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RESUMEN 

Esta tesis presenta el desarrollo de un Ecualizador Viterbi para Bluetooth Classic (BTC) 

dentro del chip Everest, desarrollado por Silicon Labs para aplicaciones de IoT. El enfoque del 

proyecto abarca el análisis teórico, la implementación de algoritmos, el diseño de hardware y 

la optimización. 

El trabajo sigue una metodología estructurada, comenzando con una revisión teórica 

sobre Bluetooth Classic, la modulación y demodulación GFSK, y el Algoritmo de Viterbi. La 

necesidad de un ecualizador surge debido a la presencia de Interferencia Inter-Simbólica (ISI), 

que degrada la precisión de los demoduladores GFSK estándar en condiciones de alto ruido. El 

Ecualizador Viterbi emplea el Algoritmo de Viterbi para reconstruir la secuencia de señal 

transmitida más probable, reduciendo así la Tasa de Error de Bit (BER). 

El proyecto consta de dos fases principales: 

1) Implementación en MATLAB: Se realizaron simulaciones iniciales del Ecualizador 

Viterbi en MATLAB para evaluar su rendimiento, sensibilidad y requisitos de 

profundidad de retroceso. Se determinó que una profundidad de retroceso de 4 

optimiza el equilibrio entre la ganancia de rendimiento y la eficiencia 

computacional. 

2) Implementación en Hardware: El ecualizador se diseñó en SystemVerilog y se 

implementó en FPGA para validar su desempeño en condiciones reales. El 

Algoritmo de Viterbi con Hard Output logró una ganancia de 3.57 dB en 

sensibilidad en comparación con el demodulador GFSK estándar. Además, se 

implementó el Algoritmo de Viterbi con Soft Output (SOVA), obteniendo una 

ganancia de 0.61 dB en frames codificados, mejorando así la precisión y 

rendimiento. 
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La síntesis final en ASIC mostró una reducción del 46.17% en el área en comparación 

con un ecualizador original, lo que hace que el diseño sea significativamente más eficiente en 

consumo de energía y escalable. Estas mejoras posicionan al Ecualizador Viterbi como una 

solución robusta y eficiente en recursos para la demodulación BTC en el chip Everest de Silicon 

Labs, con potencial aplicabilidad en otros sistemas de comunicación inalámbrica basados en 

2GFSK. 

Para optimizar aún más el diseño, se aplicaron técnicas de cuantización con el objetivo 

de minimizar el consumo de recursos sin comprometer el rendimiento. Se seleccionó una 

resolución de 8 bits para las señales de entrada como el equilibrio óptimo, logrando una 

reducción adicional del 25% en el área de hardware y manteniendo al mismo tiempo una alta 

eficiencia en la demodulación. 

Este proyecto demuestra un enfoque integral, combinando procesamiento de señales, 

optimización de algoritmos y diseño de hardware, lo que contribuye a mejorar la conectividad 

inalámbrica para futuras aplicaciones de IoT. 

Palabras clave: Ecualizador Viterbi, Bluetooth Classic, GFSK, Intersymbol 

Interference, FPGA, ASIC, IoT, Algoritmo de Viterbi, Procesamiento de Señales. 

. 
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ABSTRACT 

This thesis presents the development of a Viterbi Equalizer for Bluetooth Classic (BTC) 

within the 'Everest' chip, developed by Silicon Labs for IoT applications. The project’s 

approach involves theoretical analysis, algorithm implementation, hardware design, and 

optimization. 

The work follows a structured approach, beginning with a theoretical review of 

Bluetooth Classic, GFSK modulation and demodulation, and the Viterbi Algorithm. The 

necessity of an equalizer arises from the presence of Intersymbol Interference (ISI), which 

degrades the accuracy of standard GFSK demodulators under high-noise conditions. The 

Viterbi Equalizer leverages the dynamic programming-based Viterbi Algorithm to reconstruct 

the most likely transmitted signal sequence, thereby reducing BER. 

The project consists of two primary phases: 

1) MATLAB Implementation: Initial simulations of the Viterbi Equalizer were 

performed in MATLAB to evaluate its performance, sensitivity, and traceback depth 

requirements. A traceback depth of 4 was found to optimize the trade-off between 

performance gain and computational efficiency. 

2) Hardware Implementation: The equalizer was designed in System Verilog and 

implemented in FPGA to validate real-world performance. The Hard Output Viterbi 

Algorithm achieved a 3.57 dB gain in sensitivity performance compared to the 

standard GFSK demodulator. Additionally, the Soft Output Viterbi Algorithm 

(SOVA) was implemented, providing a gain of 0.61 dB in coded frames, ensuring 

better decoding accuracy. 
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The final ASIC synthesis showed a 46.17% reduction in area compared to an original 

equalizer, making the design significantly more power-efficient and scalable. These 

improvements position the Viterbi Equalizer as a robust, resource-efficient solution for BTC 

demodulation in Silicon Labs’ Everest chip, with potential applicability to other 2GFSK-based 

wireless communication systems. 

To optimize the design further, quantization techniques were applied to minimize 

resource consumption without compromising performance. An 8-bit resolution for the input 

signals was selected as the optimal trade-off, achieving an extra 25% reduction in hardware 

area while maintaining high demodulation efficiency. 

This project showcases an integrated approach combining signal processing, algorithm 

optimization, and hardware design, contributing to enhanced wireless connectivity for next-

generation IoT applications. 

Key words: Viterbi Equalizer, Bluetooth Classic, GFSK, Intersymbol Interference, 

FPGA, ASIC, IoT, Soft Output Viterbi Algorithm, Signal Processing.  
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INTRODUCTION 

Company presentation 

Silicon Labs is a leading global provider of silicon, software, and solutions for a smarter, 

more connected world. Founded in 1996 and headquartered in Austin, Texas, Silicon Labs 

specializes in the design and development of integrated circuits (ICs), microcontrollers, and 

wireless connectivity solutions that drive innovation in the Internet of Things (IoT) market 

(Silicon Labs, n.d.). 

The company introduced its first product in 1998, a data access arrangement (DAA) 

chip used as an interface to public telephone lines. Thanks to its small size and low cost, this 

product achieved significant commercial success. The following year, Silicon Labs launched 

the first CMOS RF synthesizer, marking the beginning of their venture into wireless 

communication technologies (Business Wire, 2023). Over the years, Silicon Labs expanded its 

portfolio to include chips for a wide variety of wireless applications, such as digital TV 

demodulators, Wi-Fi, and AM/FM radio. 

Since 2012, Silicon Labs has strategically shifted its focus towards IoT products, which 

now constitute a substantial portion of the company's revenue (Business Wire, 2023). This 

emphasis on IoT has positioned Silicon Labs as a key player in the rapidly growing connected 

devices market, providing cutting-edge solutions that enable seamless wireless connectivity 

across multiple platforms and devices. 

