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RESUMEN

Este trabajo presenta un estudio sobre redes neuronales biológicamente inspiradas para el

reconocimiento dinámico de patrones visuales, tomando como referencia los modelos desa-

rrollados por Stephen Grossberg. Se analiza en detalle la arquitectura de la Red de Grossberg,

que combina mecanismos de memoria a corto y largo plazo, normalización de señales y realce

de contraste, inspirados en el funcionamiento del sistema visual humano. A continuación, se

introduce la Teoría de Resonancia Adaptativa (ART) como una solución al problema de esta-

bilidad en el aprendizaje incremental continuo. ART incorpora un mecanismo de expectativas

basado en el sistema olfativo. Finalmente, se implementa y evalúa el simplificado modelo

ART-1, mostrando su rendimiento en tareas de clasificación sobre el conjunto MNIST, así como

estrategias adicionales para mitigar problemas de sobresegmentación y mejorar su aplicabilidad

en dominios complejos.

Palabras clave: Redes Neuronales Recurrentes, Modelo de Shunting, Red de Grossberg, Adapti-

ve Resonance Theory, Sistema Visual, Sistema Olfativo Conjuntos, Reconocimiento Dinámico

de Patrones.



ABSTRACT

This work presents a study on biologically inspired neural networks for the dynamic recognition

of visual patterns, using the models developed by Stephen Grossberg as a reference. It provides

a detailed analysis of the Grossberg Network architecture, which integrates short- and long-

term memory mechanisms, signal normalization, and contrast enhancement, all inspired by

the functioning of the human visual system. Subsequently, the Adaptive Resonance Theory

(ART) is introduced as a solution to the stability problem inherent in continuous incremental

learning. ART incorporates an expectation mechanism based on the olfactory system. Finally,

the simplified ART-1 model is implemented and evaluated, demonstrating its performance

on classification tasks using the MNIST dataset, along with additional strategies to mitigate

over-segmentation issues and enhance its applicability to complex domains.

Keywords: Recurrent Neural Networks, Shunting Model, Grossberg Network, Adaptive Reso-

nance Theory, Visual System, Olfactory System, Dynamic Pattern Recognition.
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CAPÍTULO 1
INTRODUCCIÓN

La Red de Grossberg es un tipo de red neuronal recurrente inspirada en procesos cognitivos

humanos introducida por Stephen Grossberg en 1976 [3]. Su trabajo fue pionero en la integración

de neurociencia y aprendizaje automatizado, estableciendo un puente entre las ciencias cognitivas

y los modelos computacionales. Grossberg sentó las bases teóricas para el desarrollo de modelos

que imitan el funcionamiento del cerebro humano, mucho antes de la aparición del deep learning

actual.

El objetivo de la Red de Grossberg es replicar las propiedades experimentales observadas en

el sistema visual humano, especialmente su extraordinaria capacidad de adaptación y reconoci-

miento frente a estímulos variados y dinámicos. Su primer modelo formal [4] describe una red

bicapa recurrente con capacidad de “recodificación universal”, es decir, capaz de recodificar un

conjunto arbitrariamente grande y variado de patrones. Este logro constituye un avance teórico

significativo, al demostrar que la red posee una plasticidad lo suficientemente amplia como para

manejar patrones altamente diversos y llevar a cabo recodificaciones no triviales, posicionándose

como un modelo de referencia en el estudio de redes neuronales que imitan el funcionamiento

del cerebro humano.

Sin embargo, el modelo es inestable. Si a lo largo del tiempo un número arbitrario de patrones

perturban un conjunto fijo de neuronas, los clústers formados nunca logran estabilizarse. En otras

palabras, el sistema no puede incorporar nueva información sin comprometer lo previamente

aprendido. De esta problemática surge ART (del inglés Adaptive Resonance Theory), un segundo

modelo [5] inspirado en el sistema olfativo humano, que utiliza un mecanismo de “resonancia”

para moderar y estabilizar la clasificación frente a un flujo constante de información.



1.1. Motivación Biológica
La base de la Red de Grossberg está fuertemente inspirada en el sistema visual humano,

compuesto por córnea, retina, nervio óptico y corteza visual, encargados de procesar la luz que

ingresa al ojo para transformarla en una imagen que el cerebro pueda interpretar [1].

Una evidencia de este sofisticado procesamiento visual se encuentra en la propia retina.

Aunque esta estructura está casi completamente cubierta por conos y bastones —fotorreceptores

encargados de captar luz y color—, presenta varios puntos ciegos, como el disco óptico y las

venas retinianas (Figura 1.1).

Figura 1.1: Puntos ciegos en la retina. Imagen tomada de [1].

Si tenemos puntos ciegos, ¿por qué entonces nuestra visión no está llena de ellos? La

respuesta es que nuestro sistema visual procesa la información de manera que compensa las

distorsiones y completa las regiones faltantes de la imagen. Este fenómeno se conoce como

“segmentación emergente” y “relleno de características” (feature filling-in) [6], y es responsable

de ilusiones ópticas como las que se muestran en la Figura 1.2.

La Red de Grossberg busca también replicar el procesamiento visual del brillo. Los seres

humanos percibimos el brillo de un objeto siempre estable, aun cuando este varía por cambios

globales de luminosidad. Este fenómeno, conocido como “constancia de brillo” [1], nos permite

identificar objetos de forma consistente en diferentes contextos de iluminación. Esto sugiere la

existencia de un proceso de “normalización de intensidad luminosa” en la corteza visual.



