UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias de la Salud

"Análisis de los tiempos de coagulación en una muestra de bovinos de producción de las islas Floreana y San Cristóbal del Archipiélago de Galápagos."

Andrea Emilia Rosales Chicaiza Medicina Veterinaria

Trabajo de fin de carrera presentado como requisito para la obtención del título de Médico Veterinario

Quito, 04 de mayo de 2025

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias de la Salud

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

"Análisis de los tiempos de coagulación en una muestra de bovinos de producción de las islas Floreana y San Cristóbal del Archipiélago de Galápagos."

Andrea Emilia Rosales Chicaiza

Nombre del profesor, Título académico

Lenin Vinueza DMVZ, MSc, PhD.

Quito, 04 de mayo de 2025

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos:

Andrea Emilia Rosales Chicaiza

Código:

00217156

Cédula de identidad:

1724426901

Lugar y fecha:

Quito, 04 de abril de 2025

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

AGRADECIMIENTOS

Quiero expresar mi más profundo agradecimiento a las personas que hicieron posible la realización y conclusión de este proyecto. En primer lugar, agradezco a mi madre, por siempre estar al pendiente de mí y ser mi más grande apoyo. En segundo lugar, a mi familia, quienes son mi mayor motor y alegría. En tercer lugar, a mis amigos, principalmente a Joshua Velasco, por haberme motivado cada vez que me sentía desfallecer. En cuarto lugar, a mi tutor, Ramiro Díaz, por su dedicación y paciencia durante la elaboración de mi proyecto. Por último, a mis animales, por ser ellos mi fuente de inspiración para ser una mejor persona y profesional, y ser mis más leales compañeros.

RESUMEN

Desde el año 2012, la Isla Floreana, Archipiélago de Galápagos, ha sido objeto de campañas de desratización debido a la presencia de especies invasoras como los roedores. Para ello, se ha utilizado el anticoagulante Brodifacoum, cuya exposición accidental podría afectar la fisiología hematológica de los bovinos de producción. Este estudio tuvo como objetivo analizar y comparar los tiempos de coagulación, Tiempo de Protrombina (TP) y Tiempo de Tromboplastina Parcial Activada (TTP), en una muestra de bovinos de producción de las Islas Floreana y San Cristóbal. Se tomaron muestras de sangre de 42 bovinos hembras, adultas, divididas equitativamente entre ambas islas. Los resultados mostraron que los bovinos de Floreana presentan tiempos de coagulación significativamente mayores (mediana TP = 35 s; mediana TTP = 50 s) en comparación con los de San Cristóbal (mediana TP = 32 s; mediana TTP = 45 s). La prueba de Wilcoxon rank-sum evidenció diferencias estadísticamente significativas entre los grupos (p = 0.00155 para TP y p = 0.00664 para TTP, respectivamente). Esto sugiere que los bovinos de producción de Floreana podrían estar ingiriendo de forma accidental el rodenticida Brodifacoum y, con ello, viéndose afectada su salud y bienestar.

Palabras clave: bovinos, producción animal, tiempos de coagulación, hematología, rodenticidas anticoagulantes, Isla Floreana, Archipiélago de Galápagos.

ABSTRACT

Since 2012, Floreana Island, part of the Galápagos Archipelago, has been involved in rat eradication campaigns due to the presence of invasive species such as rodents. For this purpose, the anticoagulant Brodifacoum has been used, whose accidental exposure could affect the hematological physiology of production cattle. This study aimed to analyze and compare coagulation times, specifically Prothrombin Time (PT) and Activated Partial Thromboplastin Time (aPTT), in a sample of production cattle from Floreana and San Cristóbal Islands. Blood samples were collected from 42 adult female cattle, evenly distributed between both islands. The results showed that cattle from Floreana had significantly prolonged coagulation times (median PT = 35 s; median aPTT = 50 s) compared to those from San Cristóbal (median PT = 32 s; median aPTT = 45 s). The Wilcoxon rank-sum test revealed statistically significant differences between groups (p = 0.00155 for PT and p = 0.00664 for aPTT, respectively). These findings suggest that production cattle on Floreana may be accidentally ingesting Brodifacoum, potentially compromising their health and welfare.

Keywords: cattle, coagulation times, hematology, anticoagulant rodenticides, animal production, Floreana Island, Galapagos Archipelago.

TABLA DE CONTENIDO

Agradecimientos	5
Resumen	
Abstract	7
Introducción	11
Metodología	18
Resultados	21
Discusión	27
Conclusión	37
Recomendaciones	38
Referencias bibliográficas	39

ÍNDICE DE TABLAS

Tabla 1. Resultados de pruebas de coagulación de la Isla San Cristóbal	21
Tabla 2. Resultados de pruebas de coagulación de la Isla Floreana	22

ÍNDICE DE FIGURAS

Figura 1. Diagrama de caja comparativo de TP de las islas Floreana y San Cristóbal23
Figura 2. Diagrama de caja comparativo de TTP de las islas Floreana y San Cristóbal25

INTRODUCCIÓN

El Archipiélago de Galápagos posee el 20% de la biodiversidad a nivel mundial y es por ello que en la actualidad es un Parque Nacional protegido, el cual es fuente de diversos estudios e investigaciones (Grijalva & Lamothe, 2022). La isla Floreana es la sexta isla más grande de Galápagos con una superficie de 17125 ha y una altitud máxima de 640 m.s.n.m. Presenta dos principales tipos de hábitats, que son: la tierra baja, que es árida y seca; y la tierra alta, que es exuberante. Además, cuenta con múltiples fuentes de agua, conformadas por estanques, lagunas y dos fuentes de agua potable, que corresponden a manantiales situados en tierras altas. Respecto a las condiciones climáticas, presenta una baja variación en su temperatura, siendo que: a) época seca: va de octubre a la primera mitad de enero, en donde hay de pocas a nulas precipitaciones y la población de roedores baja significativamente; b) época húmeda-cálida: va desde la segunda mitad de enero a junio, en la que existen precipitaciones diarias con el cielo mayormente nublado durante el día; c) época de garúa: va de julio a septiembre, en la que existe una presencia habitual de niebla y precipitaciones especialmente intensas en la parte alta de la isla (Hanson & Campbell, 2013).

Esta isla es el hogar de cientos a miles de especies tanto vegetales como animales, entre los que se incluyen a petreles, pingüinos, gaviotas de lava, tortugas gigantes, más de 1500 especies de invertebrados terrestres endémicos, 94 especies de plantas endémicas del Archipiélago, entre otros (Hanson & Campbell, 2013; IUCN Red List Organization, 2025).

Sin embargo, estas especies se encuentran amenazadas por la presencia de roedores, como la rata negra (*Rattus rattus*) y el ratón común (*Mus musculus*); y de gatos ferales (*Felis catus*), los cuales han provocado una disminución significativa del tamaño poblacional y reclutamiento de aves, reptiles, plantas e invertebrados terrestres, sobre todo por la depredación de huevos y crías de aves y reptiles (incluso de individuos adultos), la alimentación oportunista

de plantas que degrada la calidad del hábitat de anidación de múltiples especies, alteración de la cadena trófica, entre otros impactos negativos (Jones et al., 2008). Asimismo, estas especies introducidas han sido implicadas en el 86% de las extinciones que se registran en distintas islas a nivel mundial (Hanson & Campbell, 2013).

A causa de esto, desde el 2012 se inició con la planificación y ejecución del "Proyecto de Restauración Ecológica de la Isla Floreana", el cual tiene como objetivo la erradicación de especies invasoras, la reintroducción de especies extintas y el resguardo de la flora y fauna de esta (Naula et al., 2021). Uno de los puntos clave de este proyecto es la dispersión de rodenticidas anticoagulantes, como el *Brodifacoum*, para erradicar a roedores; mientras que, para el control de gatos ferales (*Felis catus*), se dispersa cebos de carne con para-aminopropiofenona (PAPP, por sus siglas en inglés) (Island Conservation, 2021a). Este último compuesto corresponde a un pesticida para animales vertebrados que se usa principalmente para el control de coyotes, gatos y perros ferales, entre otras especies de carnívoros (New Zealand Government, n.d.). Asimismo, al presentar un nulo riesgo para animales herbívoros, un bajo riesgo de intoxicación secundaria y contar con un antídoto (Eason et al., 2014), no se tomará en cuenta en este estudio.

