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Resumen 

Movimientos a corto plazo y la preferencia de hábitat de tiburones juveniles de la 
especie punta negra fueron estudiados en áreas de crianza en la isla San Cristóbal, 
Galápagos. Mediante el método del seguimiento continuo usando telemetría 
acústica, se registraron los movimientos de 8 tiburones juveniles. Seis individuos 
mostraron una alta fidelidad a su área de crianza principal, mientras que dos de los 
tiburones viajaron a otro área de crianza ubicada a una distancia de 6,5km. Todos 
los animales menos dos neonatos realizaron viajes frecuentes afuera de las bahías 
protegidas. Estos movimientos de exploración eran o altamente direccionales 
siguiendo la línea de la costa en búsqueda de otro sitió protegido o en direcciones al 
azar hacia aguas de mayor profundidad. Debido a la gran variación del tamaño al 
nacer, no se encontró una correlación entre la extensión del rango de actividad o la 
tasa de movimiento y la longitud total de los tiburones. Tampoco se evidenció 
ningún cambio diurno del comportamiento de movimiento, pero los tiburones 
exhibieron una tasa de movimiento mucho más alta afuera de las áreas de crianza 
que adentro. Su considerable fidelidad a los áreas de crianza se reflejo en la mayor 
concentración de los movimientos en áreas núcleos, los cuales tenían una 
extensión similar para todos los individuos y se ubicaron dentro de las bahías 
protegidas. Los tiburones juveniles punta negra mostraron una preferencia para 
aguas someras con sustratos de arena y de arena con rocas. La alta dependencia 
de las crías de esta especie a áreas de crianza se demostró por una gama de 
análisis espaciales, por lo tanto nuestros resultados podrían guiar el establecimiento 
de una nueva zonificación de la Reserva Marina de Galápagos, que protege estas 
zonas cruciales para la salud de la población de los tiburones punta negra. 
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Abstract 

Short-term movements and habitat preference of juvenile blacktip sharks were 
studied in nursery areas on San Cristóbal Island, Galapagos. We actively tracked a 
total of 8 individual sharks. Six blacktip sharks showed high site fidelity to their 
primary nursery area, while two sharks traveled to another nursery area at a 
distance of 6,5km. Regular trips outside the nurseries were made by all individuals 
with the exception of two neonate sharks. These exploratory movements were either 
highly directional along the coast in search of a suitable adjacent refuge or with 
random directionality towards deeper water. Due to high variation of body length at 
birth, there was no correlation between activity space size or swimming speed and 
total length of the sharks. No significant difference in dial behavior was observed, 
but sharks had a much higher average swimming speed outside nursery areas than 
within them. High site fidelity was also reflected by the concentration of movements 
within similar-sized core areas inside the protected bays. Juvenile sharks had a 
strong preference for sandy and mixed sand/rock substrates in shallow water. 
Strong site attachment to nursery areas was evident for the entire sample across a 
variety of analyses, and may be used as a spatial guide to include nurseries as 
protected areas in the zoning scheme of the Galapagos Marine Reserve.  
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Introduction 

Within the marine realm, elasmobranchs (sharks and rays) represent a key target 

group for the conservation of marine biodiversity because of their ecological 

importance as keystone predators and their role as umbrella species for biodiversity 

hotspots (Hearn et al. 2010; Sergio et al. 2008). 

At the same time, these large predators are particularly exposed to a wide range of 

human induced threats (Baum et al. 2003). The decline of apex predators, such as 

sharks can have cascading top-down effects on the populations of lower trophic 

levels, causing changes in the structure of entire marine communities (Baum & 

Worm 2009; Ferretti et al. 2008). Despite the important role that elasmobranchs play 

for the health of marine ecosystems, large gaps remain in the scientific information 

needed to guide their conservation (Baum et al. 2003). 

Worldwide, shark populations have been declining at an alarming rate (Dulvy et al. 

2008). At regional levels, population declines of some species have been estimated 

to be as high as 90% and more (Baum et al. 2003). Bull, dusky, and smooth 

hammerhead sharks for example are suggested to have declined by over 99% in the 

eastern United States (Myers et al. 2007). Among other causes, shark populations 

are directly threatened by fisheries seeking to sell shark fins for high profit in Asian 

markets and indirectly due to a very high by-catch rate in longline fisheries and 

shrimp trawlers (Cosandey-Godin & Morgan, 2011; Baum et al. 2003). In addition to 

fishing pressures, elasmobranchs are also threatened by habitat destruction and 

pollution (Ferretti et al. 2008). 

In particular, coastal shark habitats, such as nursery areas are threatened due to 

their proximity to human populations and the resulting increase in fishing pressure,
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habitat degradation and pollution (Knip, Heupel, & Simpfendorfer 2010; Speed et al. 

2010). For instance, high mortality rates have been estimated for blacktip sharks 

(Carcharhinus limbatus) when incidentally caught in gillnet fisheries (Hueter et al. 

2006). At the same time, the nursery habitats of sharks have a high potential for 

protection in marine protected areas due to the restricted activity space and high site 

fidelity of juveniles (Garla et al. 2006). 