In 2006, Silicon Labs acquired the Rennes-France office, which is the oldest European 

branch of the company (Silicon Labs, n.d.). Prior to the acquisition, the Rennes site operated as 

a startup specializing in the design of digital TV chips. The Rennes office has since become an 

integral part of Silicon Labs’ global operations, particularly in the development of advanced 

wireless communication technologies. 
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The Rennes site is organized into four main teams: the design team (which I joined), a 

software team responsible for developing stacks to support various network protocols on the 

chips, an application team that liaises with customers, and a newly established RF team focused 

on the analog aspects of integrated circuits. The design team, composed of 10 members, 

specializes in digital communication, with most team members focusing on hardware 

implementation and others dedicated to signal processing studies using MATLAB simulations. 

My internship was positioned at the intersection of these two aspects—signal processing 

and hardware implementation. The opportunity to work on both the theoretical and 

mathematical aspects of signal processing, as well as the practical implementation and 

hardware design, is closely aligned with my academic and professional interests. 

Internship context 

The context of my internship lies in the development of a new chip for IoT applications 

at Silicon Labs, named 'Everest.' One of the wireless communication standards that the 

company intends to integrate into this chip is Bluetooth Classic (BTC). 

In this regard, a Bluetooth Classic module was incorporated, which was a soft IP from 

a previous chip. However, this module relied on a GFSK demodulator. While a standard GFSK 

demodulator is sufficient for specific scenarios with low noise levels, it falls short when a more 

robust demodulation solution is needed to provide greater noise resilience and improved 

performance in terms of bit error rate (BER). In such cases, more reliable and robust options, 

such as a Viterbi Equalizer, should be considered. 

Indeed, a previous version of a Viterbi Equalizer was used within the BTC module, but 

it did not function properly. Therefore, it became necessary to investigate the possibility of 

either fixing the existing equalizer or designing a new one from scratch to ensure the proper 
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functioning of the BTC module within the 'Everest' chip. To achieve this, it was essential to 

cover topics related to digital communications and signal demodulation, particularly GFSK, as 

well as the theory behind the Viterbi Algorithm. 

 

Internship Objective 

The primary objective of this internship is to develop a Viterbi Equalizer to be integrated 

with the Bluetooth Classic (BTC) feature of the 'Everest' chip. This involves designing and 

implementing an equalizer that can enhance the performance of the BTC module, particularly 

in challenging environments with higher levels of noise. The equalizer should improve the bit 

error rate (BER) and ensure reliable data transmission, thereby contributing to the overall 

robustness and functionality of the 'Everest' chip in IoT applications. 

Work Plan 

The following outlines the workflow and work plan designed to achieve the objectives 

of the internship: 

 

 

 

 

 

 

Viterbi Algorithm 
Theorical 

Approach and 
Review

Viterbi Equalizer 
MATLAB 

implementation 

Gain and 
performance 
verification 

RTL Viterbi 
Equalizer 

RTL 
implementation on 

FPGA
ASIC Synthesis 

Figure 1: Work Plan Flow 
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THEORETICAL FRAMEWORK 

Bluetooth Classic 

Bluetooth Classic (BTC) is a foundational wireless communication standard that has 

been widely adopted since its inception for short-range data exchange between devices. It is 

part of the broader Bluetooth technology family, which also includes Bluetooth Low Energy 

(BLE) (Bluetooth SIG, 2016). While BLE is optimized for low-power, low-data-rate 

applications, Bluetooth Classic is particularly suited for scenarios where higher data rates and 

continuous connectivity are required, such as audio streaming, file transfers, and device 

synchronization (Patel & Mehta, 2020). 

One of the primary reasons Bluetooth Classic remains relevant, especially in the context 

of IoT, is its robust and mature protocol stack, which provides reliable and secure 

communication across a wide range of devices (Duc, 2004). IoT applications often involve the 

integration of various devices—such as sensors, smartphones, and computers—into a cohesive 

network that requires seamless data transmission. Bluetooth Classic's ability to maintain stable 

connections and handle moderate to high data rates makes it an ideal choice for IoT systems 

where consistent performance is critical (Patel & Mehta, 2020). 

In the context of the 'Everest' chip, the integration of Bluetooth Classic is crucial for 

ensuring compatibility with a wide range of existing devices and use cases. Given the 

widespread adoption of Bluetooth Classic, particularly in consumer electronics, its inclusion in 

the Everest chip allows for interoperability with legacy systems and provides a solid foundation 

for new IoT innovations. 

To ensure the proper functioning of Bluetooth Classic within the Everest chip, several 

key technical parameters must be carefully considered during the design phase. These 
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parameters directly influence the performance, reliability, and efficiency of the communication 

module. The most relevant parameters for the design include: 

• Modulation: Bluetooth Classic employs Gaussian Frequency Shift Keying 

(GFSK) as its modulation scheme. GFSK is known for its efficiency in 

minimizing bandwidth usage while maintaining signal integrity, making it well-

suited for the typical operating conditions of Bluetooth devices (Duc, 2004). 

• Bandwidth-bit period product (BT): The product of the bandwidth and the bit 

period is set to 0.5. This parameter is critical in determining the spectral 

efficiency and the overall performance of the GFSK modulation. A BT product 

of 0.5 is a standard choice that balances the trade-off between signal robustness 

and bandwidth efficiency (Bluetooth SIG, 2016). 

• Data Rate (R): Bluetooth Classic operates at a data rate of 1 Mbps. This rate is 

sufficient for the majority of IoT applications that require moderate data transfer, 

such as sensor data collection, command, and control functions, and streaming 

low-bandwidth audio (Duc, 2004). 

• Modulation Index (h): The modulation index, which defines the extent of 

frequency deviation in GFSK, must be maintained between 0.28 and 0.35. This 

range ensures optimal performance in terms of signal clarity and error 

minimization under various operating conditions (Duc, 2004). 

• Bit Error Rate (BER): For reliable communication, the Bit Error Rate must be 

kept at or below 0.1% across an input power range from -70 dBm to -10 dBm. 

It is important to note that 0.1% BER represents the expected performance at the 

limit of the specified sensitivity by the standard. In practice, our limiting 

sensitivity point is much lower than this, which allows for improved 
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performance under real-world conditions, especially in scenarios with higher 

noise interference. Maintaining a low BER is essential for minimizing data 

transmission errors, which is particularly important in IoT devices where data 

integrity is critical for proper functioning (Duc, 2004). 

