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Every problem has in it the seeds of its own solution. If you don’t have any problems, you

don’t get any seeds.

- Norman Vincent Peale
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Resumen

La proyección térmica es una de las tecnoloǵıas de deposición más comunes en la industria

de recubrimientos gruesos. Durante la deposición, la deformación térmica entre el sustrato y

las capas del recubrimiento desarrolla esfuerzos residuales. El proceso de deposición capa por

capa genera esfuerzos de temple y granallado que en el equilibrio a través del espesor de la viga

compuesta (recubrimiento/sustrato) genera un perfil de esfuerzos residuales. Bajo supuestos

elásticos lineales, un análisis anaĺıtico de múltiples capas se presenta en este estudio, con el

objetivo de calcular el perfil de esfuerzos después del proceso de deposición y después de enfriar

a temperatura ambiente la viga compuesta. El modelo utiliza datos de curvatura-temperatura

adquiridos durante el seguimiento in-situ del proceso de deposición. El sustrato t́ıpico para

este proceso es una placa delgada que se dobla por la aparición de esfuerzos residuales. Todos

los esfuerzos térmicos producidos durante la deposición debido al calentamiento o enfriamiento

del material compuesto se han tomado en cuenta.

Para la caracterización de post-procesamiento, la viga de material compuesto puede ser

sometido a un ciclo de calentamiento (ciclos de calentamiento-enfriamiento) para obtener

el comportamiento de curvatura-temperatura que depende de las propiedades de expansión

de los materiales, y sus respectivos módulos elásticos en el plano. Un análisis anaĺıtico

para este experimento ex-situ se presenta para determinar las propiedades del material de

revestimiento, espećıficamente 1) módulo de elasticidad en el plano y/o 2) el coeficiente de

expansión térmica (CTE). Esta infomración es de alto interés en la mayoŕıa de los casos

pues estas propiedades son desconocidas para el material de recubrimiento, o son altamente

dependientes del proceso de deposición. Los valores de las propiedades se obtienen como

dependientes de la temperatura.

Por último, un análisis de sensibilidad se presenta con el propósito de determinar los parámetros

óptimos para llevar a cabo pruebas de curvatura aplicadas a recubrimientos. El espesor del

recubrimiento óptimo a espesor del sustrato se sugiere en base a las relaciones de módulos

y de CTE. El objetivo es reducir al mı́nimo los errores relativos en la recopilación de datos

curvatura-temperatura durante los experimentos in-situ o ex-situ.
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Abstract

Thermal spray is one of the most common deposition technologies in the industry of thick

coatings. During deposition, thermal strain misfit between substrate and coating layers devel-

ops residual stresses. The deposition process layer-by-layer generates quenching and peening

stress that balance through-thickness of the composite beam (coating/substrate) to produce

a profile of residual stresses. Under linear elastic assumptions, an analytic multilayer analysis

is presented in this study, aiming to calculate the stress profile after the deposition process

and after cooling to room temperature. The model uses curvature-temperature data acquired

during the in-situ monitoring of the deposition process. The typical sprayed substrate is a

thin plate which bends due the occurrence of residual stresses. All thermal stresses produced

during deposition due to heating or cooling of the composite are taken into account.

For post-processing characterization, the composite beam can be subjected to a heat cycle

(heating-cooling cycles) to obtain the curvature-temperature behavior that is dependent on

the expansion properties of the materials, and their respective in-plane elastic moduli. An

analytic analysis for this ex-situ experiment is presented to determine the properties of the

coating material, specifically 1) in-plane elastic modulus and/or 2) the coe�cient of thermal

expansion (CTE). This is of high interested provided that in most cases, these properties are

unknown for the coating material, or are highly dependent on the processing. The property

values are obtained as temperature dependent.

