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RESUMEN

Este trabajo presenta un estudio sobre redes neuronales biol6gicamente inspiradas para el
reconocimiento dindmico de patrones visuales, tomando como referencia los modelos desa-
rrollados por Stephen Grossberg. Se analiza en detalle la arquitectura de la Red de Grossberg,
que combina mecanismos de memoria a corto y largo plazo, normalizacion de sefiales y realce
de contraste, inspirados en el funcionamiento del sistema visual humano. A continuacién, se
introduce la Teoria de Resonancia Adaptativa (ART) como una solucién al problema de esta-
bilidad en el aprendizaje incremental continuo. ART incorpora un mecanismo de expectativas
basado en el sistema olfativo. Finalmente, se implementa y evalda el simplificado modelo
ART-1, mostrando su rendimiento en tareas de clasificacion sobre el conjunto MNIST, asi como
estrategias adicionales para mitigar problemas de sobresegmentacion y mejorar su aplicabilidad

en dominios complejos.

Palabras clave: Redes Neuronales Recurrentes, Modelo de Shunting, Red de Grossberg, Adapti-
ve Resonance Theory, Sistema Visual, Sistema Olfativo Conjuntos, Reconocimiento Dindmico

de Patrones.



ABSTRACT

This work presents a study on biologically inspired neural networks for the dynamic recognition
of visual patterns, using the models developed by Stephen Grossberg as a reference. It provides
a detailed analysis of the Grossberg Network architecture, which integrates short- and long-
term memory mechanisms, signal normalization, and contrast enhancement, all inspired by
the functioning of the human visual system. Subsequently, the Adaptive Resonance Theory
(ART) is introduced as a solution to the stability problem inherent in continuous incremental
learning. ART incorporates an expectation mechanism based on the olfactory system. Finally,
the simplified ART-1 model is implemented and evaluated, demonstrating its performance
on classification tasks using the MNIST dataset, along with additional strategies to mitigate

over-segmentation issues and enhance its applicability to complex domains.

Keywords: Recurrent Neural Networks, Shunting Model, Grossberg Network, Adaptive Reso-

nance Theory, Visual System, Olfactory System, Dynamic Pattern Recognition.
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[
CAPITULO

INTRODUCCION

La Red de Grossberg es un tipo de red neuronal recurrente inspirada en procesos cognitivos
humanos introducida por Stephen Grossberg en 1976 [3]]. Su trabajo fue pionero en la integracién
de neurociencia y aprendizaje automatizado, estableciendo un puente entre las ciencias cognitivas
y los modelos computacionales. Grossberg sent6 las bases tedricas para el desarrollo de modelos
que imitan el funcionamiento del cerebro humano, mucho antes de la aparicion del deep learning

actual.

El objetivo de la Red de Grossberg es replicar las propiedades experimentales observadas en
el sistema visual humano, especialmente su extraordinaria capacidad de adaptacioén y reconoci-
miento frente a estimulos variados y dindmicos. Su primer modelo formal [4] describe una red
bicapa recurrente con capacidad de “recodificacion universal”, es decir, capaz de recodificar un
conjunto arbitrariamente grande y variado de patrones. Este logro constituye un avance teérico
significativo, al demostrar que la red posee una plasticidad lo suficientemente amplia como para
manejar patrones altamente diversos y llevar a cabo recodificaciones no triviales, posiciondndose
como un modelo de referencia en el estudio de redes neuronales que imitan el funcionamiento

del cerebro humano.

Sin embargo, el modelo es inestable. Si a lo largo del tiempo un nimero arbitrario de patrones
perturban un conjunto fijo de neuronas, los clisters formados nunca logran estabilizarse. En otras
palabras, el sistema no puede incorporar nueva informacién sin comprometer lo previamente
aprendido. De esta problemdtica surge ART (del inglés Adaptive Resonance Theory), un segundo
modelo [5] inspirado en el sistema olfativo humano, que utiliza un mecanismo de “resonancia”

para moderar y estabilizar la clasificacion frente a un flujo constante de informacion.



1.1. Motivacion Bioldgica
La base de la Red de Grossberg estd fuertemente inspirada en el sistema visual humano,
compuesto por cdrnea, retina, nervio éptico y corteza visual, encargados de procesar la luz que

ingresa al ojo para transformarla en una imagen que el cerebro pueda interpretar [1]].

Una evidencia de este sofisticado procesamiento visual se encuentra en la propia retina.
Aunque esta estructura estd casi completamente cubierta por conos y bastones —fotorreceptores
encargados de captar luz y color—, presenta varios puntos ciegos, como el disco optico y las

venas retinianas (Figura[I.T)).

Vein

Figura 1.1: Puntos ciegos en la retina. Imagen tomada de .

Si tenemos puntos ciegos, /por qué entonces nuestra vision no estd llena de ellos? La
respuesta es que nuestro sistema visual procesa la informacién de manera que compensa las
distorsiones y completa las regiones faltantes de la imagen. Este fendmeno se conoce como
“segmentacién emergente” y “relleno de caracteristicas” (feature filling-in) [6]], y es responsable

de ilusiones Opticas como las que se muestran en la Figura[1.2]

La Red de Grossberg busca también replicar el procesamiento visual del brillo. Los seres
humanos percibimos el brillo de un objeto siempre estable, aun cuando este varia por cambios
globales de luminosidad. Este fenémeno, conocido como “constancia de brillo” [I]], nos permite
identificar objetos de forma consistente en diferentes contextos de iluminacion. Esto sugiere la

existencia de un proceso de ‘“normalizacion de intensidad luminosa” en la corteza visual.
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Figura 1.2: Tridngulo y circulo ilusorios debido a los procesos del sistema visual. Imagen tomada de .
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Ademas, el sistema visual evalda el brillo de manera comparativa, considerando los gra-
dientes respecto al entorno inmediato. Este fendmeno, denominado “contraste de brillo”, es
fundamental para la deteccién de bordes y formas, por lo que el cerebro estd disefiado para

identificar y realzar estas diferencias locales [3]].