GFSK 

Gaussian Frequency Shift Keying (GFSK) is a digital modulation scheme used in 

various wireless communication systems, including Bluetooth Classic. GFSK is a variant of 

Frequency Shift Keying (FSK), where the frequency of the carrier signal is varied according to 

the input data signal. What distinguishes GFSK from standard FSK is the application of a 

Gaussian filter to the input data before modulation, which smooths the transitions between 

frequency shifts. This filtering reduces the bandwidth of the signal and minimizes interference 

with adjacent channels, making GFSK particularly suitable for environments with limited 

spectral space, such as in Bluetooth communications (Hagenauer & Hoeher, 1989). 

The key advantage of GFSK lies in its ability to achieve a balance between spectral 

efficiency and robustness against noise and interference. By using a Gaussian filter, GFSK 

reduces the out-of-band emissions, which helps in conserving bandwidth and allows for 

multiple devices to operate within the same frequency spectrum with minimal interference 

(Shlezinger et al., 2024). This makes GFSK an ideal choice for short-range wireless 

communication standards like Bluetooth Classic, where maintaining signal integrity over a 

limited bandwidth is crucial. 

GFSK operates by shifting the frequency of the carrier signal to represent binary data. 

Typically, a '1' bit is represented by a positive frequency deviation, while a '0' bit is represented 

by a negative frequency deviation. The extent of this deviation is defined by the modulation 



20 
 

 

index (h), which plays a critical role in determining the trade-off between signal bandwidth and 

the error performance of the system. 

To better understand GFSK, we can consider a mathematical approach to its modulation 

and demodulation processes: 

Modulation Process 

The basic mathematical expression for a GFSK-modulated signal is represented as: 

𝑠(𝑡) = 𝐴𝑒𝑗𝜃(𝑡) 
Where:  

• 𝑠 stands for the GFSK-modulated signal that is going to be sent  

• 𝐴 is the amplitude of the GFSK-modulated signal  

• 𝜃 is the phase of the GFSK-modulated signal  

We notice that 𝑠(𝑡) depends directly on its phase. Thus, to produce the GFSK-

modulated signal, it is crucial to produce the phase which is in function of the instantaneous 

frequency of the wave which, at the same time, is shifted according to the filtered data signal.  

The modulation process is demonstrated through the following five steps: 

1) Mapping Digital Bits to Symbols: The input bits from the data signal are mapped 

to symbols, where a '1' bit corresponds to the symbol '1', and a '0' bit corresponds to 

the symbol '-1'. This binary mapping simplifies the subsequent mathematical 

operations in the modulation process. 

𝟏 →    𝟏 

𝟎 → −𝟏 

2) Gaussian Filter: The symbols generated from the binary data stream are passed 

through a Gaussian filter, which smooths the data transitions. This smoothing 

reduces abrupt changes in the instantaneous frequency, thereby controlling the 
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bandwidth of the modulated signal and minimizing spectral spreading. The resulting 

signal is referred to as 𝑚(𝑡). 

3) Instantaneous Frequency: The instantaneous frequency of the modulated signal is 

determined by the scaled version of the filtered data signal 𝑚(𝑡). For simplicity, we 

assume a baseband signal, setting the carrier frequency 𝑓𝑐 to zero. Therefore, the 

instantaneous frequency is given by:  

𝑓(𝑡) = 𝑓𝑐 + 𝑓𝑑  𝑚(𝑡)  

𝑓(𝑡) = 𝑓𝑑  𝑚(𝑡) 

In this context, the chosen deviation frequency is 160 kHz corresponding to a 

modulation index (h) of 0.32.  

4) Getting the phase: In physics, the instantaneous frequency and the phase of a signal 

are related by the following differential equation: 

𝑓(𝑡) =
1

2𝜋

𝑑

𝑑𝑡
𝜃(𝑡) 

By integrating the instantaneous frequency over time, we obtain the phase of the 

signal as:  

⇒ 𝜃(𝑡) = 2𝜋 𝑓𝑑 ∫ 𝑚(𝜏) 𝑑𝜏
𝑡

−∞

 

Note: For discrete-time implementation, especially in simulations using MATLAB, 

this integral is approximated by a summation, yielding (Proakis & Salehi, 2008): 

𝜃[𝑛] = 2𝜋 𝑓𝑑 ∑ 𝑚[𝑘]
𝑛

𝑘=1
 

5) Producing the GFSK-modulated signal: Finally, the calculated phase is used in 

the complex exponential function to generate the GFSK-modulated signal. The 

complex signal is then transmitted through the communication channel. 
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The whole modulation process given by the previous steps are visually represented in 

detail in the accompanying figure: 

 

Figure 2: GFSK Modulation Process 

 

 

Demodulation Process 

The demodulation process, which is the focus of our work, mirrors the modulation 

process but in reverse order. It is no surprise that the steps closely resemble those of modulation, 

albeit carried out in the opposite direction. 
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First, the GFSK-modulated signal, now with added noise, is received. This signal is 

passed through a filter designed to mitigate as much noise as possible, aiming to restore the 

signal to a cleaner state. Following this, the phase of the signal is extracted, and we differentiate 

it, taking advantage of the relationship between the derivative of the phase and the instantaneous 

frequency. 

From the resulting phase difference signal, we proceed to apply a standard GFSK 

demodulator. This demodulator operates using a hard decision method, where if the received 

value is greater than zero, the bit is determined to be '1', and if the value is less than zero, the 

bit is determined to be '0'. 

Below is a visual representation of the demodulation process, which is essentially the 

reverse of the modulation process previously discussed. 

 

Figure 3: GFSK Demodulation Process with and without noise 
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In Figure 3, the demodulation process is contrasted for the same received signal under 

low and high noise conditions, respectively. The left-hand side of the figure demonstrates that 

when the noise level is low or negligible, the demodulation of the signal based on phase 

differences is straightforward, and the symbols are well-defined. In this case, using a standard 

GFSK demodulator with a simple threshold is sufficient. 

However, when the received signal has a high noise level, even after processing and 

filtering, the resulting phase differences do not provide high reliability for using a standard 

GFSK demodulator. Values close to zero could correspond to either a '0' bit or a '1' bit, making 

it difficult to determine the correct bit with certainty. This lack of reliability is why a standard 

GFSK demodulator is inadequate, and a Viterbi equalizer is often preferred, as it accounts for 

the effects of Intersymbol Interference (ISI). 

In Figures 2 and 3, it is noticeable that in the subplots corresponding to instantaneous 

frequency or phase differences, the values attempt to reach well-defined maximum or minimum 

levels. These levels depend not only on the received symbol but also on the neighboring 

symbols, due to the influence of ISI (Shlezinger et al., 2024). This phenomenon arises from the 

Gaussian filter used during modulation, which smooths transitions between symbols but also 

introduces intersymbol dependency. 