Figura 1.2: Triángulo y círculo ilusorios debido a los procesos del sistema visual. Imagen tomada de [1].

Además, el sistema visual evalúa el brillo de manera comparativa, considerando los gra-

dientes respecto al entorno inmediato. Este fenómeno, denominado “contraste de brillo”, es

fundamental para la detección de bordes y formas, por lo que el cerebro está diseñado para

identificar y realzar estas diferencias locales [3].

Figura 1.3: Ilusión del vestido azul y negro o blanco y dorado. Imagen tomada de [2].

Sin embargo, este tipo de procesamiento también puede dar lugar a errores perceptivos. Un

ejemplo ampliamente conocido es el del denominado “vestido azul y negro o blanco y dorado”

(Figura 1.3). En este caso, la ausencia de información clara sobre las condiciones de iluminación

en la imagen genera interpretaciones divergentes: algunas personas asumen que el vestido se

encuentra en sombra, percibiéndolo como blanco y dorado, mientras que otras lo interpretan

como expuesto a luz directa, percibiéndolo como azul y negro.



1.2. Redes Neuronales Recurrentes
Una red neuronal recurrente (RNN, por sus siglas en inglés) es un tipo de red con retroali-

mentación, lo que significa que los datos de salida se reintroducen como datos de entrada en la

red. Por ejemplo, sea n(t) el vector de activación neuronal en el tiempo t, W la matriz de pesos

sinápticos y b el vector de sesgos o bias; entonces, en el tiempo t+ 1, la activación de la red

recurrente discreta se expresa como [1]:

n(t+ 1) = W · n(t) + b. (1.1)

Esto permite que la red incorpore el factor temporal en su dinámica de procesamiento, emulando

así características fundamentales de los procesos cognitivos biológicos, como la adaptación,

la memoria y el aprendizaje. Sin embargo, en muchas aplicaciones no es suficiente conservar

únicamente el valor más reciente: se requiere una acumulación progresiva de información a lo

largo del tiempo. Para lograrlo, se reemplaza el mecanismo de step-delay (1.1) por una integral

que actúa sobre todas las entradas previas p(t), conformando así una memoria extendida.

n(t) = n(0) +

∫ t

0

p(τ)dτ. (1.2)

No obstante, Grossberg no plantea una acumulación ilimitada de información que pueda saturar

las neuronas. La memoria de corto plazo (STM, por sus siglas en inglés) en su modelo es

transitoria y decae gradualmente con el tiempo, permitiendo así el procesamiento continuo

de nuevos estímulos. Para lograrlo, se emplea una integral con fuga o leaky integrator, que

incorpora explícitamente un mecanismo de “olvido” [7]:

n(t) = e−t/εn(0) +
1

ε

∫ t

0

e−(t−τ)/εp(τ)dτ. (1.3)

Esta formulación incluye dos componentes: el primero representa el decaimiento u olvido de la

respuesta inicial n(0), mientras que el segundo es una convolución entre el estímulo de entrada

p(t) y una función de decaimiento exponencial. El factor ε controla el grado de retención de

información.



Figura 1.4: Leaky integrator n(0) = 1, estímulo constante p = 2 y distintas velocidades de decaimiento ε.

En la Figura 1.4 se ilustra un escenario donde una condición inicial de n(0) = 1 es pro-

gresivamente olvidada a favor de una nueva entrada constante p = 2, evaluada bajo distintas

velocidades de decaimiento ε. El integrador con fuga descrito en (1.3) es solución de la ecuación

diferencial:

ε
dn(t)

dt
= −n(t) + p(t), (1.4)

que describe la dinámica de respuesta de una neurona que integra una entrada p(t) mientras su

activación decae en el tiempo a un ritmo determinado por ε. Esta ecuación constituye el núcleo

del modelo neuronal más fundamental en la Red de Grossberg: el modelo de Shunting.

1.3. El Modelo de Shunting

El modelo de Shunting es el modelo no lineal que constituye la base fundamental sobre la

cual se sostienen los tres mecanismos esenciales en la Red de Grossberg:

a) retención de memoria a corto plazo STM,

b) normalización de la actividad total de la red y

c) realce del contraste entre los patrones de entrada,

todos ellos inspirados por sistema visual humano [3, 4].



A diferencia del leaky integrator (1.3), el modelo Shunting no solo incorpora el mecanismo

STM, sino que además utiliza la recurrencia de la red para normalizar las entradas sin perder

la información relativa o contraste entre ellas. De hecho, este modelo no solo conserva el

contraste, sino que puede realzarlo activamente [3]. Este comportamiento se logra mediante

una comparación dinámica entre entradas diferenciadas como excitatorias p+(t) e inhibitorias

p−(t):

ε
dn(t)

dt
= −n(t) +

(
b+ − n(t)

)
p+ −

(
n(t) + b−)p−. (1.5)

El modelo incorpora además términos de sesgo (bias) b+ y b−, los cuales cumplen un papel

central en la normalización de la respuesta, al establecer los límites máximos y mínimos dentro

de los cuales la activación neuronal puede oscilar. Estos valores también pueden ajustarse

dinámicamente para permitir que el sistema capture y procese amplitudes altamente variables en

la señal recibida.

