B2048 or R2B2048 SMOTE, TabNet 

performs the worst and is in Group C, which is quite different from Groups A and B. 

 

Testing with Cacao Database 

The results obtained from the validation of robustness and predictive capability of the best-

performing model (XGBoost with R3B2048_SMOTE) are presented in Table 17:  

Table 17 

Performance metrics of the XGBoost model with the Cacao database with MLSMOTE (R3B2048_SMOTE) with 

n=300 considered just for testing 

 Hamming Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R3B2048 n=300 0.099 0.944 0.164 0.118 0.042 0.758 0.079 

 

In the Cacao database, the Hamming Loss value of 0.099 is low, indicating that most 

predictions do not contain individual label errors. The AUROC of 0.944 is as good as the other 

datasets, suggesting that the model effectively distinguishes between positive and negative 

classes in this new dataset. However, the Top-2 TSS (0.164) and Top-5 TSS (0.118) values are 

quite low, indicating that the model does not correctly assign the most probable aromas in the 

first prediction positions. The low precision (0.042) suggests that the model's predictions are 

not accurate in a significant number of cases. Despite this, the recall (0.758) is high, indicating 
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that the model can identify a significant number of important labels. This imbalance suggests 

that the model is conservative in assigning labels when it is very confident, which can be 

problematic in applications that require a broader coverage of the aromatic profiles. Lastly, the 

F1-score (0.079) indicates weak overall performance, reflecting a poor balance between 

precision and recall in multi-label classification.  

 

Table 18 

Performance metrics of the XGBoost model with the Cacao database with MLSMOTE (R3B2048_SMOTE) with 

n=300 considered for training and testing. 

 Hamming Loss AUROC Top 2 TSS Top 5 TSS Precision Recall F1-score 

R3B2048 n=300 0.005 0.663 0.248 0.251 1.000 0.155 0.269 

 

To further explore the model’s behavior, the cacao database was also used as both the training 

and testing set under the same model and parameters (R3B2048_SMOTE, n=300), with the 

results shown in Table 18. Compared to the scenario where the cacao data was used solely for 

testing, some key differences emerged. The Hamming Loss dropped significantly from 0.099 

to 0.005, indicating fewer errors per label. Precision improved drastically to 1.000, meaning 

that all predicted labels were correct, though this came at the expense of recall, which dropped 

to 0.155. This shift suggests the model became extremely cautious, only predicting labels when 

it was highly certain. Despite a slight improvement in Top-2 TSS (0.248) and Top-5 TSS 

(0.251), the F1-score increased only modestly to 0.269, highlighting the tradeoff between 

precision and recall. These results reinforce the observation that while training on the same 

dataset improves certain metrics, it can also reduce the model’s ability to generalize and predict 

a broader range of relevant labels, limiting its robustness in real world applications. 
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DISCUSSION 

The present study investigated the efficacy of machine learning models in predicting 

aromatic profiles based on molecular characteristics. Three different algorithms: TabNet, 

Random Forest, and XGBoost, as well as thorough preprocessing, data augmentation strategies 

(MLSMOTE), detailed feature extraction using Morgan Fingerprints with varying radius were 

all part of the evaluation.  

Initially, the dataset showed a significant label imbalance, with a Mean Imbalance Ratio 

(MeanIR) of 6.1, indicating severe imbalance mostly as a result of the "Sweet" descriptor being 

overrepresented. With the implementation of MLSMOTE, this imbalance was successfully 

decreased to a MeanIR of 3.7633, improving the predictive performance for all models. This 

corroborates Sukhwani's (2021) assertion that improving generalization in imbalanced multi-

label scenarios requires the production of synthetic data. All models showed better metrics 

such as AUROC and F1-score, proving that MLSMOTE is a helpful method for addressing 

class imbalance issues.  

Among the three models, XGBoost achieved the highest mean performance metrics, 

according to the two-way ANOVA and the Tukey HSD test. It also showed higher overall 

performance, particularly on the R3B2048 dataset with MLSMOTE.  This outcome supports 

earlier research that demonstrated XGBoost's durability and efficiency in processing high-

dimensional chemical datasets because of its efficient handling of complex relationships 

between molecular structure and sensory descriptors (Kou et al., 2023).  