Acoustic telemetry has become a widely preferred research technique for studying 

the movements of marine organisms in relation to marine protected areas (Lindholm 

2005). Nevertheless, few studies have used this technique to evaluate the 

effectiveness of existing protected areas in preserving shark populations (Chapman 

et al. 2005; Heupel & Simpendorfer 2005; Garla et al. 2006). 

A considerable number of telemetry studies on elasmobranchs have been 

conducted relating movement behavior to a wide range of physical and biotic factors 

(Sundstroem et al. 2001). Several studies have determined movement behavior and 

site fidelity of juvenile sharks (Garla et al. 2006; Holland et al. 1993; Morrissey & 

Gruber 1993; Rechisky & Wetherbee 2003), but very few have correlated shark 

movement behavior to habitat preferences (Franks 2007; Morrissey & Gruber 

1993a). Passive acoustic monitoring has been used to investigate residency and 

home ranges of juvenile Blacktip sharks (C. limbatus) in a nursery area in Florida, 

yet home range estimation was limited by the coverage of the fixed acoustic stations 

(Heupel, Simpfendorfer, & Hueter 2004). Furthermore, Heupel & Hueter (2002) 

investigated the relationship between spatial distribution of C. limbatus and prey 

densities found within the nursery, but the effects of other abiotic factors were left 

unstudied. 

Within the Galapagos Marine Reserve (GMR) sharks are generally protected, yet 

there still exists a large volume of incidental shark by-catch by the local fishery and 

even illegal fishing directed at sharks. In particular, the juveniles of several shark 

species are threatened by the local mullet fishery, which takes place in the 

mangrove fringed bays that also appear to be important habitats for juvenile sharks 
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(Andrade & Murillo 2002, Llerena 2009). Also, information on the distribution, 

abundance and movement behavior of juvenile sharks is generally lacking for the 

Galapagos Marine Reserve (Hearn et al., 2008). In 2009, the Galapagos National 

Park Services identified 5 nursery areas for San Cristobal Island, all of which lie 

within zones that are currently open to the artisanal fisheries (Heylings, Bensted-

Smith & Altamirano 2002; Llerena 2009). 

Our study uses acoustic telemetry to shed light on the home range and site 

attachment of juvenile blacktip sharks in their nursery areas in order to provide site-

specific management tools. We sought to examine possible differences in movement 

patterns such as swimming speeds among dial periods and different locations within 

the sharks’ home ranges in order to increase our understanding of their behavior in 

relation to the current zoning scheme of the GMR.  Additionally, we investigated the 

preference of juvenile C. limbatus for distinct habitats in order to emphasize the 

importance of nursery areas within the Galapagos Islands. Finally we quantified the 

spatial distribution of shark movements that may provide baseline information for the 

design of no-take fishing zones that protect critical habitats for juvenile Blacktip 

sharks. 

Field Methods 

Study Site 

Puerto Grande (0°48'4.50"S, 89°28'9.00"W) is a small mangrove-fringed bay with a 

maximum depth of 8m located on the eastern side of San Cristobal Island, and is 

considered as the island’s most important nursery area (Llerena 2009). The 

Galapagos Archipelago is characterized by two distinct seasons that are created by 

the shifts in strength of the different ocean currents hitting the Galapagos platform. 

The cool, dry season is caused by the cold and productive Humboldt Current, which 

prevails from June to November. The warm and rainy season in turn is driven by the 

warm Panama Current and lasts from December to May (Houvenaghel 1984).  
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Active tracking of juvenile and neonate C. limbatus in this study was conducted in 

two phases. (1) In the transition from the warm to the cold season from April to 

August 2012 and (2) from November 2012 to January 2013, during the transition 

from the cold to the warm season. An average of 1 field trip per month was 

conducted in both periods. 

Shark Tagging 

Juvenile Blacktip sharks were captured using a 20m long gill net (mesh size 3in) in 

shallow waters close to mangrove stands (Holland et al. 1993). Upon capture, 

sharks were handled on a large measuring table aboard the tracking vessel to take 

standard measurements and apply acoustic transmitters. The sharks’ size (total, 

fork, precaudal and interdorsal length, measured to the closest 0.5cm) weight (to the 

closest 0.01kg) was recorded and sex was determined. In order to limit variation in 

movement behavior due to ontogenetic shifts and the possible impact of externally 

attached transmitters, only neonates (identified by the presence of an open 

umbilicus or umbilical scar) of a minimum size of approximately 64 cm and juveniles 

less than 73 cm total length (TL) were used for the tracking study (Barry & Condrey 

2008). According to the average published size of neonates of 60,5 cm (Castro 

1996; Killiam & Parsons 1989) and the minimum growth rate of 12,5 cm/yr (Barry & 

Condrey 2008) for juveniles of 0+ and 1+ years for this species, we assumed that all 

sharks within this range were less than one year of age. 