Figura 1.3: Tlusidn del vestido azul y negro o blanco y dorado. Imagen tomada de .

Sin embargo, este tipo de procesamiento también puede dar lugar a errores perceptivos. Un
ejemplo ampliamente conocido es el del denominado “vestido azul y negro o blanco y dorado”
(Figura[L.3). En este caso, la ausencia de informacién clara sobre las condiciones de iluminacién
en la imagen genera interpretaciones divergentes: algunas personas asumen que el vestido se
encuentra en sombra, percibiéndolo como blanco y dorado, mientras que otras lo interpretan

como expuesto a luz directa, percibiéndolo como azul y negro.



1.2. Redes Neuronales Recurrentes

Una red neuronal recurrente (RNN, por sus siglas en inglés) es un tipo de red con retroali-
mentacion, lo que significa que los datos de salida se reintroducen como datos de entrada en la
red. Por ejemplo, sea n(t) el vector de activacion neuronal en el tiempo ¢, W la matriz de pesos
sindpticos y b el vector de sesgos o bias; entonces, en el tiempo ¢t + 1, la activacién de la red

recurrente discreta se expresa como [1]]:
n(t+1) =W -n(t) +b. (1.1)

Esto permite que la red incorpore el factor temporal en su dindmica de procesamiento, emulando
asi caracteristicas fundamentales de los procesos cognitivos bioldgicos, como la adaptacion,
la memoria y el aprendizaje. Sin embargo, en muchas aplicaciones no es suficiente conservar
unicamente el valor més reciente: se requiere una acumulacién progresiva de informacién a lo
largo del tiempo. Para lograrlo, se reemplaza el mecanismo de step-delay por una integral

que actua sobre todas las entradas previas p(t), conformando asi una memoria extendida.

n(t) = n(0) + /Otp(T)dT. (1.2)

No obstante, Grossberg no plantea una acumulacién ilimitada de informacién que pueda saturar
las neuronas. La memoria de corto plazo (STM, por sus siglas en inglés) en su modelo es
transitoria y decae gradualmente con el tiempo, permitiendo asi el procesamiento continuo
de nuevos estimulos. Para lograrlo, se emplea una integral con fuga o leaky integrator, que

incorpora explicitamente un mecanismo de “olvido” [7]:

1

t
n(t) = e *n(0) + E/ e~ 1/Ep(1)dr. (1.3)
0

Esta formulacién incluye dos componentes: el primero representa el decaimiento u olvido de la
respuesta inicial n(0), mientras que el segundo es una convolucién entre el estimulo de entrada
p(t) y una funcién de decaimiento exponencial. El factor ¢ controla el grado de retencion de

informacion.



2 v.S T T T T T
n(0)=1 Nueva entrada p=2 J
2.0r 1 Olvido de n(0):
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0.5L

Figura 1.4: Leaky integrator n(0) = 1, estimulo constante p = 2 y distintas velocidades de decaimiento ¢.

En la Figura se ilustra un escenario donde una condicién inicial de n(0) = 1 es pro-
gresivamente olvidada a favor de una nueva entrada constante p = 2, evaluada bajo distintas
velocidades de decaimiento <. El integrador con fuga descrito en (1.3]) es solucién de la ecuacién

diferencial:
dn(t)

Tt

= —n(t) + p(t), (14)

que describe la dindmica de respuesta de una neurona que integra una entrada p(¢) mientras su
activacion decae en el tiempo a un ritmo determinado por . Esta ecuacion constituye el niicleo

del modelo neuronal més fundamental en la Red de Grossberg: el modelo de Shunting.

1.3. El Modelo de Shunting

El modelo de Shunting es el modelo no lineal que constituye la base fundamental sobre la

cual se sostienen los tres mecanismos esenciales en la Red de Grossberg:

a) retencion de memoria a corto plazo STM,
b) normalizacion de la actividad total de la red y

c) realce del contraste entre los patrones de entrada,

todos ellos inspirados por sistema visual humano [3,4]].



A diferencia del leaky integrator (1.3), el modelo Shunting no solo incorpora el mecanismo
STM, sino que ademas utiliza la recurrencia de la red para normalizar las entradas sin perder
la informacion relativa o contraste entre ellas. De hecho, este modelo no solo conserva el
contraste, sino que puede realzarlo activamente [3]]. Este comportamiento se logra mediante

una comparacién dindmica entre entradas diferenciadas como excitatorias p*(¢) e inhibitorias

p(1):
5dlcll§t) =-n(t)+ (b" —n(t)) p" — (n(t)+b")p~. (1.5)

El modelo incorpora ademads términos de sesgo (bias) b y b™, los cuales cumplen un papel
central en la normalizacion de la respuesta, al establecer los limites maximos y minimos dentro
de los cuales la activacion neuronal puede oscilar. Estos valores también pueden ajustarse
dindmicamente para permitir que el sistema capture y procese amplitudes altamente variables en

la senal recibida.