On the other hand, TabNet demonstrated much worse performance metrics in both radius-

based datasets. Although its sequential attention processes and interpretability benefits 

potentially improve feature usage (Arik & Pfister, 2021), its predictive efficacy was limited in 

this specific sensory prediction scenario. Moreover, stratified cross-validation indicated that 
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TabNet barely improved predictive metrics like AUROC and accuracy, but it had significant 

recall issues, which would limit its usefulness in applications where sensitivity to true positives 

is crucial.  

Another significant contribution of the present research involved evaluating the impact of 

molecular feature extraction parameters on prediction accuracy. Minimal differences were seen 

when comparing Morgan Fingerprints with radius 2 and 3. However, the slightly improved 

metrics with radius 2 indicate that this parameter choice could offer a better compromise 

between computational efficiency and informational content, resonating with findings by Zhou 

and Skolnick (2024).  

Cross-validation analysis confirmed the stability and robustness of Random Forest and 

XGBoost models, consistently demonstrating high predictive performance and reliability 

across data partitions. Additionally, the 5-fold stratified cross-validation (SCV) validated their 

generalizability by maintaining consistent label distributions, confirming the suitability of 

these models for practical applications in the fragrance and food industries (Szeghalmy & 

Fazekas, 2023). 

The results of using the external cacao database to validate the optimum model (XGBoost 

with R3B2048_SMOTE) were not quite consistent. Its accuracy in diverse classification tasks 

was supported by a low Hamming Loss (0.099) and high AUROC (0.944), which demonstrated 

great overall discriminating capabilities. Nevertheless, low Top-2 TSS (0.164) and Top-5 TSS 

(0.118) values revealed the model's limitations in accurately ranking the most probable 

aromatic descriptors. Additionally, although having a high recall (0.758), the poor accuracy 

(0.042) demonstrated a cautious approach to label assignment, which limited its usefulness. 

Last but not least, a low F1-score (0.079) revealed a poor recall-precision balance, suggesting 

that multi-label categorization scenarios might need a lot more work. 
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Limitations & Recommendations 

Several limitations must be acknowledged. The results were limited since the technical 

equipment utilized to run the simulations lacked the computing capacity and processors 

necessary to handle more complicated models. Due to time constraints, SMILES was 

represented textually; however, the introduction of molecular graphs or learnt embeddings 

might enhance the representation of molecules, enabling the model to capture more intricate 

structural interactions that impact the perception of odor. As a result, it's possible that certain 

crucial structural elements of olfactory senses are not fully represented.  

 

Another limitation was the datasets. Using pre-existing databases raises the possibility of 

biases since they can naturally include overrepresented groups of chemical structures or 

aromatic descriptions. Also, the size of the dataset, which, for efficient purposes, required the 

application of MLSMOTE to introduce artificial data and balance the dataset. Finally, external 

validation with the cacao database revealed considerable limitations in precise ranking 

accuracy (Top-2 and Top-5 TSS) and overall precision, highlighting the model's limited 

transferability and generalization capacity to unseen, specialized datasets. 

In order to eliminate the necessity for artificial data augmentation techniques, future research 

could focus on creating bigger, naturally balanced datasets from the beginning. Furthermore, 

this study only included the 90% of the relevant descriptors, resulting in 44 descriptors out of 

the original 476; therefore, future research should include a wider variety of descriptors. 

Increasing the number of descriptors and chemical structures might improve model training, 

boost performance metrics, and improve prediction accuracy.  

 

Verifying the statistical power of an ANOVA is essential, as low power can make 

results less robust and increase the risk of Type II errors. According to Alade et al. (2024), the 
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number of imputations, effect size, and missing data all have an impact on power in a two-

factor ANOVA. Although the study results were encouraging, we were unable to verify the 

power of our ANOVA analysis due to time constraints. Therefore, power analysis should be 

included in future research planning.  

