UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Viterbi Equalizer for Bluetooth Classic: Study and Design

Tesis aplicada derivada de practicas en industria

Santiago Sebastian Pérez Davila

Adam Quotb, Ph.D.
Director de Trabajo de Titulacion

Trabajo de titulacion de posgrado presentado como requisito
para la obtencidn del titulo de Magister en Nanoelectronica

Quito, 10 de diciembre de 2024

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ
COLEGIO DE POSGRADOS

HOJA DE APROBACION DE TRABAJO DE TITULACION

Viterbi Equalizer for Bluetooth Classic: Study and Design

Santiago Sebastian Pérez Davila

Nombre del Director del Programa:
Titulo académico:
Director del programa de:

Nombre del Decano del colegio Académico:
Titulo académico:
Decano del Colegio:

Nombre del Decano del Colegio de Posgrados:

Titulo académico:

Luis Miguel Procel
Doctor of Philosophy
Maestria en Nanoelectronica

Eduardo Alba
Doctor of Philosophy
Colegio de Ciencias e Ingenierias

Dario Niebieskikwiat
Doctor of Physics

Quito, diciembre 2024

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leido todas las Politicas y Manuales
de la Universidad San Francisco de Quito USFQ, incluyendo la Politica de Propiedad
Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Politicas.

Asimismo, autorizo a la USFQ para que realice la digitalizacion y publicacion de este
trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Organica de Educacion

Superior del Ecuador.

Nombre del estudiante: Santiago Sebastian Pérez Davila
Caodigo de estudiante: 00335271
C.l: 1003138946

Lugar y fecha: Quito, 10 de diciembre de 2024.

ACLARACION PARA PUBLICACION

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado
como una publicacion, incluso a pesar de estar disponible sin restricciones a través de un
repositorio institucional. Esta declaracion se alinea con las practicas y recomendaciones
presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)
Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de
Quito USFQ institutional repository. Nonetheless, this project — in whole or in part — should
not be considered a publication. This statement follows the recommendations presented by the
Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion
document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

DEDICATORIA

A mi yo de nifio, que sofid con llegar hasta aqui. A mi yo del presente, que nunca se
rindio. Y a mi yo del futuro, que seguira sofiando en grande.

A mis padres, luz constante y motivo para no rendirme jamas.

AGRADECIMIENTOS

Quiero expresar mi sincera gratitud a Luis Miguel Précel, profesor y director de la
Maestria en Nanoelectronica, por su acompafiamiento a lo largo del programa y por brindarme
la oportunidad de involucrarme en proyectos de investigacion e innovacion tecnoldgica.
Asimismo, agradezco a César Zambrano, decano de Investigacion, por ensefiarme el valor de

la conviccion en el liderazgo y la actitud profesional necesaria para destacarse.

Extiendo mi agradecimiento a Nicola di Teodoro, profesor y coordinador de la carrera
de Matematicas, por compartir su pasion por la matematica y el arte, inspirandome a valorar
ambas disciplinas y su interrelacion. A la Universidad San Francisco de Quito, mi alma mater,
le reconozco el invaluable aporte de su formacion integral y el espiritu de las artes liberales,

gue moldearon mi vision académica y profesional.

Este trabajo no habria sido posible sin el apoyo de Emmanuel Gautier y Pascal Blouin,
quienes apreciaron mi talento y me abrieron las puertas al equipo de Silicon Labs, permitiendo
que mi disefio formara parte del sistema de demodulacién en el préximo chip de conectividad
para 10T. También agradezco a mi supervisor Frédéric Pirot y a Fabrice Portier por su
colaboracidn constante, sus ensefianzas tedricas y su compafierismo ejemplar en cada etapa de

este proyecto.

Finalmente, extiendo mi mas profundo reconocimiento a mis padres, cuyo respaldo
incondicional y confianza han sido el pilar fundamental que me permitid llegar hasta aqui. Sin

ellos, este logro no seria posible.

RESUMEN

Esta tesis presenta el desarrollo de un Ecualizador Viterbi para Bluetooth Classic (BTC)
dentro del chip Everest, desarrollado por Silicon Labs para aplicaciones de 10T. El enfoque del
proyecto abarca el analisis teorico, la implementacion de algoritmos, el disefio de hardware y
la optimizacion.

El trabajo sigue una metodologia estructurada, comenzando con una revision tedrica
sobre Bluetooth Classic, la modulacion y demodulacion GFSK, y el Algoritmo de Viterbi. La
necesidad de un ecualizador surge debido a la presencia de Interferencia Inter-Simbdlica (IS1),
que degrada la precision de los demoduladores GFSK estandar en condiciones de alto ruido. El
Ecualizador Viterbi emplea el Algoritmo de Viterbi para reconstruir la secuencia de sefial
transmitida mas probable, reduciendo asi la Tasa de Error de Bit (BER).

El proyecto consta de dos fases principales:

1) Implementacién en MATLAB: Se realizaron simulaciones iniciales del Ecualizador
Viterbi en MATLAB para evaluar su rendimiento, sensibilidad y requisitos de
profundidad de retroceso. Se determind que una profundidad de retroceso de 4
optimiza el equilibrio entre la ganancia de rendimiento y la eficiencia
computacional.

2) Implementacién en Hardware: El ecualizador se disefi6 en SystemVerilog y se
implementd en FPGA para validar su desempefio en condiciones reales. El
Algoritmo de Viterbi con Hard Output logré una ganancia de 3.57 dB en
sensibilidad en comparacion con el demodulador GFSK estandar. Ademas, se
implemento el Algoritmo de Viterbi con Soft Output (SOVA), obteniendo una
ganancia de 0.61 dB en frames codificados, mejorando asi la precision y

rendimiento.

La sintesis final en ASIC mostr6 una reduccion del 46.17% en el area en comparacion
con un ecualizador original, lo que hace que el disefio sea significativamente mas eficiente en
consumo de energia y escalable. Estas mejoras posicionan al Ecualizador Viterbi como una
solucidn robusta y eficiente en recursos para la demodulacion BTC en el chip Everest de Silicon
Labs, con potencial aplicabilidad en otros sistemas de comunicacion inalambrica basados en
2GFSK.

Para optimizar ain mas el disefio, se aplicaron técnicas de cuantizacion con el objetivo
de minimizar el consumo de recursos sin comprometer el rendimiento. Se selecciond una
resolucion de 8 bits para las sefiales de entrada como el equilibrio 6ptimo, logrando una
reduccion adicional del 25% en el &rea de hardware y manteniendo al mismo tiempo una alta
eficiencia en la demodulacion.

Este proyecto demuestra un enfoque integral, combinando procesamiento de sefiales,
optimizacion de algoritmos y disefio de hardware, lo que contribuye a mejorar la conectividad
inalambrica para futuras aplicaciones de 10T.

Palabras clave: Ecualizador Viterbi, Bluetooth Classic, GFSK, Intersymbol

Interference, FPGA, ASIC, loT, Algoritmo de Viterbi, Procesamiento de Sefales.

ABSTRACT

This thesis presents the development of a Viterbi Equalizer for Bluetooth Classic (BTC)
within the 'Everest' chip, developed by Silicon Labs for 10T applications. The project’s
approach involves theoretical analysis, algorithm implementation, hardware design, and
optimization.

The work follows a structured approach, beginning with a theoretical review of
Bluetooth Classic, GFSK modulation and demodulation, and the Viterbi Algorithm. The
necessity of an equalizer arises from the presence of Intersymbol Interference (ISI), which
degrades the accuracy of standard GFSK demodulators under high-noise conditions. The
Viterbi Equalizer leverages the dynamic programming-based Viterbi Algorithm to reconstruct
the most likely transmitted signal sequence, thereby reducing BER.

The project consists of two primary phases:

1) MATLAB Implementation: Initial simulations of the Viterbi Equalizer were
performed in MATLAB to evaluate its performance, sensitivity, and traceback depth
requirements. A traceback depth of 4 was found to optimize the trade-off between
performance gain and computational efficiency.