Este trabajo se organiza de la siguiente manera: el capitulo [2 presenta la arquitectura de la
Red de Grossberg, incluyendo sus capas funcionales y la regla de aprendizaje. El capitulo [3]
introduce la Teoria de Resonancia Adaptativa o ART, detallando la estructura que estabiliza el
modelo, el subsistema de orientacion y los mecanismos de expectativa y memoria. El capitulo ]
describe los experimentos realizados, comenzando con la aplicacion del algoritmo ART-1 en
datos artificiales y continuando con los resultados obtenidos en el conjunto MNIST, donde se
abordan aspectos como los testores tipicos, el problema del sesgo inicial y las estrategias de

inicializacion supervisada. Finalmente, se presentan las conclusiones del trabajo.
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[
CAPITULO

RED DE GROSSBERG

La Red de Grossberg estéa construida a partir de procesos complementarios de memoria a
corto y largo plazo, los cuales permiten al sistema adaptarse dindmicamente a los estimulos
cambiantes del entorno. Ademds, esta red incorpora mecanismos fundamentales de segmentacion,
normalizacion y realce de contraste, todos ellos inspirados biolégicamente y formalizados a

través de modelos de Shunting [4]].

La arquitectura general de la Red de Grossberg se organiza en dos capas neuronales: Layer 1
(L1), que representa la retina, y Layer 2 (L2), que modela la corteza visual junto con los procesos
de memoria (STM). Estas capas estdn interconectadas mediante una matriz de pesos adaptativos,

que corresponde a la memoria a largo plazo (LTM), como se ilustra en la Figura[2.1]

Layer 1 Layer 2

fRetina) {Visual Cortex)

Input

STM

(O000QO0)
(O0O000)

Normalization Contrast
Enhancement

Figura 2.1: Arquitectura de Red de Grossberg. Imagen tomada de [ 1.

Este disefio dota a la red de plasticidad, permitiéndole adaptarse dindmicamente a las

demandas del entorno sin perder la coherencia de los patrones previamente aprendidos.



2.1. Layer 1: Retina

La primera capa es un modelo de Shunting que recibe la sefal externa y normaliza sus
componentes sin perder el contraste relativo entre ellos. Este mecanismo de normalizacién
remite al modo en que nuestra retina procesa las intensidades relativas de la luz en entornos
cambiantes, ajustando la percepcion para mantener coherencia visual. La ecuacion que describe

el funcionamiento de esta capa es [ 1]]:

adn;t(t) — —n'(t) + (b —=n'(t)) [fW'] p — (n'(t) + b') [W'] p. o1

El contraste dindmico se implementa mediante el método On-Center, Off-Surround, en el cual
la entrada excitatoria de la neurona 7 se localiza en la posicion ¢ (centro), mientras que las
posiciones circundantes ejercen una influencia inhibidora sobre ella. Este mecanismo se modela
matemdticamente a través de matrices que simulan el comportamiento de las células ganglionares

en la retina [3]]:

10 0 0 1 1
01 -~ 0 10 1

TW! = . W= (2.2)
0 0 1 11 0

El pardmetro ¢ determina la rapidez de respuesta del sistema, y se elige de forma que la activacién

neuronal se estabilice antes de que ocurran cambios en los pesos adaptativos del modelo.

1.0 1.0
0.8} mt 0.8} m(0)
0.6F
= 2
0.4F p_i 8/
— m@®
0.2}
N A
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

(a) Normalizacion de leaky integrator (b) Normalizacion de Shunting model



Considérese la normalizacién Tb = 1 aplicada a una entrada p = [2, 8], procesada por dos
neuronas n; y ny, como se muestra en la Figura (a) para el modelo de leaky integrator y en la
Figura (b) para el modelo de Shunting. Mientras en (a) el proceso de normalizacién pierde el

contraste original entre los valores 2 y 8, en (b) la diferencia relativa entre ellos se preserva.

2.2. Layer 2: Corteza Visual y STM

La segunda capa recibe el output a' de la primera capa L1, el cual viene multiplicado por
los pesos sindpticos W de LTM. La capa L2 también se modela mediante un esquema de tipo
Shunting. Sin embargo, a diferencia de la capa anterior, la funcién que cumple es el realce de

contraste y memoria STM de la corteza visual [3]].

Las neuronas en esta capa representan a los clisters o clases, y compiten entre si mediante el
modelo de Shunting. Esta competencia da lugar a un mecanismo de seleccidn, en el que la clase
ganadora se almacena temporalmente en el sistema, funcionando como una memoria a corto

plazo STM. La ecuacién que describe el funcionamiento de esta capa es [1]]:

dn;(t) = n2(t) + (+b2 _ nQ(t)) {[J“WQ} £2 (n2(t)) i WQal}
t (2.3)
~ (n?() + B%) W £ (n2(0))

El realce de contraste y la competencia entre neuronas estdn también mediados por el método
On-Center, Off-Surround y por una funcién de activacion f. El tipo de funcién elegida determina
el comportamiento del sistema: una funcién f lineal permite almacenar cualquier patrén con
fidelidad, pero también amplifica el ruido; una funcién sublineal, en cambio, tiende a amplificar
unicamente el ruido y reduce el contraste; una funcidn supralineal genera un efecto de winner-
take-all, favoreciendo que una sola clase domine; finalmente, una funcién sigmoide logra
equilibrar estos aspectos, ya que suprime el ruido, mejora el contraste y evita una cuantizacion

extrema [|1]].