 

Overall, the present study effectively demonstrated the potential of machine learning 

methods in predicting sensory profiles. It highlighted the importance of data preprocessing, 

effective feature extraction, and robust algorithmic approaches, notably exemplified by the 

XGBoost model. Despite existing limitations, continuous methodological improvement and 

integration of larger datasets have great potential to increase predictive accuracy and practical 

use in the aromatic profile prediction process.  
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CONCLUSIONS 

This study demonstrated viability of using machine learning techniques (Random Forest, 

TabNet, and XGBoost) for the prediction of aroma descriptors from the molecular structures 

(SMILES) after using an encoding of Morgan Fingerprints. Aditionally, among the tested 

models with the different databases, XGBoost with the R3B2048 database balanced with 

MLSMOTE techniques, showed the best predictive performance.  

Data augmentation with the creation of synthetic data using MLSMOTE helped 

mitigate the imbalance in the data sets, improving the models’ generalizability and predictive 

stability, demonstrated in some metrics such as AUROC, Precision, and F1-Score in all the 

models of machine learning. Additionally, the stratified cross-validation confirmed the 

reliability and the robustness of the XGBoost model, over the other models of Random Forest 

and TabNet that were also tested. This emphasizes the high capability of this algorithm to make 

a correct multi-label classification in odor prediction. 

Furthermore, the Two-Way ANOVA helped to have solid statistical validation, 

confirming that there is a significant interaction between the databases with different 

parameters of the Morgan fingerprints radius (two and three) with the model type, showing that 

it’s necessary to select carefully a database and machine learning algorithm. Moreover, the 

Tukey’s test gave statistical validation that the best model to predict is the XGBoost model.  

Finally, validation with the test of an independent database (cacao database), allowed 

to prove the utility and applicability of the XGBoost model in other areas. This helped to 

determine what is working in the algorithm and what else its necessary to improve, to be able 

to apply this as an efficient alternative of odor prediction and expand it to use to more 

industries, like fragrances and flavors.  
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ANNEXES 

ANNEX 1: LINK ONE DRIVE CODES 

Tesis 2025 

*The step-by-step codes are on the “Data Bases” folder 

 

ANNEX 2: LINK DATABASES PYRFUME GITHUB 

https://github.com/pyrfume/pyrfume-data/tree/main/ 

 

ANNEX 3: RESULTS OF THE IRLBL METRIC BEFORE AND AFTER THE DATA 

AUGMENTATION 

IRLbl_with_MLSMOTE IRLbl_without_MLSMOTE 

Vanilla-like 48.698413 Musky 15.934211 

Winey 39.844156 Vanilla-like 14.163743 

Leafy 39.333333 Leafy 12.294416 

Camphoraceous 36.963855 Aldehydic 12.019851 

Gourmand 36.52381 Camphoraceous 10.716814 

Tobacco-like 36.094118 Tobacco-like 10.622807 

Musky 35.674419 Gourmand 9.707415 

Aldehydic 32.294737 Powdery 9.460938 

Powdery 30.68 Winey 9.071161 

Ethereal 30.68 Metallic 8.807273 

Rancid 28.943396 Microbiological 8.238095 

Chocolatey 28.146789 Terpenic 8.0599 

Metallic 27.890909 Meaty 7.876423 

Microbiological 25.147541 Alliaceous 7.676704 

https://estudusfqedu-my.sharepoint.com/:f:/g/personal/gvelez_estud_usfq_edu_ec/Eh541IwTSjBBpHFAIsv7ApoBPKJTOUe3korabBnyv95Cdw?e=lQW766
https://github.com/pyrfume/pyrfume-data/tree/main/
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Meaty 23.782946 Roasted 7.592476 