Este trabajo se organiza de la siguiente manera: el capítulo 2 presenta la arquitectura de la

Red de Grossberg, incluyendo sus capas funcionales y la regla de aprendizaje. El capítulo 3

introduce la Teoría de Resonancia Adaptativa o ART, detallando la estructura que estabiliza el

modelo, el subsistema de orientación y los mecanismos de expectativa y memoria. El capítulo 4

describe los experimentos realizados, comenzando con la aplicación del algoritmo ART-1 en

datos artificiales y continuando con los resultados obtenidos en el conjunto MNIST, donde se

abordan aspectos como los testores típicos, el problema del sesgo inicial y las estrategias de

inicialización supervisada. Finalmente, se presentan las conclusiones del trabajo.
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CAPÍTULO 2
RED DE GROSSBERG

La Red de Grossberg está construida a partir de procesos complementarios de memoria a

corto y largo plazo, los cuales permiten al sistema adaptarse dinámicamente a los estímulos

cambiantes del entorno. Además, esta red incorpora mecanismos fundamentales de segmentación,

normalización y realce de contraste, todos ellos inspirados biológicamente y formalizados a

través de modelos de Shunting [4].

La arquitectura general de la Red de Grossberg se organiza en dos capas neuronales: Layer 1

(L1), que representa la retina, y Layer 2 (L2), que modela la corteza visual junto con los procesos

de memoria (STM). Estas capas están interconectadas mediante una matriz de pesos adaptativos,

que corresponde a la memoria a largo plazo (LTM), como se ilustra en la Figura 2.1.

Figura 2.1: Arquitectura de Red de Grossberg. Imagen tomada de [1].

Este diseño dota a la red de plasticidad, permitiéndole adaptarse dinámicamente a las

demandas del entorno sin perder la coherencia de los patrones previamente aprendidos.



2.1. Layer 1: Retina
La primera capa es un modelo de Shunting que recibe la señal externa y normaliza sus

componentes sin perder el contraste relativo entre ellos. Este mecanismo de normalización

remite al modo en que nuestra retina procesa las intensidades relativas de la luz en entornos

cambiantes, ajustando la percepción para mantener coherencia visual. La ecuación que describe

el funcionamiento de esta capa es [1]:

ε
dn1(t)

dt
= −n1(t) +

(
+b1 − n1(t)

) [
+W1

]
p−

(
n1(t) + −b1

) [
W1

]
p. (2.1)

El contraste dinámico se implementa mediante el método On-Center, Off-Surround, en el cual

la entrada excitatoria de la neurona i se localiza en la posición i (centro), mientras que las

posiciones circundantes ejercen una influencia inhibidora sobre ella. Este mecanismo se modela

matemáticamente a través de matrices que simulan el comportamiento de las células ganglionares

en la retina [3]:

+W1 =



1 0 · · · 0

0 1 · · · 0

...
...

...

0 0 · · · 1


, W1 =



0 1 · · · 1

1 0 · · · 1

...
...

...

1 1 · · · 0


. (2.2)

El parámetro ε determina la rapidez de respuesta del sistema, y se elige de forma que la activación

neuronal se estabilice antes de que ocurran cambios en los pesos adaptativos del modelo.

(a) Normalización de leaky integrator (b) Normalización de Shunting model



Considérese la normalización +b = 1 aplicada a una entrada p = [2, 8], procesada por dos

neuronas n1 y n2, como se muestra en la Figura (a) para el modelo de leaky integrator y en la

Figura (b) para el modelo de Shunting. Mientras en (a) el proceso de normalización pierde el

contraste original entre los valores 2 y 8, en (b) la diferencia relativa entre ellos se preserva.

2.2. Layer 2: Corteza Visual y STM

La segunda capa recibe el output a1 de la primera capa L1, el cual viene multiplicado por

los pesos sinápticos W de LTM. La capa L2 también se modela mediante un esquema de tipo

Shunting. Sin embargo, a diferencia de la capa anterior, la función que cumple es el realce de

contraste y memoria STM de la corteza visual [3].

Las neuronas en esta capa representan a los clústers o clases, y compiten entre sí mediante el

modelo de Shunting. Esta competencia da lugar a un mecanismo de selección, en el que la clase

ganadora se almacena temporalmente en el sistema, funcionando como una memoria a corto

plazo STM. La ecuación que describe el funcionamiento de esta capa es [1]:

ε
dn2(t)

dt
= −n2(t) +

(
+b2 − n2(t)

) {[
+W2

]
f2

(
n2(t)

)
+W2a1

}
−

(
n2(t) + −b

2
) [−W2

]
f2

(
n2(t)

) (2.3)

El realce de contraste y la competencia entre neuronas están también mediados por el método

On-Center, Off-Surround y por una función de activación f . El tipo de función elegida determina

el comportamiento del sistema: una función f lineal permite almacenar cualquier patrón con

fidelidad, pero también amplifica el ruido; una función sublineal, en cambio, tiende a amplificar

únicamente el ruido y reduce el contraste; una función supralineal genera un efecto de winner-

take-all, favoreciendo que una sola clase domine; finalmente, una función sigmoide logra

equilibrar estos aspectos, ya que suprime el ruido, mejora el contraste y evita una cuantización

extrema [1].