2) Hardware Implementation: The equalizer was designed in System Verilog and
implemented in FPGA to validate real-world performance. The Hard Output Viterbi
Algorithm achieved a 3.57 dB gain in sensitivity performance compared to the
standard GFSK demodulator. Additionally, the Soft Output Viterbi Algorithm
(SOVA) was implemented, providing a gain of 0.61 dB in coded frames, ensuring

better decoding accuracy.

10

The final ASIC synthesis showed a 46.17% reduction in area compared to an original
equalizer, making the design significantly more power-efficient and scalable. These
improvements position the Viterbi Equalizer as a robust, resource-efficient solution for BTC
demodulation in Silicon Labs’ Everest chip, with potential applicability to other 2GFSK-based
wireless communication systems.

To optimize the design further, quantization techniques were applied to minimize
resource consumption without compromising performance. An 8-bit resolution for the input
signals was selected as the optimal trade-off, achieving an extra 25% reduction in hardware
area while maintaining high demodulation efficiency.

This project showcases an integrated approach combining signal processing, algorithm
optimization, and hardware design, contributing to enhanced wireless connectivity for next-
generation loT applications.

Key words: Viterbi Equalizer, Bluetooth Classic, GFSK, Intersymbol Interference,

FPGA, ASIC, IoT, Soft Output Viterbi Algorithm, Signal Processing.

11

TABLE OF CONTENTS
Ty oo [3Tox 1 o] ISP USSP 14
COMPANY PrESENMTALIONeviitiiiieieeieet ettt bbbt 14
INEEINSNIP CONTEXT....c.vieieitieiie ettt et et e s neesreeneereesneebeeneenreas 15
INtErNSHIP ODJECTIVE ... 16
WVOTK PLAN ...t e bbbttt bbbt b e e e e 16
TheoretiCal FramEBWOIKcouiiiiiiiieie ettt sreeste e e reenne e 17
BIUEBTOOTN CHASSIC.....vveviiiieieiic sttt bbbt 17
]] TP RPSSSSS 19
VA1 el o TN Lo o] 11 o OSSPSR 25
WOTK PEITOIMEA ...ttt bttt 38
MATLAB IMPIEMENtAtiON.........ciieiiiiccie et nne s 38
Traceback DePth ANAIYSISooiiiiiiieieie e 40
HDL implementation and validation..............c.cccooviiiiii i 42
DESIGN OPLIMIZATIONo.veviiiieiiieiee et b et 46
RESUITS ..ttt bbb b bRt R et bbb R n e e e 49
(@0 000 1] [0 3 USSR 54

RETEIEINCES ...ttt e e ettt e e e e e e et e e e e e e e e e e e e e e e e e ea e 56

12

LIST OF TABLES
Table 1: Viterbi Equalizer gain relative to Standard GFSK Demodulatorccccceevennen. 41
Table 2: Viterbi Equalizer gain relative to not using any demodulatorccccccevvevieieennenn. 51
Table 3: FPGA SYNthesisS RESUILSccviiiiieicie et 52

Table 4: ASIC SYNthesisS RESUILScciviiiieiic et 52

13

INDICE DE FIGURAS

Figure 1: WOrK PIan FIOWccooiie et 16
Figure 2: GFSK MOodUIATION PrOCESScc.veiiiieiiieieiiie ettt s 22
Figure 3: GFSK Demodulation Process with and without N0ISeccceveviieieeie e 23
Figure 4: ENCOTEr EXAMPIEoouiiiieiiei e 26
Figure 5: Encoder representation — State Machine and Trellis Diagramcccccoeeevvenenne. 27
Figure 6: Viterbi Algorithm — Building Trellis Diagramccoccvveiieninesiieneee e 28
Figure 7: Viterbi Algorithm — Computing metrics and storing survivor paths..............c......... 29
Figure 8: Viterbi Algorithm — Tracing back to find the original message............cccceoveveinenne. 31
Figure 9: Extended use of the Viterbi AIGOrithm...........cccocveiiieii i 32
Figure 10: Phase differences levels and neighboring symbol dependency...........ccccccoevvennee. 33
Figure 11: MEetricS iN TreHlIS......coiieieie et 35
Figure 12: BER curves in function of the traceback depth ..o, 40
Figure 13: Top module diagram — Viterbi EQUAIZENccoovveieiieiieceee e 42

Figure 14:
Figure 15:
Figure 16:
Figure 17:

Submodule ‘MetricsNodes’ diagramcoccveiveriiiineeiie e 44
Submodule “Traceback” diagram..........cccccvviiiiiiiiiiiii 45
MATLAB SOVA results changing input signals resolutionc.cccceeveenene. 49
FPGA implementation results for different optimized SOVAS.........c.cccccevevvenenne. 50

14

INTRODUCTION

Company presentation

Silicon Labs is a leading global provider of silicon, software, and solutions for a smarter,
more connected world. Founded in 1996 and headquartered in Austin, Texas, Silicon Labs
specializes in the design and development of integrated circuits (ICs), microcontrollers, and
wireless connectivity solutions that drive innovation in the Internet of Things (IoT) market
(Silicon Labs, n.d.).

The company introduced its first product in 1998, a data access arrangement (DAA)
chip used as an interface to public telephone lines. Thanks to its small size and low cost, this
product achieved significant commercial success. The following year, Silicon Labs launched
the first CMOS RF synthesizer, marking the beginning of their venture into wireless
communication technologies (Business Wire, 2023). Over the years, Silicon Labs expanded its
portfolio to include chips for a wide variety of wireless applications, such as digital TV
demodulators, Wi-Fi, and AM/FM radio.

Since 2012, Silicon Labs has strategically shifted its focus towards IoT products, which
now constitute a substantial portion of the company's revenue (Business Wire, 2023). This
emphasis on 10T has positioned Silicon Labs as a key player in the rapidly growing connected
devices market, providing cutting-edge solutions that enable seamless wireless connectivity
across multiple platforms and devices.

In 2006, Silicon Labs acquired the Rennes-France office, which is the oldest European
branch of the company (Silicon Labs, n.d.). Prior to the acquisition, the Rennes site operated as
a startup specializing in the design of digital TV chips. The Rennes office has since become an
integral part of Silicon Labs’ global operations, particularly in the development of advanced

wireless communication technologies.

15

The Rennes site is organized into four main teams: the design team (which | joined), a
software team responsible for developing stacks to support various network protocols on the
chips, an application team that liaises with customers, and a newly established RF team focused
on the analog aspects of integrated circuits. The design team, composed of 10 members,
specializes in digital communication, with most team members focusing on hardware
implementation and others dedicated to signal processing studies using MATLAB simulations.

My internship was positioned at the intersection of these two aspects—signal processing
and hardware implementation. The opportunity to work on both the theoretical and
mathematical aspects of signal processing, as well as the practical implementation and

hardware design, is closely aligned with my academic and professional interests.

Internship context

The context of my internship lies in the development of a new chip for IoT applications
at Silicon Labs, named 'Everest. One of the wireless communication standards that the
company intends to integrate into this chip is Bluetooth Classic (BTC).

In this regard, a Bluetooth Classic module was incorporated, which was a soft IP from
a previous chip. However, this module relied on a GFSK demodulator. While a standard GFSK
demodulator is sufficient for specific scenarios with low noise levels, it falls short when a more
robust demodulation solution is needed to provide greater noise resilience and improved
performance in terms of bit error rate (BER). In such cases, more reliable and robust options,
such as a Viterbi Equalizer, should be considered.

Indeed, a previous version of a Viterbi Equalizer was used within the BTC module, but
it did not function properly. Therefore, it became necessary to investigate the possibility of

either fixing the existing equalizer or designing a new one from scratch to ensure the proper

16

functioning of the BTC module within the 'Everest' chip. To achieve this, it was essential to
cover topics related to digital communications and signal demodulation, particularly GFSK, as

well as the theory behind the Viterbi Algorithm.