The Viterbi equalizer is designed to address this by considering the impact of ISI, 

thereby improving the reliability of bit decisions, especially in noisy environments. The 

equalizer uses a probabilistic approach to estimate the most likely sequence of transmitted 

symbols, taking into account both the current and previous symbols. 
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Viterbi Algorithm   

The Viterbi Algorithm is a widely used method in digital communications for decoding 

sequences of symbols that have been transmitted through a noisy channel. It was originally 

developed by Andrew Viterbi in 1967 as a technique for decoding convolutional codes, which 

are a type of error-correcting code used to improve the reliability of data transmission (Viterbi, 

2010). 

In essence, the Viterbi Algorithm is a dynamic programming algorithm that finds the 

most likely sequence of hidden states (or symbols) that could have generated a sequence of 

observed events, considering the impact of noise and interference during transmission (Viterbi, 

2010). It achieves this by exploring all possible paths through a trellis diagram—a graphical 

representation of all possible states of the system—while keeping track of the path with the 

highest probability. This allows the algorithm to make decisions that minimize the probability 

of error, effectively mitigating the effects of noise and interference. 

While our focus in this work is on the application of the Viterbi Algorithm in the context 

of GFSK demodulation, it is most easily understood through its original application: the 

decoding of convolutional codes. Convolutional codes are a type of forward error correction 

code that adds redundancy to the transmitted data by encoding it into a longer sequence using 

a finite-state machine. This encoding introduces a dependency between consecutive symbols, 

which can be exploited by the Viterbi Algorithm to correct errors introduced by the channel. 

To better understand the essence of the Viterbi Algorithm, it is helpful to explore an 

example in the context of convolutional encoding and decoding. This example will demonstrate 

how the algorithm traces back through the trellis to find the most likely sequence of transmitted 

symbols, effectively correcting errors that may have occurred during transmission. 
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Let us consider the following ½ rate encoder, given by the generator polynomials    

𝒈𝟏 = (𝟏𝟎𝟏) and 𝒈𝟐 = (𝟏𝟏𝟏): 

 

Figure 4: Encoder example 

 

The encoder of Figure 4 also can be represented by the following output sequence 

expressions: 

𝒚𝟏 [𝒏] = 𝒙[𝒏] + 𝒙[𝒏 − 𝟐]                       

𝒚𝟐[𝒏] = 𝒙[𝒏] + 𝒙[𝒏 − 𝟏] + 𝒙[𝒏 − 𝟐] 

In fact, the encoder under study cannot be fully represented by the previous expressions 

or the diagram in Figure 4 alone. However, it can be effectively represented as a state machine 

to observe the state change behavior. A more comprehensive representation can be achieved 

using a Trellis diagram, which allows for the analysis of state changes over time by 

incorporating the time dimension. This enables the visualization of how the states evolve over 

time. Both representations are illustrated in Figure 5 for the same encoder: 
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Figure 5: Encoder representation – State Machine and Trellis Diagram 
 

To better understand the Viterbi Algorithm, let us walk through a practical example. 

Suppose the message we want to transmit is “1100”. If we input this message into our 

convolutional encoder, as illustrated in Figure 4, the encoded message would be “11101011,” 

which is now ready for transmission. However, to demonstrate the decoding and error 

correction capabilities of the Viterbi Algorithm, let us assume that the received message was 

“10101111”. This received sequence contains two errors when compared to the originally 

transmitted encoded message. 

The Viterbi Algorithm can be broken down into three well-defined steps: 

1) Building a Trellis Diagram: 

The first step involves constructing a trellis diagram, which represents all possible states 

of the encoder at each time step (Viterbi, 2010). Each path through the trellis corresponds to a 

possible sequence of transmitted bits. 
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Figure 6: Viterbi Algorithm – Building Trellis Diagram 

  

2) Computing and Updating Metrics to Store Survivor Paths: 

As we move forward through the trellis, we compute branch metrics for each possible 

path, typically by calculating the difference between the received signal and the expected signal 

for each transition. This can be done using a distance measure like the Hamming distance or 

absolute value difference (Viterbi, 2010). The survivor paths are those with the lowest 

cumulative metric, indicating the most likely sequences that could have resulted in the received 

message. For each node, the path with the highest cumulative metric is discarded, leaving only 

the path with the lowest metric, referred to as the decision metrics. 

The process continues by accumulating metrics at each node, where each node’s 

accumulated metric is the sum of the previous non-discarded branch metric and the 

corresponding node metric from earlier in the trellis. These cumulative metrics are propagated 

forward, ensuring that only the most likely paths are retained. Once the forward traversal of the 

trellis is complete, a traceback process is performed to identify the most likely sequence of 

transmitted bits. 
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Figure 7: Viterbi Algorithm – Computing metrics and storing survivor paths 

 

 

In Figure 7, the accumulated metrics, branch metrics, and decision metrics are illustrated 

for each state (S0, S1, S2, and S3) over time t. The red numbers represent the accumulated 

metrics, the blue numbers represent the branch metrics, and the black arrows indicate the 

selected survivor paths for each state at each time step. 

 

 

3) Tracing Back: 

After reaching the end of the trellis, we trace back through the survivor paths to 

determine the most likely sequence of transmitted bits. This process involves moving backward 

through the trellis to identify the path with the smallest cumulative metric, which represents the 

corrected version of the received message. 

The deeper the traceback is, the higher the confidence in the decoding process. This is 

because, as we trace further back through the trellis, the survivor paths from different states 

will eventually converge into a single path. This phenomenon occurs because, no matter which 
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path the traceback begins from (typically the one with the lowest metric), all possible paths will 

converge after a certain number of steps. 

As a result, decoded bits located toward the left (i.e., those from the end of the traceback 

process) have a higher reliability of being correctly decoded as '0' or '1', as these bits represent 

the positions where all paths have already converged. The reliability of the decoded bits 

decreases as we move to the right (closer to the start of the traceback), where paths may not 

have converged yet. 

Due to this, traceback depth becomes a critical parameter: a deeper traceback ensures more bits 

are decoded after paths have converged, increasing the overall accuracy. To ensure convergence 

and maximize decoding reliability, another common technique is to add tailing bits (usually 

zeros) at the end of the transmitted sequence. These tailing bits force the trellis into a known 

final state (often state S0), ensuring that the traceback starts from the correct state at the end of 

the trellis. This guarantees that the traceback process is initiated correctly and improves the 

accuracy of the decoded message. 
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Figure 8: Viterbi Algorithm – Tracing back to find the original message 

 

 

In this example we realize how the Viterbi Algorithm is capable of recovering the 

original message from the received bits although it contains errors. In simple terms, the Viterbi 

Algorithm consists on a process of moving forward through the trellis while building and 

updating the possible paths, and then moving backward to make a decision about which path 

most likely represents the original transmitted message. It can be also thought of as traveling 

forward into the future to gather information, and then coming back to the past to make a 

decision. 

