UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Design of a real time monitoring system for electrophysiological plant
status

Mecanismo de Titulacion: Tesis en torno a una hipotesis o problema de
investigacion y su contrastacion

Marco Antonio Chavez Pena

Luis Miguel Procel, PhD
César Zambrano, PhD
Director de Trabajo de Titulacion

Trabajo de titulacion de posgrado presentado como requisito
para la obtencion del titulo de Master en Nanoelectronica

Quito, 7 de enero del 2025

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ
COLEGIO DE POSGRADOS

HOJA DE APROBACION DE TRABAJO DE TITULACION

Design of a real time monitoring system for electrophysiological plant
status

Marco Antonio Chavez Pena

Nombre del Director del Programa: Luis Miguel Procel

Titulo académico: Doctor of Philosophy

Director del programa de: Maestria en Nanoelectronica
Nombre del Decano del colegio Académico: Eduardo Alba

Titulo académico: Doctor of Philosophy

Decano del Colegio: Colegio de Ciencia e Ingenierias

Nombre del Decano del Colegio de Posgrados: Dario Niebieskikwiat
Titulo académico: Doctor of Physics

Quito, Enero 2025

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leido todas las Politicas y Manuales
de la Universidad San Francisco de Quito USFQ, incluyendo la Politica de Propiedad
Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Politicas.

Asimismo, autorizo a la USFQ para que realice la digitalizacion y publicacion de este
trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgéanica de Educacion

Superior del Ecuador.

Nombre del estudiante: Marco Antonio Chavez Pena
Codigo de estudiante: 00332932
C.L: 1713311502

Lugar y fecha: Quito, 07 de Enero de 2025.

ACLARACION PARA PUBLICACION

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado
como una publicacidn, incluso a pesar de estar disponible sin restricciones a través de un
repositorio institucional. Esta declaracion se alinea con las practicas y recomendaciones
presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)
Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de
Quito USFQ institutional repository. Nonetheless, this project — in whole or in part — should
not be considered a publication. This statement follows the recommendations presented by the
Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion
document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

DEDICATORIA

A mi Dios y la Virgen Maria por esta oportunidad, a mis padres Jorge y Ana a los que
amo mucho. A mis hermanas Paola y Cristina y mi sobrino Matias, a los cuales espero servir

de ejemplo. Dios me los bendiga, por todo su apoyo y fe en mi.

AGRADECIMIENTOS

A la USFQ y al Instituto Politécnico de Toulouse por sus valiosas ensefianzas que
espero poner en practica para el beneficio de la sociedad y el medio ambiente. A mis

directores de proyecto Luis Miguel Procel y César Zambrano por su apoyo en este proyecto.

RESUMEN

Este proyecto muestra un innovador sistema de monitoreo en tiempo real disefiado para
evaluar la salud y las condiciones ambientales de las plantas. Aprovechando la potencia del
Arduino MKR WiFi 1010 y el Arduino MKR Environmental Shield, el sistema captura
parametros ambientales criticos como la temperatura, la presion atmosférica, la humedad y la
intensidad de la luz.

Ademas, utilizando un sensor de suelo conectado mediante protocolos RS485 y RS232,
el sistema proporciona datos completos del suelo, incluidos el nivel de pH, temperatura,
humedad, conductividad, nitrogeno, fosforo y potasio.

La perfecta integracion del sistema con Google Sheets a través de Apps Script permite
el registro de datos en tiempo real en intervalos de seis segundos. Esta conectividad permite a
los usuarios interactuar dinamicamente con los datos. Al hacer clic en botones intuitivos, los
usuarios pueden generar graficos personalizados de cualquier pardmetro en funcion del tiempo,
lo que ofrece informacion valiosa sobre las plantas.

Esta solucion combina tecnologia IoT de vanguardia con usabilidad préctica, lo que la
hace ideal para aplicaciones en agricultura, investigacion y monitoreo ambiental. El proyecto
demuestra un enfoque escalable para comprender y optimizar las condiciones de crecimiento
de las plantas de una manera fécil y altamente eficiente.

Palabras clave: Arduino MKR 1010 Wifi, Arduino ENV Shield, RS485, RS232, Apps

Script, [oT.

ABSTRACT

This project shows an innovative real-time monitoring system designed to assess the
health and environmental conditions of plants. Taking advantage of the power of the Arduino
MKR WiFi 1010 and the Arduino MKR Environmental Shield, the system captures critical
environmental parameters such as temperature, atmospheric pressure, humidity, and light
intensity.

Additionally, using a soil sensor connected via RS485 and RS232 protocols, the system
provides comprehensive soil data, including pH level, temperature, humidity, conductivity,
nitrogen, phosphorus and potassium.

The system's seamless integration with Google Sheets through Apps Script enables real-
time data logging at six-second intervals. This connectivity allows users to interact dynamically
with the data. By clicking intuitive buttons, users can generate customized graphs of any
parameter against time, offering valuable insights into plant health trends.

This solution merges cutting-edge IoT technology with practical usability, making it
ideal for applications in agriculture, research, and environmental monitoring. The project
demonstrates a scalable approach to understanding and optimizing plant growth conditions in

a user-friendly and highly efficient manner.

Keywords: Arduino MKR 1010 Wifi, Arduino ENV Shield, RS485, RS232, Apps Script, [oT.

TABLE OF CONTENT

T@SUITICTY 1uruscunssnsssnsssssssesasssssnsnssssanansnnsens 7
2 1 1 L O 8
0000 o016 11 ot 1) 12
REVIEW OF LITERATURE: Electrophysiological Monitoring of Plants, Integration of
IoT for Continuous Monitoring, Artificial Intelligence..........ccovnnsrssnnsssscsssnsssssnsennns 14
107 0 0 (0 (0 16
L0010 1 13 1 18
L0000 1 Lol L1 1) 1 31
2S5 () =) 1 L0 20 32
AnNnex A: arduino COU@ ... sa s sanns s 34
Anexo B: APPS SCRIPT CODE ... 41

Anexo C: ELECTRONIC SCHEMATIC ... 56

TABLE INDEX

Table 1. Estimated Budget for the project

10

11

FIGURES INDEX
Figure 1. Date vS. MKR ADCooiiiiiiiieicie ettt e e e stee e s aee e ae e e saeeesaaeenes 22
Figure 2. Date vs. Environmental TEMPEratureccccveerierieeniieniieniieeieeiiesre e sve e 23
Figure 3. Date vs. Environmental HUMIditycccooooiiiiiiiiiiiiicieceeceeee e 23
Figure 4. Date vs. Environmental PreSSureccooviiiiiiiieiiienieniecieecee e 24
Figure 5. Date vs. Environmental Light INtensSitycccoveeviiieiiiieiiieeieeeeeeee e 24
Figure 6. Date vS. SOl PH ...ocuiiiiiiiiieiecee ettt 25
Figure 7. Date vs. Soil HUMIAILY......coouiiiiiiieiiieeeeee ettt 25
Figure 8. Date vs. SOil TEMPETAtUIEccovieiieiiieiieeieeiie ettt e 26
Figure 9. Date vs. S0l CONAUCLIVILYeeviuiiieiiieciieeciie et 26
Figure 10. Date vS SOl NItTOZEN.......ccciiiiieiiieiieeie ettt ettt ste et re e siae b e e 27
Figure 11. Date vs S0Oil PhOSPhOTUScccueiiiiiiiiiiciie ettt 27

Figure 12. Date vs. S0l POtaSSTUIN ...c..eiiiiiiiriiiiiiierieeiesteeeeee e 28

12

INTRODUCTION

State of the Art

Modern IoT-based monitoring systems have revolutionized precision agriculture by
enabling the collection, transmission, and visualization of critical environmental and soil
parameters. Devices like the Arduino MKR WiFi 1010, combined with communication
protocols such as RS485 and RS232, ensure seamless integration of multi-sensor platforms.
These technologies provide reliable and scalable solutions for real-time data acquisition and
wireless transmission.