Internship Objective

The primary objective of this internship is to develop a Viterbi Equalizer to be integrated
with the Bluetooth Classic (BTC) feature of the 'Everest' chip. This involves designing and
implementing an equalizer that can enhance the performance of the BTC module, particularly
in challenging environments with higher levels of noise. The equalizer should improve the bit
error rate (BER) and ensure reliable data transmission, thereby contributing to the overall

robustness and functionality of the 'Everest' chip in 10T applications.

Work Plan
The following outlines the workflow and work plan designed to achieve the objectives

of the internship:

Vlte.li,k}):eﬁlr‘%ggithm Viterbi Equalizer Gain and
Approach and —>| MATLAB o performance
Review implementation verification
I
v

. . RTL

R]'EI‘ ;‘u\;i'ic;g?l —>| implementation on =—>| ASIC Synthesis
FPGA

Figure 1: Work Plan Flow

17

THEORETICAL FRAMEWORK

Bluetooth Classic

Bluetooth Classic (BTC) is a foundational wireless communication standard that has
been widely adopted since its inception for short-range data exchange between devices. It is
part of the broader Bluetooth technology family, which also includes Bluetooth Low Energy
(BLE) (Bluetooth SIG, 2016). While BLE is optimized for low-power, low-data-rate
applications, Bluetooth Classic is particularly suited for scenarios where higher data rates and
continuous connectivity are required, such as audio streaming, file transfers, and device
synchronization (Patel & Mehta, 2020).

One of the primary reasons Bluetooth Classic remains relevant, especially in the context
of 10T, is its robust and mature protocol stack, which provides reliable and secure
communication across a wide range of devices (Duc, 2004). 10T applications often involve the
integration of various devices—such as sensors, smartphones, and computers—into a cohesive
network that requires seamless data transmission. Bluetooth Classic's ability to maintain stable
connections and handle moderate to high data rates makes it an ideal choice for 10T systems
where consistent performance is critical (Patel & Mehta, 2020).

In the context of the 'Everest' chip, the integration of Bluetooth Classic is crucial for
ensuring compatibility with a wide range of existing devices and use cases. Given the
widespread adoption of Bluetooth Classic, particularly in consumer electronics, its inclusion in
the Everest chip allows for interoperability with legacy systems and provides a solid foundation
for new 10T innovations.

To ensure the proper functioning of Bluetooth Classic within the Everest chip, several

key technical parameters must be carefully considered during the design phase. These

18

parameters directly influence the performance, reliability, and efficiency of the communication

module. The most relevant parameters for the design include:

Modulation: Bluetooth Classic employs Gaussian Frequency Shift Keying
(GFSK) as its modulation scheme. GFSK is known for its efficiency in
minimizing bandwidth usage while maintaining signal integrity, making it well-
suited for the typical operating conditions of Bluetooth devices (Duc, 2004).
Bandwidth-bit period product (BT): The product of the bandwidth and the bit
period is set to 0.5. This parameter is critical in determining the spectral
efficiency and the overall performance of the GFSK modulation. A BT product
of 0.5 is a standard choice that balances the trade-off between signal robustness
and bandwidth efficiency (Bluetooth SIG, 2016).

Data Rate (R): Bluetooth Classic operates at a data rate of 1 Mbps. This rate is
sufficient for the majority of loT applications that require moderate data transfer,
such as sensor data collection, command, and control functions, and streaming
low-bandwidth audio (Duc, 2004).

Modulation Index (h): The modulation index, which defines the extent of
frequency deviation in GFSK, must be maintained between 0.28 and 0.35. This
range ensures optimal performance in terms of signal clarity and error
minimization under various operating conditions (Duc, 2004).

Bit Error Rate (BER): For reliable communication, the Bit Error Rate must be
kept at or below 0.1% across an input power range from -70 dBm to -10 dBm.
It is important to note that 0.1% BER represents the expected performance at the
limit of the specified sensitivity by the standard. In practice, our limiting

sensitivity point is much lower than this, which allows for improved

19

performance under real-world conditions, especially in scenarios with higher
noise interference. Maintaining a low BER is essential for minimizing data
transmission errors, which is particularly important in loT devices where data

integrity is critical for proper functioning (Duc, 2004).

GFSK

Gaussian Frequency Shift Keying (GFSK) is a digital modulation scheme used in
various wireless communication systems, including Bluetooth Classic. GFSK is a variant of
Frequency Shift Keying (FSK), where the frequency of the carrier signal is varied according to
the input data signal. What distinguishes GFSK from standard FSK is the application of a
Gaussian filter to the input data before modulation, which smooths the transitions between
frequency shifts. This filtering reduces the bandwidth of the signal and minimizes interference
with adjacent channels, making GFSK particularly suitable for environments with limited
spectral space, such as in Bluetooth communications (Hagenauer & Hoeher, 1989).

The key advantage of GFSK lies in its ability to achieve a balance between spectral
efficiency and robustness against noise and interference. By using a Gaussian filter, GFSK
reduces the out-of-band emissions, which helps in conserving bandwidth and allows for
multiple devices to operate within the same frequency spectrum with minimal interference
(Shlezinger et al., 2024). This makes GFSK an ideal choice for short-range wireless
communication standards like Bluetooth Classic, where maintaining signal integrity over a
limited bandwidth is crucial.

GFSK operates by shifting the frequency of the carrier signal to represent binary data.
Typically, a '1' bit is represented by a positive frequency deviation, while a'0' bit is represented

by a negative frequency deviation. The extent of this deviation is defined by the modulation

20

index (h), which plays a critical role in determining the trade-off between signal bandwidth and
the error performance of the system.

To better understand GFSK, we can consider a mathematical approach to its modulation
and demodulation processes:

Modulation Process

The basic mathematical expression for a GFSK-modulated signal is represented as:

s(t) = Ae/?®
Where:

e s stands for the GFSK-modulated signal that is going to be sent
e A is the amplitude of the GFSK-modulated signal

e 0 is the phase of the GFSK-modulated signal

We notice that s(t) depends directly on its phase. Thus, to produce the GFSK-
modulated signal, it is crucial to produce the phase which is in function of the instantaneous
frequency of the wave which, at the same time, is shifted according to the filtered data signal.

The modulation process is demonstrated through the following five steps:

1) Mapping Digital Bits to Symbols: The input bits from the data signal are mapped

to symbols, where a '1' bit corresponds to the symbol '1', and a ‘0" bit corresponds to
the symbol '-1'. This binary mapping simplifies the subsequent mathematical

operations in the modulation process.

0--1
2) Gaussian Filter: The symbols generated from the binary data stream are passed
through a Gaussian filter, which smooths the data transitions. This smoothing

reduces abrupt changes in the instantaneous frequency, thereby controlling the

3)

4)

5)

21

bandwidth of the modulated signal and minimizing spectral spreading. The resulting
signal is referred to as m(t).
Instantaneous Frequency: The instantaneous frequency of the modulated signal is
determined by the scaled version of the filtered data signal m(t). For simplicity, we
assume a baseband signal, setting the carrier frequency f. to zero. Therefore, the
instantaneous frequency is given by:

f@®) = fo+ fam(®)

f@®) = fam(®)

In this context, the chosen deviation frequency is 160 kHz corresponding to a
modulation index (h) of 0.32.
Getting the phase: In physics, the instantaneous frequency and the phase of a signal

are related by the following differential equation:

1

d
f() = Eae(t)

By integrating the instantaneous frequency over time, we obtain the phase of the

signal as:

t
= 6(t) =2n fdf m(7) dt

Note: For discrete-time implementation, especially in simulations using MATLAB,

this integral is approximated by a summation, yielding (Proakis & Salehi, 2008):

n

bln =2nfy) mik]

Producing the GFSK-modulated signal: Finally, the calculated phase is used in
the complex exponential function to generate the GFSK-modulated signal. The

complex signal is then transmitted through the communication channel.

22

The whole modulation process given by the previous steps are visually represented in

detail in the accompanying figure:

f(t) [Hz] m(t) [n.u.]

#(t) [n.u]

Symbols [n.u.]