Para ilustrar el funcionamiento del sistema, la Figura 2.2 muestra la respuesta de dos neuronas



Figura 2.2: Competencia de dos neuronas en L2. Imagen adaptada de [1].

ante entradas de 0.54 y 0.81, respectivamente. Se observa que el contraste entre ambos valores

se incrementa, evidenciando el efecto de realce generado por la competencia neuronal. Además,

el patrón de activación resultante se mantiene incluso después de retirar los estímulos de entrada,

lo que demuestra la capacidad del modelo para retener información de manera transitoria,

funcionando como una memoria a corto plazo (STM).

2.3. Pesos adaptativos: LTM

Finalmente, respecto a los pesos sinápticos, Grossberg se refiere a ellos como pesos adaptati-

vos o memoria a largo plazo LTM (del inglés Long Term Memory), ya que las filas de la matriz

W representan los patrones almacenados que la red es capaz de reconocer. La ley de aprendizaje

utilizada es una versión de la regla de Hebb con decaimiento [1]:

d [iW
2(t)]

dt
= α

{
−
[
iW

2(t)
]
+ n2

i (t)n
1(t)

}
. (2.4)

El primer término es el de decaimiento y evita la saturación de LTM. El segundo es un término

de aprendizaje asociativo, basado en el principio de Hebb: “las neuronas que se activan juntas,

se conectan juntas”.



Sin embargo, una limitación de la regla de Hebb con decaimiento es que requiere de estímulos

constantes; de lo contrario, las asociaciones previamente formadas tienden a desaparecer. En

una formulación alternativa conocida como Instar Learning Rule el peso decae únicamente

cuando su neurona ha sido activada. Este enfoque evita penalizar conexiones inactivas ni = 0,

concentrando el ajuste sináptico en aquellas neuronas que realmente participan en la codificación

del estímulo.
d [iW

2(t)]

dt
= α · n2

i (t)
{
−
[
iW

2(t)
]
+ n1(t)

}
(2.5)

De esta forma, la arquitectura de la Red de Grossberg, con la base dinámica del modelo de

Shunting, logra capturar las propiedades experimentales observadas en el sistema visal humano:

plasiticidad (recodificación universal), feature fill-in, STM, LTM, normalización y realce de

contraste. Sin embargo, Grossberg se dio cuenta que su red tiene un problema de estabilidad en

la formación de clústers debido a esa gran plasticidad.

Grossberg demostró [5] que, si el número de patrones de entrada no es demasiado grande o si

dichos patrones no forman demasiados clústeres en relación con el número de neuronas en L2, el

aprendizaje eventualmente se estabiliza. Sin embargo, también mostró que las redes competitivas

estándar no presentan un aprendizaje estable cuando se enfrentan a flujos de patrones de entrada

arbitrarios. Este hallazgo lo llevó a implementar el mecanismo de resonancia adaptativa ART

(del inglés Adaptative Resonance Theory), diseñado para estabilizar la plasticidad de la red.
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CAPÍTULO 3
ADAPTATIVE RESONANCE THEORY

¿Cómo puede un sistema ser receptivo a nuevos patrones y, al mismo tiempo, mantener

patrones previos? Sabemos que los sistemas biológicos son muy eficaces en esto. Por ejemplo,

podemos reconocer fácilmente el rostro de nuestra madre, incluso si ha transcurrido mucho

tiempo y hemos conocido muchos rostros nuevos en el camino.

El sistema olfativo proporciona a Grossberg la motivación perfecta para la modelo ART [5].

En concreto, la interacción entre el bulbo olfativo y la corteza olfativa. El elemento clave de

esta inspiración es la capacidad de la corteza olfativa de formar patrones que retroalimentan al

bulbo como “expectativas”. Si el patrón olfativo que llega del bulbo coincide con la expectativa

de la corteza, la corteza acepta dicha activación. De lo contrario, el patrón se extingue sin

desestabilizar el clúster de olores. La arquitectura de una Red ART (Figura 3.1) parte de la

Figura 3.1: Arquitectura de Red ART. Imagen tomada de [1].



Red de Grossberg como base. La principal diferencia es la implementación del sistema de

expectativas para cada clúster, el cual determina cuándo una nueva entrada es lo suficientemente

compatible como para modificar ese clúster.

3.1. Layer 1: Bulbo Olfativo

En la Red ART, la capa L1 ya no se encarga de normalizar las señales de entrada; en este

modelo, dicha tarea es delegada a la regla de aprendizaje que ajusta los pesos W1:2. En su lugar,

L1 implementa un mecanismo de comparación entre el patrón recibido (señal externa p) y el

patrón esperado (experctativa del clúster ganador en L2 W2:1a2). La ecuación se operación

sigue también un modelo de Shunting [8]:

ε
dn1(t)

dt
= −n1(t) +

(
+b1 − n1(t)

) {
p+W2:1a2(t)

}
−
(
n1(t) + −b1

) [−W1
]
a2(t),

(3.1)

donde la entrada excitatoria contiene ambos patrones a comparar p y W1:2a2. La entrada

inhibitoria, por otro lado, es un término de control de ganancia con matriz −W1

−W1 =



1 1 · · · 1

1 1 · · · 1

...
...

...

1 1 · · · 1


. (3.2)

El propósito de este término es regular la activación neuronal y, en la práctica, es la diferencia

entre un operador OR o AND en la comparación entre p y W1:2a2.