 

Viterbi Equalizer  

The term "Equalizer" in the context of a Viterbi Equalizer should not be misunderstood 

as it does not refer to the traditional concept of equalization, such as frequency equalization, 

which is commonly known in audio processing. Instead, a Viterbi Equalizer is essentially a 

demodulator, and it could just as accurately be called a "Viterbi Demodulator". The primary 
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role of a Viterbi Equalizer is to make optimal decisions about the transmitted symbols based on 

the received signal.  

Once the Viterbi Algorithm is understood in the context of convolutional decoding, it 

becomes straightforward to adapt it for the purpose of demodulation, which is the context that 

interests us here. In traditional convolutional decoding, the algorithm works by comparing the 

received sequence with expected sequences of bits or symbols. In the case of demodulation, 

particularly for GFSK signals, the algorithm instead works with expected phase differences as 

it is shown in Figure 9. 

 

 

Figure 9: Extended use of the Viterbi Algorithm 

 

 

Due to intersymbol interference (ISI), the sequences of received phase differences do 

not occur independently but are influenced by neighboring symbols. This dependency can be 

modeled using a state machine or trellis diagram, similar to the trellis diagram used in 

convolutional decoding. Each state in the machine represents a possible combination of past 

and future symbols that could influence the current phase difference. 
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Figure 10: Phase differences levels and neighboring symbol dependency 
 

The Viterbi Equalizer, therefore, uses the same principles as the Viterbi Algorithm in 

decoding: it constructs a trellis based on possible phase differences, computes metrics for each 

path, and traces back to find the most likely sequence of transmitted symbols, considering the 

influence of ISI. In this way, the Viterbi Equalizer effectively acts as a GFSK demodulator that 

optimally handles the challenges posed by ISI, providing a robust solution for reliable 

communication in noisy environments. 

While a Viterbi Equalizer typically focuses on producing a "hard output," where the 

demodulated bits are decisively identified as either '0' or '1,' it can also be modified to produce 

"soft output."  

 

SOVA 

The Soft Output Viterbi Algorithm (SOVA) is an extension of the traditional Viterbi 

Algorithm that provides more nuanced information about the decoded bits or symbols (Berrou 

et al., 1993). While the standard Viterbi Algorithm yields a "hard decision" output, where each 

decoded bit is definitively classified as either a '0' or a '1', SOVA produces a "soft output," 

which includes additional information about the likelihood or confidence of each decision. 
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The importance of SOVA lies in its ability to enhance the performance of 

communication systems, particularly when combined with iterative decoding techniques like 

block coding. By providing a measure of uncertainty for each bit, SOVA allows for more 

effective error correction. This measure of uncertainty is often expressed in the form of Log-

Likelihood Ratios (LLR), which quantify how much more likely it is that a given bit is a '0' 

versus a '1' (Berrou et al., 1993). 

The Log-Likelihood Ratio (LLR) is a crucial component in the SOVA process. It 

provides a probabilistic measure of each bit's value, calculated as: 

𝐿𝐿𝑅 = ln (
𝑃(𝑏𝑖𝑡 = 1 | 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑃(𝑏𝑖𝑡 = 0 | 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)
) 

Where: 

• 𝑃(𝑏𝑖𝑡 = 1 | 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙) is the probability that the bit is '1' given the 

received signal 

• 𝑃(𝑏𝑖𝑡 = 0 | 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙) is the probability that the bit is '0' given the 

received signal 

Which implies: 

▪ If the 𝐿𝐿𝑅 is a large positive number, it means the bit is very likely to be '1’ 

▪ If the 𝐿𝐿𝑅 is a large negative number, it means the bit is very likely to be '0’ 

▪ If the 𝐿𝐿𝑅 is close to zero, the bit could be either '1' or '0', and the algorithm is 

not very confident 

 

SOVA modifies the conventional Viterbi Algorithm by incorporating the calculation of 

these LLRs during the decoding process. As the algorithm progresses through the trellis, it 

computes both the path metrics (as in the traditional Viterbi Algorithm) and the LLRs for each 



35 
 

 

bit. This additional information is then used to generate the soft output, providing the decoder 

with valuable insights that can be leveraged in subsequent stages of processing, such as in 

iterative decoding schemes. 

The importance of SOVA and LLRs cannot be overstated in modern communication 

systems, where maximizing data reliability and minimizing error rates are paramount. By 

generating soft outputs, SOVA enables more robust error correction and ultimately improves 

the overall performance of the system. 

Below, I propose a mathematical demonstration of how to calculate the soft output using 

LLRs. This will involve deriving the LLR expression based on the path metrics calculated 

during the Viterbi decoding process, illustrating how SOVA integrates these calculations into 

the decoding algorithm to produce soft decisions. 

 

Figure 11: Metrics in Trellis 

 

From Figure 11, we observe that metrics 𝑀1 and 𝑀3  originate from either state S0 or 

S1, which indicates a high likelihood that the soft output will correspond to a '0'. On the other 

hand, metrics 𝑀2 and 𝑀4 originate from either state S2 or S3 , indicating a high likelihood that 

the soft output will correspond to a '1'. 
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Given this, the probability of selecting a path that leads to a soft output representing a 

'1' can be expressed as the ratio of the metric associated with the '1' paths to the sum of all 

relevant metrics. Mathematically, this probability can be calculated as:  

 

𝑃(𝑏𝑖𝑡 = 1 | 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙) =
𝑒−𝑀2 + 𝑒−𝑀4

𝑒−𝑀1 + 𝑒−𝑀2 + 𝑒−𝑀3 + 𝑒−𝑀4
 

 

In the same way, the probability of selecting a path that leads to a soft output 

representing a '0' can be calculated as: 

 

𝑃(𝑏𝑖𝑡 = 0 | 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙) =
𝑒−𝑀1 + 𝑒−𝑀3

𝑒−𝑀1 + 𝑒−𝑀2 + 𝑒−𝑀3 + 𝑒−𝑀4
 

 

Note: The exponential function 𝑒−𝑀𝑖 represents the likelihood that a given path 𝑖 is the 

correct path due to the fact that 𝑀𝑖 ∈ [0, ∞[. Thus, the smaller the metric, the more likely it is 

that the path is the correct one.   