La campaña se llevó a cabo mediante la aplicación aérea y manual de cebos que se dispersaron tanto en áreas accesibles como remotas de la isla, con especial énfasis en el perímetro costero y otras áreas de alto riesgo, como drenajes (Island Conservation, 2021b). Los cebos, en presentación de comprimidos a base de cereales, se dispersaron en estaciones ubicadas estratégicamente, tanto en áreas habitadas como en fincas agrícolas, así como alrededor de las colonias de petreles para proteger los huevos y pichones de la depredación por ratas (Grijalva & Lamothe, 2022). De igual manera, se colocó cebos en el perímetro y al interior de las instalaciones donde se encontraban encerrados los animales de producción, que corresponden a bovinos, cerdos y gallinas (Island Conservation, 2021a).

El *Brodifacoum* es un anticoagulante de segunda generación ampliamente usado por ser altamente potente, de efecto prolongado, presentar una alta efectividad contra ratas y ratones resistentes a la Warfarina, teniendo una mortalidad del 100% en la mayoría de roedores 24 horas después de su ingestión (Murphy, 2018) y por ser extremadamente insoluble en el agua (<10 mg/L), lo que ayuda a reducir el riesgo de contaminación acuática y dispersión de los cebos (Eason & Spurr, 2010). Al igual que los anticoagulantes de primera generación, el *Brodifacoum* actúa como antagonista de la vitamina K, inhibiendo a la enzima vitamina K epóxido reductasa, responsable de activar esta vitamina en su forma funcional (Kalinin et al., 2017). Como consecuencia, no existe una adecuada activación de los factores II, VII, IX y X, afectando a la cascada de coagulación. Esto produce una disminución progresiva de dichos factores en circulación, especialmente del factor VII, que es el primero en verse afectado dada su corta vida media que va de 4 a 6 horas, seguido de los factores IX, X y II (Saracco, 2015).

Esta alteración en la cascada de coagulación, que corresponde a la serie de reacciones bioquímicas que se llevan a cabo en el organismo con el fin de formar un coágulo de fibrina para evitar la pérdida de sangre y estabilizar la integridad del vaso sanguíneo cuando existe una lesión vascular (Gorbet & Sefton, 2004), predispone al individuo a una diátesis hemorrágica, incluso la muerte (Lynch, 2019). En humanos, se ha observado que la ingesta, inhalación y/o absorción de este compuesto a través de la piel causa hemorragias profusas y severas por meses, las cuales se presentan de forma tardía después de la exposición (Feinstein et al., 2017). No existe información de los efectos del *Brodifacoum* en ganado bovino; no obstante, en ovejas se ha informado que una exposición subletal a este veneno puede tener consecuencias a nivel reproductivo, causando abortos y reduciendo las tasas de parto (Mercer et al., 2022). En otras especies más susceptibles, como el perro o el cerdo, se ha observado la formación de grandes hematomas subcutáneos, hematuria, hemorragias internas, decaimiento

debido a la pérdida de sangre, entre otros signos y lesiones (Hall, 1990). En aves de producción, se ha observado epistaxis, hematomas subcutáneos y petequias en la mucosa oral (Rumbeiha & Oehme, 2005).

En cuanto a la fauna silvestre, se ha llevado a cabo campañas masivas en otros países, como Nueva Zelanda, en donde se encontró una amplia variedad de especies de aves muertas a causa del consumo del cebo, ya sea por intoxicación primaria (consumo directo del cebo) o secundaria (consumo de carcasas de animales muertos a causa del rodenticida); así como también se ha mencionado la afectación a conejos, ualabíes y zarigüeyas (Eason & Spurr, 1995). En Galápagos, se registró la muerte de 22 halcones ratoneros (*Buteo galapagoensis*), un búho campestre (*Asio flammeus*) y residuos de *Brodifacoum* en el hígado de 270 lagartijas de lava (Rueda et al., 2016).

Debido al alto riesgo que representa este compuesto para la salud y el bienestar de humanos y animales no-objetivo, tanto silvestres como animales domésticos, los organismos públicos y privados dirigentes del proyecto han implementado diversas medidas para la prevención y mitigación de estos riesgos. Es así que, respecto a las medidas tomadas en humanos, se socializó de forma permanente y activa información clave acerca de la campaña, sobre todo los impactos a la salud humana que puede tener la exposición al veneno, cómo actuar ante la ingesta de este y formas de prevenir un envenenamiento, sobre todo en niños y personas con limitaciones de sus capacidades. Asimismo, se capacitó al personal de salud para la identificación y tratamiento de personas en riesgo de intoxicación o intoxicadas, y para la difusión de información preventiva y curativa. En cuanto a los guías de turismo, se les proporcionó protocolos de manejo de turistas para evitar su exposición al *Brodifacoum*, así como el manejo y comunicación en casos de avistamiento de cadáveres de animales, la ingesta del veneno por parte de animales no-objetivos, entre otros (Island Conservation, 2021b).

Respecto al manejo de los animales de producción, es importante conocer primero el contexto pecuario en la Isla Floreana. En esta, habitan aproximadamente 150 residentes, de los cuales se derivan 5 familias ganaderas, 7 porcicultoras y 17 avicultoras. Por ello, se construyó establos, chancheras y gallineras/galpones para cada una de estas producciones. Las estaciones se adecuaron según la necesidad de cada finca con el objetivo de encerrar a los animales durante la fase activa de la campaña y que también les permita a los productores mejorar el manejo del ganado y aumentar su rentabilidad. De igual manera, se brindó atención veterinaria preventiva y curativa a los animales, aunque insumos y medicinas fueron costeadas por los productores. Además, se hizo un manejo minucioso de residuos tanto de alimento como de carcasas de roedores y gatos con el fin de evitar la exposición de los animales (Island Conservation, 2021a).

Por otra parte, existen otros factores ambientales e infecciosos presentes en la Isla que también pueden alterar los mecanismos de homeostasis. En primer lugar, en la Isla Floreana se ha identificado la presencia del helecho común (*Pteridium aquilinum*), una planta con propiedades tóxicas para los bovinos (Robinson, 1902). La ingestión de este helecho puede desencadenar una condición conocida como hematuria enzoótica bovina, y en casos más graves, afecta directamente la actividad de la médula ósea, lo que puede provocar diátesis hemorrágicas severas y alteraciones significativas en los mecanismos de coagulación sanguínea (Galves & Torres, 2024). De igual forma, las vacas pueden estar expuestas a estrés calórico debido a que la especie *Bos taurus* no presenta una resistencia al calor tan desarrollada como *Bos indicus* (Cooke et al., 2020). Un golpe de calor provoca una afección denominada "coagulopatía inducida por golpe de calor", en el que se observa una disfunción plaquetaria que predispone a la progresión de un cuadro de coagulación intravascular diseminada (DIC) que en un inicio presenta una alta formación de microcoágulos. No obstante, en una etapa más

tardía, va a existir un riesgo alto de hemorragia interna por el consumo masivo de plaquetas y factores de coagulación (Ke et al., 2024).

En cuanto a factores infecciosos, se tiene como principales diferenciales a *Leptospira spp.*, *Anaplasma marginale* y *Babesia spp.* La leptospirosis es una enfermedad infecciosa bacteriana, causada por el género de bacterias *Leptospira spp.* Es una enfermedad zoonótica, la cual se transmite por medio del contacto directo con el individuo infectado, o de forma indirecta, por el contacto con fluidos y/o tejidos de animales infectados; o fuentes de agua y suelo contaminados con estos, especialmente proveniente de roedores. La leptospirosis afecta en mayor proporción a mamíferos, generando principalmente problemas hepáticos y renales graves, lo que puede alterar la producción de factores de coagulación (Samrot et al., 2021). En Galápagos, existe un único estudio que reporta los serovares de *Leptospira spp.* que se encuentran infectando a lobos marinos (Simental, 2006).