After taking the standard measurements, a hose connected to a bilge pump was 

placed into the animal’s mouth in order to pass fresh seawater through the gills and 

provide the shark with oxygen during the transmitter application procedure (Garla et 

al. 2006). Acoustic transmitters (Vemco Ltd., V9, 24 mm length, 2.2 g in water) were 

externally attached to the sharks’ first dorsal fin by adapting the technique used by 

Wetherbee et al. (2007): Before application, the transmitters were glued into a piece 

of flexible PCV tube cut in half and secured using plastic zip ties. Absorbable 

surgical strings (Ethicon, Vicryl 0.0) were used to attach the transmitters with two 

stitches through the base of the first dorsal fin and loopholes in the extending plastic 
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tube at each end of the transmitter. The entire procedure, including the time from 

retrieving the animals out of the net until returning them into the water, lasted an 

average of 9:45 min, thus minimizing physical stress to the animals. When returning 

the shark into the water, swimming movements were imitated with the shark until 

they started to swim on their own (Morrissey & Gruber 1993b). 

Active Tracking 

Telemetry equipment consisted of a directional hydrophone (Vemco Ltd., VH110) 

connected to an acoustic receiver (Vemco Ltd., VR100), which was installed on a 

4,5m skiff. The acoustic receiver was connected to an 80Ah car battery to keep it 

powered for extended tracking (Holland et al. 1992). Transmitters had pulse intervals 

of 1.0 and 2.0 s, a battery life of 7-10 days, and were coded by the manufacturer at 

frequencies between 63 and 84 kHz. Active tracking of the juvenile sharks was 

intended to last for 48 hours in order to capture enough movement and possible 

variability for home range analysis but keep logistics at a reasonable level (Rechisky 

& Wetherbee 2003; Sundström et al. 2001). A small zodiac was used to exchange 

the two tracking teams of 3-4 people each every 8 hours and to provide fuel, 

charged car batteries and food supplies.  

In order to keep the position of the boat as close to the animals as possible without 

interfering with their natural behavior, the tracking vessel was moved towards the 

sharks when the received signal was less than 80dB, but kept in position at signal 

strengths between 80-105 dB. Throughout the entire tracking sessions, detailed field 

notes about shark behavior and boat movement were taken in order to facilitate data 

processing and interpretation. 

Data Analysis 

Data Filtering 

Location data from tracking was filtered in a 2-step process: First, the raw data was 

filtered to exclude data points with signal strengths lower than 70dB with exception 
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of detections that were lower than 70dB due to tracking in very shallow water or 

obstacles such as rocky outcrops between the tracking vessel and the shark. These 

exceptions were justified using the detailed chronological field notes. 

Secondly, we established a fixed time interval of two minutes in order to filter the 

remaining data. The regression of empirical measurements of the signal strength 

versus the distance between the tracking vessel and acoustic transmitters rendered 

a distance of 49.15 +/-14.5m (r2=0,82; df=8) at 80dB signal strength. Therefore we 

estimated the maximum error of the recorded geographical positions of the sharks to 

be within a circle of r=50m (A=7954m2). This sets the scale at which we can detect 

changes in behavior or a preference for a certain area. We calculated the time it 

would take a juvenile C. limbatus to cross a circle of r=50m at a maximum sustained 

swimming speed (Ums) of 1.10 Ls-1 (body lengths per second) which was adapted 

from available data of Ums for juveniles of similar total length of other shark species 

(Graham et al. 1990). For the sharks tracked in this study with an average body 

length of 69cm (sd±3.0cm) it would take them approximately two minutes if they 

were merely passing through the defined area at Ums. This would result in only one 

position within the area versus two or more positions if the individual would spend 

more time in an area of the defined spatial scale. Therefore in this study a time 

interval of two minutes is the best to detect possible preferences for certain areas at 

the set scale. 

Movement Patterns 

The geographic positions at two-minute intervals were plotted for each shark using 

ArcView GIS 10 (Environmental Systems Research Institute Inc., Redlands, 

California). The rate of movement over ground (ROM, reported in ms-1) was 

calculated by dividing the distance traveled between successive positions through 

the time interval. We averaged ROM across all positions and across all nighttime 

(19:00 - 06:00) and daytime (06:00 - 19:00) positions for each track. The total 

distance traveled by each animal was calculated by adding the distances between 

all consecutive positions of each track.  
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Movements of all sharks that swam into less protected waters outside the nursery 

(n=5, out of eight individuals tracked) were divided into two behavioral groups. 1) 

Nursery Restricted Movement (NRM), which includes all movement within the 

nursery area and 2) Exploratory Behavior (EB), which incorporates all movement 

made outside the nursery. The Wilcoxon signed-rank test was then used to compare 

over-ground swimming speed of the two different groups. 

Finally, we calculated the linearity index (LI) as a measure of site attachment for 

each shark using the formula: LI = (F1 - Fi)/D. We measured the distance between 

the last geographic position taken for an individual (Fi) and the start location of the 

track (F1) and then divided it by the total distance traveled by the animal (D). A value 

of 1 indicates highly directional movement without revisitation of the same sites, 

versus a highly tortuous track around the same area would result in a value close to 

0 (Morrissey & Gruber 1993b). 