Recent advancements in sensor technology have made it possible to measure
environmental factors like temperature, humidity, pressure, and light intensity alongside
essential soil metrics, including pH, moisture, conductivity, and nutrient concentrations (NPK).
These compact, energy-efficient sensors are crucial for understanding plant growth conditions
and ensuring optimal health.

Cloud integration and data visualization have become central to modern agricultural
systems. Connecting data to platforms like Google Sheets via Apps Script allows real-time
access and analysis, empowering users with intuitive graphical representations and actionable
insights. Such systems enable quick identification and resolution of plant stressors, optimizing
decision-making and resource management.

Precision agriculture now relies heavily on multi-parameter sensing systems for targeted
interventions, such as irrigation and fertilization. By providing near-continuous data collection,
the prototype of this project ensures timely responses to environmental or soil changes,

ultimately improving productivity and sustainability. Furthermore, the modularity and

13

scalability of this prototype allow for customization based on specific crops or environmental
conditions, making it adaptable to diverse agricultural scenarios.

Open-source platforms like Arduino democratize access to sophisticated monitoring
tools by offering cost-effective alternatives to proprietary systems. This accessibility empowers
researchers and small-scale farmers to adopt advanced solutions without incurring prohibitive
costs.

The prototype of this project aligns with the forefront of agricultural innovation by
combining [oT technology, advanced sensors, and cloud-based analytics. Its ability to collect
data every six seconds and dynamically visualize it in real-time places it among the most
effective tools for optimizing agricultural productivity and monitoring plant health. This
integration of cutting-edge technology positions this prototype as a vital contribution to

sustainable and efficient farming practices.

14

REVIEW OF LITERATURE: ELECTROPHYSIOLOGICAL MONITORING OF
PLANTS, INTEGRATION OF IOT FOR CONTINUOUS MONITORING,
ARTIFICIAL INTELLIGENCE

Electrophysiological monitoring of plants has gained increasing attention as a method
to study plant responses to environmental and physiological stress. The paper "ldentifying
General Stress in Commercial Tomatoes Based on Machine Learning Applied to Plant
Electrophysiology" (Applied Science 2021, 10.3390); provides a critical framework for
understanding how plant electrophysiology can be integrated with advanced technologies like
machine learning to identify stress factors. This paper serves as a reference to position the
current project within the broader context of plant health monitoring.

Electrophysiology has been recognized as a useful approach to understand plant
responses to environmental changes. This involves measuring bioelectric signals that plants
produce in response to factors such as water stress, nutrient deficiencies, or pest attacks. These
signals serve as early indicators of stress, offering a predictive advantage over traditional
methods like visual inspection or chemical analysis.

The study on commercial tomatoes highlights the potential of electrophysiological
signals to detect stress conditions effectively. By analyzing bioelectric activity, the researchers
demonstrated that stress could be quantified and classified using machine learning models,
enabling proactive management of crop health.

Building on the concepts from the paper, this project takes advantage of IoT technology
for real-time data acquisition. The use of Arduino MKR WiFi 1010 and environmental sensors
enables the continuous collection of soil and atmospheric parameters alongside

electrophysiological data. Unlike the paper, which focuses on tomatoes, this system is designed

15

for broader applications in agriculture, enabling the integration of diverse environmental and
soil conditions such as pH, temperature, conductivity, and nutrient levels.

The paper emphasizes machine learning as a tool to analyze complex
electrophysiological data for stress detection. Although the current project does not implement
machine learning directly, it sets the stage for future integration by providing a robust platform
for data collection and visualization. The recorded data in Google Sheets could be further
analyzed using machine learning models to classify and predict plant stress more accurately.

The paper highlights the importance of reliable data acquisition methods for
electrophysiology. Similarly, this project uses RS485 and RS232 protocols to ensure accurate
and noise-resistant communication between sensors and the microcontroller. The integration of
environmental monitoring shields and soil sensors complements -electrophysiological
monitoring by providing a comprehensive picture of plant health.

The study demonstrates the importance of translating electrophysiological data into
actionable insights. The current project builds upon this by creating real-time data visualization
capabilities in Google Sheets. Users can interact with the data, generate custom graphs, and
analyze trends, thereby facilitating decision-making for crop management.

While the paper focuses primarily on the classification of stress in a controlled
environment using machine learning, this project addresses gaps by providing a scalable, low-
cost system that integrates environmental, soil, and electrophysiological parameters. The ability
to visualize real-time data extends the usability of such systems beyond academic research to

practical applications in commercial farming.

16

METHODOLOGY

The investigation method for the Real-Time Monitoring System for
Electrophysiological Plant Status involved a systematic and multidisciplinary approach. It
integrates hardware design, software development, and real-time monitoring of the plant. The

methodology can be outlined as follows:

1. Literature Review and Background Research

It was conducted a thorough review of existing studies on electrophysiological plant
monitoring, soil health sensors, and environmental monitoring technologies. It was studied the
principles of plant electrophysiology and stress responses, taking advantage of insights from
companies like Vivent and relevant academic papers.

A literature review of previous research on plant bioelectrical signals, sensor
technologies, and data acquisition methods, have demonstrated that plants generate electrical
responses to environmental stimuli, including light, temperature, humidity, and stress factors

such as drought or disease.

2. System Design and Development

a. Hardware Selection:

It was decided to use the Arduino MKR WiFi 1010 for its Wi-Fi connectivity and
compatibility with various sensors. Also, the employment of the Arduino MKR Environmental
Shield for capturing temperature, humidity, pressure, and light intensity.

And the integration of a soil sensor using RS485 and RS232 protocols to measure
parameters such as pH, soil temperature, moisture, conductivity, nitrogen, phosphorus, and

potassium.

17

b. Software Development:

It was decided for the development of the firmware to interface with sensors, collect
data, and transmission the use of Google Sheets using Apps Script. This setup allows
continuous data logging, automatic timestamping, and cloud storage, making it accessible from
any device.

This software development approach takes advantages of the scalability and
accessibility of Google’s cloud ecosystem, allowing remote access and real-time collaboration

while ensuring a reliable and automated workflow for plant monitoring and analysis.

3. Data Collection and Integration

The system was deployed in a controlled environment to monitor plant status under
varying conditions. And capture data every 6 seconds and store it in Google Sheets for analysis
and visualization.

This cloud-based approach enhances remote monitoring capabilities, ensuring real-time,
scalable, and easily accessible data management for plant research and precision agriculture

applications.

4. Visualization and User Interaction

Apps Script functionalities were created to allow users to generate graphs of specific
parameters versus time and the development of tools for filtering and analyzing data based on
user input, such as date ranges or parameter selection.

Creates dynamic visualizations, helping researchers identify trends and anomalies in
plant responses. Users can notice significant changes in plant bioelectrical activity, aiding in

early stress detection

18

CONTENT

1. Vivent silver electrode for electrophysiological signal measurement

To monitor the plant’s electrophysiological status, the Vivent silver electrode cable was
used to establish connection with the plant. The cable captures the electrical signals generated
by the plant in response to various environmental conditions. The signal was initially observed
using an oscilloscope, revealing a voltage range between 1 mV and 30 mV. Due to the low
magnitude of these signals, an instrumentation amplifier was employed to amplify the signal
and make it suitable for further processing.

The AD620 is a high-performance instrumentation amplifier known for its precision,
low power consumption, and compact design. It is ideal for applications requiring the
amplification of small differential signals, such as electrophysiological monitoring.

In this project, an AD620 instrumentation amplifier module was used to measure plant
electrophysiological signals. The module is equipped with two variable resistors, one for setting
the gain and the other for adjusting the offset.

The AD620 offset was set to 1.5V to center the amplified signal within the range of the
ADC used in subsequent processing.

ADG620 amplified the plant’s electrophysiological signal from the initial range of 1 mV—
30 mV to a range of 10 mV—-300 mV. This amplified signal was then fed into the ADC of the
Arduino MKR WiFi 1010 for digitization and further analysis.

This design step ensured that the plant's weak electrophysiological signals were
accurately amplified and prepared for digital processing, forming a critical part of the real-time

monitoring system.