En el caso de *Anaplasma marginale* y *Babesia spp.*, corresponden a organismos patógenos bacterianos y protozoarios, respectivamente, transmitidos principalmente por garrapatas del género *Rhipicephalus spp.* y *Dermacentor spp.* Este último ha sido reportado en equinos de la Isla Santa Cruz con una prevalencia de 35,2% (Guerrero Vásquez, 2017), mientras que la especie *Rhipicephalus microplus* se encontró en 31 de 33 fincas ubicadas en las Islas San Cristóbal, Isabela y Santa Cruz (Coello, 2015). En un estudio de la prevalencia de hemoparásitos en bovinos de Santa Cruz, se encontró a *Babesia spp.* con un 25,88% y 67,07% para *A. marginale* (Jumbo, 2018). En otro estudio en 170 bovinos de 19 granjas de Santa Cruz, se encontró una prevalencia de 47,4% para *B. bovis*, 78,9% para *B. bigemina* y 100% para *A. marginale*; y también se encontró coinfecciones entre *B. bovis*, *B. bigemina* y *A. marginale* (Chávez-Larrea et al., 2024). En las infecciones por estos agentes, se observa principalmente fiebre y anemia, la cual es causada por, en el caso de *A. marginale*, la infección de granulocitos

y de células progenitoras en médula ósea (Truchan et al., 2013); y en el caso de *Babesia* spp., por una destrucción directa de eritrocitos (Zimmer & Simonsen, 2023).

Actualmente, pese a que se tiene conocimiento de diversos factores capaces de causar coagulopatías en los bovinos de la Isla Floreana, no existen estudios que evalúen el impacto que estos han podido tener, particularmente en lo que respecta a los tiempos de coagulación sanguínea (TP y TTP), que son indicadores de la función hemostática (Weiss & Wardrop, 2010). La prolongación de estos parámetros puede ser indicativa de desórdenes sanguíneos (Sönmez & Sönmez, 2017), así como de enfermedades sistémicas ya sea de origen infeccioso o no, intoxicación, envenenamiento, disfunción hepática, entre otras condiciones clínicas (Weiss & Wardrop, 2010).

Por ello, el objetivo del presente estudio es evaluar los tiempos de coagulación, Tiempo de Protrombina (TP) y el Tiempo de Tromboplastina Parcial Activada (TTP), en una muestra de bovinos de producción de las islas Floreana y San Cristóbal.

METODOLOGÍA

Tipo de estudio

Se llevó a cabo un estudio comparativo transversal para evaluar los tiempos de coagulación en bovinos de producción en las Islas Floreana y San Cristóbal. Se analizaron los valores del Tiempo de Protrombina (TP) y el Tiempo de Tromboplastina Parcial Activada (TTP) en dos grupos de bovinos para determinar posibles diferencias asociadas a la exposición al rodenticida anticoagulante *Brodifacoum*.

Muestra

La población del estudio estuvo conformada por 42 bovinos de producción (*Bos taurus*), hembras, adultas (aprox. 2,5 años), seleccionadas equitativa y aleatoriamente de las Islas Floreana (n=21) y San Cristóbal (n=21).

Cronología del manejo de muestras

- 13 de junio de 2024: Viaje a Galápagos y llegada a la Isla San Cristóbal.
- 14-15 de junio de 2024: Toma de muestras sanguíneas en San Cristóbal.
- 16 de junio de 2024: Envío de muestras de San Cristóbal a LabVet (Quito, Ecuador).
- 17 de junio de 2024: Traslado a la Isla Floreana. Medición de TP y TTP de los bovinos de S. Cristóbal.
- 18-19 de junio de 2024: Toma de muestras sanguíneas en bovinos de Floreana.
- 19 de junio de 2024: Envío de muestras de Floreana a LabVet (Quito, Ecuador).
- 20 de junio de 2024: Medición de TP y TTP de los bovinos de Floreana.

Metodología de toma de muestras

Se realizó la extracción de sangre por punción de la vena coccígea, utilizando el sistema de vacío Vacutainer® con tubos de tapa celeste y se homogeneizó las muestras con suavidad. Estos tubos contienen citrato de sodio al 3.2%, el cual actúa como anticoagulante para la medición de los tiempos de coagulación (Weiss & Wardrop, 2010). Tras la recolección, las

muestras fueron centrifugadas de forma inmediata hasta 1 hora después de su toma a 3000 rpm durante 15 minutos para separar el plasma y este se depositó con ayuda de una pipeta a tubos Eppendorf estériles (Guadarrama, n.d.). El plasma obtenido se congeló a -20°C y se conservó en coolers junto con refrigerantes durante su traslado interislas y posteriormente hasta su envío a Ecuador Continental para garantizar la estabilidad de los parámetros de coagulación. Una vez las muestras llegaron a Quito, se trasladaron al laboratorio LabVet, en el cual se aseguró que estas se encontrasen a una temperatura óptima para su análisis.

La medición de TP y TTP se realizó en tandas de 5 muestras para evitar su descongelación y alteración de los resultados. En primer lugar, se descongeló las muestras seleccionadas; para ello, se trasladó el plasma a tubos de ensayo mediante el uso de una pipeta y se colocó en un baño de agua termostatado a una temperatura controlada de 37°C, evitando que el plasma entre en contacto con el agua. Una vez descongelado el plasma, se mezcló suavemente la mezcla para asegurar una distribución uniforme y se procedió con la medición.

Para medir TP, se hizo uso del reactivo Plasmascann siguiendo el procedimiento a continuación (Química Clínica Aplicada S.A., 2022):

- Pipetear 0,1 ml de reactivo Ca-TP (Plasmascann) en un tubo de ensayo y atemperar a 37°C durante aproximadamente 3 minutos.
- 2. Pipetear 0,1 ml de plasma citratado en un tubo de ensayo e incubar a 37°C durante 2 minutos.
- 3. Agregar los 0,1 ml de reactivo previamente incubada en el tubo del plasma, mezclar rápidamente y activar el cronómetro para registrar el tiempo que se demoró en formar el coágulo.
- 4. Registro y validación de los resultados.

Para medir TTP, se hizo uso del reactivo Hemoscann siguiendo el procedimiento a continuación (Química Clínica Aplicada S.A., 2015):

- 1. Pipetear 0,1 ml de CaCl₂ en un tubo de ensayo e incubar a 37°C durante mínimo 3 minutos.
- 2. Pipetear 0,1 ml de reactivo Hemoscann en un tubo de ensayo e incubar a 37°C durante mínimo 3 minutos.
- 3. Pipetear 0,1 ml de plasma citratado en un tubo de ensayo e incubar a 37°C durante 2 minutos.
- 4. Agregar los 0,1 ml de reactivo previamente incubada en el tubo del plasma, se mezcla y se deja incubar durante 1 minuto a 37°C.
- 5. Se agrega el CaCl₂ a la mezcla plasma-reactivo, se mezcla rápidamente y se inicia el cronómetro para registrar el tiempo en el que se forma el coágulo.
- 6. Registro y validación de los resultados.
- Análisis estadístico.

Para el análisis estadístico, se utilizó el programa RStudio. Primero, se determinó si los datos obtenidos cumplían con los supuestos de normalidad, condición necesaria para la aplicación de pruebas paramétricas. Para ello, se utilizaron herramientas gráficas como histogramas y diagramas de caja (boxplots), así como la prueba de Shapiro-Wilk, con el fin de evaluar la distribución de los datos y detectar posibles valores atípicos. En este caso, los datos no presentaron una distribución normal, por lo que se utilizó la prueba no paramétrica de Wilcoxon rank-sum (Mann-Whitney U) con el fin de comparar los tiempos de coagulación entre ambos grupos y se estableció un nivel de significancia de p < 0.05 para determinar si existen diferencias estadísticamente significativas entre los bovinos de Floreana y San Cristóbal.

RESULTADOS

Resultados de TP y TTP.

A continuación, se presentan los resultados obtenidos de TP y TTP de la Isla San Cristóbal (Tabla 1), la cual se considera la muestra testigo al no encontrarse los bovinos expuestos al rodenticida, y de la Isla Floreana (Tabla 2), en donde los bovinos están potencialmente expuestos al contacto y/o ingesta del rodenticida *Brodifacoum*.

Tabla 1. Resultados de pruebas de coagulación de la Isla San Cristóbal.