Finally, a sensitivity analysis is presented for the purpose of determining the optimum pa-

rameters to conduct curvature tests applied to coatings. The optimum coating thickness

to substrate thickness is suggested based on the modulus ratios and CTE’s. The goal is to

minimize relative errors in curvature-temperature data collection during the in-situ or ex-situ

experiments.
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Chapter 1

Introduction

Thermal spray (TS) is a well-known technology to deposit coatings. This technique is used

to deposit coatings that resist wear, friction, heat, corrosion, etc [1–3]. As in every manu-

facturing process, there exists intrinsic residual stresses that may a↵ect the performance of

a coated component. Basically, a typical TS technique incorporates a torch that heats up a

feedstock material, fed into the torch in the form of particles or wire. The material is melted

by the torch and projected to the substrate.

The origin of residual stress in TS is based on thermal contraction, impact, and di↵erential

expansion of the substrate material and the deposit [4–9]. The material is formed as projected

molten droplets are laid down over the substrate in the shape of splats. The splats solidify

and cool down causing a large change in volume that originates residual stresses, tensile in

nature. When particles are projected at high velocities, they impact on substrates creating

plastic deformation and determining compressive residual stresses. When the coating depo-

sition ends, the coated component has gained heat and ends up hot (i.e to 250-400 �C). The

coated component cools down to room temperature, creating a di↵erential contraction as the

coe�cient of thermal expansion (CTE) often di↵ers between substrate and coating. This is

another source of residual stresses that can be either tensile or compressive depending upon

17
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the CTE values. The di↵erential thermal contraction may also occur during processing due

to the periodic rastering of the torch over the part causing heating and cooling cycles.

It is of high interest to measure and reduce residual stresses in the coatings. A common

procedure to measure stresses is to deposit the coatings over thin plates, representative of the

material of the component. Due to the presence of residual stresses, the plate bends uniformly

in such a way that a single radius of curvature characterizes the amount of residual stress

stored in the system. Instrumented sensors have been developed and used for monitoring the

curvature of thin plates in-situ during spraying [10]. A commercial sensor is available and

commercialized by Reliacoat L.L.C (NY, USA). The sensor provides curvature measurements

and temperature in real-time during deposition of coatings. The curvature information is

processed to predict the resultant residual stress condition of the coating, and substrate. The

principle of measurement of residual stresses via the curvature method has been described

and used in several papers [10,11]. However, there is no publication that describes thoroughly

an analytical linear elastic model to obtain the residual stress in a coating/substrate sample

based on the input of curvature-temperature data. The present study is compelling as it

considers the deposit of multilayered coatings (e.g. layers of di↵erent materials), on both

sides of the substrate, thermal changes during processing and cooling, etc.

Concurrently, an analytical linear elastic model to obtain coating properties, specifically CTE,

and elastic modulus, is also described. The monitoring of curvature and temperature can be

used during ex-situ thermal cycles to obtain these properties [5, 10]. The procedure is used

to obtain the properties that are required for the in-situ model of residual stresses.

Tsui-Clyne [12] developed an analytical model to predict the residual stress distribution

in progressively deposited coatings. The model considers as input the amount of intrinsic

(quenching) stress developed. This is often a di�cult magnitude to be estimated a-priori

and thus, it is necessary to measure it. In another contribution, Hsueh [13] developed the

theoretical analysis to solve the stress distribution in a multi-material layered composite beam
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subjected to heating/cooling cycles. In the present study, the analytic linear elastic analysis

for a multi-material layered coating is developed using the theoretical solutions of mechanics

of solids from both [13] and [12]. The solution considers intrinsic and thermal stress; and

the solution of CTE and elastic modulus of a composite plate. A detailed analysis is also

presented to investigate the sensitivity of the procedure to measurement errors that may

arise during the experimental determination of curvature, temperature, thicknesses, etc. The

analysis also suggests optimum combinations of thickness ratios, modulus ratios, etc, between

coating and substrate to enhance the reliability of the measurements.

In Chapter 2 the analytic model for the in-situ experiment is developed. Every layer being

deposited will induce an amount of stress in the composite beam. The intrinsic stress for

a multilayer deposition system is developed in Section 2.1. At the end of the section, a

general solution for a substrate sprayed from both sides is presented. The final residual stress

distribution through the thickness is presented by adding the thermal stress during in-situ

deposition and during cooling, to the intrinsic stress.