 

Therefore,  

𝐿𝐿𝑅 = ln (

𝑒−𝑀2 + 𝑒−𝑀4

𝑒−𝑀1 + 𝑒−𝑀2 + 𝑒−𝑀3 + 𝑒−𝑀4

𝑒−𝑀1 + 𝑒−𝑀3

𝑒−𝑀1 + 𝑒−𝑀2 + 𝑒−𝑀3 + 𝑒−𝑀4

) 

 

𝐿𝐿𝑅 = ln (
𝑒−𝑀2 + 𝑒−𝑀4

𝑒−𝑀1 + 𝑒−𝑀3
) 

 

Considering the following approximation:  
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𝑒−𝐴 + 𝑒−𝐵 ≈ 𝑒−min (𝐴,𝐵) 

 

Finally, the soft output LLR value is calculated as: 

 

𝐿𝐿𝑅 = ln(𝑒min(𝑀1,𝑀3)−min (𝑀2,𝑀4)) 

 

⇒ 𝐿𝐿𝑅 = min(𝑀1, 𝑀3) − min (𝑀2, 𝑀4) 
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WORK PERFORMED 

The work I carried out throughout this project was focused on applying the theoretical 

concepts discussed earlier to design a Viterbi Equalizer from scratch. In this process, I adopted 

a two-stage approach. 

In the first stage, I used MATLAB to simulate the Viterbi Equalizer. Since processing 

resources are not a primary concern in this environment, I was able to run extensive simulations, 

adjusting various parameters and fine-tuning the details of the algorithm. This allowed me to 

thoroughly analyze the performance of the equalizer and identify the most optimal model based 

on different criteria such as error rates and computational efficiency. 

Once the optimal parameters were determined through MATLAB simulations, I 

proceeded to the second stage, where the focus shifted to designing the Viterbi Equalizer at the 

hardware level. For this, I developed the model using RTL (Register Transfer Level) design, 

specifically utilizing System Verilog as the hardware description language (HDL). This phase 

of the project involved translating the algorithm into a hardware-implementable form, ensuring 

that the design was resource-efficient, particularly in terms of area, which translates to fewer 

gates used and, consequently, lower power consumption. 

 

MATLAB Implementation  

The first step of the project was to familiarize myself with the complete workflow of 

digital wireless communications, encompassing both the transmitter side (encoding and 

modulation of the message) and the receiver side (demodulation and decoding of the received 

signal). With this in mind, I began by studying a simpler modulation scheme, such as BPSK, 

and utilized MATLAB's predefined functions to encode and decode convolutional codes. After 
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developing a solid understanding of these concepts, I progressed to GFSK modulation and 

implemented the Viterbi algorithm from scratch. 

 

The most complex part of the Viterbi algorithm is clearly the accumulation of path 

metrics in a feedback process, where decisions are made based on the best path metrics, as 

explained in Section (2.3.). One essential aspect to consider is that, for n received bits, the ideal 

Viterbi algorithm would need to move n steps forward to accumulate the metrics and then n 

steps backward to trace the best path. While this would not be an issue for a small n, in reality, 

n is typically very large, and the resources required to process the entire trellis forward and 

backward would be extremely high. 

 

However, by paying attention to the nature of the algorithm, we realize that it does not 

matter if we start the traceback from a correct or incorrect path; eventually, all paths will 

converge to the correct one. This means that, instead of tracing back the entire trellis at once, 

we can trace it in smaller segments, progressing through the trellis incrementally until the 

process is complete 

 

Extensive simulations were conducted by me using 10 million random bits transmitted 

through the channel, and the bit error rate (BER) was calculated after the Viterbi algorithm was 

applied, both for the ideal case where the entire trellis is processed and for the optimized case 

where smaller segments are traced back and processed in sequence. A depth of 7 was chosen 

as a neutral value for the depth of the smaller segments to trace back. The results in both cases 

were nearly identical, demonstrating that the optimized approach is more resource-efficient 

while achieving the same performance as the ideal case. 
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Additionally, I ran simulations where, instead of transmitting 10 million bits 

consecutively, I transmitted 1000 blocks of 10 000 bits each, simulating the frames that will be 

used in the final hardware design. Again, the results were unchanged, confirming the robustness 

of the optimized approach. 

Traceback Depth Analysis  

 

Figure 12: BER curves in function of the traceback depth 
 

 

The concept of Traceback Depth refers to how many steps backward the Viterbi 

algorithm must go in the trellis to find the most likely sequence of transmitted bits. As 

mentioned in Section (3.1.), instead of traversing the entire trellis from start to finish, we can 

optimize the process by performing the traceback in smaller segments, reducing the 

computational burden without sacrificing performance. 
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While using a fixed window for traceback over the entire trellis is a solid strategy, there 

is still room for further optimization. Specifically, we can fine-tune the depth of the traceback 

window to balance between performance and resource efficiency. To explore this, I conducted 

simulations with varying traceback depths, the results of which are shown in Figure 12. 

 

In Figure 12, we observe the Bit Error Rate (BER) results for different traceback depths. 

Additionally, the figure includes the BER results using a standard GFSK demodulator for 

comparison. This allowed me to calculate the performance gain for each of the Viterbi Equalizer 

models with different traceback depths, relative to the performance of the original GFSK 

demodulator, at the sensitivity performance level of 0.001, which is our limit target as explained 

in Section (2.1.). 

 

The table below summarizes the performance gain for each model: 

 

Table 1: Viterbi Equalizer gain relative to Standard GFSK Demodulator 

Traceback Depth GAIN [dB] 

1 2.75 

2 2.93 

3 3.43 

4 3.59 

5 3.60 

6 3.61 

7 3.62 

 

Based on these results, I proposed using a traceback depth of 4, as this value maximizes 

the performance gain. Choosing a higher traceback depth would lead to diminishing returns in 

terms of performance improvement, making the additional resources required unjustifiable. 
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Conversely, selecting a traceback depth lower than 4 would significantly reduce the gain 

achieved by the design. 

HDL implementation and validation  

Based on the analyses conducted so far using the MATLAB approach, the focus now 

shifts to implementing the Viterbi Equalizer at the hardware level. For this purpose, as 

previously mentioned, I used System Verilog as the hardware description language (HDL). The 

design of the proposed Viterbi Equalizer block is shown below in Figure 13. 

 

 

Figure 13: Top module diagram – Viterbi Equalizer 

 

 

The design I propose consists of three main submodules: 

1) Submodule 'EuclideanDist': 

This block computes the branch metrics using the Euclidean distance as the 

criterion. Specifically, it calculates the absolute difference between the received 

phase difference, found in the signal 'phasediff,' and the six expected phase 

difference levels. It is important to note that the other input signals, 'vitph1,' 'vitph2,' 
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and 'vitph3,' are the static values of the three levels of the expected positive phase 

differences. Due to symmetry, these values also determine the three levels of the 

expected negative phase differences. The combinational logic performed by this 

block can be described as follows, with operations involving absolute value 

differences: 

Eucl1 = |−𝜙1 − phasediff | 

Eucl2 = |−𝜙2 − phasediff | 

Eucl3 = |−𝜙3 − phasediff | 

Eucl4 = |   𝜙3 − phasediff | 

Eucl5 = |   𝜙2 − phasediff | 

Eucl6 = |   𝜙1 − phasediff | 

These operations are used to compare the received and expected phase differences, 

computing the Euclidean distance for each branch. 