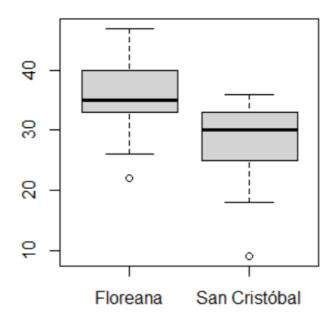
IDENTIFICACIÓN	RESULTADOS	
	TP (seg)	TTP (seg)
BOMBOM 14 SC	9	38
ROJA 4 SC	18	43
ATENEA 8 SC	32	41
BROWNIE 19 SC	29	47
CHANTI 9 SC	33	45
MOANA 17 SC	19	37
TERE 6 SC	30	47
EVA 1 SC	33	40
LEA 15 SC	22	46
CAMILA 22 SC	32	46
CACHITO 20 SC	28	47
JOTA 5 SC	34	46
EMA 10 SC	35	47
MAX 3 SC	30	46
RUMBA 12 SC	22	48

F. ROJA 2 SC	25	44
TITI 23 SC	31	48
JERSEY 18 SC	36	48
CHINA 7 SC	36	49
LIA 11 SC	26	48
ISABEL 16 SC	32	47

Descripción: Se observan los resultados obtenidos de las pruebas de TP y TTP de 21 bovinos,

Bos Taurus, hembras, de la Isla San Cristóbal.

Tabla 2. Resultados de pruebas de coagulación de la Isla Floreana.

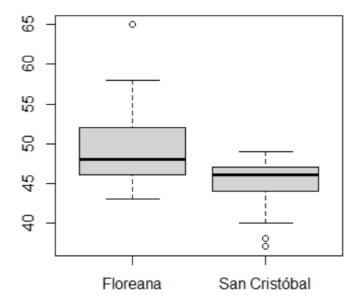

IDENTIFICACIÓN	RESULTADOS	
	TP (seg)	TTP (seg)
BUENA MOZA 7 F	40	58
DONATA 10 F	33	48
LUNA 8 F	40	58
VIRGINIA 1 F	43	53
CHOCOLATE 6 F	42	45
MELLIZA 4 F	42	50
NEGRO 9 F	33	50
DAMARIS 5 F	42	58
NUMBER 1 11F	35	52
BRILLANTINA 3 F	36	48
NIEBLA 2 F	35	45
SONJA 1 F	38	52
HERMOSA 4 F	47	48

COPO 2 F	34	46
VICTORIA 6 F	31	47
NEGRITA 3 F	33	47
MARCELO 5 F	22	46
MORA 7 F	30	65
PANSITA 11 F	26	43
PIEDRITA 12 F	36	46
JULIA 8 F	22	47

Descripción: Se observan los resultados obtenidos de las pruebas de TP y TTP de 21 bovinos, *Bos Taurus*, hembras, de la Isla Floreana.

Tiempos de coagulación extrínsecos.

Figura 1. Diagrama de caja comparativo de TP de las islas Floreana y San Cristóbal.


Descripción: Se observa que los valores de TP de Floreana presentan una mediana más alta y una mayor dispersión en comparación con San Cristóbal. Asimismo, en ambos grupos se identificaron valores atípicos (outliers).

- U calculado = 346.5: Este es el valor del estadístico de prueba U de Wilcoxon. Un valor elevado sugiere que, en promedio, los rangos de los datos del grupo Floreana son mayores que los del grupo San Cristóbal, lo cual indica una diferencia en la distribución de los tiempos de protrombina entre ambos grupos.
- *p-value* = **0.00155**: menor a 0.05 En este caso, como el valor *p* es menor que 0.05, se rechaza la hipótesis nula de que no hay diferencias entre los grupos. Por lo tanto, se acepta la hipótesis alternativa, indicando que existe una diferencia estadísticamente significativa en la distribución de los tiempos de protrombina.
- Sample estimates medians of x and y: 35, 32. La mediana del grupo Floreana fue de 35 segundos, mientras que la del grupo San Cristóbal fue de 32 segundos, lo que refuerza la diferencia observada.

En resumen, siendo el valor de referencia de 20,1 – 30 segundos, los resultados indican que hay una diferencia significativa entre las medianas de los dos grupos. Es decir, el tiempo que tarda en coagular la sangre en un bovino de Floreana es significativamente mayor que en San Cristóbal.

Tiempos de coagulación intrínsecos.

Figura 2. Diagrama de caja comparativo de TTP de las islas Floreana y San Cristóbal.

Descripción: Se observa que los valores de TTP de Floreana presentan una mediana más alta y una mayor dispersión en comparación con San Cristóbal. Asimismo, en ambos grupos se identificaron valores atípicos (outliers).

- U calculado = 328.0: Este es el valor del estadístico de prueba U de Wilcoxon para TTP. Un valor elevado indica que, en promedio, los rangos de los datos en la muestra de la Isla Floreana son mayores que los de la Isla San Cristóbal, lo que evidencia una diferencia en la distribución de los tiempos de TTP entre ambos grupos.
- *p-value* = **0.00664**: menor a 0.05 En este caso, como el valor *p* es menor que 0.05, se rechaza la hipótesis nula, que plantea que no hay diferencias entre los grupos. En consecuencia, se acepta la hipótesis alternativa, lo que indica que existe una diferencia estadísticamente significativa entre las distribuciones de los tiempos de TTP.
- Sample estimates medians of x and y: 50, 45. La mediana del grupo Floreana es de 50 segundos, mientras que la del grupo San Cristóbal es de 45 segundos, lo cual refuerza la evidencia de que los bovinos de Floreana presentan valores de TTP significativamente más altos.

En resumen, siendo el valor de referencia de 25,3 - 45 segundos, los resultados indican que hay una diferencia significativa entre las medianas de los dos grupos. Es decir, el tiempo que tarda en coagular la sangre en un bovino de Floreana es significativamente mayor que en San Cristóbal.

DISCUSIÓN

En el presente estudio se evaluaron los tiempos de coagulación, TP y TTP, en bovinos de producción de las Islas Floreana y San Cristóbal. Los resultados obtenidos mostraron que los bovinos de Floreana presentan valores significativamente más prolongados en comparación con los bovinos de San Cristóbal, con *p-value* de 0.00155 para TP y 0.00664 para TTP. Asimismo, las medianas fueron de 35 y 50 segundos para TP y TTP en Floreana, y de 32 y 45 segundos, respectivamente, en San Cristóbal.

La prolongación de los tiempos de coagulación de los bovinos de Floreana sugiere que existe una alteración en los mecanismos fisiológicos relacionados con los procesos de hemostasia (King & Tran, 2015). El aumento del TP indica una posible alteración de la vía extrínseca de la coagulación, especialmente del factor VII. La prolongación del TTP, por su parte, puede sugerir una afectación en la vía intrínseca, asociada a los factores VIII, IX, XI y/o XII (Weiss & Wardrop, 2010).

Aunque ambas islas comparten condiciones similares respecto a condiciones ambientales y agentes infecciosos, solo los bovinos de Floreana mostraron alteraciones significativas en los tiempos de coagulación. Esto sugiere que la diferencia podría estar relacionada principalmente con la exposición al *Brodifacoum*, ya que este rodenticida no se utiliza en San Cristóbal como parte de campañas ambientales. No obstante, al analizar los resultados individuales, se observó que algunos bovinos de San Cristóbal presentaron valores elevados de TP (hasta 36 segundos) y TTP (hasta 49 segundos), lo que sugiere que también podría existir un proceso que esté afectando, aunque en menor grado, la coagulación sanguínea en esta población. Esto refuerza la hipótesis de que otros factores ambientales o alimenticios podrían estar influyendo en la fisiología hematológica del ganado, pero que la exposición al *Brodifacoum* sería posiblemente la principal diferencia determinante entre ambas islas.

Es importante comprender que, pese a que la campaña tuvo lugar entre octubre y diciembre del 2023, y que se construyó y asignó un área específica para la estabulación de los animales de producción, Naula et al. (2021) aclara en el documento oficial del proyecto de desratización de Floreana que durante todo el año existe una distribución de cebos con rodenticidas anticoagulantes en la isla, la cual no pertenece al Proyecto de Restauración Ecológica y que pone en riesgo a los bovinos a que sufran una exposición prolongada al rodenticida.