The complexity of the residual stress distribution solutions demands the development of a

computer program to reach the solution automatically. Chapter 3 explains the architecture

of the computer model implemented in Matlab R�. Results for several coatings/substrate

systems are presented, for instance NiCr coating deposited over AISI 1018 steel, YSZ onto

aluminium substrate, etc. The architecture of the program is presented in Figure 3.14 and

every routine and subroutine needed in order to calculate the residual stress and the intrinsic

stresses are presented in Appendices B to K.

Chapter 4 presents theoretical solutions to extract the mechanical properties, specifically the

elastic modulus of coatings. Also, a novel application of the curvature method to obtain the

CTE of the coating is presented by analyzing the ex-situ experimental data of temperature

and curvature of the desired coating deposited onto two di↵erent substrates. An example of

the deposition of NiCr over Al6061 and over SS316 is presented.



Chapter 2

Residual Stress

Residual stresses are commonly generated during coating processing. As the coating is de-

posited over one side of a thin plate, the coating/substrate system adopts a curvature to

balance the moment produced by the intrinsic stresses: quenching and peening stress. [14]

Often during coating deposition thermal gradients occur due to cooling of the part. This is

a source of thermal stresses that usually are not taken into account in previous analysis [12]

but are considered here. Lately, during the coating processing there will be a residual stress

distribution through the thickness due to deposition stress (intrinsic + thermal) and cool-

ing stress (only thermal). An analytic model for residual stress distribution for a multilayer

progressively deposited coating systems is presented.

It is assumed that both substrate and coatings behave as linear elastic solids. In addition to

the analytic model presented in [13] and [12], here the analytical solution is applicable to:

1. a multilayer system subjected to stress of di↵erent materials

2. a system subjected to spraying where intrinsic and thermal stresses produce a profile

3. the curvature caused by the stresses is feed into the model as a known variable

20
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A typical curvature-temperature data as a function of time for a coating processing is pre-

sented in Figure 2.1.
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Figure 2.1: Curvature-temperature data in coating processing

2.1 Analytic Model for Intrinsic Stresses (quenching + peen-

ing) during spraying

The stress developed during the coating processing is due to the misfit strain caused by

quenching and peening stress. An equally biaxial stress state (�
x

= �
z

), with negligible

through thickness stress (�
y

= 0), is assumed. The analysis will be developed for a strip

shaped substrate where the length is assume to be 10 times longer than the width (L/b ⇡ 10

as in Figure 2.2). Therefore, the analysis will be concentrated in determining the stress

through the thickness with a major dimension in the x-direction. The intrinsic stress will
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induce a strain in the x-direction (Figure 2.2), due to a Poisson e↵ect. [12] The net strain in

the x-direction can thus be written as:

"
x

E = �
x

� ⌫(�
y

+ �
z

) = �
x

(1� ⌫)

therefore,

�
x

"
x

=
E

1� ⌫
= E

eff

This e↵ective Young’s modulus value is going to be used in the following equations.

L

b

�

y

⇠ 0

�

x

�

z

Figure 2.2: Stress conditions during deposition

2.1.1 Deposition of the first layer

Once the first layer is deposited on the substrate, a tensile force acts on the deposit while

a compressive force of the same magnitude acts on the substrate1. This pair of equal and

opposite forces generates a bending moment. Both forces act on the neutral axis of both

substrate and deposit. Figure 2.3 shows a representation of the applied forces. Note that the

neutral axis for both substrate and deposit are their middle sections. The interface between

the substrate and the deposit is the origin for the y axis.

Note that the lever arm for the bending moment is t
s

/2 + t1/2 with respect to y = 0, then

M1 = F1

✓
t
s

2
+

t1
2

◆
(2.1)

1
The force can be tensile or compressive depending upon the dominance of quenching or peening. For a

general solution the equations are derived as tensile.
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Figure 2.3: Force acting product of the deposition of the first layer

On the other hand, the resultant force due to the bending strain component must be zero,

then: [13]

Z
t1

�t

s

�b dy = 0

b

Z
t1

�t

s

E
y

" dy = 0

b

Z
t1

�t

s

E
y

(y � �1)�1dy = 0

Where E
y

is the e↵ective Young’s modulus as a function of the position, �1 is the neutral

axis of the composite beam, b is the substrate width, and �1 is the change of curvature

generated by the pure bending moment after deposition of the first layer.
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
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2
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�E
s