19

2. Environmental Data Monitoring with MKR ENV Shield

The MKR ENV Shield is used to capture essential environmental parameters, including
temperature, humidity, atmospheric pressure, and light intensity. This shield integrates
seamlessly with the Arduino MKR WiFi 1010, providing a robust solution for real-time
monitoring.

The MKR ENV Shield includes an onboard SD card slot, enabling local data storage.
This feature was employed to store measurements from various sensors.

The data was recorded in a structured format, including:

Timestamp: Generated using an 12C-connected real-time clock (RTC).

Plant Signal: Processed ADC values of electrophysiological measurements.

Environmental Data: Temperature, humidity, pressure, and light intensity.

Soil Parameters: pH, temperature, humidity, conductivity, nitrogen, phosphorus, and
potassium levels.

The integration of the SD card ensures redundancy in data logging. By taking advantage
of the MKR ENV shield, the project integrates critical environmental data into the real-time
monitoring system. This data complements the plant electrophysiological measurements,

providing a comprehensive overview of plant-environment interactions.

3. Soil Sensor Integration for Detailed Analysis
The system incorporates a soil sensor capable of measuring multiple soil parameters

such as pH, temperature, humidity, electrical conductivity, nitrogen, phosphorus, and potassium

20

levels. This integration adds valuable insights into the plant's immediate environment, crucial
for assessing plant health and behavior.

The sensor operates with a polarization voltage between 12 and 24 volts, supplied via
two dedicated power lines. And the other two lines the sensor uses the RS485 protocol for
transmitting data. RS485 is robust and suited for long-distance communication in noisy
environments.

A conversion module is used to convert differential RS485 signals to single-ended

RS232 signals, which are compatible with the MKR WiFi 1010 serial ports.

4. Integration of Arduino MKR WiFi 1010 with Google Sheets

For the software development, Google Apps Script was used to facilitate seamless
communication between the Arduino MKR WiFi 1010 and Google Sheets. This approach
enabled the real-time storage and visualization of environmental, soil, and plant
electrophysiological data in the cloud.

Secure data transmission was implemented using the WiFiNINA library for HTTPS
connectivity. The Apps Script endpoint was set up to handle POST requests and parse incoming
JSON data. And receive the data from the Arduino in JSON format. The parsed data was
appended to specific rows in Google Sheets, maintaining a chronological order with the
timestamp given by the Apps Script software.

Buttons in the Google Sheet interface allow users to generate charts dynamically. Users
could visualize any parameter (e.g., environmental, soil, or electrophysiological) versus time,
using dedicated scripts that accessed and plotted the data.

Figure 1 represents the MKR ADC vs. time, which is used to calculate the plant's

voltage. The ADC data from the Arduino MKR WiFi 1010 provides insight into the electrical

21

activity of the plant. This information is crucial as variations in plant voltage can indicate

physiological changes related to stress, hydration, or overall health.

The next four figures correspond to the MKR Environmental Shield, which measures
different environmental conditions. The MKR Environmental Shield supports multiple sensors,
with its key ranges including temperature (15°C to 40°C), humidity (0% to 100%), atmospheric
pressure (260 hPa to 1260 hPa), and light intensity (0 to 650 Lux). Figure 2 shows
environmental temperature, an important factor affecting plant metabolism and growth. Figure
3 illustrates environmental humidity, which influences water absorption through the roots and
transpiration through the leaves. Figure 4 displays atmospheric pressure, a parameter that can
impact gas exchange and overall environmental stability. Figure 5 represents environmental
light intensity, which is essential for photosynthesis, as light availability directly affects the

plant’s energy production and growth.

The remaining seven graphs focus on soil conditions, crucial for nutrient uptake and
plant development. Figure 6 shows soil pH, which ranges from 3 to 9, with a resolution of 0.01
and an accuracy of +£0.3. Soil pH determines nutrient availability, as extreme values can limit
the absorption of essential elements. Figure 7 represents soil moisture, measured from 0% to
100% with a resolution of 0.1%. Proper moisture levels are necessary for root function and
microbial activity. Figure 8 tracks soil temperature, ranging from -40°C to 80°C, with a
resolution of 0.1°C and an accuracy of +0.5°C. Soil temperature affects root growth and

enzymatic activity, playing a key role in nutrient cycling.

Figure 9 displays soil electrical conductivity, measured in micro Siemens per centimeter
(uS/cm) with a range of 0 to 10,000 uS/cm. This parameter indicates soil salinity and nutrient

concentration, helping to assess the balance of dissolved ions. The last three graphs relate to

22

the concentration of essential nutrients in the soil. Figure 10 shows nitrogen (N) concentration,
figure 11 represents phosphorus (P) levels, and figure 12 displays potassium (K) concentration.
Each of these macronutrients is measured in mg/Kg, ranging from 0 to 1999 mg/Kg, with a
resolution of 1 mg/Kg. Nitrogen is crucial for leaf and stem growth, phosphorus supports root

development and energy transfer, and potassium enhances disease resistance and fruit quality.

Together, these measurements provide a comprehensive analysis of the plant’s
environment and internal electrical activity. By correlating plant voltage with soil and
environmental conditions, it becomes possible to detect stress factors early and optimize growth

conditions effectively.

Date vs. MKR_ADC

|

1250 i

|

1000 i

R |
S 750 |
e |
g |
g 50 |
g I
E |
250 |

|

. l
12212024 121312024 12142024 121512024 121612024 |

0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 |

Date |

I

Figure 1. Date vs. MKR ADC

23

Date vs. ENV_Temperature

30
O 20
5
®
a
5
I—I 10
Z
L
0
12/2/2024 121372024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date
Figure 2. Date vs. Environmental Temperature
Date vs. ENV_Humidity
80
60
£
2
=] 40
g
I
I
-
L 20
0
121212024 121312024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00

Date

Figure 3. Date vs. Environmental Humidity

24

Date vs. ENV Pressure

N S AT e T I S A AT B AN 9403 KRS

60
™
o
=

ﬁ 40
@
o
EI

& 20

0

12/2/2024 12/3/2024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date
Figure 4. Date vs. Environmental Pressure
Date vs. ENV _llluminance

300

X 200
2
8
-
€
5
3

= 100
Z
L

: | |

12/2/2024 12/3/2024 12/4/2024 121572024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00

Date

Figure 5. Date vs. Environmental Light Intensity

25

Date vs. Soil_PH

8
}_

5]

G
Tﬂ..
o

2

0

121212024 121312024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date
Figure 6. Date vs. Soil pH
Date vs. Soil Humidity

25

20

£ 15
oy
b
E

T 10
."5
(51

5

0

12/212024 12/3/2024 12/412024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00

Date

Figure 7. Date vs. Soil Humidity

26

Date vs. Soil Temperature

o
b 15
2
o
EL 10
&
@ 5

0

121212024 12/3/2024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 (:00:00 0:00:00
Date
Figure 8. Date vs. Soil Temperature
Date vs. Soil_Conductivity
800

. B00
b
2
£ 400
o
=
=
8
_I 200 :
o B L I s S
0

0

12/2/2024 12/372024 12/412024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date

Figure 9. Date vs. Soil Conductivity

27

Date vs. Soil Nitrogen

60
= 40
-
E
o
g
EI 20
.UEJ
0
12/2/2024 121312024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date
Figure 10. Date vs Soil Nitrogen
Date vs. Soil Phosphorus
80
= 60
v
o
E
S 40
o
L
7
2
o
= 20
o IL'‘'‘—!'''_'‘"-u--""'.‘_"'--_--"
n
0
121212024 12/3/2024 12/4/2024 12/5/2024 12/6/2024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date

Figure 11. Date vs Soil Phosphorus

28

Date vs. Soil Potassium

150

I 100
=
E
E
=
8
=
DE: 50
EI M
]

0

121212024 12/3/2024 12/4/2024 12/5/2024 121652024
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
Date

Figure 12. Date vs. Soil Potassium

The system has demonstrated robust performance, collecting and recording data
consistently for 18 days without any issues. During this period, various events were monitored
and analyzed through the generated graphics.