Home Range Estimators 

Since all of the methods used here to describe home range are estimations based 

on short-term data, we use the term activity space instead. The minimum convex 

polygon home range estimator (MCP) is biased towards an overestimation of activity 

space due to the inclusion of areas that were not actually visited by an animal 

(Nilsen, Pedersen, & Linnell 2007). Nevertheless, MCP was chosen as a home 

range estimator in order to preserve the comparability of our study to others and to 

include the entire extent home ranges in our analyses (Nilsen et al. 2007). MCP’s 

were calculated using the Geospatial Modeling Environment (GME) 0.7.2, RC2 for 

ArcGIS 10.0 for the entire track and for all daytime and nighttime positions of each 

shark (Beyer 2012). Afterwards, each MCP was reduced to remove areas coinciding 

with landmasses (Morrissey & Gruber 1993b). 

Two commonly used kernel density estimators (95% and 50% KDE) were calculated 

with the GME software using a manually selected fixed smoothing factor (h). Fixed 

KDEs are a good choice if accuracy in the tails of the density estimation is not 
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needed for statistical comparison. In our case, the fixed manually selected value for 

h best represented core areas of high probability densities across the entire sample 

(Beyer 2012; Worton 1989). 

Linear correlations were performed in order to investigate the effect of shark total 

length on rate of movement (ROM) and home range (MCP) size before conducting 

comparisons of these parameters. Due to the low sample size and the high variation 

of values for MCP and ROM in the nighttime and daytime groups, we conducted a 

Wilcoxon signed-rank test to test for significant dial change in behavior.  

Habitat Preference 

Based on the scale at which we can detect the preference for certain areas in this 

study, we established a minimum size of habitat units (area of circle with r=50m) to 

measure habitat preferences.  

To investigate preferences for different depths, a total of 174 manual depth 

measurements were taken with a random distribution throughout Puerto Grande bay 

using a CTD profiler (YSI Inc., CastAway™-CTD). The tide level at the time of each 

depth measurement in the field was determined using tide level predictions made by 

the program xtide (based on data provided by the NOAA, National Ocean Service, 

available online: www.flaterco.com/xtide). Depths were standardized to a mid-tide 

level of +1m by adding or subtracting the predicted difference. Standardized data 

points were then interpolated using Arc GIS 10 (Environmental Systems Research 

Institute Inc, Redlands, California) to create bathymetry maps of the bay with depth 

categories equal to or larger than the minimum habitat unit size. 

In order to map substrate type in the nursery area, we used high-resolution satellite 

imagery of the study site and verified the substrate types observed in the images by 

sampling the different types at several depths throughout the bay before creating 

polygons of equal to or larger than the established minimum habitat unit size in Arc 

GIS 10.  
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Using the habitat maps generated by this method, 9 habitat categories (sandy 

bottom, mixed sand/rock, and rocky substrates at each interval of 0-2, 2-4, 4-8m 

depth) were established to examine shark preference for the different habitats using 

Johnson's (1980) resource preference method. 

By defining the habitats available to an organism, we automatically assume that the 

organism has complete knowledge of these habitats to be able to make a choice 

between habitats (Fauchald & Tveraa 2003). We considered the availability of 

habitats to the sharks by looking at the data of the smallest neonate shark tracked 

(CL9, TL=64cm) during this study. We assumed that all sharks in this study had 

similar knowledge of the availability of all habitats in the nursery used by this 

individual. Because two of the tracked animals left the nursery during the first night, 

resulting in a small percentage of detections in the bay we excluded both individuals 

from the analysis. 

The method proposed by Johnson (1980) uses ranks instead of raw data to measure 

the usage and availability of certain resources by the animals, and thus is less 

susceptible to over or underestimation of the availability of resources. It also 

provides the possibility to calculate an average across all individuals and to 

subsequently test for significance of the preference of certain habitat types versus 

others (Johnson 1980). We first defined the availability of each habitat category by 

calculating the percentage of the category in relation to the total area deemed 

available to the sharks. The usage of that category by an individual was rendered by 

the number of positions within the habitat as a percentage of the total positions 

counted in the entire area deemed available. The percentage values were then 

ranked for both the availability and usage of a habitat. The difference between the 

rank of usage and the rank of availability then presents the relative preference 

(negative values) or avoidance (positive values) for a certain habitat. Preference 

values for a habitat were then averaged across the sample size, and we ran an 

ANOVA to test the null hypothesis that all habitat categories are equally preferred. 
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To determine significant differences between all combinations of the 9 habitat types 

we conducted a multiple comparison with the Tukey post-hoc test. 

Results 

A total of six young-of-the-year (YOY) and two neonate Blacktip sharks were tracked 

throughout the study period (n=8, TL= 64.0-72.0cm; Table 1). One older neonate 

(umbilicus almost closed) was lost 4 hours after its release and was relocated 10 

hours later in a nearby nursery. Therefore it was not included in the analysis. The 

smallest neonate trapped in the gill net during this study had a total length of 60,5cm 

(total neonates captured during study: n=6, mean TL=64.3cm, s=3,5cm). This 

reconfirms that all sharks tracked in our study were most likely less than one year of 

age even if growth rates are very low similar to the lowest reported for this species 