Dry 23.6 Chocolatey 7.545171 

Alliaceous 21.158621 Dry 7.384146 

Phenolic 19.417722 Rancid 6.718447 

Foul-smelling 19.175 Phenolic 6.315515 

Medicinal-like 18.593939 Cabbage-like 6.290909 

Terpenic 16.147368 Ethereal 5.606481 

Roasted 14.75 Sulfuric 5.358407 

Cabbage-like 12.783333 Medicinal-like 5.293989 

Sulfuric 10.125413 Waxy 5.142251 

Baked 9.5875 Fresh 5.040583 

Molten 9.268882 Baked 4.968205 

Nutty 8.617978 Bitter 4.844 

Minty 8.382514 Foul-smelling 4.435897 

Septic 8.314363 Minty 4.395644 

Musty 8.116402 Molten 4.245399 

Waxy 7.826531 Nutty 4.143713 

Fresh 7.575309 Septic 3.993405 

Sickening 6.941176 Musty 3.766719 

Fatty 5.12187 Lemon 3.021834 

Earthy 4.932476 Sickening 3.008696 

Bitter 4.869841 Fatty 2.771167 

Lemon 4.763975 Earthy 2.615551 

Chemical 4.606607 Chemical 2.218965 

Spicy 3.105263 Spicy 1.849561 

Woody 1.951654 Woody 1.505283 

Herbaceous 1.437002 Fruity 1.232884 

Fruity 1.413825 Herbaceous 1.216169 

Fragrant 1.203609 Fragrant 1.098911 
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Sweet 1 Sweet 1 

 

ANNEX 4: COMBINATIONS AND DATA USED FOR ANOVA ANALYSIS 

Model Data Base Fold number F1 Score MICRO 

Random Forest R2B2048 1 0.7068 

Random Forest R2B2048 2 0.7158 

Random Forest R2B2048 3 0.7176 

Random Forest R2B2048 4 0.7059 

Random Forest R2B2048 5 0.7171 

Random Forest R3B2048 1 0.7169 

Random Forest R3B2048 2 0.7326 

Random Forest R3B2048 3 0.7232 

Random Forest R3B2048 4 0.7214 

Random Forest R3B2048 5 0.7363 

Tab Net R2B2048 1 0.2138 

Tab Net R2B2048 2 0.2451 

Tab Net R2B2048 3 0.1764 

Tab Net R2B2048 4 0.1522 

Tab Net R2B2048 5 0.3407 

Tab Net R3B2048 1 0.2559 

Tab Net R3B2048 2 0.1819 

Tab Net R3B2048 3 0.3456 

Tab Net R3B2048 4 0.2235 

Tab Net R3B2048 5 0.2959 

XGBoost R2B2048 1 0.7107 

XGBoost R2B2048 2 0.7123 

XGBoost R2B2048 3 0.7175 

XGBoost R2B2048 4 0.7094 
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XGBoost R2B2048 5 0.7117 

XGBoost R3B2048 1 0.7370 

XGBoost R3B2048 2 0.7433 

XGBoost R3B2048 3 0.7502 

XGBoost R3B2048 4 0.7356 

XGBoost R3B2048 5 0.7460 

 

ANNEX 5: LINK DATABASE CHEMICAL COMPONENTS AND AROMA 

PROFILES 

https://github.com/ggvvmm/Aroma-Profiles 

 

ANNEX 6: FORMULAS OF EVALUATION METRICS 

Performance 

Metric 
Formula Leyend 

Hamming Loss 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡
𝑁 ∗ 𝐿  

𝑓𝑜𝑟	𝑖 = 1	𝑡𝑜	𝑁	𝑎𝑛𝑑	𝑓𝑜𝑟	𝑗

= 1	𝑡𝑜	𝐿	𝑖𝑓	𝑦(")$

≠ 𝑦8(")$ 		𝑡ℎ𝑒𝑛	𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡

= 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 + 1 

AUROC ∫ 	𝑇𝑃𝑅(𝐹𝑃𝑅)	𝑑𝐹𝑃𝑅 
TPR: True Positive Rate 

FPR: False Positive Rate 

Top 2 TSS 
𝑁𝑆%&'	)	
𝑇𝑆  

NS%&'	): Number of samples where 

the top 2 predictions include at least 

one true label 

TS: Total number of samples 

Top 5 TSS 
𝑁𝑆%&'	*	
𝑇𝑆  

NS%&'	*: Number of samples where 

the top 5 predictions include at least 

one true label 

TS: Total number of samples 

https://github.com/ggvvmm/Aroma-Profiles
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Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
TP: True Positive 

FP: False Positive 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
TP: True Positive 

FP: False Negative 

F1-Score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 	𝑅𝑒𝑐𝑎𝑙𝑙  - 

 

 