Realizar un análisis en estado estacionario (es decir, cuando dn
dt

= 0) o en el régimen de

aprendizaje rápido (ε ≪ 1) resulta particularmente útil para comprender el funcionamiento

interno de los mecanismos que conforman una Red ART. Además, asumir inputs binarios

simplifica considerablemente las ecuaciones. El análisis estacionario de la ecuación 3.1 muestra



que [1]:

a1 =


p, si a2j = 0 para todo j,

p ∩W2:1
j , si a2j = 1 para un j,

donde a1 el output de L1 corresponde a la operación (p AND W2:1
j ), y al ser vectores binarios

la norma ||a1|| funciona como un contador de coincidencias entre el patrón entrante y el patrón

esperado.

3.2. Layer 2: Corteza Olfativa y STM

Por otro lado, la capa L2 en la Red ART es la misma que la capa L2 en la Red Grossberg.

Es decir, un modelo de Shunting con ecuación 2.3 que promueve la competencia neuronal y

almacena la clase ganadora en la STM.

En el límite de aprendizaje rápido y para entradas binarias, al igual que ocurre en L1, el

funcionamiento de L2 se simplifica a una operación de competencia básica [1]:

a2i =

 1, si
(
(iW

1:2)
T
a1 = máx

[
(W1:2)

T
a1
])

.

0, otro
(3.3)

Es decir, la neurona con mayor entrada en L2 gana, mientras que el resto de neuronas o clústers

quedan suprimidos, siguiendo un esquema de winner-take-all. Una vez seleccionada la neurona

o clúster ganador en L2, este proyecta su patrón expectativa almacenado en W2:1 de vuelta a L1,

donde se compara con el patrón de entrada.

3.3. Susbsistema de Orientación

Uno de los elementos clave de la arquitectura ART es el Subsistema de Orientación a0. Su

propósito es determinar si existe o no una coincidencia suficiente entre el patrón de expectativa



W2:1
j , proyectado de L2 a L1 por el clúster ganador j, y su patrón de entrada p [1].

a0 =

 1, si
[
∥a1∥2 /∥p∥2 < ρ

]
0, otro

(3.4)

donde a1 = p ∩W2:1
j y ∥a1∥2 es el número de coincidencias entre patrones p y W2:1

j mientras

∥p∥2 normaliza la expresión. A partir de ello, se define un parámetro de vigilancia ρ ∈ [0, 1],

que controla el nivel de exigencia requerido para aceptar una coincidencia como válida. Valores

altos de ρ implican una mayor rigurosidad, lo que se traduce en una clasificación más fina y una

mayor granularidad en la formación de clústeres.

Por ejemplo, si ∥a1∥2 /∥p∥2 < ρ, no hubo coincidencia suficiente. Esto implica que se debe

inhibir el clúster ganador y buscar una coincidencia en el segundo cluster más cercano y así hasta

superar el umbral. Cuando ∥a1∥2 /∥p∥2 ≥ ρ hubo una coincidencia y procedemos a actualizar

ambas matrices de pesos W1:2 y W2:1 para incluir el nuevo input en un mecanismo conocido

como “resonancia”.

3.4. Pesos adaptativos: Expectativa y LTM

El mayor cambio de la Red ART con respecto a la Red de Grossberg es la inclusión de

una matriz de expectativas W2:1. Esta matriz almacena los patrones esperados asociados a

cada clúster en L2, permitiendo compararlos con los nuevos patrones de entrada en L1 para

determinar si estos son lo suficientemente compatibles.

Similar a la ley de aprendizaje de la Red de Grossberg, W2:1 se actualiza mediante una regla

hebbiana con decaimiento. La única diferencia está en el cambio de sentido (de L2 a L1). Por

esta razón, la regla de aprendizaje pasa a denominarse Outstar Learning Rule, ya que sigue

dependiendo de la activación del clúster ganador en L2.

d
[
W2:1

j (t)
]

dt
= a2j(t)

[
−W2:1

j (t) + a1(t)
]
. (3.5)



Por otra parte, los pesos W1:2 de L1 a L2, utilizan un tipo de Instar Learning Rule junto

con un modelo de Shunting On-Center, Off-Surround que regulariza W1:2 y evita dilemas de

subset/superset. La ecuación de este modelo es [1]:

d [iW
1:2(t)]

dt
= a2i (t)

[{
+b− iW

1:2(t)
}
ζ
[
+W

]
a1(t)

−
{
iW

1:2(t) + −b
} [−W]

a1(t)
]
,

(3.6)

aunque en el régimen de aprendizaje rápido se simplifica. Este régimen implica que el output de

L2 (STM) permanece constante frente a las variaciones de W1:2(t) y W2:1(t) (LTM) durante el

aprendizaje.

W2:1
j = a1 (3.7)

jW
1:2 =

ζ a1

ζ + ∥a1∥2 − 1
(regularizado). (3.8)

Estas ecuaciones representan la actualización de pesos para el clúster ganador j, donde ζ > 1

es la velocidad de aprendizaje y a1 = p ∩ W2:1
j el patrón que incorpora LTM de la red. De

este modo, la red incorpora únicamente las coincidencias entre las expectativas generadas y los

nuevos estímulos, reforzando lo aprendido y manteniendo la coherencia de cada categoría.