Para ilustrar el funcionamiento del sistema, la Figura[2.2)muestra la respuesta de dos neuronas



STM

2. T n
(W) a n(1)

0.75

2.7 1
(]“’)a

0.5
Realce de
contraste

0.25]

— 2
[/ T my(D)

Figura 2.2: Competencia de dos neuronas en L2. Imagen adaptada de [1]].

ante entradas de 0.54 y 0.81, respectivamente. Se observa que el contraste entre ambos valores
se incrementa, evidenciando el efecto de realce generado por la competencia neuronal. Ademas,
el patrén de activacion resultante se mantiene incluso después de retirar los estimulos de entrada,
lo que demuestra la capacidad del modelo para retener informacién de manera transitoria,

funcionando como una memoria a corto plazo (STM).

2.3. Pesos adaptativos: LTM

Finalmente, respecto a los pesos sindpticos, Grossberg se refiere a ellos como pesos adaptati-
vos 0 memoria a largo plazo LTM (del inglés Long Term Memory), ya que las filas de la matriz
W representan los patrones almacenados que la red es capaz de reconocer. La ley de aprendizaje
utilizada es una version de la regla de Hebb con decaimiento [/1]):

d[;W?(t)]

a {= W] +ni(t)n'(®)} . (2.4)

El primer término es el de decaimiento y evita la saturacion de LTM. El segundo es un término
de aprendizaje asociativo, basado en el principio de Hebb: “las neuronas que se activan juntas,

se conectan juntas’.



Sin embargo, una limitacién de la regla de Hebb con decaimiento es que requiere de estimulos
constantes; de lo contrario, las asociaciones previamente formadas tienden a desaparecer. En
una formulacién alternativa conocida como Instar Learning Rule el peso decae unicamente
cuando su neurona ha sido activada. Este enfoque evita penalizar conexiones inactivas n; = 0,
concentrando el ajuste sindptico en aquellas neuronas que realmente participan en la codificacion
del estimulo.

dLWTE)) [1‘2;2(t)] = a-nj(t) {- [W?(®)] +n'(t)} 25

De esta forma, la arquitectura de la Red de Grossberg, con la base dindmica del modelo de
Shunting, logra capturar las propiedades experimentales observadas en el sistema visal humano:
plasiticidad (recodificacion universal), feature fill-in, STM, LTM, normalizacién y realce de
contraste. Sin embargo, Grossberg se dio cuenta que su red tiene un problema de estabilidad en

la formacion de clusters debido a esa gran plasticidad.

Grossberg demostré [S]] que, si el nimero de patrones de entrada no es demasiado grande o si
dichos patrones no forman demasiados clusteres en relacion con el niimero de neuronas en L2, el
aprendizaje eventualmente se estabiliza. Sin embargo, también mostr6 que las redes competitivas
estandar no presentan un aprendizaje estable cuando se enfrentan a flujos de patrones de entrada
arbitrarios. Este hallazgo lo llevé a implementar el mecanismo de resonancia adaptativa ART

(del inglés Adaptative Resonance Theory), disefiado para estabilizar la plasticidad de la red.
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[
CAPITULO

ADAPTATIVE RESONANCE THEORY

(Como puede un sistema ser receptivo a nuevos patrones y, al mismo tiempo, mantener
patrones previos? Sabemos que los sistemas biol6gicos son muy eficaces en esto. Por ejemplo,
podemos reconocer facilmente el rostro de nuestra madre, incluso si ha transcurrido mucho

tiempo y hemos conocido muchos rostros nuevos en el camino.

El sistema olfativo proporciona a Grossberg la motivacion perfecta para la modelo ART [5]].
En concreto, la interaccion entre el bulbo olfativo y la corteza olfativa. El elemento clave de
esta inspiracion es la capacidad de la corteza olfativa de formar patrones que retroalimentan al
bulbo como “expectativas”. Si el patrén olfativo que llega del bulbo coincide con la expectativa
de la corteza, la corteza acepta dicha activacion. De lo contrario, el patrén se extingue sin

desestabilizar el claster de olores. La arquitectura de una Red ART (Figura [3.1)) parte de la

Layer 1 Layer 2

* Gain Control
Input

1
ONONONON®

Reset

—»(O 0000

O

Orienting
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Figura 3.1: Arquitectura de Red ART. Imagen tomada de [1]].



Red de Grossberg como base. La principal diferencia es la implementacién del sistema de
expectativas para cada cluster, el cual determina cuando una nueva entrada es lo suficientemente

compatible como para modificar ese cluster.

3.1. Layer 1: Bulbo Olfativo

En la Red ART, la capa L1 ya no se encarga de normalizar las sefales de entrada; en este
modelo, dicha tarea es delegada a la regla de aprendizaje que ajusta los pesos W2, En su lugar,
L1 implementa un mecanismo de comparacion entre el patrén recibido (sefial externa p) y el
patrén esperado (experctativa del cldster ganador en L2 W?%1a?). La ecuacién se operacién

sigue también un modelo de Shunting [8]:

gdnl(t) = —n'(t) + (+b1 _ n1<t)) {p + W2:1a2(t)}

dt (3.1)
— (n'(t) + b)) [[W'] a(1),

donde la entrada excitatoria contiene ambos patrones a comparar p y W'2a2, La entrada

inhibitoria, por otro lado, es un término de control de ganancia con matriz =W

11 1

I 11 --- 1

wWi=| NE (3.2)
11 1

El propésito de este término es regular la activacion neuronal y, en la préctica, es la diferencia

entre un operador OR o AND en la comparacién entre p y Wt2a2,

Realizar un andlisis en estado estacionario (es decir, cuando ‘fi—’t‘ = 0) o en el régimen de
aprendizaje rdpido (¢ < 1) resulta particularmente util para comprender el funcionamiento
interno de los mecanismos que conforman una Red ART. Ademads, asumir inputs binarios

simplifica considerablemente las ecuaciones. El anélisis estacionario de la ecuacion |3.1| muestra



que [1]:

p. si a = 0 para todo j,
21 o 2 :
pN W37, siaj =1paraun j,

donde a;j el output de L1 corresponde a la operacién (p AND W?:l), y al ser vectores binarios
la norma ||a'|| funciona como un contador de coincidencias entre el patrén entrante y el patrén

esperado.