1) Mapping bits to symbols
\

0 0.5 1 1.5 2 25 3 3.5 4 45

Time [s] %107
2) Signal after the Gaussian Filter
I

"o 05 1 15 2 25 3 35 4 45

Time [s] <1078
%10° 3) Instantaneous Frequency

“o 05 1 15 2 25 3 35 4 45
Time [s] <1078
4) Phase

Amplitude [n.u.]

0 0.5 1 1.5 2 25 3 35 4 45
Time [s] «107°
5) GFSK-modulated signal Real Part
I Imaginary Part
! ! !
0 0.5 1 1.5 2 25 3 35 4 45
Time [s] %10

Figure 2: GFSK Modulation Process

Demodulation Process

The demodulation process, which is the focus of our work, mirrors the modulation

process but in reverse order. It is no surprise that the steps closely resemble those of modulation,

albeit carried out in the opposite direction.

23

First, the GFSK-modulated signal, now with added noise, is received. This signal is

passed through a filter designed to mitigate as much noise as possible, aiming to restore the

signal to a cleaner state. Following this, the phase of the signal is extracted, and we differentiate

it, taking advantage of the relationship between the derivative of the phase and the instantaneous

frequency.

From the resulting phase difference signal, we proceed to apply a standard GFSK

demodulator. This demodulator operates using a hard decision method, where if the received

value is greater than zero, the bit is determined to be '1', and if the value is less than zero, the

bit is determined to be '0'.

reverse of the modulation process previously discussed.

Amplitude [n.u.] Amplitude [n.u.]

o(t) [n.u.]

0 0.5 1 15 2 25 3 3.5 4 4.5

Below is a visual representation of the demodulation process, which is essentially the

GFSK without noise
T T T T T
Real Part
Imaginary Part | |
0 0.5 1 15 2 25 3 35 4 4.5
Time [s] x10°
%10° GFSK filtered
Real Part
Imaginary Part | |
0 0.5 1 15 2 25 3 35 4 4.5
Time [s] «107°

Phase

Time [s] %10°®
Phase differences

0.5 1 1.5 2 25 3 35 4 4.5
Time [s] x10°

— Demodulated signal
o 05 1 15 2 25 3 35 4 45
Time [s] «10®

Amplitude [n.u.]

Real Part

Imaginary Part | |

1.5 2 25
Time [s]
GFSK filtered

)Ah', |

Amplitude [n.u.]
Jb» NON B

15 2 25
Time [s]

3

‘ &(t) [n.u.]

Phase

0.5

15 2 25
Time [s]
Phase differences

3

3.5

E)
£
-
<.
0 0.5 15 2 25 3 3.5 4.5
Time [s] %107
1 Demodulated signal
3
L5+
2
o
od U U U . UL U |
0 05 1.5 2 25 3 35 45
Time [s] %1078

Figure 3: GFSK Demodulation Process with and without noise

24

In Figure 3, the demodulation process is contrasted for the same received signal under
low and high noise conditions, respectively. The left-hand side of the figure demonstrates that
when the noise level is low or negligible, the demodulation of the signal based on phase
differences is straightforward, and the symbols are well-defined. In this case, using a standard
GFSK demodulator with a simple threshold is sufficient.

However, when the received signal has a high noise level, even after processing and
filtering, the resulting phase differences do not provide high reliability for using a standard
GFSK demodulator. Values close to zero could correspond to either a '0" bit or a '1' bit, making
it difficult to determine the correct bit with certainty. This lack of reliability is why a standard
GFSK demodulator is inadequate, and a Viterbi equalizer is often preferred, as it accounts for
the effects of Intersymbol Interference (ISI).

In Figures 2 and 3, it is noticeable that in the subplots corresponding to instantaneous
frequency or phase differences, the values attempt to reach well-defined maximum or minimum
levels. These levels depend not only on the received symbol but also on the neighboring
symbols, due to the influence of ISI (Shlezinger et al., 2024). This phenomenon arises from the
Gaussian filter used during modulation, which smooths transitions between symbols but also
introduces intersymbol dependency.

The Viterbi equalizer is designed to address this by considering the impact of ISI,
thereby improving the reliability of bit decisions, especially in noisy environments. The
equalizer uses a probabilistic approach to estimate the most likely sequence of transmitted

symbols, taking into account both the current and previous symbols.

25

Viterbi Algorithm

The Viterbi Algorithm is a widely used method in digital communications for decoding
sequences of symbols that have been transmitted through a noisy channel. It was originally
developed by Andrew Viterbi in 1967 as a technique for decoding convolutional codes, which
are a type of error-correcting code used to improve the reliability of data transmission (Viterbi,
2010).

In essence, the Viterbi Algorithm is a dynamic programming algorithm that finds the
most likely sequence of hidden states (or symbols) that could have generated a sequence of
observed events, considering the impact of noise and interference during transmission (Viterbi,
2010). It achieves this by exploring all possible paths through a trellis diagram—a graphical
representation of all possible states of the system—while keeping track of the path with the
highest probability. This allows the algorithm to make decisions that minimize the probability
of error, effectively mitigating the effects of noise and interference.

While our focus in this work is on the application of the Viterbi Algorithm in the context
of GFSK demodulation, it is most easily understood through its original application: the
decoding of convolutional codes. Convolutional codes are a type of forward error correction
code that adds redundancy to the transmitted data by encoding it into a longer sequence using
a finite-state machine. This encoding introduces a dependency between consecutive symbols,
which can be exploited by the Viterbi Algorithm to correct errors introduced by the channel.

To better understand the essence of the Viterbi Algorithm, it is helpful to explore an
example in the context of convolutional encoding and decoding. This example will demonstrate
how the algorithm traces back through the trellis to find the most likely sequence of transmitted

symbols, effectively correcting errors that may have occurred during transmission.

26

Let us consider the following Y2 rate encoder, given by the generator polynomials
g1 =(101)and g, = (111):

¥, [n]

x[n] z 1

v

¥, [n]

Figure 4: Encoder example

The encoder of Figure 4 also can be represented by the following output sequence

expressions:
y1[n] = x[n] + x[n — 2]
y2[n] = x[n] + x[n — 1] + x[n — 2]

In fact, the encoder under study cannot be fully represented by the previous expressions
or the diagram in Figure 4 alone. However, it can be effectively represented as a state machine
to observe the state change behavior. A more comprehensive representation can be achieved
using a Trellis diagram, which allows for the analysis of state changes over time by
incorporating the time dimension. This enables the visualization of how the states evolve over

time. Both representations are illustrated in Figure 5 for the same encoder:

27

Figure 5: Encoder representation — State Machine and Trellis Diagram

To better understand the Viterbi Algorithm, let us walk through a practical example.
Suppose the message we want to transmit is “1100”. If we input this message into our
convolutional encoder, as illustrated in Figure 4, the encoded message would be “11101011,”
which is now ready for transmission. However, to demonstrate the decoding and error
correction capabilities of the Viterbi Algorithm, let us assume that the received message was
“10101111”. This received sequence contains two errors when compared to the originally
transmitted encoded message.

The Viterbi Algorithm can be broken down into three well-defined steps:

1) Building a Trellis Diagram:

The first step involves constructing a trellis diagram, which represents all possible states
of the encoder at each time step (Viterbi, 2010). Each path through the trellis corresponds to a

possible sequence of transmitted bits.

28

_____ > 1
r _— 0
S0 .\
Expected bits
S1
S2
s3 @

=0 =1 =2 =3 t=

Figure 6: Viterbi Algorithm — Building Trellis Diagram

2) Computing and Updating Metrics to Store Survivor Paths:

As we move forward through the trellis, we compute branch metrics for each possible
path, typically by calculating the difference between the received signal and the expected signal
for each transition. This can be done using a distance measure like the Hamming distance or
absolute value difference (Viterbi, 2010). The survivor paths are those with the lowest
cumulative metric, indicating the most likely sequences that could have resulted in the received
message. For each node, the path with the highest cumulative metric is discarded, leaving only
the path with the lowest metric, referred to as the decision metrics.