(12,5 cm/yr; Barry & Condrey 2008). The total tracking duration for each shark 

ranged from 27 to 45 hours (Table 1). Some of the tracks were interrupted over a 

short period of time ranging from one to three hours either because of short-term 

losses of the signal or, in the case of Shark #8, due to the malfunctioning of a car 

battery. These gaps were subtracted from the overall track duration and were 

accounted for in the analysis. No effect of the tagging procedure on shark behavior 

could be observed either in the field or in the resulting data. There was no sign of a 

general increase or decrease in swimming speeds of juvenile C. limbatus after 

release as compared to changes in behavior reported for both, juvenile hammerhead 

and adult common thresher sharks (Cartamil et al. 2010; Holland et al. 1993). None 

of the individuals in this study seemed to avoid proximity to the tracking vessel after 

release. Shark #4, which was released just before dusk, immediately increased 

activity, while sharks released during midday exhibited lower activity in the center of 

the bay. 
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Movement Patterns 

The total distance traveled over ground for all sharks ranged between 13.66km for 

the shortest and 46.89km for the longest track (mean=28.20km, s=10.3km). Overall 

rate of movement (ROM) ranged between 0.17 and 0.38ms-1 (mean=0.20ms-1, 

s=0.08ms-1; Table 1). Neither distance traveled nor ROM was correlated with shark 

total length (r2=0.124, p=0.05 and r2=0.004, p=0.05, respectively). All but two 

individuals (#4 and #7) stayed within the nursery or returned to the nursery after 

excursions outside the bay and therefore have an extremely low value for the 

linearity index (mean=0,006, s=0.004), indicating a very strong site fidelity 

(Morrissey & Gruber 1993b). 

Home Range Estimators 

Minimum convex polygons (MCP) had a wide range over the sample size (8.76- 

8.76 km2). Neonate sharks had the smallest MCP values and never moved outside 

of the bay, but there was no correlation found between TL and MCP size over the 

entire sample. Shark #3 (TL=68cm) made large excursions outside of the bay during 

two consecutive nights, resulting in the second largest MCP. Two out of eight 

individuals (#4 and #7) moved away from the nursery area of Puerto Grande along 

the coast towards the southeast, resulting in larger MCP’s (4.76km2 and 8.76km2 

respectively). Both individuals displayed highly directional movement during the first 

night, always staying in shallow water close to shore until reaching a small bay 6,5 

km away that had been suggested as a nursery area for C. limbatus by Llerena 

(2009). Throughout the rest of the tracking session, both individuals displayed very 

restricted movements in the small mangrove fringed bay. 

Dial Behavior 

Sharks ventured furthest from the nursery area during the night. Individual #3 

traveled up to 2.9 km from the shoreline before returning to Puerto Grande. Both 

sharks that left the study site and traveled to the adjacent nursery moved highly 

directional for several hours at night. Generally, mean nighttime ROM (0.24ms-1, 
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s=0.12ms-1) seemed to be higher than daytime ROM (0.17 ms-1, s=0.05ms-1), but 

due to the high variability and low sample size, this difference is not statistically 

significant (Wilcoxon signed rank test: n=8, w= 8, 0.10 < p < 0.20). 

Likewise, the maximum extent of the estimated home range appeared to be 

generally larger at night (mean MCP=2.25km2, s=2.60km2) than during the daylight 

(mean MCP=0.63km2, s=1.22km2), but was not significant (Wilcoxon signed rank 

test: n=8, w=6, 0.10 < p < 0.20). 

Behavioral Differences 

Five of the six young-of-the-year Blacktips made explorations outside of their 

nursery ground. Three of these individuals (#3, #6, #8) displayed high site fidelity 

(LI= 0,007, 0,002, and 0,01 respectively; table 1) returning to the nursery after longer 

excursions. Comparison of the exploratory behavior (EB: Mean ROM=0.44ms-1, 

s=0.09ms-1) outside the sheltered bay versus nursery-restricted movement (NRM: 

Mean ROM=0.18ms-1, s=0.05ms-1) revealed a highly significant difference in mean 

speed over ground (Wilcoxon signed rank test, n=5, w=0, p < 0.001). 

Kernel Density Estimators 

Kernel density estimators of 95% shown in table 1 were highly variable between all 

sharks, ranging from 0.09 to 1.26km2 (mean= 0.38, s=0.39), and were strongly 

correlated with the MCP home range estimator (r2= 0.626, p<0,02). In contrast, 50% 

KDE varied little between individuals (examples: figure 1 and 2), and reflected the 

high density of movement inside the nursery areas within a confined mean area of 

0.03 km2 (s=0.03km2). Only individual #3 had a higher 50% KDE due to the 

extended excursions outside the bay, resulting in a highly disbursed distribution of 

geographic positions over a wide area, with several revisits of the same area 

approximately 2,4km from the nursery area, which is reflected in the size and 

distribution of the 50% KDE (Figure3). 
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Habitat Preference 

GIS-rendered habitat maps of substrate type and bathimetry, which served as a 

basis for the analysis of habitat preferences, are shown in figure 4. Sandy and mixed 

rock/sand substrates are found at meduim depth in the northern center of the bay 

and the very shallow northern tip. Rocky substrates are more concentrated in the 

shallow waters of the southern end and in the mid and deeper water of the bay 

opening (refer to figures 4 and 5).  