En el siguiente capítulo se abordará el modelo ART-1, una versión simplificada del modelo

ART diseñada para entradas binarias y régimen de aprendizaje rápido. Este modelo ha sido

elegido para su análisis no solo por su probada estabilidad [8], sino también porque su algoritmo

se simplifica notablemente bajo estas condiciones —como se ha demostrado a lo largo de

este capítulo—, lo que lo convierte en una herramienta ideal para aplicaciones prácticas de

reconocimiento de patrones.
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CAPÍTULO 4
EXPERIMENTOS

Para validar el funcionamiento del modelo ART-1 (aprendizaje rápido con inputs binarios),

se realizó un experimento utilizando un conjunto de datos artificiales compuesto por representa-

ciones binarizadas de las letras A, B, C y D en una cuadrícula de 7x6 píxeles. Los parámetros

del modelo fueron definidos como sigue: una tasa de aprendizaje ζ = 2, parámetro de vigilancia

ρ variable, y pesos sinápticos inicializados uniformemente. La matriz de expectativas W2:1 se

inicializa toda a 1s mientras la matriz de pesos W1:2 se regulariza como indica la ecuación 3,8.

4.1. Algortimo ART-1

El procedimiento se desarrolla en seis pasos [1]:

1. Se presenta un patrón de entrada p1 a la red. Dado que la L2 está inactiva en la inicializa-

ción, se asigna a1 = p1 en concordancia con 3.1.

2. Se calcula el input de L2 multiplicando W1:2 por a1, y se activa la neurona con mayor

valor como indica 3.3. En este caso, de empate la neurona ganadora es la del clúster 1 (se

toma en orden).

3. Se genera la expectativa de la red proyectando a2 desde L2 a L1, es decir, W2:1a2.

Esta expectativa se compara con el patrón externo mediante la intersección lógica a1 =

p1 ∩W2:1
j en concordancia con 3.1.

4. Se verifica la condición de resonancia evaluando de acuerdo con 3.4. Si

∥a1∥2

∥p1∥2
≥ ρ

pasamos al paso 5. Caso contrario, se inhibe el clúster ganador j y se repetiría el proceso

desde el paso 1 con el siguiente clúster más activo.



5. Resonancia. Se actualizan los pesos de la red de acuerdo a 3.8:

W1:2
j =

ζa1

ζ + ∥a1∥2 − 1
, jW

2:1 = a1,

reforzando únicamente las coincidencias entre la entrada y la expectativa.

6. Finalmente, se restauran las neuronas inhibidas en L2 y se ingresa un nuevo patrón.

4.2. Resultados en Datos Artificiales

El parámetro de vigilancia ρ define el umbral mínimo de coincidencia requerido entre un

nuevo patrón de entrada y una categoría almacenada para consolidar el aprendizaje. La Figura

Figura 4.1: Letras A, B, C y D clasificadas con parámetros de vigilancia ρ = 0.9, 0.7 y 0.4.

4.1 permite observar con claridad cómo el parámetro de vigilancia influye en la agrupación



de patrones con diferentes niveles de similitud. Con un valor alto del parámetro de vigilancia

(ρ cercano a 1), el modelo distingue entre todas las letras, asignando una clase distinta a cada

patrón binario, incluso entre las letras C y D, cuyas representaciones gráficas comparten varias

características estructurales. Sin embargo, al reducir el valor de ρ, se observó que C y D fueron

agrupadas dentro de una misma categoría, así también A y B; y finalmente, todas terminan

dentro de una misma clase.

Este comportamiento pone en evidencia la flexibilidad del modelo ART-1 para ajustar la

granularidad del agrupamiento según se requiera. Sin embargo, dicho ajuste conlleva a la forma-

ción de clústers menos precisos o menos coherentes internamente, afectando potencialmente la

calidad y pureza general de la clasificación.

4.3. Resultados en MNIST

Para propósitos reales de prueba, se emplea el conjunto de datos MNIST, ampliamente

utilizado en modelos de clasificación y predicción. MNIST es un conjunto de dígitos manus-

critos almacenados en matrices de 28x28 píxeles. La librería dispone de 60,000 imágenes para

entrenamiento y 10,000 para prueba [9].

Antes de aplicar ART-1, es necesario convertir las imágenes de dígitos MNIST —original-

mente en escala de grises en el rango [0, 255]— a un formato binario, ya que ART-1 opera

únicamente con entradas binarias. Para ello, se emplea un umbral de 100, tal como se recomienda

en [10], de modo que cualquier valor superior se asigna como 1, y los valores iguales o inferiores

se asignan como 0.

El modelo ART-1 fue aplicado a un subconjunto aleatorio de 350 imágenes binarizadas de

MNIST, utilizando un parámetro de vigilancia ρ = 0.9, alcanzando una precisión (medida como

“pureza” de los clusters) del 98 %. Sin embargo, para este ρ de 0.9 se generaron ¡334 clases

distintas!, un resultado también reportado por [11]. Esto evidencia una severa sobresegmentación



del espacio de 10 clases reales.

Para mitigar esta fragmentación excesiva, el parámetro de vigilancia fue reducido a un valor

más flexible de ρ = 0.01, lo que permitió disminuir el número de clases detectadas a 10. No

obstante, esta estrategia tuvo un impacto negativo significativo en la precisión del modelo, que

descendió a apenas 32 %.

Figura 4.2: Distribución del número de clases generadas por ART-1 para varios ρ en el subconjunto MNIST de 350
imágenes.

Este resultado, ilustrado en la figura 4.2, señala que para una buena clasificación de MNIST,

ART-1 requiere una sobresegmentación significativa (de 334 clases frente a las 10 clases reales

del conjunto). MNIST es un conjunto de datos complejo y de alta dimensionalidad que desafía

la capacidad adaptativa (plasticidad) del modelo. Esta situación pone de manifiesto la necesidad

de aplicar técnicas de reducción de atributos que permitan disminuir la dimensionalidad y

complejidad del espacio de representación y así mejorar la estabilidad y eficiencia del proceso

de clasificación.