The process continues by accumulating metrics at each node, where each node’s
accumulated metric is the sum of the previous non-discarded branch metric and the
corresponding node metric from earlier in the trellis. These cumulative metrics are propagated
forward, ensuring that only the most likely paths are retained. Once the forward traversal of the
trellis is complete, a traceback process is performed to identify the most likely sequence of

transmitted bits.

29

so @&
0
s1 @
0
s2 ©
0
s3 @
0

Figure 7: Viterbi Algorithm — Computing metrics and storing survivor paths

In Figure 7, the accumulated metrics, branch metrics, and decision metrics are illustrated
for each state (SO, S1, S2, and S3) over time t. The red numbers represent the accumulated
metrics, the blue numbers represent the branch metrics, and the black arrows indicate the

selected survivor paths for each state at each time step.

3) Tracing Back:

After reaching the end of the trellis, we trace back through the survivor paths to
determine the most likely sequence of transmitted bits. This process involves moving backward
through the trellis to identify the path with the smallest cumulative metric, which represents the
corrected version of the received message.

The deeper the traceback is, the higher the confidence in the decoding process. This is
because, as we trace further back through the trellis, the survivor paths from different states

will eventually converge into a single path. This phenomenon occurs because, no matter which

30

path the traceback begins from (typically the one with the lowest metric), all possible paths will
converge after a certain number of steps.

As aresult, decoded bits located toward the left (i.e., those from the end of the traceback
process) have a higher reliability of being correctly decoded as '0' or '1', as these bits represent
the positions where all paths have already converged. The reliability of the decoded bits
decreases as we move to the right (closer to the start of the traceback), where paths may not
have converged yet.

Due to this, traceback depth becomes a critical parameter: a deeper traceback ensures more bits
are decoded after paths have converged, increasing the overall accuracy. To ensure convergence
and maximize decoding reliability, another common technique is to add tailing bits (usually
zeros) at the end of the transmitted sequence. These tailing bits force the trellis into a known
final state (often state SO), ensuring that the traceback starts from the correct state at the end of
the trellis. This guarantees that the traceback process is initiated correctly and improves the

accuracy of the decoded message.

31

S0 &
0

$1

c®

S§2

c®

83

.
1]
o

3
I
—
—
o
=3

Figure 8: Viterbi Algorithm — Tracing back to find the original message

In this example we realize how the Viterbi Algorithm is capable of recovering the
original message from the received bits although it contains errors. In simple terms, the Viterbi
Algorithm consists on a process of moving forward through the trellis while building and
updating the possible paths, and then moving backward to make a decision about which path
most likely represents the original transmitted message. It can be also thought of as traveling
forward into the future to gather information, and then coming back to the past to make a

decision.

Viterbi Equalizer

The term "Equalizer™ in the context of a Viterbi Equalizer should not be misunderstood
as it does not refer to the traditional concept of equalization, such as frequency equalization,
which is commonly known in audio processing. Instead, a Viterbi Equalizer is essentially a

demodulator, and it could just as accurately be called a "Viterbi Demodulator”. The primary

32

role of a Viterbi Equalizer is to make optimal decisions about the transmitted symbols based on
the received signal.

Once the Viterbi Algorithm is understood in the context of convolutional decoding, it
becomes straightforward to adapt it for the purpose of demodulation, which is the context that
interests us here. In traditional convolutional decoding, the algorithm works by comparing the
received sequence with expected sequences of bits or symbols. In the case of demodulation,
particularly for GFSK signals, the algorithm instead works with expected phase differences as

it is shown in Figure 9.

S0

S1

S2

S3

Decoding Process Demodulating Process

Figure 9: Extended use of the Viterbi Algorithm

Due to intersymbol interference (I1SI), the sequences of received phase differences do
not occur independently but are influenced by neighboring symbols. This dependency can be
modeled using a state machine or trellis diagram, similar to the trellis diagram used in
convolutional decoding. Each state in the machine represents a possible combination of past

and future symbols that could influence the current phase difference.

33

Phase differences per bit

Agbl 0.15 T T T T T T _

| e

Em ‘%H - @JHHHL B

_A¢)2 - - s —] I _A§E1

o|l-|lo|l=|o|a|lo|=~
o|lo|l=a|=|o|lo|~|=

0.15 ! :
—Ady 0 0.5 1 15 2 25 3 35 4 45

Figure 10: Phase differences levels and neighboring symbol dependency

The Viterbi Equalizer, therefore, uses the same principles as the Viterbi Algorithm in
decoding: it constructs a trellis based on possible phase differences, computes metrics for each
path, and traces back to find the most likely sequence of transmitted symbols, considering the
influence of ISI. In this way, the Viterbi Equalizer effectively acts as a GFSK demodulator that
optimally handles the challenges posed by ISI, providing a robust solution for reliable
communication in noisy environments.

While a Viterbi Equalizer typically focuses on producing a "hard output,” where the
demodulated bits are decisively identified as either '0" or '1," it can also be modified to produce

"soft output.”

SOVA

The Soft Output Viterbi Algorithm (SOVA) is an extension of the traditional Viterbi
Algorithm that provides more nuanced information about the decoded bits or symbols (Berrou
et al., 1993). While the standard Viterbi Algorithm yields a "hard decision™ output, where each
decoded bit is definitively classified as either a '0' or a '1', SOVA produces a "soft output,”

which includes additional information about the likelihood or confidence of each decision.

34

The importance of SOVA lies in its ability to enhance the performance of
communication systems, particularly when combined with iterative decoding techniques like
block coding. By providing a measure of uncertainty for each bit, SOVA allows for more
effective error correction. This measure of uncertainty is often expressed in the form of Log-
Likelihood Ratios (LLR), which quantify how much more likely it is that a given bit is a '0'
versus a'l' (Berrou et al., 1993).

The Log-Likelihood Ratio (LLR) is a crucial component in the SOVA process. It

provides a probabilistic measure of each bit's value, calculated as:

LLR = In <P(bit = 1| received signal))

P(bit = 0 | received signal)
Where:
e P(bit =1 |received signal) is the probability that the bit is 'l' given the
received signal
e P(bit = 0| received signal) is the probability that the bit is '0' given the
received signal
Which implies:
= Ifthe LLR is a large positive number, it means the bit is very likely to be '1°
= Ifthe LLR is a large negative number, it means the bit is very likely to be '0’
= |fthe LLR is close to zero, the bit could be either '1' or '0', and the algorithm is

not very confident

SOVA maodifies the conventional Viterbi Algorithm by incorporating the calculation of
these LLRs during the decoding process. As the algorithm progresses through the trellis, it

computes both the path metrics (as in the traditional Viterbi Algorithm) and the LLRs for each

35

bit. This additional information is then used to generate the soft output, providing the decoder
with valuable insights that can be leveraged in subsequent stages of processing, such as in
iterative decoding schemes.

The importance of SOVA and LLRs cannot be overstated in modern communication
systems, where maximizing data reliability and minimizing error rates are paramount. By
generating soft outputs, SOVA enables more robust error correction and ultimately improves
the overall performance of the system.

Below, I propose a mathematical demonstration of how to calculate the soft output using
LLRs. This will involve deriving the LLR expression based on the path metrics calculated
during the Viterbi decoding process, illustrating how SOVA integrates these calculations into

the decoding algorithm to produce soft decisions.

Soft OQutput

Figure 11: Metrics in Trellis

From Figure 11, we observe that metrics M; and M5 originate from either state SO or
S1, which indicates a high likelihood that the soft output will correspond to a '0'. On the other
hand, metrics M, and M, originate from either state S2 or S3 , indicating a high likelihood that

the soft output will correspond to a '1".