3.2. Layer 2: Corteza Olfativay STM

Por otro lado, la capa L2 en la Red ART es la misma que la capa L2 en la Red Grossberg.
Es decir, un modelo de Shunting con ecuacion [2.3| que promueve la competencia neuronal y

almacena la clase ganadora en la STM.

En el limite de aprendizaje rapido y para entradas binarias, al igual que ocurre en L1, el

funcionamiento de L2 se simplifica a una operaciéon de competencia bésica [[1]:
) 1, si ((,-WM)T al = mix [(W”)T a1]> .
a; = (3.3)
0, otro

Es decir, la neurona con mayor entrada en L2 gana, mientras que el resto de neuronas o clisters
quedan suprimidos, siguiendo un esquema de winner-take-all. Una vez seleccionada la neurona
o clister ganador en L2, este proyecta su patrén expectativa almacenado en W! de vuelta a L1,

donde se compara con el patron de entrada.

3.3. Susbsistema de Orientacion

Uno de los elementos clave de la arquitectura ART es el Subsistema de Orientacién a”. Su

proposito es determinar si existe o no una coincidencia suficiente entre el patron de expectativa



W?Fl, proyectado de L2 a L1 por el clister ganador 7, y su patrén de entrada p [/1]].

1, si||at|? p2<p]
o la*][” /llpll 3.4)

0, otro

donde a' = p N W3y [a'||* es el nimero de coincidencias entre patrones p y W3 mientras
|p||* normaliza la expresién. A partir de ello, se define un pardmetro de vigilancia p € [0, 1],
que controla el nivel de exigencia requerido para aceptar una coincidencia como vélida. Valores
altos de p implican una mayor rigurosidad, lo que se traduce en una clasificacion mas fina y una

mayor granularidad en la formacién de clisteres.

Por ejemplo, si ||al]|* /||p||2 < p, no hubo coincidencia suficiente. Esto implica que se debe
inhibir el claster ganador y buscar una coincidencia en el segundo cluster mds cercano y asi hasta
superar el umbral. Cuando [|a*||* /||p||2 > p hubo una coincidencia y procedemos a actualizar
ambas matrices de pesos W12 y W21 para incluir el nuevo input en un mecanismo conocido

como ‘“‘resonancia’.

3.4. Pesos adaptativos: Expectativay LTM

El mayor cambio de la Red ART con respecto a la Red de Grossberg es la inclusiéon de
una matriz de expectativas W#!, Esta matriz almacena los patrones esperados asociados a
cada cluster en L2, permitiendo compararlos con los nuevos patrones de entrada en L1 para

determinar si estos son lo suficientemente compatibles.

Similar a la ley de aprendizaje de la Red de Grossberg, W2 se actualiza mediante una regla
hebbiana con decaimiento. La unica diferencia esta en el cambio de sentido (de L2 a L1). Por
esta razon, la regla de aprendizaje pasa a denominarse Qutstar Learning Rule, ya que sigue
dependiendo de la activacion del cluster ganador en L2.

d [W7'(?)]

yy =a;(t) [-W7(t) +a'(1)] . (3.5)



Por otra parte, los pesos W12 de L1 a L2, utilizan un tipo de Instar Learning Rule junto
con un modelo de Shunting On-Center, Off-Surround que regulariza W' y evita dilemas de

subset/superset. La ecuacion de este modelo es [1]]:

W) o o w2t e [w] o
- 20 [ — W)} ¢ [FW]al(t) .

—{iW"(t) + "b} [[W]a'(t)],

aunque en el régimen de aprendizaje rapido se simplifica. Este régimen implica que el output de
L2 (STM) permanece constante frente a las variaciones de W'2(¢) y W%1(¢) (LTM) durante el
aprendizaje.

W2l = a! (3.7)

J
1:2 Cal

= m (regularizado). (3.8)

J
Estas ecuaciones representan la actualizacion de pesos para el clister ganador j, donde ¢ > 1
es la velocidad de aprendizaje y a' = p N W3 el patrén que incorpora LTM de la red. De
este modo, la red incorpora Unicamente las coincidencias entre las expectativas generadas y los

nuevos estimulos, reforzando lo aprendido y manteniendo la coherencia de cada categoria.

En el siguiente capitulo se abordard el modelo ART-1, una version simplificada del modelo
ART disefiada para entradas binarias y régimen de aprendizaje rdpido. Este modelo ha sido
elegido para su andlisis no solo por su probada estabilidad [8]], sino también porque su algoritmo
se simplifica notablemente bajo estas condiciones —como se ha demostrado a lo largo de
este capitulo—, lo que lo convierte en una herramienta ideal para aplicaciones précticas de

reconocimiento de patrones.
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CAPITULO

EXPERIMENTOS

Para validar el funcionamiento del modelo ART-1 (aprendizaje rdpido con inputs binarios),
se realizé un experimento utilizando un conjunto de datos artificiales compuesto por representa-
ciones binarizadas de las letras A, B, C y D en una cuadricula de 7x6 pixeles. Los pardmetros
del modelo fueron definidos como sigue: una tasa de aprendizaje ( = 2, pardmetro de vigilancia
p variable, y pesos sindpticos inicializados uniformemente. La matriz de expectativas W*! se

inicializa toda a 1s mientras la matriz de pesos W2 se regulariza como indica la ecuacién

4.1. Algortimo ART-1

El procedimiento se desarrolla en seis pasos [[1]:

1. Se presenta un patrén de entrada p; a la red. Dado que la L2 estd inactiva en la inicializa-

cién, se asigna a' = p; en concordancia con

2. Se calcula el input de L2 multiplicando W' por al, y se activa la neurona con mayor
valor como indica[3.3] En este caso, de empate la neurona ganadora es la del clister 1 (se

toma en orden).