One significant event occurred when the plant was watered. The system displayed a
clear and immediate increase in soil humidity, conductivity, and NPK levels, aligning with
expected behavior after watering. These changes were effectively captured by the soil sensors,
showcasing the accuracy and reliability of the integrated monitoring system.

However, identifying corresponding changes in the plant’s voltage signals proved to be
challenging. Unlike soil parameters, the plant's voltage signals did not exhibit an obvious or

easily discernible pattern related to the watering event. This highlights the complexity of

29

interpreting electrophysiological signals and suggests that more advanced data analysis
techniques may be required to extract meaningful insights from these signals.

To address this limitation, the potential use of artificial intelligence (Al) is proposed. Al
techniques, such as machine learning models, could analyze the multidimensional dataset and
identify subtle correlations and patterns in plant voltage signals that may indicate stress, disease,
or other physiological changes. By taking advantage of Al, the system could evolve into a
powerful diagnostic tool capable of providing actionable insights into the plant's health and
status.

The budget used for this project is detailed in Table 1.

Component Qty Unit Total Description
Price Price
(USD) (USD)

Arduino MKR WiFi 1 40 40 Main microcontroller for data

1010 acquisition and wireless
communication.

MKR Environmental 1 40 40 Measures environmental data

Shield (temperature, humidity, pressure,
and light intensity).

SD Card (16 GB) 1 10 10 Used for data storage.

Soil Sensor (RS485) 1 80 80 Measures soil pH, temperature,
humidity, conductivity, and NPK
levels.

RS485 to RS232 1 12 12 Converts RS485 protocol to

Converter Module RS232 for soil sensor
communication.

AD620 1 10 10 Amplifies plant voltage signals.

Instrumentation

Amplifier Module

Vivent Silver Cable 1 50 50 Electrode cable for plant voltage
measurement.

Power Supply (12- 1 20 20 Provides voltage for soil sensor

24V) polarization.

Table 1. Estimated Budget for the project

30

The total estimated value is 262.00 US dollars.

The relatively low budget for this system highlights its potential for widespread
adoption due to affordability. Unlike expensive proprietary systems, this custom-designed setup
provides a cost-effective alternative while maintaining robust functionality. By leveraging
accessible components and open-source platforms, this solution offers an easy implementation
pathway for researchers and agricultural professionals.

Its economic design demonstrates that advanced plant monitoring systems can be
developed without requiring substantial financial resources, making it particularly suitable for
small-scale farmers, educational institutions, or low-budget research projects. Additionally, the
modular nature of the system enables scalability and customization, further enhancing its

practical appeal.

31

CONCLUSIONS

Current methods in electrophysiological plant monitoring often involve renting
specialized equipment, such as those provided by companies like Vivent. These systems focus
primarily on analyzing the plant’s voltage signals, which require substantial computational

resources, including advanced artificial intelligence algorithms, to interpret the data accurately.

This project introduces a comprehensive monitoring system that integrates
environmental sensors, soil information, and plant voltage measurements. By combining these

diverse data points, the system offers a more holistic view of the plant's condition.

The inclusion of environmental factors such as temperature, humidity, pressure, and
light intensity, alongside soil parameters like pH, temperature, humidity, conductivity, nitrogen,
phosphorus, and potassium, creates a multidimensional dataset. This approach has the potential
to significantly enhance the detection and understanding of plant diseases or stress factors by

correlating multiple variables, rather than relying solely on plant voltage signals.

This innovative system not only reduces reliance on high-cost, resource-intensive
methodologies but also opens the door for real-time, low-cost, and scalable solutions in
agricultural monitoring and management. It paves the way for a new era of precision agriculture

that can proactively address plant health challenges with enhanced efficiency and accuracy.

32

REFERENCES

Najdenovska, E., Dotoit, F., Tran, D., Rochat, A., Vu, B., Mazza, M., Camps, C., Plummer,
C., Wallbridge, N. & Raileanu, L., E. (2021). Identifying Stress in Commercial
Tomatoes Bases on Machine Learning Applied to Plant Electrophysiology. Applied
Sciences, https://doi.org/10.3390/app11125640.

Gonzalez, D., Najdenovska, E., Dutoit, F. & Raileanu, L., E. (2023). Detecting stress caused
by nitrogen deficit using deep learning techniques applied on plant
electrophysiological data. Scientific Reports, https://doi.org/10.1038/s41598-023-
36683-3.

Najdenovska, E., Dutoit, F., Tran, D., Plummer, C., Wallbridge, N., Camps, C. & Raileanu,
L., E. (2021). Classification of Plant Electrophysiology Sygnals for Detection of

Spider Mites Infestation in Tomatoes. Applied Sciences,
https://doi.org/10.3390/app11041414.

Tran, D. & Camps, C. (2021). Early Diagnosis of Iron Deficiency in Commercial Tomato
Crop Using Electrical Signals. Frontiers in Sustainable Food Systems,
https://doi.org/10.3389/fsufs.2021.631529.

Arduino (2025), Arduino Integrated Development Environment (IDE), Version 1.8.19,
Retrieve January 7, 2025 from https://www.arduino.cc/en/software.

Arduino (2025), MKR ENV Shield rev2 (2025). Retrieve January 7, 2025 from
https://docs.arduino.cc/tutorials/mkr-env-shield/mkr-env-shield-basic/

Arduino (2025), WiFiNiNa library (2025), Retrieve January 7, 2025 from
https://docs.arduino.cc/libraries/wifinina/

Arduino (2025), Watchdog Library for Arduino MKR. Retrieve January 7, 2025 from
https://docs.arduino.cc/libraries/adafruit-sleepydog-library/

Arduino (2025), Data Logger with MKR SD Proto Shield, Retrieve January 7, 2025 from
https://docs.arduino.cc/tutorials/mkr-sd-proto-shield/mkr-sd-proto-shield-data-logger/

Arduino (2025), Adding more Seria Interfaces to SAMD microcontrollers (SERCOM),
Retrieve January 7, 2025 from
https://docs.arduino.cc/tutorials/communication/SamdSercom/

Atmel Corporation, ATmega 328/P Datasheet. Retrieve January 7, 2025 from
https://www.microchip.com/en-us/product/atmega328p

Google, Apps Script, Retrieve January 7, 2025 from https://developers.google.com/apps-
script/reference

ANNEX A. ARDUINO CODE....

ANNEX B. APPS SCRIPT CODE

ANNEX C. ELECTRONIC SCHE

INDEX OF ANNEXES

MATIC. ..o

33

ANNEX A: ARDUINO CODE

{/Library for MER Enviromnmental SHIELD
finclude <Arduino MKRENV.h>

{/Libraries for WIFI Connection

$include <SPI.h>

finclude <WiFiNINA.h>

//Taibrary for WATCHDOSG

finclude <Adafruit SleepyDog.h>

SfLibrary to manage 5D Card

#include «SD.h>

//Library to create additional UART
finclude <Arduino.h>

$include "wiring private.h"

//Library for protocol I2C

finclude <Wire.h>

/4 DB1307 I2C address

fdefine DS1307_ADDRESS OxEB

// 88 pin for the 85D card on the ENV Shield
const int SDCARD S8 PIN = 4;

{/Instance of the 8D Card

File myFile;

//Instance UART

Uart mySerial (&sercom3, 1, 0, SERCOM EX PAD 1, URRT TX PAD 0);
/¢ Buffer to store received UART data of the S0I1L SENSOR
byte receivedDatal7];

float temperature = 0.00;

0.00;

float pressure = 0.00;

float humidity

float i1lluminance = 0.00;

const int analogPin = AQ;

unsigned long startTime = 0;