4.3.1. Testores Típicos

Con este fin se implementó el algoritmo de preprocesamiento MinReduct [12], diseñado

para calcular los reductos más cortos en un sistema de decisión, es decir, los subconjuntos

mínimos de atributos que preservan la capacidad de clasificación del conjunto completo. Esta

combinación permite reducir significativamente el tamaño de los datos y el número de atributos

sin perder información relevante, optimizando así el rendimiento y la velocidad del modelo

ART-1 aplicado a MNIST.

Figura 4.3: Distribución del número de clases generadas por ART-1 para varios ρ en el subconjunto MNIST de 350
imágenes.

La aplicación del algoritmo MinReduct redujo el conjunto de características al 19, 38% del

total original, logrando disminuir el tiempo promedio de entrenamiento de 2.41 segundos a

0.63 segundos. Esto corresponde a una mejora del 73.9 % en eficiencia temporal, que será de

gran relevancia cuando entrenemos toda la base de 60.000 ejemplares. Esta compactación del

espacio de características también se tradujo en una mejora notable en la estabilidad del modelo,

así como en una disminución significativa del número de clústers requeridos para alcanzar

una calidad de ρ = 0.9. Sin embargo, el espacio de clases sigue estando significativamente

sobresegmentado (163 clases frente a las 10 clases reales).



4.3.2. El Problema del Sesgo Inicial

Si forzamos al modelo a generar exactamente las 10 clases que hay en MNIST surge un

problema, se observa un importante sesgo hacia los 10 primeros números aleatorios en el

conjunto de datos. Por ejemplo, supongamos que estos son los que se muestran en la Figura 4.4.

Figura 4.4: Primeros 10 inputs de MNIST sobre los que entrena el modelo ART-1

Como resultado del entrenamiento completo sobre los 60,000 ejemplos disponibles en

MNIST, los patrones W2:1 aprendidos y almacenados en la memoria a largo plazo LTM para

cada clúster son los que se presentan en la Figura 4.5.

Figura 4.5: Patrones W2:1 almacenados en la LTM del modelo ART-1 después de entrenar todo MNIST

Aun bajo un valor relativamente flexible del parámetro de vigilancia ρ = 0.8 se puede apre-



ciar la fuerte influencia de los primeros diez patrones presentados al modelo. En el experimento

realizado, los dígitos 6, 7 y 8 no estuvieron representados entre las primeras muestras aleatorias.

Como consecuencia, y pese a que el modelo fue entrenado posteriormente con el conjunto

completo de 60.000 imágenes, estos dígitos nunca llegaron a ser entrenados ni forman parte

de la memoria a largo plazo LTM del modelos. En otras palabras, los dígitos 6, 7 y 8 no se

clasificaron, situando la precisión de clasificación de ART-1 en un bajo 44 %.

En particular, cuando los primeros patrones no representan de manera equitativa todas las

clases reales del conjunto —como ocurre en escenarios de inicialización aleatoria no balancea-

da—, el modelo excluye permanentemente aquellas clases ausentes, especialmente bajo valores

elevados de ρ. La estabilidad que caracteriza a ART-1, si bien valiosa para evitar la catástrofe

del olvido, también limita su capacidad de corrección posterior, generando una segmentación

parcial del espacio de clases que impacta negativamente la calidad de clasificación y precisión

del modelo.

4.3.3. Estrategias de Inicialización Supervisada

Para mitigar este problema, se diseñó una estrategia que consiste en dirigir la inicialización

de las matrices W1:2 y W2:1 de memoria a largo plazo (LTM) —las cuales hasta el momento se

inicializaban uniformemente en 1— para que ahora representen explícitamente cada una de las

10 clases verdaderas del conjunto MNIST (0–9). Esta elección supervisada garantiza que cada

clase esté representada desde el inicio del entrenamiento, evitando así el problema del sesgo

inicial.

Para seleccionar patrones representativos de cada una de las 10 clases verdaderas, puede

hacerse simplemente de manera aleatoria. Esta estrategia ya resuelve el problema del sesgo

inicial previamente discutido, gracias a lo cual la precisión mejora ligeramente del 44 % al

48.29 %. Sin embargo, la selección aleatoria puede asignar malos representantes, que no capturan

adecuadamente las características generales de su clase. Una estrategia más eficaz consiste en



Figura 4.6: Pesos iniciales W1:2, W2:1 más cercanos al centroide de cada clase.

elegir como patrones de inicialización aquellos ejemplos cercanos al centroide de cada conjunto

de clase, ya que representan de forma más fiel al grupo, como se ilustra en la Figura 4.6. Al

implementar esta estrategia, la precisión del modelo mejora significativamente, alcanzando un

62.27 %.

Sin embargo, la estrategia más eficaz resulta ser una combinación de ambos enfoques:

además de utilizar el mejor representante (es decir, el ejemplo más cercano al centroide de cada

clase), se incorporan también patrones aleatorios que capturan la diversidad de formas en que

un mismo número puede ser escrito. Lo que se hace es permitir múltiples prototipos por clase

(por ejemplo, cinco patrones representativos en lugar de uno solo). Con esta aproximación, la

precisión del modelo mejora a un 69.21 %. Al incrementar aún más el número de representantes

a diez, se alcanza la mayor precisión registrada para este modelo, con un 78 %.