3. Se genera la expectativa de la red proyectando a? desde L2 a L1, es decir, W%!aZ
Esta expectativa se compara con el patrén externo mediante la interseccién légica al =

p1 N W3 en concordancia con

4. Se verifica la condicidon de resonancia evaluando de acuerdo con Si

pasamos al paso 5. Caso contrario, se inhibe el cldster ganador j y se repetiria el proceso

desde el paso 1 con el siguiente clister mds activo.



5. Resonancia. Se actualizan los pesos de la red de acuerdo a[3.§}

1

a
Wizo S8 gy
T C+atr-1 *

reforzando tnicamente las coincidencias entre la entrada y la expectativa.

6. Finalmente, se restauran las neuronas inhibidas en L2 y se ingresa un nuevo patrén.

4.2. Resultados en Datos Artificiales

El parametro de vigilancia p define el umbral minimo de coincidencia requerido entre un

nuevo patrén de entrada y una categoria almacenada para consolidar el aprendizaje. La Figura

Input 1 Cluster 1 Cluster 1 Cluster 1

1
1

L1

Input 2 Cluster 2 Cluster 2 Cluster 2

1]

Input 3 Cluster 3 Cluster 3 Cluster 3

W,

Input 4 Cluster 4 Cluster 4 Cluster 4

p=04

Figura 4.1: Letras A, B, C y D clasificadas con pardmetros de vigilancia p = 0.9, 0.7 y 0.4.

M.1] permite observar con claridad cémo el pardmetro de vigilancia influye en la agrupacién



de patrones con diferentes niveles de similitud. Con un valor alto del pardmetro de vigilancia
(p cercano a 1), el modelo distingue entre todas las letras, asignando una clase distinta a cada
patrén binario, incluso entre las letras C y D, cuyas representaciones graficas comparten varias
caracteristicas estructurales. Sin embargo, al reducir el valor de p, se observé que C y D fueron
agrupadas dentro de una misma categoria, asi también A y B; y finalmente, todas terminan

dentro de una misma clase.

Este comportamiento pone en evidencia la flexibilidad del modelo ART-1 para ajustar la
granularidad del agrupamiento segin se requiera. Sin embargo, dicho ajuste conlleva a la forma-
cion de clasters menos precisos 0 menos coherentes internamente, afectando potencialmente la

calidad y pureza general de la clasificacion.

4.3. Resultados en MNIST

Para propdésitos reales de prueba, se emplea el conjunto de datos MNIST, ampliamente
utilizado en modelos de clasificacion y predicciéon. MNIST es un conjunto de digitos manus-
critos almacenados en matrices de 28x28 pixeles. La libreria dispone de 60,000 imagenes para

entrenamiento y 10,000 para prueba [9].

Antes de aplicar ART-1, es necesario convertir las imdgenes de digitos MNIST —original-
mente en escala de grises en el rango [0, 255]— a un formato binario, ya que ART-1 opera
unicamente con entradas binarias. Para ello, se emplea un umbral de 100, tal como se recomienda
en [10], de modo que cualquier valor superior se asigna como 1, y los valores iguales o inferiores

se asignan como 0.

El modelo ART-1 fue aplicado a un subconjunto aleatorio de 350 imédgenes binarizadas de
MNIST, utilizando un pardmetro de vigilancia p = 0.9, alcanzando una precisién (medida como
“pureza” de los clusters) del 98 %. Sin embargo, para este p de 0.9 se generaron ;334 clases

distintas!, un resultado también reportado por [11]. Esto evidencia una severa sobresegmentacion



del espacio de 10 clases reales.

Para mitigar esta fragmentacion excesiva, el pardmetro de vigilancia fue reducido a un valor
mas flexible de p = 0.01, lo que permiti6é disminuir el nimero de clases detectadas a 10. No
obstante, esta estrategia tuvo un impacto negativo significativo en la precision del modelo, que

descendi6 a apenas 32 %.

350

—e— ART-1
----- Numero de clases esperado (10)

Numero de clusters

—_ —_ N N w
o [6)] o [é)] o
o o o o o

(&)
o

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parametro de vigilancia (p)

Figura 4.2: Distribucion del nimero de clases generadas por ART-1 para varios p en el subconjunto MNIST de 350
imdgenes.

Este resultado, ilustrado en la figura[4.2] sefiala que para una buena clasificacion de MNIST,
ART-1 requiere una sobresegmentacion significativa (de 334 clases frente a las 10 clases reales
del conjunto). MNIST es un conjunto de datos complejo y de alta dimensionalidad que desafia
la capacidad adaptativa (plasticidad) del modelo. Esta situacion pone de manifiesto la necesidad
de aplicar técnicas de reduccién de atributos que permitan disminuir la dimensionalidad y
complejidad del espacio de representacion y asi mejorar la estabilidad y eficiencia del proceso

de clasificacion.