//WIFI and SERVER information
char* ssid = "YOUR 83ID";

char* pass = "YOUR PASSWORD";

int keyIndex = 0;

const char* urlPath = "/macros/s/YOUR SCRIPT ID/exec";
int status = WL IDLE STATUS;

char* server = "acript.google.com";
//Instance of the WIFI SS8L

WiFi3sLClient client;

void setup() |
//Initialization Serial Console and Serial SERCCGM
Serial.begin (9600) ;
mySerial .begin (9600) ;
pinPeripheral (1, PIC SERCOM); //Zssign BX function to pin 1
pinPeripheral (0, PIC SERCCM); //Assign TX function to pin 0O
delay (2000) ;
f/Initialization MER ENV Shield
if (1ENV.begin()) {
Serial .println({"Failed to initialize MER ENV shield!");
1
//Initialization SD Card
Serial .print ("Initializing 8D card...");
if (!SD.begin(SDCARD SS PIN)) |
Serial.println("SD card initialization failed!"™);
return;
1
Serial.println({"SD card initialized.");
/FI2C Initialization
Wire.begin();
/f Check wifi module
if (WiFi.status() == WL NO MODULE) |
Serial.println ("Communication with WiFi module failed!"™);
1
String fv = WiFi.firmwareVersion();
if (fv < WIFI_FIRMWARE LATEST VERSION) f{
Serial.println("Please upgrade the firmware");
1
/{ Attempt to connect to WiFi network
while (status !|= WL CONNECTED) {
Serial.print ("Attempting to connect to 33ID: ");
Serial.println(ssid);
status = WiFi.begin{ssid, pass);
// Wait 10 seconds for connection
delay (10000) ;
1
Serial.println("Connected to wifi");
printWiFiStatus();
//8et WATCHDOG at 1 minute
int timeout = Watchdog.enable (120000) ;
Serial.print ("Watchdog enabled with timeocut: ");
Serial.print (timeout) ;
Serial.println(" milliseconds™);

Watchdog.res=t () ;

36

void loop() {

// BRead all the sensor valuss

temperature = ENV.readTemperature();
humidity = ENV.readHumidity () ;
pressure = ENV.readPressure () ;
i1lluminance = ENV.readIlluminance () ;

//GET DATA FRCM DS1307
Wire.beginTransmission (DS1307 ADDRESS);
Wire.write (0x00); //
Wire.endTransmission();

Wire.requestFrom(D31307 ADDRESS, 7);

byte seconds = bedToDec (Wires.r=ad());
byte minutes = bedToDec (Wirs.read());
byte hours = bedToDec({Wirs.read());

Wire.read () ;

byte day = bcdToDec (Wirs.rsad());
byte month = bedToDec(Wire.read());
byte year = bcdToDec(Wire.read());

//GET DATA FROM S0IL SENSCR

//8ending commands to get PH

byte hexValuss[] = {0x01, O0x03, O0x00, Ox=0&, O0x00, O0x0l, Oxc4, 0x0B];

mySerial.write (hexValues, sizeof (hexValues)):

delay (100);

if {(mySerial.available() >= sizeof{receivedData)) |
mySerial.rsadBytes (receivedbData, sizscf (receivedData));

!

float PH = ((receivedDatal[3] << B) | receivedData[4]) / 100.0;

//B8ending commands to get Humidity

bByte hexValuesl[] = {0x0l1, 0x03, 0x00, Ox12, 0x00, Ox01l, Ox24, OxOF};

mySerial.write (hexValuesl, sizsof (hexValuesl));

delay (100);

1f {mySerial.availaklel() >= sizecf(receivedData)) |
mySerial.readBytes (receivedData, siz=of (receivedData));

!

float Humidity = ({receivedData[3] << B) | receiwvedDatal[4]) / 10.0;

//8ending commands to get Temperature

byte hexValues2[]

{0x01, 0x032, 0x00, 0x13,

37

0x00, O0x01, O0x75, O0xCF};

mySerial.write (hexValues2, sizeof (hexValues2));

delay (100);

1f {(mySerial.available() »= sizeof (receivedData)) |

mySerial.r=adBytes (receivedData,

}

float Temperature

{{receivedDatal[3] << 8)

//B8ending commands to get Conductivity

{0x01, 0O0x03, Ox00, Oxl15, O0x00, O0x01l, Ox55, OxCE};

byte hexValues3[]

mySerial.write (hexValuess3,

delay (100);

1f {mySerial.availakl=s()

myS8erial.readByites (receivedData,

}

float Conductivity

= ({({receivedDatal[3] << 8)

//8ending commands to get Nitrogen

byte hexValues4d[]

mySerial.write (hexValuess4,

delay (100);

{0x01, 0x03, 0x00, OxlE,

sizeof {(receivedDatal) ;

| receivedData[4]) / 10.0;

sizeof (hexValuss3));

= zsizeof (receivedData)) |

sizeof {receivedDatal));

| receivedDatal[4]):

Ox00, O0x01l, OxE4, O0x0C};

sizecf (hexValuss4));

if (mySerial.available() >= sizeof(receivedData)) {

mySerial.resadBEytes (receivedData,

}

float Nitrogen =

{

(receivedDatal[3] << B) |

//8ending commands to get Phosphorus

byte hexValuesS[]

delay (100);

[0x01, Ox03, 0x00, OxlF, 0x00, 0x0l, OxB5, 0xCC}

mySerial.writs (hexValuesss,

sizeof (receivedData)) ;

receivedData[4]) ;

.

sizeof (hexValues5));

1f {(mySerial.available() »= sizeof(receivedData)) |

mySerial.readBytes (receivedData,

}

float Phosphorus =

mySerial.write (hexValueseg,

delay (100);

te hexValuesstc[] =

{{(receivedData[3] << 8)

{/8ending commands to get Potassium
'y

sizeof {receivedData)) ;

receivedDatal[4]);

{0x01, 0Ox03, Ox00, 0x20, O0x00, Ox01, Ox83, O0xCO};

sizeof (hexValuss6)) ;

if (mySerial.availakls() >= sizsof(receivedData)) |

mySerial.readBytes (receivedData,

}

float Potassium =

{(receivedData[3] << B) |

sizeof {receivedData)) ;

recelivedbDatal[4]) ;

//GET DATA FRCOM ZADC

int adcValue = analogRead({analogPin);

//8TORE DATE, S30IL SENSOR DATA AND ADC IN 3D CARD

myFile = SD.open ("AGROS.txt",
if (myFile) |
myFile.print ({day);
myFile.print (month) ;
myFile.print (yvear) ;
myFile.print (hours);
myFile.print (minutes) ;

myFile.print (seconds) ;

myFile.print (temperature);
myFile.print (humidity) ;
myFile.print (pressure);

myFile.print (1lluminance);

myFile.print (PH) ;
myFile.print (Humidity) ;
myFile.print (Temperature) ;
myFile.print (Conductivity);
myFile.print (Nitrogen);
myFile.print (Phosphorus) ;

myFile.print (Potassium) ;
myFile.println(adcValue) ;
myFile.close();

!

sl=es |

FILE WRITE]) :

myFile.print("/");

myFile.print ("/");
");
R

=i

myFile.print ("
myFile.print ("
myFile.print ("

myFile.print ("

myFile.print ("
myFile.print ("
myFile.print ("

myFile.print ("

myFile.print ("
myFile.print ("
myFile.print {"
myFile.print ("
myFile.print ("
myFile.print ("

myFile.print ("

Serial.println({"error opening AGROS5.txt");

!
//CREATE JSCN DATA TO SEND TO THE SERVER
3

F

") i

") i
")i
") i

"}:

") i
") i
"):
") i
")i
") i

")i

-+

tring jsonPayload = "{\"valusl\": " + BString(temperature)
" A"value2\": " + String(bumidity) +
" A"value3\": " + String(pressure) +
" A"value4\": " + String(illuminance) +
T A"valueS\": " 4+ String({PH] +
" A"value6\": " + String(Humidity) +
" A"value7\": " + String(Temperature) +
" A"ralueB\": " + String({Conductiwvity) +
", A"valueS\": " + String(Nitrogen) +
"\ "valuelO\": " + String(Phosphorus) +
", A"valuell\": " + String(Potassium) +
" A"valusl2\": " + String(adcValus) +