De igual manera, se menciona que los bovinos fueron estabulados hasta 6 meses después de la última dispersión de cebos y que, posterior a este tiempo, la decisión de mantener o no dentro de las instalaciones, específicamente a los bovinos, recaía en el productor (Island Conservation, 2021a), ya que, en teoría, los cebos ya debían haberse degradado de 20 a 70 días post-esparcimiento (Island Conservation, 2021b). No obstante, en el plan de manejo tanto de cerdos como de pollos, se menciona que lo óptimo es que sean liberados mínimo dos años después de la última dispersión de cebos, ya que, pese a que los cebos ya se hubiesen degradado, existen estudios que demuestran que existe una absorción y permanencia de la molécula del rodenticida en el sustrato en el que se colocó por un largo periodo de tiempo (Eason & Spurr, 2010). Debido a que estas dos especies son capaces de excavar y rebuscar alimento en el suelo, existe el riesgo de que la molécula de *Brodifacoum* quede expuesta nuevamente en el medio ambiente (Island Conservation, 2021a)

Adicionalmente, se han hecho estudios para medir las concentraciones de *Brodifacoum* presentes en el suelo que estuvo directamente en contacto con cebos en presentación de cereal (que es el que normalmente representa un mayor riesgo de ser consumido por herbívoros) y se encontró que después de 110 días había una concentración de 0,2 ppm del rodenticida que había sido previamente liberado por la degradación del cebo (Craddock, 2004). No obstante,

se sabe que el tiempo estimado de vida media de este compuesto va de 12 a 25 semanas, dependiendo de varios factores, principalmente de las condiciones climáticas, de la presencia de bacterias capaces de degradar el *Brodifacoum* y de vectores residuales (Spiller, 2014), que corresponden a organismos invertebrados poco susceptibles a este rodenticida y que, al ingerirlo, se ha visto que pueden llegar a dispersarlo hasta 10 metros desde el sitio donde se colocó el cebo (Fisher, 2010). De esta forma, los animales de producción pueden estar expuestos indirectamente si entran en contacto con los suelos donde aún permanecen residuos de este rodenticida o con los desechos biológicos de los animales invertebrados.

Esto implica que, aunque se tomaron medidas para minimizar el riesgo inmediato de exposición durante las fases activas de aplicación (Naula et al., 2021), el uso continuo de este rodenticida y su persistencia en el ambiente representan un riesgo constante para los animales de producción, especialmente si se encuentran en áreas donde se han dispersado cebos a lo largo del año (Fisher, 2010). De igual manera, aunque no se detectaron signos clínicos visibles, las alteraciones en los tiempos de coagulación podrían representar una manifestación subclínica de toxicidad (Sönmez & Sönmez, 2017).

Se han realizado estudios en otras especies, siendo los trabajos con ovejas los más propicios para la extrapolación de datos para bovinos. Eason & Spurr (2010) indican que la dosis letal de *Brodifacoum* en ovinos es relativamente alta, con un LD50 de 10 mg/kg, en comparación a especies como lo caninos, con un LD50 de 0,4 a 3,7 mg/kg (Dowding et al., 1999). Otros autores mencionan que la dosis letal (LD50) en ovejas va de 5 a 25 mg/kg (New Zealand Government, 2000). No obstante, se sospecha que la susceptibilidad de los bovinos puede ser diferente, y no existen datos suficientes sobre la dosis letal en esta especie, por lo que los hallazgos de la presente investigación pueden ser relevantes para evaluar el riesgo de toxicidad en ganado bovino expuesto a *Brodifacoum*.

Berny et al. (2006) planteó la posibilidad de que los rumiantes presenten una menor susceptibilidad a los rodenticidas anticoagulantes en comparación a otros mamíferos. En su estudio, los autores evaluaron la cinética de degradación de los anticoagulantes en el rumen de ovejas, incubando muestras de fluido ruminal con anticoagulantes durante 24 horas. Los resultados mostraron que los anticoagulantes, como warfarina, clorofacinona y bromadiolona, fueron ligeramente degradados (< 15%) durante ese tiempo. La disponibilidad oral de estos anticoagulantes fue del 79% para warfarina, 92% para clorofacinona y 88% para bromadiolona, lo que indica una absorción relativamente alta. A pesar de que los tiempos de protrombina (TP) máximos fueron de 80 segundos tras los tratamientos con clorofacinona y bromadiolona, no se detectaron signos clínicos de toxicidad, y los niveles de TP regresaron a los valores basales en un plazo de 2 semanas. Sin embargo, y pese a que los hallazgos aportados por este estudio aportan una visión más amplia acerca del porqué no se ha observado un cuadro clínico en los bovinos, los autores destacan que esta hipótesis no ha sido confirmada y que se requieren más investigaciones para comprender completamente la interacción de estos factores (Berny et al., 2006). Asimismo, el hecho de que los niveles de TP hayan regresado a valores basales en aproximadamente 2 semanas sugiere que los bovinos de Floreana podrían estar constantemente expuestos a este rodenticida al presentar sus tiempos de coagulación prolongados meses después de la dispersión de los cebos.

Por otro lado, no se puede descartar la influencia en estos parámetros coagulatorios por parte de los factores previamente mencionados en la introducción. Es así que, se ha reportado la presencia de *Pteridium aquilinum* (helecho común) *var pedata* en Floreana, una planta que, al ser ingerida por bovinos, puede causar una condición conocida como hematuria enzoótica bovina (Anjos et al., 2008). Este cuadro se asocia con lesiones en la médula ósea y una marcada diátesis hemorrágica. Existen reportes, por parte de los productores, de bovinos con signos

compatibles con hematuria enzoótica bovina en Floreana (comunicación personal con Ramiro Díaz, 2024), lo cual sugiere el posible consumo crónico de helechos del género *Pteridium* presentes en la isla. Sin embargo, estos reportes también existen en la isla San Cristóbal, en la que existe una mayor cantidad del helecho, aparte de que cuenta con una variación adicional del helecho, que es *P. aquilinum var. esculenta* (Robinson, 1902).

En cuanto al factor "estrés calórico", se considera de manera general que en el Archipiélago de Galápagos la "época de garúa" va de junio a noviembre y la temperatura ambiental rodea los 22°C (Quintanilla, 1983). La toma de muestras se llevó a cabo en el mes de junio, en el cual la temperatura promedio no alcanza picos tan altos, aparte de que, a causa de las frecuentes precipitaciones, las fuentes de agua tanto de Floreana como de San Cristóbal conservan volúmenes suficientes de agua para la provisión tanto de humanos como de animales nativos y domésticos (Hanson & Campbell, 2013; Quintanilla, 1983).

De igual forma, la presentación más común del estrés calórico en bovinos es la baja en la productividad debido a que estos, en un intento de disipar el calor generado tanto por procesos metabólicos como por las altas temperaturas, permanecen en estación (parados sobre sus cuatro patas); de esta forma, logran un mayor intercambio de calor con el ambiente. A consecuencia de esto, disminuyen el consumo de alimento, el proceso de rumia y su movimiento en general (Jurkovich et al., 2024). Tampoco se han reportado casos de coagulopatía inducida por golpe de calor en los bovinos de Floreana, por lo que se descarta a este factor como la principal causa de la alteración en los tiempos de coagulación registrados.

Respecto a los factores infecciosos, en lo que respecta a *Leptospira spp.*, existe solo un estudio en lobos marinos en todo el Archipiélago, el cual ya se mencionó con anterioridad (Simental, 2006). Sin embargo, la falta de información o de investigaciones no significa que

no existan casos de leptospirosis en otras especies, sobre todo debido a la estrecha coexistencia entre humanos, roedores (que son los principales portadores y diseminadores de la enfermedad), animales silvestres y animales domésticos. No obstante, es importante recalcar que la leptospirosis no afecta directamente a la función de los factores de coagulación, sino que, al causar un daño hepático significativo, altera la capacidad de síntesis de este y es por ello que pueden llegar a prolongarse los parámetros coagulatorios (Samrot et al., 2021). Asimismo, esta bacteria causa graves daños cardiovasculares, sobre todo en las células endoteliales y, consecuentemente, se da la aparición de hemorragias (Tilley et al., n.d.). Por lo tanto, existe una depleción significativa tanto de plaquetas como de factores de coagulación, así como de otras células sanguíneas por la pérdida de sangre (Weiss & Wardrop, 2010).