Difference of ranks showed the relative preference of each individual seperately for 

the 9 habitat categories (Table 2). Analaysis of Variance between the mean values 

of prefernce for each habitat resulted in a highly significant value (F(8,53)=84.75, 

p<0.001). Therefore, we can adopt the alternative hypothesis that not all habitat 

types are equally preferred. Examining the average of the difference of ranks across 

all individuals, a clear preference for sandy and mixed sand/rock substrates at the 

shallow water interval between 0 and 2m depth is evident. On the other hand, sharks 

seem to avoid the sandy patches at water depths between 4 and 8m in the center of 

the bay opening as well as rocky substrates at shallow (0 to 2m deep) and mid-deep 

water (2 to 4m; table 2). 

Results of the post-hoc test (significance level p=0.05) also shown in table 2 

revealed no significant difference between the two most preferred habitat types 

(sandy and mixed substrate in shallow water) which can be found in the most 

secluded tip of the bay. These two differed from all other habitat types. Rocky and 

mixed substrates at deeper water (up to -8m) as well as mixed and sandy bottom at 

mid deep water showed no significant difference of perference, but were different as 

compared to deep sandy and shallow rocky substrates. Finally, sharks seemed to 

avoid rocks at mid deep water, which can be found at the southern end of the bay 

and the center of the bay opening, significantly more than any other substrate (refer 

to figures 4  and 5).  
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Discussion 

Transmitter Application 

The external tag application method proved to be fast and effective. Only one 

individual lost the attached transmitter before the end of the intended 48 hours of 

tracking, probably due to improperly tightened surgical knots. Juvenile hammerhead 

sharks studied by Holland (1993) were force-fed acoustic transmitters. In their 

tracking study, and a considerable amount of tracks were terminated due to the 

sharks regurgitating transmitters (Holland, 1993). In short-term tracking studies, we 

recommend the method used here as opposed to surgical implantation of 

transmitters, which is believed to have a greater effect on shark behavior. Methods 

used to avoid the effect of surgery on study subjects include keeping them in 

captivity for recovery before studying their movements in the wild, or studying their 

movements for extended periods (Garla et al. 2006a; Morrissey & Gruber 1993b).  

One individual tracked in our study was recaptured after a 40-hour tracking session. 

After the removal of the transmitter, only four faint points where the needle 

penetrates the dorsal fin could be seen as well as a slight irritation of the skin, where 

the transmitter had been attached. Furthermore, several sharks with attached 

transmitters were observed leaping out of the water during feeding activity, 

suggesting that the transmitters had no effect on their natural behavior (Bigelow & 

Schroeder 1948). 

General Movement Patterns 

All juvenile sharks tracked in this study concentrated their movements within Puerto 

Grande bay or inside another nearby nursery area. The two neonates were the only 

sharks to never leave the bay to explore less protected areas, resulting in the 

smallest home ranges for these individuals. Excursions made outside of the bay by 

individuals who then returned to the same nursery area ranged from a few minutes 
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up to 10 hours. Two individuals, shark #4 and #7, left the study site during the first 

night and followed the coastline until they reached another protected bay, which had 

been identified as a nursery area by Llerena (2009). It took them 05:10 hours and 

02:47 hours respectively to cover the 6,5 km distance. After arriving, they displayed 

a high site fidelity to the sheltered bay during the rest of the track.  

The overall rate of movement of juvenile blacktip sharks studied here, was 

somewhat higher than that reported for juvenile and neonate hammerhead pups of 

slightly smaller size (Holland et al. 1993). The unusually higher than average ROM 

of shark #3 can be explained by its extensive nighttime excursions. 

The lack of correlation between shark total length and swimming speed or home 

range is most likely an artifact of the limited overall range of sharks tracked in this 

study. The great variation of total length found for neonate sharks caught in this 

study (range: TL=60,5-71,5cm) suggests a high variation of size at birth for the 

Galapagos subpopulation of blacktip sharks, similar to neonate C. limbatus studied 

on the southeast coast of the United States. For the latter, a total length of 65,3cm 

was reported for the smallest free-swimming neonate, while the largest embryo 

carried by a female was 74,2cm (TL). Therefore, our results suggest that an 

increase in swimming speed and activity space might rather be a result of 

experience due to age than body length in juveniles less than one year of age. In 

Florida, use of passive acoustic monitoring had shown that blacktip sharks, which 

had been tagged as neonates in April expanded their activity space after three to 

four months, indicating a small-scale ontogenetic shift (Heupel et al. 2004). This 

increase in activity space and exploratory behavior can possibly be attributed to 

intraspecific competition and increasing energetic demands (Sims 2010). 

Studies on lemon sharks in the Bahamas that included a wider range of age classes 

(Franks 2007; Morrissey & Gruber 1993b) showed a significant increase of MCP 

size with increasing body size. Further investigation that incorporates older juvenile 

individuals could possibly detect an ontogenetic shift in the movement behavior of 

blacktip sharks. On the other hand, actively tracked juvenile and neonate sandbar 
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sharks tracked in Delaware Bay, were found to have a very low correlation between 

body length and MCP, and there was no difference between home range sizes of 

neonates and juveniles (Rechisky & Wetherbee 2003).  