Il}ll;
Serial.println(jsonPayload);
delay (200) ;

38

//START CONNECTICN WITH THE SERVER
Serial .println{"\nStarting connection to server...");
1if (client.connect (server, 443)) {
Serial .println("connected to ssxrwver™);
/f Make a HTTF regquest:
client.println("POST " + String(urlPath) + " HTTE/1.1");

" + Btring(server));

client.println{"Host:
client.println("Content-Type: application/json");
client.print ("Content-Length: ");
client.println(jsonPayload.length());
client.println();
client.println(jsonPayload) ;

1

//WAIT FOR THE SERVER RESPCNSE

delay (1000) ;

f/IF NOT RESFCONSE FROM THE SERVER ACTIVATES WATCHDOG

startTime = millis{);

while ((millis() - startTime < £000) && (client.available(}))
char ¢ = client.read();
Serial .writelc);
Watchdog.res=t () ;

1

delay (200) ;

//SERVER DESCONNECTION

Serial.println("disconnecting from server.");

client.=stop();

delay (200) ;

// Bttach the interrupt handler to the SERCCOM
void SERCOM2 Handler()

{
mySerial.IrgHandler () ;

{4/ Convert BCD to decimal
byte bcdToDec (byte wal) {
return (val / 16 * 10) + (wal % 16);

{

39

void printWiFiStatus() |
//88ID of the network
Serial .print ("S8ID: ");
Serial .println(WiFi.sSsSID());
//IP address:
IPAddress ip = WiFi.localIFE();
Serial.print ("IP Addres=s: ");
Serial .println(ip);
{/Received signal strength
long rssi = WiFi.RSS5I();
Serial.print ("signal strength (R38I):");
Serial .print{rssi);

Serial.println(" dBm");

[TR N i T o (Y Sy I [5 R)

o

ANEXO B: APPS SCRIPT CODE

J/Function to listen, obtain and append the data
function doPost(e) {

try {

// Parse the incoming JSON payload from the POST request
var payload = J50N.parse(e.postData.contents);

/7 Access the Google Sheet by ID
const spreadsheet = SpreadsheetApp.openById("YOUR_SHEET ID");
const dataSheet = spreadsheet.getSheetByName("Sheetl™);

// Extract the data from the payload
var MKR_Temperature = payload.valuel || "";

o

var MKR_Humidity = payload.value2 || "";

o

var MKR_Pressure = payload.value3 || "";

"

var MKR_TIlluminance = payload.valued || "";

var Soil PH = payload.value5 || o

var Soil Humidity = payload.wvalueé || "";

var Soil Temperature = payload.value? || "";
var Soil Conductivity = payload.wvalueg || "";
var Soil Nitrogen = payload.valueg || "";

var Soil Phosphorus = payload.valuele || "";
var Soil_Potassium = payload.valuell || "";

var MKR_ADC = payload.valuel2 || "";

// Append the data as a new row

dataSheet.appendRow([new Date(), MKR Temperature, MKR Humidity,
MKR_Pressure, MKR_Illuminance, Soil PH, Soil Humidity, Scil Temperature,
S0il Conductivity, Soil Nitrogen, Soil Phosphorus, Soil Potassium,
MKR_ADC]);

/7 Return @ success response
return ContentService.createTextOutput("Row appended successfully™);

catch (error) {
// Handle errors and return an error message

[

return ContentService.createTextOutput("Error: " + error.message);

41

o Sh S G S oW W W u uT w1 u wn N
L T e e ™ T N o= TR R o L T (N - W B N S

=y}
b |

=4
[=4]

L |
o=

)
Lt

]]
(9 I =Y

|

h

=l
w0

42

//This code is to make graphics from the DATA
function updateChart() {

const spreadsheet = SpreadsheetApp.openById({"YOUR_SHEET ID")
const dataSheet = spreadsheet.getSheetByName("Sheetl™);
const chartSheet = spreadsheet.getSheetByName("Sheet2");
const lastRow = dataSheet.getlastRow();

/Y Define the range for the graphic base on value I4
const cellValue = chartSheet.getRange("I4").getValue();
//1 day 14488 2 days 28868

const startRow = Math.max(l, lastRow - cellValue);
const endRow = lastRow;

S/ For the graphis is used the date and the respective data column
const xRange = dataSheet.getRange(A${startRow}:A${endRow}” };
const yRange = dataSheet.getRange(M${startRow}:M${endRow}™ };

const xRangel = dataSheet.getRange(A%${startRow}:A${endRow]});
const yRangel = dataSheet.getRange(B${startRow}:Bf{endRow]}™);

const xRange2 = dataSheet.getRange(A${startRow}:A${endRow]}™);
const yRange2 = dataSheet.getRange(C§{startRow}:C${endRow]}™);

const xRange3 = dataSheet.getRange(A${startRow}:A${endRow]}™);
const yRange3 = dataSheet.getRange(D${startRow}:D${endRow}”)};

const xRanged = dataSheet.getRange(A${startRow}:A${endRow]}™);
const yRanged = dataSheet.getRange(Ef{startRow}:Ef{endRow});

const xRange5 = dataSheet.getRange(A${startRow}:A${endRow]}”);
const yRange5 = dataSheet.getRange(F§{startRowl}:F${endRow});

const xRangeb6 = dataSheet.getRange(A${startRow}:A${endRow})};
const yRanget = dataSheet.getRange(Gf{startRowl}:G${endRow}”);

const xRange7 = dataSheet.getRange(Af{startRowl}:A%{endRow}”);
const yRange? = dataSheet.getRange(H${startRow}:H${endRow]});

const xRangeg = dataSheet.getRange(Af{startRowl}:A%{endRow}”);
const yRangeB8 = dataSheet.getRange(I§{startRow}:If{endRow]}’);

o R B v
L I]

L

1ea
181
182

const xRange9

dataSheet.getRange(A${startRow}:Af{endRow]}™);
dataSheet.getRange(J${startRow}:J${endRow} };

const yRange9

const xRangel@

dataSheet.getRange(A%{startRow}:Af${endRow}” };

const yRangel® = dataSheet.getRange(K${startRow}:K${endRow} };

const xRangell

dataSheet.getRange(A${startRow}:Af${endRow}’™);
dataSheet.getRange(L§{startRow}:L${endRow}™);

const yRangell

/4 Are there graphics on the sheet?
const charts = chartSheet.getCharts();
if (charts.length » @) {

//GRAPHIC MKR_ADC
const chart = charts[@];
const newChart = chart
modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRange)
.addRange(yRange)
.setPosition(2, 2, @, @)
.setOption("title’, 'Date wvs. MKR_ADC")
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
by
.setOption("'hAxis.title', 'Date’)
.setOption("vAxis.title', 'MKR_ADC (©-1823)")
Lbuild();
chartSheet.updateChart{newChart);

43

S/GRAPHIC ENVIRONMENTAL TEMPERATURE
const chartl = charts[1];
const newChartl = chartl
.modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRangel)
.addRange(yRangel)
.setPosition(21, 2, 8, @)
.setOption('title', 'Date vs. ENV _Temperature')
setOption("titleTextsStyle', {
bold: false,
fontSize: 16,
alignment: 'center'
b))
.setOption("hAxis.title', 'Date’)
.setOption("vAxis.title', 'ENV Temperature (°C)")
Lbuild();
chartsheet.updateChart{newChartl);

S/GRAPHIC ENVIRONMENTAL HUMIDITY

const chart2 = charts[2];

const newChart2 = chart2
.modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRange2)
.addRange(yRange2)
.setPosition(48, 2, @, @)
.setOption("title’, 'Date vs. ENV Humidity')
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
by
.setOption("hAxis.title', 'Date’)
.setOption('vAxis.title', "ENV Humidity (%)")
Lbuild();

chartSheet.updateChart({newChart2);

44

157
158
159
168
161
162
163
164
165
166
167
168
169
178é
171
172
173
174
175
176
177
178
179
126
181
182
183
134
185
186