Por último, se ha observado una alta prevalencia en granjas y bovinos tanto de *A. marginale* y *Babesia spp.* como de sus vectores, especialmente *R. microplus* en las islas San Cristóbal, Santa Cruz e Isabela (Chávez-Larrea et al., 2024; Coello, 2015; Guerrero Vásquez, 2017; Jumbo, 2018). Esto puede ser un posible indicador de la presencia de estos patógenos en la isla Floreana, pese a que no existen estudios en esta. Como ya se mencionó, ambos agentes atacan directamente a las células sanguíneas, por lo que no se ven afectados los factores de coagulación como tal (Truchan et al., 2013; Zimmer & Simonsen, 2023). Sin embargo, la hemólisis, junto con la destrucción de granulocitos y células germinales hematopoyéticas, puede derivar en una hepatopatía secundaria, principalmente por la sobrecarga hepática ocasionada por la acumulación de metabolitos como la bilirrubina (Jacobs et al., 2025), lo que, a su vez, podría llegar a afectar la síntesis hepática (Weiss & Wardrop, 2010).

No obstante, es importante mencionar que, en el caso de *A. marginale*, la presentación y la gravedad de la signología clínica dependen en gran parte de la edad de los bovinos. Es así que, en animales adultos de 2 años en adelante, la enfermedad es generalmente aguda, con una

tasa de mortalidad de entre el 29% al 49%, y uno de los principales signos es la aparición de fiebre (Aubry & Geale, 2011). En el caso de la babesiosis bovina, el curso de la enfermedad inicia con fiebre mayor a 40°C durante 3 a 7 días, seguido de inapetencia, depresión, renuencia a moverse, entre otros signos clínicos que, al igual que en el caso de la anaplasmosis, se ven exacerbados en el caso de bovinos adultos (Bock et al., 2004). En el presente estudio, la totalidad de vacas de la muestra eran adultas, las cuales no presentaron signos clínicos sugerentes a estas enfermedades infecciosas.

Es en base a esta recopilación y análisis de datos que se cree que pudo haber existido la posibilidad de que los bovinos de producción de Floreana hubiesen entrado en contacto con el rodenticida *Brodifacoum*. Esto se basa en 3 principales puntos: 1) Las islas San Cristóbal y Floreana se enfrentan a factores similares que pueden afectar a la salud hematológica. No obstante, la diferencia recae en las campañas de desratización que existen en Floreana, mas no en San Cristóbal, que es el grupo control del estudio. 2) Pese a que el cebo se pudo haber degradado, la molécula del *Brodifacoum* puede permanecer en el suelo por un largo periodo de tiempo. Tomando en cuenta que el cebo se esparció también en campos agrícolas y en áreas de producción pecuarias, si los productores no mantienen encerrados a sus animales durante meses o incluso años (como se sugiere en el caso de cerdos y gallinas), el pisoteo del ganado, las épocas de sequía, la excavación del suelo por parte de otros animales de producción en búsqueda de comida, el agua, entre otros factores, pueden dejar al descubierto nuevamente la molécula del rodenticida y entrar en contacto con los bovinos. 3) No existen reportes o indicios de cuadros agudos en animales relacionados a las condiciones climáticas, una ingesta significativa del helecho común, o infecciones por los organismos patógenos mencionados.

Por lo tanto y, aunque no se puede asegurar que la alteración en los tiempos de coagulación de los bovinos de producción de Floreana fue por la exposición ambiental al rodenticida anticoagulante *Brodifacoum*, existe un indicio de que esto puede ser así.

A pesar de la relevancia de estos hallazgos, existen limitaciones metodológicas y contextuales que podrían haber influido en los resultados obtenidos. En primer lugar, este estudio se basa en un diseño transversal, lo que limita la posibilidad de establecer relaciones causales firmes entre los factores evaluados y los tiempos de coagulación alterados al no existir una evaluación de la evolución temporal de los parámetros hematológicos en condiciones controladas. Además, el manejo de las muestras durante el traslado interislas, el transporte aéreo y su posterior envío al laboratorio podrían haber implicado movimientos bruscos que afecten su integridad, pese a que se verificó su validez para su medición (ausencia de coágulos y correcta conservación en congelación).

No se incluyó otro tipo de exámenes de laboratorio, como el hemograma o química sanguínea, principalmente enfocada en parámetros hepáticos, que permitiesen tener una visión más integral acerca del estado de salud de los bovinos evaluados. Tampoco se midió los niveles o concentración de *Brodifacoum* en la sangre o tejidos de los bovinos, ni en el suelo, ya que estos datos permitirían establecer una relación causal entre la exposición al rodenticida y la alteración de los tiempos de coagulación.

De igual forma, la falta de investigación acerca de la prevalencia de *Leptospira spp.*, *A. marginale, Babesia spp.*, entre otros agentes infecciosos en la isla Floreana, limita el conocimiento sobre su alcance y posible impacto en la salud y bienestar de humanos y animales.

Pese a estas limitaciones, los resultados de este estudio ofrecen aportes valiosos en diversos ámbitos. Desde el punto de vista de la salud animal, el compromiso del proceso de hemostasis vuelve propensos a los animales a diátesis hemorrágicas, que a largo plazo puede repercutir negativamente no solo en su salud y bienestar como individuos, sino en su productividad como animales de abasto. Tanto la ingesta de *Brodifacoum* como la presencia del resto de factores mencionados pueden generar condiciones graves, como anemias crónicas, compromiso de la función hepática y/o renal, entre otros (Rumbeiha & Oehme, 2005). El estrés fisiológico que experimenta el animal disminuye su capacidad de conversión alimenticia, enlentece el crecimiento, altera el balance hormonal, disminuye la fertilidad, entre otras consecuencias (Jurkovich et al., 2024). Asimismo, la falta de productividad de los animales representa pérdidas económicas para los productores locales. Esto sin considerar que, cuando un animal ingiere rodenticidas anticoagulantes como el *Brodifacoum*, este se va acumulando en el tejido muscular, hepático y adiposo, volviendo vulnerables a los humanos a su exposición de forma indirecta (Dowding et al., 1999).

Es por ello que conocer estos resultados puede aportar a mejorar las estrategias de manejo del ganado cuando se necesite implementar el uso de estas herramientas para el control de plagas y especies invasoras. Se debe garantizar una supervisión adecuada de las áreas de confinamiento de los animales y una evaluación clara del tiempo de estabulación mínimo requerido. De igual forma, se recalca la importancia de la realización de estudios en la Isla Floreana sobre otros factores que pueden atentar contra la salud y bienestar de humanos y animales. Adicionalmente, el presente estudio permite aportar información a un campo poco explorado, como es el impacto de los rodenticidas anticoagulantes en bovinos y el estudio de los tiempos de coagulación en bovinos en Ecuador.

Por último, es importante mencionar que parte del presente trabajo contó con el acompañamiento de herramientas de inteligencia artificial, específicamente ChatGPT, para la revisión ortográfica, sugerencias de redacción y coherencia textual. Este recurso se utilizó como apoyo durante el proceso de edición final, garantizando una mayor claridad y precisión en la presentación de los contenidos.

CONCLUSIÓN

Este estudio aporta evidencia sobre posibles riesgos subclínicos en bovinos de producción de la Isla Floreana, asociados a diversos factores de origen antropogénico, infeccioso y ambiental, tales como el uso de rodenticidas anticoagulantes, la presencia de plantas tóxicas, la posible circulación de agentes infecciosos y las condiciones climáticas de la región. Los resultados obtenidos refuerzan la necesidad de implementar protocolos de vigilancia sanitaria que incluyan análisis toxicológicos y hematológicos integrales. Asimismo, se subraya la importancia de integrar la salud animal en la planificación de campañas ambientales, especialmente en ecosistemas frágiles como Galápagos. Estos hallazgos constituyen un punto de partida para investigaciones futuras en una amplia variedad de áreas y para la toma de decisiones en el manejo sostenible del ganado en zonas de conservación.

RECOMENDACIONES

De cara a futuras investigaciones, se recomienda la ampliación del estudio a otras especies igualmente expuestas a rodenticidas anticoagulantes, como los cerdos, ya que estos pueden consumir las carcasas de los roedores (Eason et al., 1999). También, se considera pertinente la realización de otras pruebas diagnósticas, como hemogramas y perfiles bioquímicos, para tener una visión más integral del estado de salud de los animales. A esto es importante sumarle la realización de estudios toxicológicos de sangre, tejidos diana y suelo para detectar de forma directa al compuesto. Además, se puede incluir información sobre el chequeo clínico de estos animales y posibles hallazgos.