36

Given this, the probability of selecting a path that leads to a soft output representing a
'1' can be expressed as the ratio of the metric associated with the '1' paths to the sum of all

relevant metrics. Mathematically, this probability can be calculated as:

e M2 + e™Ma
eMi 4 oMz 4 o=Mz 4 o=M,y

P(bit = 1| received signal) =

In the same way, the probability of selecting a path that leads to a soft output

representing a '0' can be calculated as:

e M 4 e™Ms
e M1+ e M 4 e7Ms 4 o~ Ms

P(bit = 0 | received signal) =

Note: The exponential function e~™: represents the likelihood that a given path i is the
correct path due to the fact that M; € [0, oo[. Thus, the smaller the metric, the more likely it is

that the path is the correct one.

Therefore,

e ™Mz 4 oM

eM +e M oM 4 e~ Ms
eMi 4 e~Ms

eMi 4 e M o=Ms 4 o=My

LLR =In

e ™Mz 4 e™Ms
LLR = ln< >

e™Mi 4 e=Ms

Considering the following approximation:

37

e—A + e B ~ g—min (A,B)

Finally, the soft output LLR value is calculated as:

LLR = 1n(emin(Ml,M3)—min (MZ,M4))

= LLR = min(Ml, M3) — min (Mz, M4)

38

WORK PERFORMED

The work | carried out throughout this project was focused on applying the theoretical
concepts discussed earlier to design a Viterbi Equalizer from scratch. In this process, | adopted
a two-stage approach.

In the first stage, | used MATLAB to simulate the Viterbi Equalizer. Since processing
resources are not a primary concern in this environment, | was able to run extensive simulations,
adjusting various parameters and fine-tuning the details of the algorithm. This allowed me to
thoroughly analyze the performance of the equalizer and identify the most optimal model based
on different criteria such as error rates and computational efficiency.

Once the optimal parameters were determined through MATLAB simulations, |
proceeded to the second stage, where the focus shifted to designing the Viterbi Equalizer at the
hardware level. For this, | developed the model using RTL (Register Transfer Level) design,
specifically utilizing System Verilog as the hardware description language (HDL). This phase
of the project involved translating the algorithm into a hardware-implementable form, ensuring
that the design was resource-efficient, particularly in terms of area, which translates to fewer

gates used and, consequently, lower power consumption.

MATLAB Implementation

The first step of the project was to familiarize myself with the complete workflow of
digital wireless communications, encompassing both the transmitter side (encoding and
modulation of the message) and the receiver side (demodulation and decoding of the received
signal). With this in mind, | began by studying a simpler modulation scheme, such as BPSK,

and utilized MATLAB's predefined functions to encode and decode convolutional codes. After

39

developing a solid understanding of these concepts, | progressed to GFSK modulation and

implemented the Viterbi algorithm from scratch.

The most complex part of the Viterbi algorithm is clearly the accumulation of path
metrics in a feedback process, where decisions are made based on the best path metrics, as
explained in Section (2.3.). One essential aspect to consider is that, for n received bits, the ideal
Viterbi algorithm would need to move n steps forward to accumulate the metrics and then n
steps backward to trace the best path. While this would not be an issue for a small n, in reality,
n is typically very large, and the resources required to process the entire trellis forward and

backward would be extremely high.

However, by paying attention to the nature of the algorithm, we realize that it does not
matter if we start the traceback from a correct or incorrect path; eventually, all paths will
converge to the correct one. This means that, instead of tracing back the entire trellis at once,
we can trace it in smaller segments, progressing through the trellis incrementally until the

process is complete

Extensive simulations were conducted by me using 10 million random bits transmitted
through the channel, and the bit error rate (BER) was calculated after the Viterbi algorithm was
applied, both for the ideal case where the entire trellis is processed and for the optimized case
where smaller segments are traced back and processed in sequence. A depth of 7 was chosen
as a neutral value for the depth of the smaller segments to trace back. The results in both cases
were nearly identical, demonstrating that the optimized approach is more resource-efficient

while achieving the same performance as the ideal case.

40

Additionally, 1 ran simulations where, instead of transmitting 10 million bits
consecutively, I transmitted 1000 blocks of 10 000 bits each, simulating the frames that will be
used in the final hardware design. Again, the results were unchanged, confirming the robustness

of the optimized approach.

Traceback Depth Analysis

107 &

BER

Standard GFSK Demodulator
Traceback Depth = 1

3 Traceback Depth = 2

10 o Traceback Depth=3 [~~~ = T 7
L = Traceback Depth = 4
Traceback Depth = 5
Traceback Depth = 6
Traceback Depth =7

= = = Sensitivity performance level

| 1
6 8 10 12 14 16
SNR [dB]

Figure 12: BER curves in function of the traceback depth

The concept of Traceback Depth refers to how many steps backward the Viterbi
algorithm must go in the trellis to find the most likely sequence of transmitted bits. As
mentioned in Section (3.1.), instead of traversing the entire trellis from start to finish, we can
optimize the process by performing the traceback in smaller segments, reducing the

computational burden without sacrificing performance.

41

While using a fixed window for traceback over the entire trellis is a solid strategy, there
is still room for further optimization. Specifically, we can fine-tune the depth of the traceback
window to balance between performance and resource efficiency. To explore this, | conducted

simulations with varying traceback depths, the results of which are shown in Figure 12.

In Figure 12, we observe the Bit Error Rate (BER) results for different traceback depths.
Additionally, the figure includes the BER results using a standard GFSK demodulator for
comparison. This allowed me to calculate the performance gain for each of the Viterbi Equalizer
models with different traceback depths, relative to the performance of the original GFSK
demodulator, at the sensitivity performance level of 0.001, which is our limit target as explained

in Section (2.1.).

The table below summarizes the performance gain for each model:

Table 1: Viterbi Equalizer gain relative to Standard GFSK Demodulator

Traceback Depth GAIN [dB]
1 2.75
2 2.93
3 3.43
4 3.59
5 3.60
6 3.61
7 3.62

Based on these results, | proposed using a traceback depth of 4, as this value maximizes
the performance gain. Choosing a higher traceback depth would lead to diminishing returns in

terms of performance improvement, making the additional resources required unjustifiable.

42

Conversely, selecting a traceback depth lower than 4 would significantly reduce the gain

achieved by the design.

HDL implementation and validation

Based on the analyses conducted so far using the MATLAB approach, the focus now
shifts to implementing the Viterbi Equalizer at the hardware level. For this purpose, as
previously mentioned, | used System Verilog as the hardware description language (HDL). The

design of the proposed Viterbi Equalizer block is shown below in Figure 13.

clk Traceback
reset_n
dphs_valid clk
reset_n
.- MetricsNodes output_valid output_valid
e input_valid
— — . J state_start_traceback
revd_dphs 4—— D Q S clic out_valid
reset_n state_start_traceback
- - input_valid Paths_MO Paths_MO tracked_bit hard_output
EuclideanDist Paths_M1 Paths_M1 -
. Eucll Eucll Paths_mM2 Paths_M2
phasediff Eucl2 Eucl2 Paths_M3 Paths_M3
]) Eucl3 Eucl3
vitphl vitph Eucl4 Eucl4
vitph2 vitph2 Eucls Eucls Delta soft_output
vitph3 vitph3 Euclé Euclé
VITERBI_ EQUA_TOP

Figure 13: Top module diagram — Viterbi Equalizer

The design | propose consists of three main submodules:

1) Submodule 'EuclideanDist’:
This block computes the branch metrics using the Euclidean distance as the
criterion. Specifically, it calculates the absolute difference between the received
phase difference, found in the signal 'phasediff,’ and the six expected phase

difference levels. It is important to note that the other input signals, 'vitphl,' 'vitph2,'

2)

43

and 'vitph3,' are the static values of the three levels of the expected positive phase
differences. Due to symmetry, these values also determine the three levels of the
expected negative phase differences. The combinational logic performed by this
block can be described as follows, with operations involving absolute value
differences:

Eucll = |—¢; — phasediff |

Eucl2 = |—¢, — phasediff |

Eucl3 = |—¢; — phasediff |

Eucl4 =| ¢; — phasediff |

Eucl5 =| ¢, — phasediff |

Eucl6 =| ¢, — phasediff |
These operations are used to compare the received and expected phase differences,

computing the Euclidean distance for each branch.