188
189
1%e
191
192
193

194

//GRAPHIC ENVIRONMENTAL PRESSURE

const chart3 = charts[3];

const newChart3 = chart3
modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges() // Clear previous ranges
.addRange(xRange3)
.addRange(yRange3)
.setPosition(59, 2, @, @)
.setOption('title"', 'Date ws. ENV Pressure’)
.setOption("titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
b))
.setOption("hAxis.title', 'Date’)
.setOption('vAxis.title', "ENV Pressure (HPa)')
Lbuild();

chartsheet .updateChart(newChart3);

J/GRAPHIC ENVIRONMENTAL ILLUMINANCE
const chartd = charts[4];
const newChartd = chartd
.modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRanged)
.addRange(yRanged)
.setPosition({78, 2, 8, @)
.setOption('title', 'Date vs. ENV Illuminance')
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
by
.setOption('hAxis.title', 'Date’)
.setOption('vAxis.title', "ENV_Illuminance (Lux)")
Lbuild();
chartShest.updateChart(newChartd);

45

J/GRAPHIC SOIL PH
const charts = charts[5];
const newChartS = charts
.modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRange5)
.addRange(yRange5)
.setPosition(97, 2, 8, @)
.setOption('title’, 'Date wvs. Soil PH")
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center'
1
.setOption('hAxis.title', 'Date’)
.setOption('wAxis.title', 'Soil PH")
Lbuild();
chartShest.updateChart(newCharts);

J/GRAPHIC SOIL HUMIDITY

const chart6é = charts[6];

const newCharté = charté
modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRangetd)
.addRange(yRangeéd)
.setPosition{116, 2, 8, 8)
.setOption{'title', 'Date vs. Soil Humidity')
.setOption("titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
b))
.setOption('hAxis.title', 'Date’)
.setOption('vAxis.title', 'Soil Humidity (%)")
Lbuild();

chartshest.updateChart({newCharts);

46

[Act N L R L I S R &1
[S WS R W R R W
[T o B oo

ol
Y
Lan)

J/GRAPHIC SOIL TEMPERATURE
const chart? = charts[7];
const newChart? = chart?
.modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRange7?)
.addRange(yRange7)
.setPosition(135, 2, @, 8)
.setOption('title', 'Date vs. Soil Temperature')
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center'
1
.setOption("haxis.title', 'Date’)
.setOption('vAxis.title', 'Soil Temperature (°C)")
Lbuild();
chartShest.updateChart(newChart?);

S/GRAPHIC SOIL CONDUCTIVITY
const chart8 = charts[8];
const newChart8 = charti
.modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRange8)
.addRange(yRange8)
.setPosition(154, 2, 8, 8)
.setOption(’'title’, 'Date vs. S0il Conductivity')
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
b))
.setOption('hAxis.title', 'Date’)
.setOption('vAxis.title', 'Soil Conductivity (uS/cm)')
Lbuild();
chartSheet.updateChart(newChart8);

47

S/GRAPHIC SOIL NITROGEN

const chart® = charts[9];

const newChart9 = chartg
.modify()
.setChartType(Charts.ChartType.LINE)}
.clearRanges()
.addRange(xRanged)
.addRange(yRanged)
.setPosition(173, 2, 8, @)
.setOption('title', 'Date vs. Soil Mitrogen')
.setOption({ 'titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
b))
.setOption("hAxis.title', 'Date’)
.setOption('vAxis.title', 'Soil Nitrogen (mg/Kg)')
Lbuild();

chartShest.updateChart(newChartd);

J/GRAPHIC S0IL PHOSPHORUS
const chartl® = charts[18];
const newChartle = chartle
modify()
.setChartType(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRangeld)
.addRange(yRangelsd)
.setPosition(192, 2, @, @)
.setOption('title’, 'Date vs. Soil Phosphorus’)
.setOption("titleTextStyle', {
bold: false,
fontSize: 16,
alignment: 'center’
Iy,
.setOption("hAxis.title', 'Date’)
.setOption(' vaAxis.title', 'Soil Phosphorus (mg/Kg)')
Lbuild();
chartsheet.updateChart{newChartl);

48

J/GRAPHIC SOIL POTASSIUM
const chartll = charts[11];
const newChartll = chartll
.modify()
.setChartTypa(Charts.ChartType.LINE)
.clearRanges()
.addRange(xRangell)
.addRange(yRangell)
.setPosition(211, 2, &, 8)
.setOption('title’, 'Date vs. Soil Potassium’)
.setOption('titleTextStyle", {
bold: false,
fontSize: 16,
alignment: 'center’
h).
.setOption({ 'hAxis.title', 'Date')
.setOption(vAxis.title', °Soil Potassium (mg/Kg)')
Lbuild();
chartSheet.updateChart(newChartll);

+ else {

//CREATING GRAPHIC MKR ADC FOR THE FIRST TIME

const xRange = dataSheet.getRange(Af${startRow}:A%{endRow})
const yRange = dataSheet.getRange(M${startRow}:M${endRow}”);

const chart = chartSheet.newChart()
.setChartType(Charts.ChartType.LINE)
.addRange(xRange)
.addRange(yRange)
.setPosition(2, 2, @, @)
.setOption({ 'title’, "Date vs. MKR_ADC")
.setOption(' titleTextStyle’, {
bold: false,
fontSize: 16,
color: '#beeoae’,
alignment: 'center’
1)
.setOption('hAxis.title', 'Date’)
.setOption(' vAxis.title', "MKR_ADC (8-1823)")
.build(};
chartSheet.insertChart(chart);
Logger.log({"MKR_ADC was created.");

49

L
L

Ll L
L
W ga

L
h h O h
[l an]

L

=

Lid

L

50

S/CREATING GRAPHIC ENV TEMPERATURE FOR THE FIRST TIME
const xRangel = dataSheet.getRange(A${startRow}:4f%{endRow});

const yRangel

dataSheet.getRange(Bf{startRow}:B%{endRow]}”);

const chartl = chartSheet.newChart()

1)

.setChartType(Charts.ChartType.LINE)
.addRange(xRangel)

.addRange(yRangel)

.setPosition(21, 2, @, @)

.setOption(' 'title', 'Date ws. ENV Temperature’)
.setOption(' titleTextStyle', {

bold: false,
fontsize: 16,
color: '#BGeoas’,
alignment: 'center’

.setOption('hAxis.title’', 'Date')
.setOption('vAxis.title', "ENV Temperature (°C)')
.build();

chartSheet.insertChart(chartl);
Logger.log("ENV_Temp was created.”);

J/CREATING GRAPHIC ENV HUMIDITY FOR THE FIRST TIME

const xRange2
const yRange2

dataSheet.getRange(” Af{startRow}:A%{endRow});
dataSheet.getRange(C${startRow}:C%{endRow]}");

const chart2 = chartSheat.newChart()

1)

.setChartType(Charts.ChartType.LINE)
.addRange(xRange2)

.addRange(yRange2)

.setPosition(48, 2, &, @)
.setOption('title’', 'Date ws. ENV Humidity')
.setOption('titleTextStyle", {

bold: false,
fontSize: 16,
color: '#B88oes’,
alignment: 'center’

.setOption(' hfixis.title', 'Date’)
.setOption('vAxis.title', "ENV Humidity (%)")
Jbuild();

chartSheet.insertChart(chart2);
Logger.log{"ENV Humidity was created.”);

51

//CREATING GRAPHIC ENV PRESSURE FOR THE FIRST TIME

const xRange3 = dataSheet.getRange(Af{startRow}:A${endRow]}”);
const yRange3 = dataSheet.getRange(Df{startRowl}:0${endRow}”);
const chart3 = chartSheet.newChart()

1)

.setChartType(Charts.ChartType.LINE)
.addRange(xRange3)

.addRange(yRange3)

.setPosition(59, 2, @, @)
.setOption('title’, 'Date vs. ENV_Pressure')
.setOption('titleTextStyle', {

bold: false,
fontSize: 16,
color: '#080088°,
alignment: ‘center’