4.3.1. Testores Tipicos

Con este fin se implemento el algoritmo de preprocesamiento MinReduct [12], disefiado
para calcular los reductos mds cortos en un sistema de decision, es decir, los subconjuntos
minimos de atributos que preservan la capacidad de clasificacién del conjunto completo. Esta
combinacion permite reducir significativamente el tamafo de los datos y el nimero de atributos
sin perder informacidn relevante, optimizando asi el rendimiento y la velocidad del modelo

ART-1 aplicado a MNIST.

350

—o— ART-A1
300 ART-1 + MinReduct
---- Numero de clases esperado (10)

250

200

150

Numero de clusters

100

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parametro de vigilancia (0)

Figura 4.3: Distribucion del nimero de clases generadas por ART-1 para varios p en el subconjunto MNIST de 350
imagenes.

La aplicacién del algoritmo MinReduct redujo el conjunto de caracteristicas al 19, 38 % del
total original, logrando disminuir el tiempo promedio de entrenamiento de 2.41 segundos a
0.63 segundos. Esto corresponde a una mejora del 73.9 % en eficiencia temporal, que serd de
gran relevancia cuando entrenemos toda la base de 60.000 ejemplares. Esta compactacion del
espacio de caracteristicas también se tradujo en una mejora notable en la estabilidad del modelo,
asi como en una disminucién significativa del nimero de cldsters requeridos para alcanzar
una calidad de p = 0.9. Sin embargo, el espacio de clases sigue estando significativamente

sobresegmentado (163 clases frente a las 10 clases reales).



4.3.2. El Problema del Sesgo Inicial

Si forzamos al modelo a generar exactamente las 10 clases que hay en MNIST surge un
problema, se observa un importante sesgo hacia los 10 primeros nimeros aleatorios en el

conjunto de datos. Por ejemplo, supongamos que estos son los que se muestran en la Figura.4]

Number 5 Number 0 Number 4 Number 1 Number 9
Number 2 Number 1 Number 3 Number 1 Number 4

Figura 4.4: Primeros 10 inputs de MNIST sobre los que entrena el modelo ART-1

Como resultado del entrenamiento completo sobre los 60,000 ejemplos disponibles en
MNIST, los patrones W1 aprendidos y almacenados en la memoria a largo plazo LTM para
cada cldster son los que se presentan en la Figura[4.3]

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

3 /149

Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

10 BB

Figura 4.5: Patrones W2'! almacenados en la LTM del modelo ART-1 después de entrenar todo MNIST

Aun bajo un valor relativamente flexible del pardmetro de vigilancia p = 0.8 se puede apre-



ciar la fuerte influencia de los primeros diez patrones presentados al modelo. En el experimento
realizado, los digitos 6, 7 y 8 no estuvieron representados entre las primeras muestras aleatorias.
Como consecuencia, y pese a que el modelo fue entrenado posteriormente con el conjunto
completo de 60.000 imégenes, estos digitos nunca llegaron a ser entrenados ni forman parte
de la memoria a largo plazo LTM del modelos. En otras palabras, los digitos 6, 7 y 8 no se

clasificaron, situando la precision de clasificacion de ART-1 en un bajo 44 %.

En particular, cuando los primeros patrones no representan de manera equitativa todas las
clases reales del conjunto —como ocurre en escenarios de inicializacion aleatoria no balancea-
da—, el modelo excluye permanentemente aquellas clases ausentes, especialmente bajo valores
elevados de p. La estabilidad que caracteriza a ART-1, si bien valiosa para evitar la catastrofe
del olvido, también limita su capacidad de correccion posterior, generando una segmentacion
parcial del espacio de clases que impacta negativamente la calidad de clasificacion y precision

del modelo.

4.3.3. Estrategias de Inicializacion Supervisada

Para mitigar este problema, se disefié una estrategia que consiste en dirigir la inicializacién
de las matrices W2 y W21 de memoria a largo plazo (LTM) —las cuales hasta el momento se
inicializaban uniformemente en 1— para que ahora representen explicitamente cada una de las
10 clases verdaderas del conjunto MNIST (0-9). Esta eleccion supervisada garantiza que cada
clase esté representada desde el inicio del entrenamiento, evitando asi el problema del sesgo

inicial.

Para seleccionar patrones representativos de cada una de las 10 clases verdaderas, puede
hacerse simplemente de manera aleatoria. Esta estrategia ya resuelve el problema del sesgo
inicial previamente discutido, gracias a lo cual la precision mejora ligeramente del 44 % al
48.29 %. Sin embargo, la seleccion aleatoria puede asignar malos representantes, que no capturan

adecuadamente las caracteristicas generales de su clase. Una estrategia mas eficaz consiste en



Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Figura 4.6: Pesos iniciales W2, W21 mds cercanos al centroide de cada clase.

elegir como patrones de inicializacion aquellos ejemplos cercanos al centroide de cada conjunto
de clase, ya que representan de forma mds fiel al grupo, como se ilustra en la Figura[4.6] Al

implementar esta estrategia, la precision del modelo mejora significativamente, alcanzando un

62.27 %.

Sin embargo, la estrategia mas eficaz resulta ser una combinacion de ambos enfoques:
ademads de utilizar el mejor representante (es decir, el ejemplo mds cercano al centroide de cada
clase), se incorporan también patrones aleatorios que capturan la diversidad de formas en que
un mismo numero puede ser escrito. Lo que se hace es permitir multiples prototipos por clase
(por ejemplo, cinco patrones representativos en lugar de uno solo). Con esta aproximacion, la
precision del modelo mejora a un 69.21 %. Al incrementar ain mds el nimero de representantes

a diez, se alcanza la mayor precision registrada para este modelo, con un 78 %.