Submodule ‘MetricsNodes':

This is the most complex block, responsible for handling the metrics and making
decisions. It consists of two internal subprocesses, visualized in Figure 14. The first
subprocess involves accumulating the branch metrics across the trellis. The metrics
of the respective branches converging at each node are added to the accumulated
metrics of the corresponding previous nodes. Each node then retains the path with
the lowest metric, discarding the others.

The four metrics corresponding to the four nodes of the trellis at time t are sent to
another block that calculates the Log-Likelihood Ratio (LLR), as discussed in

Section (2.3.2.), and identifies which node has the lowest metric. This information

44

is used in the next subprocess. Additionally, the value of this lowest metric is
subtracted from all the node metrics, preventing metric overflow or saturation in
subsequent cycles.

The second subprocess involves storing the paths with the lowest metrics in a
register array based on the determined traceback depth. This stored path information
is then fed back through the system as the traceback window advances through the

trellis, ensuring that only the best paths are considered.

path_decision_S0 EINEEITeS
——————=| in_metricl Delta
——| in_metric2 metric_out nodel state_min
—»| Euclid_Dist 1 path LOSE2 next_metrics_nl
—| Euclid_Dist_2 node3 next_metrics_n2
— —| hode4 next_metrics_n3
path_decision S1 next_metrics_n4
in_metricl
—| in_metric2 metric_out
—»| Euclid_Dist 4 path

—=| Euclid_Dist_5

path_decision_S2 PATHS_MATRIX

clk

in_metricl

-
in_metric2 metric_out - -reset,n . out valid
—+| Euclid_Dist 2 path ——— L0 | nput-valid Baths M0 ————
| F LS [3:2) PATH MATRIX[3] ~ Paths M1
path_decision_S3 Eg PATH MATRIX[O] paths_m2
in_metricl RATHEMATIRIX[H] Paths_M3 |—s
| metricz melric_out PATH_MATRIX [2] =
—=| Euclid Dist 5 path |"; [
—| Euclid Dist 6

Figure 14: Submodule ‘MetricsNodes’ diagram

45

3) Submodule "Traceback’:
This block is compact, simple, and purely combinational. It uses four multiplexers
to perform each traceback step with a depth of four. Additionally, a final multiplexer
is used to decode whether the bit is a '0' or '1'. The internal diagram of this block is

shown below in Figure 15.

state_start_traceback

Paths_ M3 [1:0]
Paths M3 [3:2]
[
[

Paths_M3 [5:4]
Paths_M3 [7:6]

Paths_M2 [
Paths_M2 [
Paths_M2 [

[

:0]
:2]
4]
Paths_M2]

1
3
5
7:6 viterbiout_ SP
Paths_M1 [1:0]
Paths_M1[3:2]
Paths_M1 [5:4]
Paths_M1 [7:6]

Paths_MQ [1:0]
Paths_MQO[3:2]
Paths_MO [5:4]
Paths_MQ [7:6]

Figure 15: Submodule “Traceback” diagram

This modular design allows the Viterbi Equalizer to efficiently process the received
signals while simplifying the algorithhm flow and avoiding metric overflow. After
HDL model was done, | synthesized it and implemented the system on an FPGA to
validate the hardware performance, ensuring that the design operates as expected

under realistic conditions.

46

For uncoded frames, | used the standard mode of the Viterbi Equalizer with hard
output, obtaining a 3.57 dB gain in sensitivity performance at the BER target,
compared to the BER results of the original GFSK demodulator. On the other hand,
for coded frames, I used the SOVA mode of the Viterbi Equalizer and achieved a
BER of 0.001 at 11.61 dB of SNR. Both results from the hardware implementation
align well with the MATLAB model, demonstrating consistency between the two
approaches. For hard outputs, the expected gain from the MATLAB simulations was
3.59 dB, as discussed in Section (3.2.), which is very close to the observed gain of
3.57 dB in the FPGA implementation. Similarly, for soft outputs, the ideal SOVA
function in the MATLAB model, which utilized full computational resources,
indicated that achieving a BER of 0.001 required 11.59 dB of SNR. This result was
also closely matched in the hardware implementation, with 11.61 dB needed to reach
the same BER.

This consistency between the results of the implemented hardware model on FPGA
and the results of the MATLAB model validates the accuracy and coherence of both

Viterbi Equalizer designs.

Design Optimization

So far, the results obtained have been very promising, and there is consistency between
the MATLAB model and the HDL model, meaning that the design is almost ready for
deployment. However, | decided to take the design a step further by optimizing it, focusing on
signal resolution as well as the parametrization and dependency of all internal signals based on

the input signals.

47

One key strategy | used for optimization is signal quantization. Quantization refers to
the process of reducing the resolution or bit length of signals, typically to minimize resource
usage or to improve processing efficiency, while still maintaining acceptable performance
(Duc, 2004). I chose this approach because by reducing the bit lengths of specific signals in the
Viterbi Equalizer, 1 could significantly optimize resource usage without compromising the
overall accuracy of the system.

To achieve this, | first needed to analyze the relationships between the signals in the
design. By observing the diagram in Figure 13, we can categorize the signals that can either be

quantized or have their bit length reduced into three distinct groups:

1) Signals at the input
2) Signals related to the Euclidean Distance

3) Signals within the ‘MetricsNodes’ block

The required bit lengths for the signals in Group (3) are directly dependent on the
normalized bit length of the signals in Group (2). However, since the signals in Group (2) must
also be quantized and depend only on simple combinational logic derived from the signals in
Group (1), the best approach for optimization is to focus on quantizing the signals in Group (1),
the input signals. After doing so, the bit lengths of the signals in Group 2 should be minimized
to the required amount without causing performance degradation.

In this context, and considering the RTL implementation where the Viterbi Equalizer
block will be used, the input signals have a bit length of 11 bits. The critical question then

became: how many Least Significant Bits (LSBs) can be removed from the input signals during

48

quantization to strike the right balance between reducing the number of bits and maintaining a
bit error rate (BER) that meets performance expectations?

To address this, the best strategy was to ensure that the bit length of all internal signals
is a function of the input signal length. Therefore, | proceeded to conduct an initial analysis in
MATLAB, where | simulated the system using 5 million bits while varying the input signal
lengths. Based on these results, | selected the optimal bit lengths for modifying the HDL model.

Afterward, | synthesized and implemented the optimized design on an FPGA to validate
the hardware. This allowed me to confirm that the design maintained its performance even with

the reduced bit lengths, leading to a more efficient implementation in terms of resource usage.

49

RESULTS

The results presented below are based on the necessary parameters to optimize my
design for the specific context in which it will be used—demodulating coded frames within the
Bluetooth Classic (BTC) block. In this case, the SOVA mode is required, as it exhibits high
sensitivity to changes in the resolution of the input signals. Therefore, it is crucial to study the
impact of changing the input signal resolution on the soft outputs, which carry the bit reliability
information and are passed to other blocks and processes within the digital communication flow
of BTC.

The hard output mode is not directly affected by changes in resolution, as it relies solely
on comparing metrics and making binary decisions. In contrast, the soft output mode depends
entirely on the value of the metrics and their sequential relationships, making it much more
sensitive to the precision of the input signals.

In Figure 16, the results of MATLAB simulations for SOVA are shown, considering the

quantization of the input signal resolution. The original input signals had a resolution of 11 bits.

103 _) SOVA - MATLAB RESULTS

Input signals with 11-bit resolution
Input signals with 9-bit resolution
Input signals with 8-bit resolution
Input signals with 7-bit resolution
Input signals with 6-bit resolution
= = =Sensitivity level performance

SNR [dB]

Figure 16: MATLAB SOVA results changing input signals resolution

50

The importance of Figure 16 lies in the evidence it provides about which resolutions are
most favorable for hardware implementation. In this case, it is clear that input signals with 8-
bit and 7-bit resolutions are the most promising, as they allow a reduction in hardware resource
usage without significantly compromising performance.