Si bien es posible seguir añadiendo representantes aleatorios para intentar mejorar la pre-

cisión, esto reintroduce los problemas de sobreajuste y sobresegmentación. Los resultados

obtenidos se resumen a continuación en la siguiente tabla 4.1.



Cuadro 4.1: Precisión alcanzada por el modelo ART-1 bajo diferentes estrategias de inicialización.

Tipo de inicialización Precisión alcanzada ( %)

Sin inicialización dirigida (aleatoria total) 44.00
Inicialización aleatoria por clase 48.29
Inicialización por centroide por clase 62.27
Centroide + 4 patrones aleatorios por clase 69.21
Centroide + 9 patrones aleatorios por clase (mayor precisión) 78.00

4.3.4. Comparación con Métodos de Referencia

Si bien la precisión alcanzada por el modelo ART-1 no resulta destacable al compararse con

los modelos que actualmente son referentes en la tarea de clasificación del conjunto MNIST

—presentados en la Tabla 4.2—, es importante resaltar que ART-1 pertenece a una clase distinta

de modelos. A diferencia de los enfoques supervisados y estáticos, ART-1 opera bajo un

paradigma no supervisado y dinámico, lo que le confiere propiedades valiosas que los modelos

referentes no poseen.

Cuadro 4.2: Comparación de precisión reportada en MNIST por modelos supervisados y estáticos.

Modelo de clasificador Precisión reportada ( %)

Clasificador lineal (1-capa NN) [13] 88.00
K-nearest neighbors, Euclidiano (L2) [13] 95.00
40PCA+ clasificador cuadrático [13] 96.70
SVM, kernel Gaussiano [14] 98.60
Red neuronal 2 capas, 800 HU, pérdida cross-entropy [15] 98.40
Red neuronal 3 capas, 500 + 300 HU, softmax, cross-entropy, weight decay [14] 98.47

Por ejemplo, ART-1 es un modelo especialmente adecuado para escenarios de aprendizaje

realista a gran escala, donde no se dispone de etiquetas previas ni resulta viable reentrenar

completamente una red cada vez que se incorpora nueva información. Gracias a su arquitectura,

ART-1 es capaz de aprender de forma rápida y continua, adaptándose a la creciente y constante

llegada y acumulación de datos, sin requerir procesos de reentrenamiento. Esto lo diferencia

de los modelos supervisados estáticos, que, si bien superan a ART-1 en precisión, presentan

limitaciones cuando se trata de manejar flujos dinámicos de información en tiempo real.
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CAPÍTULO 5
CONCLUSIONES

A pesar de que el modelo ART-1 presentado en este trabajo alcanzó una precisión del 78 %

en la tarea de clasificación del conjunto MNIST —cifra menor en comparación con modelos de

referencia actuales—, su aplicación sigue siendo de gran valor en aplicaciones a gran escala. El

modelo ART-1, al estar inspirado en el funcionamiento biológico del sistema cognitivo humano,

responde a principios de aprendizaje no supervisado, dinámico e incremental.

Esto significa que, a diferencia de las arquitecturas estáticas, que requieren reentrenamiento

completo para incorporar nuevos patrones —proceso costoso en términos computacionales—,

ART-1 es capaz de aprender en tiempo real, y sin sufrir del catastrophic forgetting que afecta a

modelos de deep learning [16]. Por tanto, ART-1 ofrece un enfoque especialmente valioso para

enfrentar las demandas del contexto tecnológico actual, donde los desafíos relacionados con el

entrenamiento costoso y la actualización continua de modelos son cada vez más relevantes.

Además, es posible mejorar el rendimiento del modelo —o, más precisamente, facilitarle la

comprensión del conjunto de datos— mediante técnicas de reducción de dimensionalidad, como

el algoritmo MinReduct, PCA [17] o convoluciones [11]. A esto puede sumarse una estrategia

de ajuste semisupervisado de los parámetros iniciales, que guía al modelo en la conformación de

clústers más coherentes desde el inicio del entrenamiento. La simplicidad inherente del modelo

ART-1 permite que una amplia variedad de técnicas [18–24] puedan aplicarse para adaptarlo de

manera eficaz a bases de datos complejas.

En este sentido, es relevante señalar que existen extensiones más robustas dentro de la

familia ART que podrían superar las limitaciones de ART-1 en MNIST discutidas en este trabajo.



Modelos como ART-2 [25, 26], capaz de operar sobre datos continuos, o ARTMAP [27, 28],

que incorpora supervisión explícita en el proceso de aprendizaje manteniendo el dinamismo

característico, han demostrado desempeños notables. De hecho, ARTMAP, al integrar lógica

difusa o fuzzy logic en su esquema de clasificación, ha alcanzado una precisión del 96,49 % [29]

en la tarea de clasificación de MNIST.

Por tanto, este trabajo sienta una base sólida para futuras investigaciones orientadas a aplicar

modelos ART más avanzados en dominios más complejos, combinando su eficiencia estructural

con técnicas modernas de representación de datos y selección de atributos. Esta exploración

abre oportunidades prometedoras para aprovechar al máximo el aprendizaje dinámico de estas

redes biológicamente inspiradas, que ofrecen una posible solución a los desafíos actuales del

aprendizaje computacional.
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