 

2) Submodule 'MetricsNodes': 

This is the most complex block, responsible for handling the metrics and making 

decisions. It consists of two internal subprocesses, visualized in Figure 14. The first 

subprocess involves accumulating the branch metrics across the trellis. The metrics 

of the respective branches converging at each node are added to the accumulated 

metrics of the corresponding previous nodes. Each node then retains the path with 

the lowest metric, discarding the others.  

The four metrics corresponding to the four nodes of the trellis at time 𝒕 are sent to 

another block that calculates the Log-Likelihood Ratio (LLR), as discussed in 

Section (2.3.2.), and identifies which node has the lowest metric. This information 
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is used in the next subprocess. Additionally, the value of this lowest metric is 

subtracted from all the node metrics, preventing metric overflow or saturation in 

subsequent cycles. 

The second subprocess involves storing the paths with the lowest metrics in a 

register array based on the determined traceback depth. This stored path information 

is then fed back through the system as the traceback window advances through the 

trellis, ensuring that only the best paths are considered. 

 

 

 

Figure 14: Submodule ‘MetricsNodes’ diagram  
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3) Submodule 'Traceback': 

This block is compact, simple, and purely combinational. It uses four multiplexers 

to perform each traceback step with a depth of four. Additionally, a final multiplexer 

is used to decode whether the bit is a '0' or '1'. The internal diagram of this block is 

shown below in Figure 15.  

 

 

Figure 15: Submodule “Traceback” diagram 

 

 

This modular design allows the Viterbi Equalizer to efficiently process the received 

signals while simplifying the algorithhm flow and avoiding metric overflow. After 

HDL model was done, I synthesized it and implemented the system on an FPGA to 

validate the hardware performance, ensuring that the design operates as expected 

under realistic conditions. 
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For uncoded frames, I used the standard mode of the Viterbi Equalizer with hard 

output, obtaining a 3.57 dB gain in sensitivity performance at the BER target, 

compared to the BER results of the original GFSK demodulator. On the other hand, 

for coded frames, I used the SOVA mode of the Viterbi Equalizer and achieved a 

BER of 0.001 at 11.61 dB of SNR. Both results from the hardware implementation 

align well with the MATLAB model, demonstrating consistency between the two 

approaches. For hard outputs, the expected gain from the MATLAB simulations was 

3.59 dB, as discussed in Section (3.2.), which is very close to the observed gain of 

3.57 dB in the FPGA implementation. Similarly, for soft outputs, the ideal SOVA 

function in the MATLAB model, which utilized full computational resources, 

indicated that achieving a BER of 0.001 required 11.59 dB of SNR. This result was 

also closely matched in the hardware implementation, with 11.61 dB needed to reach 

the same BER. 

This consistency between the results of the implemented hardware model on FPGA 

and the results of the MATLAB model validates the accuracy and coherence of both 

Viterbi Equalizer designs.  

 

Design Optimization 

So far, the results obtained have been very promising, and there is consistency between 

the MATLAB model and the HDL model, meaning that the design is almost ready for 

deployment. However, I decided to take the design a step further by optimizing it, focusing on 

signal resolution as well as the parametrization and dependency of all internal signals based on 

the input signals. 
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One key strategy I used for optimization is signal quantization. Quantization refers to 

the process of reducing the resolution or bit length of signals, typically to minimize resource 

usage or to improve processing efficiency, while still maintaining acceptable performance 

(Duc, 2004). I chose this approach because by reducing the bit lengths of specific signals in the 

Viterbi Equalizer, I could significantly optimize resource usage without compromising the 

overall accuracy of the system. 

To achieve this, I first needed to analyze the relationships between the signals in the 

design. By observing the diagram in Figure 13, we can categorize the signals that can either be 

quantized or have their bit length reduced into three distinct groups: 

 

1) Signals at the input 

2) Signals related to the Euclidean Distance 

3) Signals within the ‘MetricsNodes’ block 

 

The required bit lengths for the signals in Group (3) are directly dependent on the 

normalized bit length of the signals in Group (2). However, since the signals in Group (2) must 

also be quantized and depend only on simple combinational logic derived from the signals in 

Group (1), the best approach for optimization is to focus on quantizing the signals in Group (1), 

the input signals. After doing so, the bit lengths of the signals in Group 2 should be minimized 

to the required amount without causing performance degradation. 

In this context, and considering the RTL implementation where the Viterbi Equalizer 

block will be used, the input signals have a bit length of 11 bits. The critical question then 

became: how many Least Significant Bits (LSBs) can be removed from the input signals during 
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quantization to strike the right balance between reducing the number of bits and maintaining a 

bit error rate (BER) that meets performance expectations? 

To address this, the best strategy was to ensure that the bit length of all internal signals 

is a function of the input signal length. Therefore, I proceeded to conduct an initial analysis in 

MATLAB, where I simulated the system using 5 million bits while varying the input signal 

lengths. Based on these results, I selected the optimal bit lengths for modifying the HDL model. 

Afterward, I synthesized and implemented the optimized design on an FPGA to validate 

the hardware. This allowed me to confirm that the design maintained its performance even with 

the reduced bit lengths, leading to a more efficient implementation in terms of resource usage. 
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RESULTS 

The results presented below are based on the necessary parameters to optimize my 

design for the specific context in which it will be used—demodulating coded frames within the 

Bluetooth Classic (BTC) block. In this case, the SOVA mode is required, as it exhibits high 

sensitivity to changes in the resolution of the input signals. Therefore, it is crucial to study the 

impact of changing the input signal resolution on the soft outputs, which carry the bit reliability 

information and are passed to other blocks and processes within the digital communication flow 

of BTC. 

The hard output mode is not directly affected by changes in resolution, as it relies solely 

on comparing metrics and making binary decisions. In contrast, the soft output mode depends 

entirely on the value of the metrics and their sequential relationships, making it much more 

sensitive to the precision of the input signals. 

In Figure 16, the results of MATLAB simulations for SOVA are shown, considering the 

quantization of the input signal resolution. The original input signals had a resolution of 11 bits. 