Dial Behavior 

Increased activity spaces for blacktip sharks were expected at night compared to 

daytime movement as found in juvenile hammerhead sharks (Holland 2003). Even 

though there was a general trend towards increased swimming speed (ROM) and 

larger activity space (MCP) at night there was no significant difference due to the 

great variation of both measures within groups of a small sample size. Additional 

data is needed to investigate the hypothesis of increasing crepuscular or nighttime 

activity found in many shark species (Barry & Condrey 2008). 

The Importance of Nurseries 

Data presented here identifies Puerto Grande bay as a nursery area for C. limbatus, 

meeting all three criteria established by Heupel et al. (2007): (1) The high 

abundance of juveniles reported for this bay in 2009 and during this study 

distinguishes it from other coastal areas. Knowledge on the absence of juvenile C. 

limbatus from other areas is, nevertheless, based on anecdotal knowledge on the 

catch rates obtained from local artisanal fishermen (Llerena 2009). (2) Movement 

behavior of all 8 sharks analyzed shows that blacktips have a high tendency of 

remaining in or returning to the area. (3) Puerto Grande had been identified as a 

shark nursery several years before by Llerena (2009) and was reconfirmed in this 

study. 

Analysis of C. limbatus movements especially focuses on the hypothesis stated in 

(2), that the juvenile sharks remain in the study site for prolonged periods or return 

frequently. Site fidelity reported with the linearity index for juvenile and neonate 

blacktip sharks remaining within or returning to the same nursery was even lower 

than for juvenile lemon sharks (mean LI=0,04), which were considered to have a 
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strong site attachment (Morrissey & Gruber 1993b). The high preference for a limited 

area was also reflected by the 50% kernel densities, which were very similar for all 

individuals (with the exception of shark #3) over the entire study period. Both 

neonate blacktips tracked in this study had much lower 95% KDE areas, compared 

to young-of-the-year individuals. This trend is in accordance with the results to the 

95% and 50% KDEs of juvenile C. limbatus studied in Terra Ceia bay, Florida, which 

were tagged with an open umbilical scar in April. In this study, 95% KDEs increased 

between June and October, while 50% KDEs stayed very constant over months and 

across years (Heupel et al. 2004). 

One third of the blacktip sharks monitored in Terra Ceia Bay, using fixed receivers 

within the nursery area remained in the same area for over 100 days, but a large 

proportion of individuals left the bay within 60 days of monitoring (Heupel 2004). The 

presented findings suggest that the juveniles leave the nursery area in order to find 

areas of similar conditions, probably to avoid intraspecific competition (Sims 2010). 

Juvenile blacktip sharks in Florida left their nursery more frequently with increasing 

age possibly due to changes in foraging behavior (Heupel 2004). Insight on the 

movement patterns outside the sheltered nurseries was gained through this study. 

The high swimming speed, and the lack of a common direction or area of high 

movement densities all indicate the random and exploratory nature of the excursions 

into open water. No feeding behavior was observed during these exploratory 

movements, but on many occasions within the bay. Feeding activity mainly occurred 

just after sunrise and before and after sunset, as had been suggested in other 

studies (Barry 2003). Nevertheless, juvenile blacktip sharks have a wide variety of 

prey items and therefore our observation might be biased towards feeding on small 

schooling fish (Barry 2003). A fast ontogenetic shift in feeding ecology was proposed 

by Barry (2003), who found a higher percentage of empty stomachs for neonate 

versus juvenile blacktip sharks.  This could explain the increase in activity space of 

the young-of-the-year, shifting towards a more generalized diet (Barry 2003). In 

contrast, predator avoidance seems to be more important for neonates, which have 

a much higher mortality rate than young-of-the-year older than 15 weeks and are 
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also believed to be less efficient predators (Heupel & Simpfendorfer 2002; Wourms 

1977).  

Habitat Preference 

The preference of juvenile blacktip sharks for shallow water in the northern extreme 

of the bay can most likely be attributed to a predator avoidance behavior of both 

juvenile and neonate individuals. The lack of correlation between the amount of time 

juvenile C. limbatus spent within different areas of a nursery habitat and measured 

prey densities suggests that predator avoidance behavior is to the main factor 

driving habitat preference (Heupel & Hueter 2002; Heupel & Simpfendorfer 2005). 

This could be reflected by the equal preference of shallow sandy and sand/rock-mix 

bottoms found in this study, which differs from the low usage of rocky bottom at 

shallow depths. The avoidance of shallow rocks might be explained due to the 

increased exposure to wave action and/or the proximity to the bay entrance where 

larger predators might be more common (Heupel & Simpfendorfer 2005). 

Additionally, water in these areas was observed to be much clearer than in shallow 

water over sandy and mixed substrates. Hammerhead pups studied by Holland et al. 

(1993) were supposed to aggregate in turbid water as a mean of predator 

avoidance. Juvenile blacktip sharks in the Terra Ceia nursery aggregated during 

daytime and dispersed at night (Heupel & Simpfendorfer 2005).  Similarly, 

aggregations of 5 to 7 individuals were observed around 16:00 and 06:00 over mid-

deep sandy and mixed substrates in the center of the bay during this study. 

Aggregating individuals, displayed a slow circling movement and did not appear to 

be feeding which supports the hypothesis of Heupel & Simpfendorfer (2005) that this 

behavior might rather be attributed to a predator avoidance strategy than to foraging. 