De igual forma, se sugiere la recopilación de información específica relacionada con el consumo del helecho común y demás plantas tóxicas presentes en el ecosistema de las Islas Galápagos, como el manzanillo (*Hippomane mancinella*), y que podrían estar afectando al bienestar de los animales de producción. Para ello, es fundamental tener un mayor acercamiento con los productores y moradores de las islas; esto incluso permitiría comprender mejor las prácticas de manejo del ganado en Galápagos y conocer el grado real de exposición de los animales de producción a riesgos ambientales y antropogénicos.

Por último, es importante investigar la prevalencia y distribución en la isla Floreana de agentes infecciosos relevantes para la salud humana y animal, como *Leptospira spp.*, *Anaplasma marginale y Babesia spp.*, para identificar su posible implicación en las alteraciones hematológicas detectadas y por el impacto que estos tienen a nivel mundial.

REFERENCIAS BIBLIOGRÁFICAS

- Anjos, B., Irigoyen, L., Fighera, R., Gomes, A., Kommers, G., & Barros, C. (2008). Intoxicação aguda por samambaia (Pteridium aquilinum) em bovinos na Região Central do Rio Grande do Sul. *Pesquisa Veterinária Brasileira*, 28(10), 501–507. https://doi.org/DOI: 10.1590/S0100-736X2008001000010
- Aubry, P., & Geale, D. W. (2011). A Review of Bovine Anaplasmosis: Review of Bovine Anaplasmosis. *Transboundary and Emerging Diseases*, 58(1), 1–30. https://doi.org/10.1111/j.1865-1682.2010.01173.x
- Berny, P., de Oliveira, L., Videmann, B., & Rossi, S. (2006). Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. *American Journal of Veterinary Research*, 67(2), 363–371. https://doi.org/10.2460/ajvr.67.2.363
- Bock, R., Jackson, L., De Vos, A., & Jorgensen, W. (2004). Babesiosis of cattle. *Parasitology*, 129(7), 247–269. https://doi.org/doi:10.1017/s0031182004005190
- Chávez-Larrea, M. A., Cholota-Iza, C., Yugcha-Diaz, M., Ron-Román, J., Proaño-Pérez, F., Maya-Delgado, A., Jumbo-Moreira, J., Reyna-Bello, A., & Saegerman, C. (2024). First Report of Trypanosoma vivax (Duttonella), Babesia bovis and Babesia bigemina DNA in Cattle from the Galapagos Islands, Ecuador, and Its Relationship with Anaplasma marginale. *Pathogens*, *13*(10), Article 10. https://doi.org/10.3390/pathogens13100910
- Coello, M. (2015). Caracterización e identificación de garrapatas en bovinos de 3 islas en la provincia de Galápagos [Tesis de pregrado, Universidad San Francisco de Quito]. https://core.ac.uk/download/147377814.pdf
- Cooke, R. F., Daigle, C. L., Moriel, P., Smith, S. B., Tedeschi, L. O., & Vendramini, J. M. B. (2020). Cattle adapted to tropical and subtropical environments: Social, nutritional, and

- carcass quality considerations. *Journal of Animal Science*, 98(2). https://doi.org/10.1093/jas/skaa014
- Craddock, P. (2004). Environmental breakdown and soil contamination by Pest-off poison bait (20 ppm brodifacoum) at Tawharanui Regional Park, North of Auckland, Winter 2003 trial. Northern Regional Parks, Auckland Regional Council.
- Dowding, J., Murphy, E., & Veitch, C. (1999). Brodifacoum residues in target and non-target species following an aerial poisoning operation on Motuihe Island, Hauraki Gulf, New Zealand. *New Zealand Journal of Ecology*, 23(2), 207–214. https://www.jstor.org/stable/24054773
- Eason, C., Milne, L., Potts, M., Morriss, G., Wright, G., & Sutherland, O. (1999). Secondary and tertiary poisoning risks associated with Brodifacoum. *New Zealand Journal of Ecology*, 23(2), 219–224. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3958afa47e1cbb08 be44319d994c96408a571de3
- Eason, C., Murphy, E., & MacMorran, D. (2014). Para-aminopropiophenone and its Registration and Use as a Vertebrate Pesticide in New Zealand. *Proceedings of the Vertebrate Pest Conference*, 26, 338–341. https://doi.org/10.5070/V426110576
- Eason, C., & Spurr, E. (1995). Review of the toxicity and impacts of brodifacoum on non-target wildlife in New Zealand. *New Zealand Journal of Zoology*, 22(4), 371–379. https://doi.org/DOI: 10.1080/03014223.1995.9518055
- Eason, C., & Spurr, E. (2010). Review of the toxicity and impacts of brodifacoum on non-target wildlife in New Zealand. *New Zealand Journal of Zoology*, 22(4), 371–379. https://doi.org/10.1080/03014223.1995.9518055

- Feinstein, D. L., Brodsky, S., Weinberg, G., van Breeman, R., & Rubinstein, I. (2017).

 Brodifacoum poisoning: A clear and present danger to public health in the USA.

 Toxicology Letters, 268, 71–72. https://doi.org/10.1016/j.toxlet.2017.01.004
- Fisher, P. (2010). Environmental fate and residual persistence of brodifacoum in wildlife.

 Landcare Reasearch. https://www.envirolink.govt.nz/assets/Envirolink/884-HBRC131-Environmental-fate-of-brodifacoum-in-wildlife.pdf
- Galves, M., & Torres, M. (2024). Identificación de plantas tóxicas y su efecto en el ganado y otros animales de Boyacá y Cundinamarca. *Temas Agrarios*, 29(1), 66–81. https://doi.org/10.21897/05vym797
- Gorbet, M. B., & Sefton, M. V. (2004). Review: Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. In D. F. Williams (Ed.), *The Biomaterials: Silver Jubilee Compendium* (pp. 219–241). Elsevier Science. https://doi.org/10.1016/B978-008045154-1.50025-3
- Grijalva, M., & Lamothe, A. (2022). *Reporte de Impacto 2022*. Fundación Charles Darwin. https://www.darwinfoundation.org/es/documents/185/ReporteImpacto_2022.pdf
- Guadarrama, M. (n.d.). Recomendaciones para toma y envío de muestras Hematología.

 Universidad Nacional Autónoma de México.

 https://www.fmvz.unam.mx/fmvz/servicios/archivos/Especificaciones_muestras_patologia.pdf
- Guerrero Vásquez, E. N. (2017). *Identificación y distribución de garrapatas en equinos del sector pecuario de la Isla Santa Cruz, Galápagos.* [Título de pregrado, Universidad Central del Ecuador]. https://www.dspace.uce.edu.ec/entities/publication/www.dspace.uce.edu.ec

- Hall, E. J. (1990). Prolonged coagulopathy associated with brodifacoum poisoning in two dogs.