.setOption('hfixis.title', 'Date')
.setOption('vAxis.title', "ENV_Pressure (HPa)')
.build();

chartSheet.insertChart(chart3);
Logger.log("ENV Pressure was created.");

S/CREATING GRAPHIC ENV ILLUMINANCE FOR THE FIRST TIME

const xRanged = dataSheet.getRange(A${startRow}:A${endRow]}”);
const yRanged = dataSheet.getRange(Ef{startRow}:E${endRow});
const chart4 = chartSheet.newChart()

1)

.setChartType(Charts.ChartType.LINE)
.addRange(xRanged)

.addRange(yRanged)

.setPosition(78, 2, 8, 8)

.setOption(’'title’, 'Date vs. ENV Illuminance'}
.setOption('titleTextStyle', {

bold: false,
fontsize: 16,
color: '#80088088°,
alignment: "center’

.setOption('hAxis.title’, 'Date’)
.setOption(vAxis.title', "ENV Illuminance {(Lux)'}
.build();

chartSheet.insertChart(chartd);
Logger.log("ENV_Illuminance was created.");

464
465
466
467
< 8
60
47d
471
472
473
474
475
476
477
478
4749
438
431
432
423

S/CREATING GRAPHIC SOIL PH FOR THE FIRST TIME

const xRange5 = dataSheet.getRange(A${startRow}:A%{endRow});
const yRange5 = dataSheet.getRange(F${startRow}:F${endRow});
const charts = chartSheet.newChart()

1)

.setChartType(Charts.ChartType.LINE)
.addRange(xRange5)

.addRange{yRange5)

.setPosition(97, 2, @, 8)
.setOption(' title’, 'Date vs. So0il PH')
.setOption(' titleTextStyle', {

bold: false,
fontSize: 16,
color: '#B80688°,
alignment: "center’

.setOption('hixis.title’, ‘Date’)
.setOption('vAxis.title’, 'Soil PH")
.build();

chartSheet.insertChart(charts});
Logger.log("SOIL PH was created.”);

S/CREATING GRAPHIC S0IL HUMIDITY FOR THE FIRST TIME

const xRangebt = dataSheet.getRange(A${startRow}:A%{endRow});
const yRangebt = dataSheet.getRange(G${startRow}:G%{endRow});
const charté = chartSheet.newChart()

1)

.setChartType(Charts.ChartType.LINE)
.addRange({xRangeb)

.addRange(yRanges)

.setPosition(116, 2, 8, @)
.setOption('title’, 'Date vs. Soil Humidity')
.setOption('titleTextStyle’, {

bold: false,
fontSize: 18,
color: '#B80688°,
alignment: ‘center’

.setOption(' hAxis.title’', 'Date’)
setOption(' vAxis.title', 'Soil Humidity (%))
build();

chartSheet.insertChart(charté);
Logger.log("SOIL HUMIDITY was created.”);

52

424
435
486
427
488
429

519
528
521
522
523
524
525

53

//CREATING GRAPHIC SOIL TEMPERATURE FOR THE FIRST TIME
const xRange7 = dataSheet.getRange(A%${startRow}:A${endRow} };
const yRange7 = dataSheet.getRange(H${startRowl}:H${endRow} };
const chart? = chartSheet.newChart()
.setChartType(Charts.ChartType.LINE)
.addRange(xRange7)
.addRange(yRange7)
.setPosition(135, 2, &, @)
.setOption('title’, 'Date ws. Soil Temperature')
.setOption('titleTextStyle", {
bold: false,
fontsize: 16,
color: '#080086°,
alignment: 'center’
1)
.setOption(' hixis.title', 'Date’)
.setOption('vAxis.title', 'Soil Temperature (°C)')
.build(};
chartSheet.insertChart(chart?);
Logger.log("SOIL TEMPERATURE was created.”};

/S/CREATING GRAPHIC SOIL CONDUCTIVITY FOR THE FIRST TIME
const xRange8 = dataSheet.getRange(A%{startRow}:A%{endRow} };
const yRange8 = dataSheet.getRange(I${startRow}:If§{endRow});
const chartd = chartSheet.newChart()
.setChartType(Charts.ChartType.LINE)
.addRange(xRange&)
.addRange(yRange8)
.setPosition(154, 2, &, @)
.setOption(' title", 'Date ws. So0il Conductivity')
.setOption('titleTextStyle", {
bold: false,
fontsize: 18,
color: '#080066°,
alignment: 'center’
})
.setOption(' hixis.title’', 'Date’)
.setOption(' vAxis.title', 'Soil Conductivity (uS/cm}"}
.build(};
chartSheet.insertChart(chartd);
Logger.log("SOIL CONDUCTIVITY was created.");

J/CREATING GRAPHIC SOIL NITROGEN FOR THE FIRST TIME

const xRange® = dataSheet.getRange(A%{startRow}:A%{endRow});
const yRange® = dataSheet.getRange(J§{startRow}:J1%{endRow} };

const chart® = chartSheet.newChart()
.setChartType(Charts.ChartType.LINE)
.addRange(xRange?)
.addRange(yRanged)
.setPosition(173, 2, @, @)
.setOption('title’, 'Date vs. Soil Nitrogen')
.setOption('titleTextStyle', {
bold: false,
fontSize: 16,
color: '#0806080°,
alignment: 'center’
1)
.setOption('hAxis.title', 'Date’)
.setOption{ ' vAxis.title', 'Soil Nitrogen (mg/Kg)')
build();
chartSheet.insertChart(chartg);
Logger.log("SOIL NITROGEN was created.”)};

J/CREATING GRAPHIC SOIL PHOSPHORUS FOR THE FIRST TIME

const xRangeleé = dataSheet.getRange(A${startRow}:A${endRow} };
const yRangel® = dataSheet.getRange(K${startRow}:K${endRow});

const chartl® = chartSheet.newChart()
.setChartType(Charts.ChartType.LINE)
.addRange(xRangeld)
.addRange{yRangeld)
.setPosition(192, 2, @, @)
.setOption('title’', 'Date ws. Soil_Phosphorus’)
.setOption('titleTextStyle', {
bold: false,
fontsize: 16,
color: '#086888°,
alignment: 'center’

1)
.setOption('hAxis.title', 'Date’)
.setOption(vixis.title’, 'Soil_Phosphorus (mg/Kg)')
.build();

chartSheet.insertChart(chartld);

Logger.log("SOIL PHOSPHORUS was created.");

54

55

S//CREATING GRAPHIC S0IL POTASSIUM FOR THE FIRST TIME
const xRangell = dataSheet.getRange(A${startRow}:A%${endRow} };
const yRangell = dataSheet.getRange(L${startRow}:L${endRow} };
const chartll = chartSheet.newChart()
.setChartType(Charts.ChartType.LINE)
.addRange(xRangell)
.addRange(yRangell)
.setPosition(211, 2, &, &)
.setOption({'title’, 'Date wvs. So0il Potassium')
.setOption(' titleTextStyle", {
bold: false,
fontSize: 16,
color: '#be8oae’,
alignment: 'center’
)
.setOption(' haxis.title", 'Date’)
.setOption('vAxis.title', "Soil Potassium (mg/Kg)')
.build();
chartSheet.insertChart(chartll);
Logger.log("SOIL POTASSIUM was created.”);

J/Function to delete all Charts
function deleteAllCharts() {
const spreadsheet = Spreadsheetfpp.openById("YOUR_SHEET _ID")
const chartSheet = spreadsheet.getSheetByName("Sheet2");
const chartsToDelete = chartSheet.getCharts();
/¢ Remove each chart
chartsToDelete.forEach{{chart) => {
chartSheet. removeChart(chart);

1
SpreadsheetApp.getUi().alert({"All charts have been deleted.");

ANEXO C: ELECTRONIC SCHEMATIC

AGND

LM255G

AGHND

AGMD

b ML

SENSOR

R5485 MODUL

E
| s

MODULE

56