Research on juvenile lemon sharks showed a selection of warmer near shore 

shallows with a sandy and rocky bottom similar to the results presented here. 

Nevertheless, these sharks simultaneously preferred areas that had low predation 

risk and high prey availability, contrasting to the behavior of blacktip sharks (Franks 

2007; Heupel & Hueter 2002; Morrissey & Gruber 1993a). 
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Conclusions 

Movement patterns and habitat preference both indicate the importance of nursery 

areas to C. limbatus during their first year. Kernel density estimators and analysis of 

the movement behavior identify the high concentration of shark movements within a 

very restricted area, and thus their vulnerability to fisheries inside the protected bay 

(Heupel & Simpfendorfer 2002). The random direction of exploratory behavior 

results in low probability densities (95% KDE) and thus limits the likelihood of being 

caught by artisanal fisheries targeting mullets (Mugilidae) outside the nurseries 

(Andrade & Murillo 2002). The similar size and location of 50% KDEs across all 

individuals suggests the use of these core zones throughout the entire year, which 

would increase the effectiveness of protection measurements for juvenile sharks 

(Garla et al. 2006). These results offer spatial data that can guide the protection of 

precisely defined no-take zones, thus avoiding overstressing the local artisanal 

fisheries. Additional data is currently being generated on the residency time and site 

fidelity of juvenile blacktip sharks in several nurseries of the Galapagos using 

passive acoustic monitoring techniques. Furthermore, the identification of nursery 

habitats of this species is being conducted on the mayor islands of the archipelago 

by the Galapagos National Park Services (GNPS personal communication). The 

resulting information can then be combined with the presented findings to design no-

takes zones across the entire archipelago that particularly protect the juvenile life-

stages of C. limbatus. Since neither industrial fishing nor long-line fisheries are 

allowed in the GMR, the closure of the shark nurseries would ensure the protection 

of all life stages and their habitats, which would be crucial to ensuring effective 

conservation management (Kinney & Simpfendorfer 2009). 
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Appendix I: Tables 

 

Table 1. Summary of movement patterns and home range estimators of 8 C. limbatus tracked. 

Shark 
ID Sex Age class TL 

(cm) 

Hours 
Tracked 

(h) 
ROM 
(ms-1) 

Distance 
(km) LI MCP 

(km2) 
95% KDE 

(km2) 
50% KDE 

(km2) 

1 M YOY 67.5 45 0.26 38.38 0.002 0.32 0.20 0.04 

3 F YOY 70 35 0.38 46.89 0.007 7.39 1.26 0.10 

4 F YOY 66 27 0.14 13.66 0.464 4.76 0.31 0.01 

5 F NEO 64 42 0.18 27.13 0.009 0.20 0.10 0.02 

6 F YOY 72 45 0.16 27.16 0.002 2.07 0.24 0.02 

7 F YOY 68.5 42 0.18 27.81 0.234 8.76 0.59 0.02 

8 M YOY 72 40 0.17 23.65 0.010 0.88 0.25 0.02 

9 M NEO 71.5 34 0.17 20.89 0.008 0.12 0.09 0.02 

  Mean: 69 - 0.20 28.20 0.006 3.06 0.38 0.03 

  SD: 3.0 - 0.1 10.3 0.004 3.47 0.39 0.03 

Tab.1. ROM= Rate of movement, LI= Linearity index, MCP= Minimum convex polygon, KDE= Kernel density estimator.
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Table 2. Difference of ranks and results for multiple comparisons of habitat preference. 

 Shark ID           

Habitat  1  3  5  6  8  9  Mean  Conclusion      

Sand (0-2) -4 -3 -5 -4 -6 -4 ‐4  Preferred     

Mix (0-2) -3 -5 -4 -4 -4 -4 ‐4  Preferred     

Rock (4‐8)  -1 -2 -1 -1 -2 0 ‐1  Preferred     

Mix (2-4) -1 -1 0 -1 0 -1 ‐1  Preferred     

Sand (2-4) 0 0 0 0 1 0 0  Neutral     

Mix (4‐8)  -1 0 1 1 0 0 0  Neutral     

Sand (4‐8)  2 2 3 1 2 2 2  Avoided     

Rock (0-2) 3 3 3 3 2 1 3  Avoided     

Rock (2-4) 5 6 3 5 7 6 5  Avoided     

Tab 2. Difference of ranks for each habitat and each individual shark. The conclusion for the entire sample is based on average 

difference of ranks for all sharks. Results for multiple comparison using Tukey’s post-hoc test: Habitat types underlined by the bar of the 

same color are not significantly different (p<0.05). Habitat types lacking a common bar are significantly different from each other. 
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Appendix II: Figures 

Figure 1. 95% KDE (white outline) and 50% KDE (black outline) for shark #1. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 95% KDE (white outline) and 50% KDE (black outline) for shark #9. 
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Figure 3. 95% KDE (white outline) and 50% KDE (black outline) for shark #3. 
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Figure 4. Habitat map showing the bathymetry of the nursery area. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Habitat map showing the different substrate types of the nursery area. 
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