Once the most promising resolutions were identified, | proceeded to modify my
hardware design based on the MATLAB simulation results. These designs were synthesized

and implemented on an FPGA, and the results are shown in Figure 17.

P 1073 SOVA - FPGA RESULTS

= Input signals with 11-bit resolution
Input signals with 8-bit resolution

181 Input signals with 7-bit resolution
[= = = Sensitivity level performance
16 [| = Without Viterbi Equalizer

08

11.4 115 11.6 1.7 11.8 11.9 12 12.1 12.2
SNR [dB]

Figure 17: FPGA implementation results for different optimized SOVAs

Figure 17 is critical for making the final design decision. It demonstrates the gain
obtained for both my unoptimized resolution design and the 8-bit and 7-bit resolution designs,
compared to the results from the communication process without using the Viterbi Equalizer
within the BTC block (This would imply connecting the soft inputs of the noisy phase

differences directly to the next soft input decoding phase). It is also important to recall what

51

was discussed at the end of Section (3.3.): using an ideal SOV A process in MATLAB with full
computational resources, it was concluded that to achieve a BER of 0.001, an SNR of 11.59 dB

IS required. This represents the theoretical performance limit for any optimized design.

The gain results are summarized in Table 2 below.

Table 2: Viterbi Equalizer gain relative to not using any demodulator

Design GAIN [dB]
Ideal MATLAB Viterbi Equalizer without 0.64
optimization '
Viterbi Equalizer 0.62
11-bit input signals resolution '
Viterbi Equalizer 061
8-bit input signals resolution '
Viterbi Equalizer 0.57

7-bit input signals resolution

The analysis of Table 2 reveals two critical points. First, the version of the Viterbi
Equalizer that does not have optimized input signal resolution performs similarly to the
maximum performance that can be achieved, with a gain difference of only 0.02 dB, which is
negligible under real-world conditions. Second, the results for the 8-bit and 7-bit resolution
versions are also promising. If we prioritize resource usage over gain, the 7-bit version is the
best option. However, if we prioritize gain over resource usage, the 8-bit version is clearly the

most favorable.

As the designer of this block, | proposed prioritizing gain, evaluating the resource trade-
off, and to provide further insight into the decision, | also performed ASIC synthesis (which

will lead the final decision) to complement the FPGA synthesis results.

Table 3: FPGA Synthesis Results

7-bit input signals resolution

FPGA Hardware Resources LUT FF
Original Viterbi Equalizer
11-bit input signals resolution 1120 342
New Viterbi Equalizer
11-bit input signals resolution 539 168
l_\le_w V|te_rb| Equallzer_ 417 137
8-bit input signals resolution
New Viterbi Equalizer 410 129

52

Tables 3 and 4 summarize the synthesis results in terms of resources and area for both

FPGA and ASIC implementations. Additionally, the results of the original Viterbi Equalizer

that was targeted for replacement as part of my internship project are included for a more

comprehensive comparison and reflection within the context.

Table 4: ASIC Synthesis Results

7-bit input signals resolution

ASIC Synthesis Area [um?] Gates
Original Viterbi Equalizer
11-bit input signals resolution 1938 7100
New Viterbi Equalizer
11-bit input signals resolution 1043 3821
l_\lgw Vlte_l'bl Equallzer- 780 2857
8-bit input signals resolution
New Viterbi Equalizer 688 2520

53

The results are highly favorable. First of all, the original design uses an area of 1938
pm?2, while my initial design uses only 1043 pm2. This represents a 46.17% reduction in area,
which is a substantial improvement. Reducing area is critical in ASIC designs as it directly
impacts the cost of fabrication, power consumption, and the scalability of the design. However,
we can go even further. The difference between the 8-bit and 7-bit designs in terms of area is
still acceptable and affordable for the performance, and therefore, my proposal to use the 8-bit
version for the input signal resolution is the most promising, as it further reduces the area by an

additional 25% while maintaining a 0.61 dB gain compared to not using any demodulator.

54

CONCLUSIONS

The development of a fully functional Viterbi Equalizer for Bluetooth Classic
applications represents a significant achievement. Starting from a theoretical foundation, |
successfully designed and implemented a robust solution for improving coded frame
demodulation within the Bluetooth Classic (BTC) block. The equalizer was developed from
scratch, leveraging a deep understanding of both signal processing and hardware
implementation.

The design process was grounded in a thorough review of the Viterbi Algorithm and its
application to GFSK demodulation. Extensive MATLAB simulations provided critical insights
into the performance of various configurations, while code debugging and iterative adjustments
ensured that the final design was optimal within the given performance and resource
constraints.

Through traceback depth analysis, | determined that a traceback depth of 4 provides the
best balance between performance and resource efficiency. Furthermore, | optimized the design
by quantizing the input signals, reducing the resolution from 11 bits to 8 bits. This quantization
led to a significant reduction in the overall area and resource usage, making the design more
practical for hardware implementation while maintaining performance within acceptable limits.

The final design was implemented in System Verilog and tested on FPGA,
demonstrating a 3.59 dB gain in sensitivity performance at the BER target compared to the
results of the original standard GFSK demodulator for hard outputs in non-coded frames. For
soft outputs in coded frames, a gain between 0.61 dB and 0.62 dB was achieved compared to
not using any demodulator. Additionally, my proposed design uses 46.17% less area than the
original Viterbi Equalizer, which represents a significant improvement. Reducing area is crucial

in ASIC designs, as it directly impacts fabrication costs, power consumption, and the overall

55

scalability of the system. Moreover, this optimization can be taken further with my proposal to
use the 8-bit version for the input signal resolution, which reduces the area by an additional
25% while maintaining a 0.61 dB gain, making it the most promising balance between
performance and resource efficiency.

Furthermore, one of the key strengths of my design lies in its parametrization and
generalization, making it versatile and adaptable for other wireless communication standards
that employ 2GFSK modulation. This flexibility allows for future applications beyond
Bluetooth Classic, potentially benefiting a wide range of communication systems.

Throughout this internship, | enhanced my skills in signal processing, code abstraction,
hardware design, and project management, working extensively with tools like Git, System
Verilog, MATLAB, Questa Simulator, and Perforce version control. | also improved my time
management, problem-solving, and creativity, gaining valuable experience in a professional
and technical environment, as well as fluency in French.

In conclusion, the Viterbi Equalizer developed during this internship not only meets the
performance requirements for the Bluetooth Classic BTC block but also introduces substantial
resource savings, paving the way for more efficient designs in future wireless communication

systems.

56

REFERENCES

Bluetooth SIG. (2016). Bluetooth core specification version 5.0.

Business Wire. (2023). Silicon Labs celebrates 25 years of wireless innovation. Retrieved

July 5, 2024, from https://www.businesswire.com

Duc, K. L. (2004). Channel coding techniques for wireless communications. Academic Press.

Hagenauer, J., & Hoeher, P. (1989). A Viterbi algorithm with soft-decision outputs and its

applications. In Proceedings of IEEE Globecom '89 (pp. 47.11-47.17). Dallas, TX.

Patel, J., & Mehta, R. (2020). Bluetooth 5.0 modem design. Wiley.

Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). McGraw-Hill.

S. Berrou, C., Adde, P., Angui, E., & Faudeil, S. (1993). A low complexity soft-output
Viterbi decoder architecture. In Proceedings of the IEEE International Conference on

Communications (pp. 737-741). Geneva, Switzerland.

Shlezinger, A., Farsad, N., Eldar, Y. C., & Goldsmith, A. J. (2024). Meta-ViterbiNet: Online
meta-learned Viterbi equalization for non-stationary channels. IEEE Transactions on

Wireless Communications, XX(X), 1-12.

Silicon Labs. (n.d.). Company overview. Retrieved July 1, 2024, from

https://www.silabs.com/about-us/company-overview

Viterbi, A. (2010). Viterbi decoding of convolutional codes. MIT. Retrieved July 5, 2024,

from https://web.mit.edu/

https://www.businesswire.com/
https://www.silabs.com/about-us/company-overview
https://web.mit.edu/