 **Journal of Small Animal Practice, 31(11), 574–579. https://doi.org/10.1111/j.1748-5827.1990.tb00693.x*
- Hanson, C., & Campbell, K. (2013). Restauración Ecológica de la Isla Floreana: Análisis de Factibilidad para la Erradicación de Roedores y Gatos versión 6.1. Dirección del Parque Nacional Galápagos. https://www.researchgate.net/publication/283420744
- Island Conservation. (2021a). Proyecto de Restauración Ecológica de la isla Floreana. Plan de manejo para animales de producción de la isla Floreana. Parque Nacional Galápagos. https://www.islandconservation.org/wp-content/uploads/2022/05/5.-Plan_manejo_animales_produccion_20210208.pdf
- Island Conservation. (2021b). Proyecto de Restauración Ecológica de la isla Floreana: Plan para el Manejo de niños y personas con impedimento en sus capacidades de interpretación, durante la erradicación de roedores y gatos silvestres de la Isla Floreana. Parque Nacional Galápagos. https://www.islandconservation.org/wp-content/uploads/2022/05/2.-Plan-de-Manejo-de-Ninos_20210208.pdf
- IUCN Red List Organization. (2025). *The IUCN Red List of Threatened Species*. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en
- Jacobs, B., Haag, A., & McCarver, S. (2025). A Case of Acute Liver Failure Secondary to Profound Babesia in a Patient With No Known Liver Disease. *American Journal of Respiratory and Critical Care Medicine*, 211, A5779. https://doi.org/10.1164/ajrccm.2025.211.Abstracts.A5779
- Jones, H. P., Tershy, B. R., Zavaleta, E. S., Croll, D. A., Keitt, B. S., Finkelstein, M. E., & Howald, G. R. (2008). Severity of the effects of invasive rats on seabirds: A global review. *Conservation Biology: The Journal of the Society for Conservation Biology*, 22(1), 16–26. https://doi.org/10.1111/j.1523-1739.2007.00859.x

- Jumbo, J. (2018). Diagnóstico de Anaplasma marginale, Trypanosoma spp. Y Babesia spp. En 19 fincas ganaderas bovinas de la Isla Santa Cruz de la provincia de Galápagos, mediante las técnicas de ELISA y PCR [Tesis de pregrado, Universidad de las Fuerzas Armadas del Ecuador]. https://repositorio.espe.edu.ec/items/5487b577-5250-4352-abbc-231b0f589ce4
- Jurkovich, V., Hejel, P., & Kovács, L. (2024). A Review of the Effects of Stress on Dairy Cattle Behaviour. *Animals*, *14*(14). https://doi.org/10.3390/ani14142038
- Kalinin, S., Marangoni, N., Kowal, K., Dey, A., Lis, K., Brodsky, S., van Breemen, R., Hauck,
 Z., Ripper, R., Rubinstein, I., Weinberg, G., & Feinstein, D. (2017). The long-lasting rodenticide brodifacoum induces neuropathology in adult male rats. *Toxicological Sciences: An Official Journal of the Society of Toxicology*, 159(1), 224–237. https://doi.org/10.1093/toxsci/kfx134
- Ke, H.-Y., Chen, J.-H., Kao, S.-Y., Tsao, C.-M., Kuo, C.-W., Wu, C.-C., & Shih, C.-C. (2024).
 Heat stress–induced platelet dysfunction is associated with loss of fibrinogen and is improved by fibrinogen supplementation. *Thrombosis Research*, 241.
 https://doi.org/10.1016/j.thromres.2024.109091
- King, N., & Tran, M. (2015). Long-Acting Anticoagulant Rodenticide (Superwarfarin)
 Poisoning: A Review of Its Historical Development, Epidemiology, and Clinical
 Management. Transfusion Medicine Reviews, 29(4), 250–258.
 https://doi.org/doi:10.1016/j.tmrv.2015.06.002
- Lynch, M. (2019). Intoxicación con rodenticidas anticoagulantes de larga duración. *Medicina Legal de Costa Rica*, *36*(2), 76–81. https://www.scielo.sa.cr/pdf/mlcr/v36n2/2215-5287-mlcr-36-02-76.pdf
- Mercer, M., Davis, J., Riviere, J., Baynes, R., Jaberi-Douraki, M., Maunsell, F., & Lin, Z. (2022). Mechanisms of toxicity and residue considerations of rodenticide exposure in

- food Animals—A FARAD perspective. *Journal of the American Veterinary Medical Association*, 260(5), 514–523. https://doi.org/10.2460/javma.21.08.0364
- Murphy, M. (2018). Anticoagulant Rodenticides. In *Veterinary Toxicology* (pp. 583–612). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811410-0.00046-5
- Naula, E., Casafont, M., Erazo, G., Izurieta, J., Tapia, J., Zapata, C., Gallardo, K., Gómez, K., Vásconez, S., & Figueroa, S. (2021). Proyecto de Restauración Ecológica de la Isla Floreana. Producto 6: Estudio de Impacto Ambiental. Island Conservation. https://www.islandconservation.org/wp-content/uploads/2022/05/EISA-FLOREANA.pdf
- New Zealand Government. (n.d.). *PREDATOR CONTROL AND PARA- AMINOPROPIOPHENONE (PAPP)*.
- New Zealand Government. (2000). Anticoagulant poisons. https://www.doc.govt.nz/documents/science-and-technical/docts23b.pdf
- Química Clínica Aplicada S.A. (2015). *Hemoscann. Reactivo para la determinación de APTT*.

 QCA S.A. https://www.miguelestrellarepresentaciones.com/wp-content/uploads/2015/12/TPP.pdf
- Química Clínica Aplicada S.A. (2022). *PLASMASCANN® LÍQUIDO, 10 x 4 mL*. QCA. https://qca.es/es/tiempo-de-protrombina-pt/1576-plasmascann-liquido-10-x-4-ml-8430155010548.html
- Quintanilla, V. (1983). Fitogeografía de las Islas Galápagos. Observaciones preliminares en la Isla de San Cristóbal. *Revista Geográfica*, 98, 58–78.
- Robinson, B. (1902). Flora of the Galapagos Islands. *Contributions from the Gray Herbarium* of Harvard University, 38(4), 77–269. https://www.jstor.org/stable/41763813
- Rueda, D., Campbell, K., Fisher, P., & Cunninghame, F. (2016). (PDF) Biologically significant residual persistence of brodifacoum in reptiles following invasive rodent eradication,

- Galapagos Islands, Ecuador. *Conservation Evidence Journal*, 13(38). https://www.researchgate.net/publication/303328140_Biologically_significant_residu al_persistence_of_brodifacoum_in_reptiles_following_invasive_rodent_eradication_Galapagos_Islands_Ecuador
- Rumbeiha, W., & Oehme, F. (2005). Veterinary Toxicology. In *Encyclopedia of Toxicology* (2nd ed., pp. 420–434). Elsevier. https://doi.org/10.1016/B0-12-369400-0/01004-8
- Russeau, A. P., Vall, H., & Manna, B. (2023). Bleeding Time. In *StatPearls [Internet]*. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537233/
- Samrot, A. V., Sean, T. C., Bhavya, K. S., Sahithya, C. S., Chan-drasekaran, S., Palanisamy, R., Robinson, E. R., Subbiah, S. K., & Mok, P. L. (2021). Leptospiral Infection, Pathogenesis and Its Diagnosis—A Review. *Pathogens*, 10(2), 145. https://doi.org/10.3390/pathogens10020145
- Saracco, S. (2015). Recomendaciones para la atención de las intoxicaciones por raticidas anticoagulantes. Ministerio de Salud de Mendoza. https://www.mendoza.gov.ar/salud/wp-content/uploads/sites/16/2014/10/Recomendaciones-Rodenticida-Anticoagulantes-2015.pdf
- Simental, T. (2006). Detección de anticuerpos contra Leptospira en lobos marinos (Arctocephalus galapagoensis y Zalophus californianus wollebaeki) de las Islas Galápagos, Ecuador [Tesis de pregrado, Universidad Nacional Autónoma de México]. https://ru.dgb.unam.mx/bitstream/20.500.14330/TES01000606371/3/0606371.pdf#:~: text=La%20fuente%20de%20infección%20de%20Leptospira%20para,tener%20en%20cuenta%20que%20los%20lobos%20marinos
- Sönmez, Ö., & Sönmez, M. (2017). Role of platelets in immune system and inflammation.

 Porto Biomedical Journal, 2(6), 311–314. https://doi.org/10.1016/j.pbj.2017.05.005

- Spiller, H. (2014). *Encyclopedia of toxicology* (3rd ed.). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00702-8
- Tilley, L., Smith, F., Sleeper, M., & Brainard, B. (n.d.). *Blackwell's Five-Minute Veterinary Consult: Canine and Feline* (7th ed.). Wiley Blackwell.
- Truchan, H. K., Seidman, D., & Carlyon, J. A. (2013). Breaking In and Grabbing A Meal:

 Anaplasma phagocytophilum Cellular Invasion, Nutrient Acquisition, and Promising

 Tools for Their Study. *Microbes and Infection / Institut Pasteur*, 15(0), 1017–1025.

 https://doi.org/10.1016/j.micinf.2013.10.010
- Weiss, D., & Wardrop, J. (2010). Schalm's Veterinary Hematology (6th ed.). Wiley-Blakwell.
- Zimmer, A. J., & Simonsen, K. A. (2023). Babesiosis. In *StatPearls*. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK430715/