 

Figure 16: MATLAB SOVA results changing input signals resolution 
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The importance of Figure 16 lies in the evidence it provides about which resolutions are 

most favorable for hardware implementation. In this case, it is clear that input signals with 8-

bit and 7-bit resolutions are the most promising, as they allow a reduction in hardware resource 

usage without significantly compromising performance. 

Once the most promising resolutions were identified, I proceeded to modify my 

hardware design based on the MATLAB simulation results. These designs were synthesized 

and implemented on an FPGA, and the results are shown in Figure 17. 

 

Figure 17: FPGA implementation results for different optimized SOVAs 
 

 

Figure 17 is critical for making the final design decision. It demonstrates the gain 

obtained for both my unoptimized resolution design and the 8-bit and 7-bit resolution designs, 

compared to the results from the communication process without using the Viterbi Equalizer 

within the BTC block (This would imply connecting the soft inputs of the noisy phase 

differences directly to the next soft input decoding phase). It is also important to recall what 
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was discussed at the end of Section (3.3.): using an ideal SOVA process in MATLAB with full 

computational resources, it was concluded that to achieve a BER of 0.001, an SNR of 11.59 dB 

is required. This represents the theoretical performance limit for any optimized design. 

 

The gain results are summarized in Table 2 below. 

Table 2: Viterbi Equalizer gain relative to not using any demodulator 

Design GAIN [dB] 

Ideal MATLAB Viterbi Equalizer without 
optimization  

0.64 

Viterbi Equalizer  
11-bit input signals resolution 

0.62 

Viterbi Equalizer  
8-bit input signals resolution 

0.61 

Viterbi Equalizer  
7-bit input signals resolution 

0.57 

 

 

The analysis of Table 2 reveals two critical points. First, the version of the Viterbi 

Equalizer that does not have optimized input signal resolution performs similarly to the 

maximum performance that can be achieved, with a gain difference of only 0.02 dB, which is 

negligible under real-world conditions. Second, the results for the 8-bit and 7-bit resolution 

versions are also promising. If we prioritize resource usage over gain, the 7-bit version is the 

best option. However, if we prioritize gain over resource usage, the 8-bit version is clearly the 

most favorable. 

 

As the designer of this block, I proposed prioritizing gain, evaluating the resource trade-

off, and to provide further insight into the decision, I also performed ASIC synthesis (which 

will lead the final decision) to complement the FPGA synthesis results. 

 



52 
 

 

Table 3: FPGA Synthesis Results 

FPGA Hardware Resources LUT FF 

Original Viterbi Equalizer 

11-bit input signals resolution 
1120 342 

New Viterbi Equalizer  

11-bit input signals resolution 
539 168 

New Viterbi Equalizer  

8-bit input signals resolution 
417 137 

New Viterbi Equalizer  

7-bit input signals resolution 
410 122 

 

 

Tables 3 and 4 summarize the synthesis results in terms of resources and area for both 

FPGA and ASIC implementations. Additionally, the results of the original Viterbi Equalizer 

that was targeted for replacement as part of my internship project are included for a more 

comprehensive comparison and reflection within the context. 

 

Table 4: ASIC Synthesis Results 

ASIC Synthesis  Area [µm²] Gates 

Original Viterbi Equalizer 

11-bit input signals resolution 
1938 7100 

New Viterbi Equalizer  

11-bit input signals resolution 
1043 3821 

New Viterbi Equalizer  

8-bit input signals resolution 
780 2857 

New Viterbi Equalizer  

7-bit input signals resolution 
688 2520 
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The results are highly favorable. First of all, the original design uses an area of 1938 

µm², while my initial design uses only 1043 µm². This represents a 46.17% reduction in area, 

which is a substantial improvement. Reducing area is critical in ASIC designs as it directly 

impacts the cost of fabrication, power consumption, and the scalability of the design. However, 

we can go even further. The difference between the 8-bit and 7-bit designs in terms of area is 

still acceptable and affordable for the performance, and therefore, my proposal to use the 8-bit 

version for the input signal resolution is the most promising, as it further reduces the area by an 

additional 25% while maintaining a 0.61 dB gain compared to not using any demodulator. 
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CONCLUSIONS 

The development of a fully functional Viterbi Equalizer for Bluetooth Classic 

applications represents a significant achievement. Starting from a theoretical foundation, I 

successfully designed and implemented a robust solution for improving coded frame 

demodulation within the Bluetooth Classic (BTC) block. The equalizer was developed from 

scratch, leveraging a deep understanding of both signal processing and hardware 

implementation. 

The design process was grounded in a thorough review of the Viterbi Algorithm and its 

application to GFSK demodulation. Extensive MATLAB simulations provided critical insights 

into the performance of various configurations, while code debugging and iterative adjustments 

ensured that the final design was optimal within the given performance and resource 

constraints. 

Through traceback depth analysis, I determined that a traceback depth of 4 provides the 

best balance between performance and resource efficiency. Furthermore, I optimized the design 

by quantizing the input signals, reducing the resolution from 11 bits to 8 bits. This quantization 

led to a significant reduction in the overall area and resource usage, making the design more 

practical for hardware implementation while maintaining performance within acceptable limits. 

The final design was implemented in System Verilog and tested on FPGA, 

demonstrating a 3.59 dB gain in sensitivity performance at the BER target compared to the 

results of the original standard GFSK demodulator for hard outputs in non-coded frames. For 

soft outputs in coded frames, a gain between 0.61 dB and 0.62 dB was achieved compared to 

not using any demodulator. Additionally, my proposed design uses 46.17% less area than the 

original Viterbi Equalizer, which represents a significant improvement. Reducing area is crucial 

in ASIC designs, as it directly impacts fabrication costs, power consumption, and the overall 
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scalability of the system. Moreover, this optimization can be taken further with my proposal to 

use the 8-bit version for the input signal resolution, which reduces the area by an additional 

25% while maintaining a 0.61 dB gain, making it the most promising balance between 

performance and resource efficiency. 

Furthermore, one of the key strengths of my design lies in its parametrization and 

generalization, making it versatile and adaptable for other wireless communication standards 

that employ 2GFSK modulation. This flexibility allows for future applications beyond 

Bluetooth Classic, potentially benefiting a wide range of communication systems. 

Throughout this internship, I enhanced my skills in signal processing, code abstraction, 

hardware design, and project management, working extensively with tools like Git, System 

Verilog, MATLAB, Questa Simulator, and Perforce version control. I also improved my time 

management, problem-solving, and creativity, gaining valuable experience in a professional 

and technical environment, as well as fluency in French. 

In conclusion, the Viterbi Equalizer developed during this internship not only meets the 

performance requirements for the Bluetooth Classic BTC block but also introduces substantial 

resource savings, paving the way for more efficient designs in future wireless communication 

systems. 
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