Si bien es posible seguir anadiendo representantes aleatorios para intentar mejorar la pre-
cision, esto reintroduce los problemas de sobreajuste y sobresegmentacion. Los resultados

obtenidos se resumen a continuacion en la siguiente tabla[4.1]



Cuadro 4.1: Precision alcanzada por el modelo ART-1 bajo diferentes estrategias de inicializacién.

Tipo de inicializacion Precision alcanzada ( %)
Sin inicializacién dirigida (aleatoria total) 44.00
Inicializacién aleatoria por clase 48.29
Inicializacién por centroide por clase 62.27
Centroide + 4 patrones aleatorios por clase 69.21
Centroide + 9 patrones aleatorios por clase (mayor precision) 78.00

4.3.4. Comparacion con Métodos de Referencia

Si bien la precision alcanzada por el modelo ART-1 no resulta destacable al compararse con
los modelos que actualmente son referentes en la tarea de clasificacion del conjunto MNIST
—presentados en la Tabla[d.2}—, es importante resaltar que ART-1 pertenece a una clase distinta
de modelos. A diferencia de los enfoques supervisados y estdticos, ART-1 opera bajo un
paradigma no supervisado y dindmico, lo que le confiere propiedades valiosas que los modelos
referentes no poseen.

Cuadro 4.2: Comparacién de precision reportada en MNIST por modelos supervisados y estiticos.

Modelo de clasificador Precision reportada ( %)
Clasificador lineal (1-capa NN) [13]] 88.00
K-nearest neighbors, Euclidiano (L2) [[13]] 95.00
40 PCA+ clasificador cuadratico [|13]] 96.70
SVM, kernel Gaussiano [|14]] 98.60
Red neuronal 2 capas, 800 HU, pérdida cross-entropy [/15]] 98.40
Red neuronal 3 capas, 500 4+ 300 HU, softmax, cross-entropy, weight decay [14] 98.47

Por ejemplo, ART-1 es un modelo especialmente adecuado para escenarios de aprendizaje
realista a gran escala, donde no se dispone de etiquetas previas ni resulta viable reentrenar
completamente una red cada vez que se incorpora nueva informacién. Gracias a su arquitectura,
ART-1 es capaz de aprender de forma rdpida y continua, adaptdndose a la creciente y constante
llegada y acumulacion de datos, sin requerir procesos de reentrenamiento. Esto lo diferencia
de los modelos supervisados estdticos, que, si bien superan a ART-1 en precision, presentan

limitaciones cuando se trata de manejar flujos dindmicos de informacién en tiempo real.
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CAPITULO

CONCLUSIONES

A pesar de que el modelo ART-1 presentado en este trabajo alcanz6 una precision del 78 %
en la tarea de clasificacion del conjunto MNIST —cifra menor en comparacién con modelos de
referencia actuales—, su aplicacion sigue siendo de gran valor en aplicaciones a gran escala. El
modelo ART-1, al estar inspirado en el funcionamiento biolégico del sistema cognitivo humano,

responde a principios de aprendizaje no supervisado, dindmico e incremental.

Esto significa que, a diferencia de las arquitecturas estaticas, que requieren reentrenamiento
completo para incorporar nuevos patrones —proceso costoso en términos computacionales—,
ART-1 es capaz de aprender en tiempo real, y sin sufrir del catastrophic forgetting que afecta a
modelos de deep learning [|16]. Por tanto, ART-1 ofrece un enfoque especialmente valioso para
enfrentar las demandas del contexto tecnoldgico actual, donde los desafios relacionados con el

entrenamiento costoso y la actualizacion continua de modelos son cada vez mds relevantes.

Ademés, es posible mejorar el rendimiento del modelo —o, mas precisamente, facilitarle la
comprension del conjunto de datos— mediante técnicas de reduccién de dimensionalidad, como
el algoritmo MinReduct, PCA [17] o convoluciones [11]. A esto puede sumarse una estrategia
de ajuste semisupervisado de los parametros iniciales, que guia al modelo en la conformacion de
clisters mds coherentes desde el inicio del entrenamiento. La simplicidad inherente del modelo
ART-1 permite que una amplia variedad de técnicas [18-24]] puedan aplicarse para adaptarlo de

manera eficaz a bases de datos complejas.

En este sentido, es relevante sefialar que existen extensiones mds robustas dentro de la

familia ART que podrian superar las limitaciones de ART-1 en MNIST discutidas en este trabajo.



Modelos como ART-2 [25,[26], capaz de operar sobre datos continuos, 0 ARTMAP [27,28]],
que incorpora supervision explicita en el proceso de aprendizaje manteniendo el dinamismo
caracteristico, han demostrado desempefios notables. De hecho, ARTMAP, al integrar 16gica
difusa o fuzzy logic en su esquema de clasificacion, ha alcanzado una precision del 96,49 % [29]

en la tarea de clasificacion de MNIST.

Por tanto, este trabajo sienta una base sdlida para futuras investigaciones orientadas a aplicar
modelos ART mas avanzados en dominios més complejos, combinando su eficiencia estructural
con técnicas modernas de representacion de datos y seleccion de atributos. Esta exploracion
abre oportunidades prometedoras para aprovechar al maximo el aprendizaje dindmico de estas
redes biolégicamente inspiradas, que ofrecen una posible solucién a los desafios actuales del

aprendizaje computacional.
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