✓
t2
s

2
+ �1ts

◆
+ E1

✓
t21
2
� �1t1

◆
= 0

�E
s

t2
s

+ E1t
2
1

2
� �1(Es

t
s

+ E1t1) = 0

Finally, the neutral axis position for the composite beam is:

�1 =
�E

s

t2
s

+ E1t
2
1

2(E
s

t
s

+ E1t1)



24

The composite beam sti↵ness can be calculated as follows:

S1 = b

Z
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�t

s

E
y

(y � �1)
2dy

= b

✓Z 0

�t

s
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0
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2dy
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3
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E
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��31 + t3
s

+ 3t2
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�1 + 3t
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�21 + �31
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+ E1
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3
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S1

b
= E

s

t
s

✓
t2
s

3
+ t

s

�1 + �21

◆
+ E1t1

✓
t21
3
� t1�1 + �21

◆

Thus, the change of curvature can be calculated as:

�1 =
M1

S1
(2.2)

Since curvature is used as an input, the force generated by the misfit strain can be calculated

using Equations 2.1 and 2.2 as follows:

F1

b
=

M1

b

✓
t
s

+ t1
2

◆�1

=
S1

b
�1

✓
t
s

+ t1
2

◆�1

Let �(s,1)(y) be the stress distribution in the substrate as a result of the deposition of the

first layer. This stress is composed of the portion due to the curvature with respect to the

neutral axis (�E
s

�1(y� �1)) and the portion due to the intrinsic stresses (� F1
bt

s

). Thus, for

y 2 [�t
s

, 0] the distribution can be calculated as:

�(s,1)(y) = �F1

bt
s

� E
s

�1(y � �1)
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Similarly, let �(1,1)(y) be the stress distribution in the first layer. For y 2 [0, t1] the distribu-

tion is:

�(1,1)(y) =
F1

bt1
� E1�1(y � �1)

2.1.2 Deposition of the second layer

Once the first layer has solidified on the substrate, the second layer will generate again a

residual stress due to misfit strain. A tensile force F2 acting on the new coating layer and the

substrate + first layer beam of equal and opposite magnitude generates a bending moment.

Note that F2 is not necessarily equal to F1, this will depend on the actual curvature measured.

This force will act on the neutral axis of the composite beam (�1) and the middle section of

the new layer. Figure 2.4 shows a representation of the applied forces.

�1

Substrate

1st Layer
2nd Layer

neutral axis

t2

t1

t

s

F2

F2

F2

F2

y

Figure 2.4: Force acting product of the deposition of the second layer

Note that the lever arm for the bending moment is (t1 � �1) + t2/2 with respecto to y = 0,

then

M2 = F2(t1 � �1 + t2/2) (2.3)

The resultant force due to the bending strain component must be zero, then: [13]

Z
t1+t2

�t

s

E
y

(y � �2)�2dy = 0
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Where E
y

is the e↵ective Young’s modulus as a function of the position, �2 is the neutral axis

of the new composite beam and �2 is the curvature generated by deposition of the second

layer.
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Finally, the neutral axis position for the composite beam is:
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+ E1t
2
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The composite beam sti↵ness can be calculated as follows:

S2 = b
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E
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Thus, the change of curvature can be computed as:

�2 =
M2

S2
(2.4)

Since curvature is used as an input, the force generated by the misfit strain can be calculated

using Equations 2.3 and 2.4 as follows:

F2

b
=

M2

b
(t1 � �1 + t2/2)

�1

=
S2

b
�2(t1 � �1 + t2/2)

�1

In order to calculate the stress distribution as a result of the misfit strain caused by the

deposition of the second layer, it is necessary to compute the equivalent substrate and deposit

thickness in the composite beam as follows:

t(s,2) =
E

s

t
s

+ E1t1
E

s

and t(1,2) =
E

s

t
s

+ E1t1
E1

Same as before, let �(s,2)(y) be the stress distribution in the substrate after deposition of the

second layer. For y 2 [�t
s

, 0]:

�(s,2)(y) = �F1

bt
s

� E
s

�1(y � �1)
| {z }

due to first layer

� F2

bt(s,2)
� E

s

�2(y � �2)

| {z }
due to second layer



28

Similarly, let �(1,2)(y) the stress distribution in the first layer after the deposition of the

second layer. For y 2 [0, t1]:

�(1,2)(y) =
F1

bt1
� E1�1(y � �1)

| {z }
due to first layer

� F2

bt(1,2)
� E1�2(y � �2)

| {z }
due to second layer

Finally, for y 2 [t1, t1 + t2] the stress in the second layer can be written as:

�(2,2)(y) =
F2

bt2
� E2�2(y � �2)

2.1.3 Deposition of the nth layer

Lets define the following variable:
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where t0 = 0. Then, bending moment is:
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Recall that �0 = t
s

/2. The resultant force due to the bending strain component must be zero,

then:
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Finally, the neutral axis position for the composite beam is:

�
n

=

�E
s

t2
s

+
nX

j=1

E
j

t
j

(2h
j�1 + t

j

)

2

0

@E
s

t
s

+
nX

j=1

E
j

t
j

1

A

The composite beam sti↵ness can be calculated as follows:
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Thus, the change of curvature can be calculated as:

�
n

=
M

n

S
n

(2.6)

The normal force generated by the misfit strain can be calculated using Equations 2.5 and

2.6, and using the curvature as a known input as follows:
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In order to calculate the stress distribution as a result of the misfit strain caused by the

deposition of the nth layer, it is necessary to compute the equivalent substrate and deposit

thickness in the composite beam as follows:
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where t(s,n) is the equivalent substrate thickness for the composite beam after deposition of

n � 1 layers, note that t(s,1) = t
s

. Similarly, t(i,n) is the equivalent deposit thickness for the

ith layer in the composite beam after deposition of n� 1 layers. Note that t(n,n) = t
n

. Then,

the stress distribution in the substrate after deposition of n layers is:
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for y 2 [�t
s

, 0]. Similarly, for y 2 [h
i�1, hi] the stress distribution in the ith layer after

deposition of n layers can be calculated as:
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2.1.4 Deposition of m layers on the other side of the substrate

The analytical analysis for the deposition of n layers on one side of the substrate has already

been shown. The solution to deposit m layers of di↵erent materials on the other side of the

substrate is developed as follows. The sequence of calculation will be the same as before.

The stress distribution when the mth layer is deposited on the other side of the substrate will

be presented. Figure 2.5 illustrates how the deposition of the mth layer in the opposite side

generates a tensile/compressive force and a bending moment.
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Figure 2.5: Force acting product of the deposition of the mth layer on the opposite side

Same as before, the following variable is defined:

h
m

=
mX

j=0

t
j

where t
j

is the thickness of the jth layer in the opposite side. Then, the lever arm for the

bending moment is:

M
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m�1 + t
s

+ t
m

/2)

In this case �0 = �
n

, where �
n

is the neutral axis after the deposition of the nth layer in one

side, as described in Section 2.1.3. The resultant force due to the bending strain component

must be zero, then:
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Remark 2.1. Note that if n layers are deposited on one side of the substrate and then, the

same n layers are deposited on the other side of the substrate then, �
m

= �t
s

/2, which means

there would not be any bending moment acting on the composite beam during heat cycle.

The neutral axis would agree with the geometrical centroid.

The composite beam sti↵ness with respect to the neutral axis �
m

can be calculated as:
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The change of curvature can be calculated as:
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S
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The force generated by the misfit strain can be computed as follows:
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In order to calculate the stress distribution as a result of the misfit strain caused by the

deposition of the mth layer, a equivalent substrate and deposit thickness in the composite
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beam is computed as follows:
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where t(s,n+m) is the equivalent substrate thickness for the composite beam. Similarly, t(i,n+m)

is the equivalent deposit thickness for the ith layer in the composite beam, it includes the

already deposited n layers.

Then, the stress distribution in the substrate after deposition mth layer is:
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for y 2 [�t
s

, 0], where �(s,n)(y) is the same as calculated in Section 2.1.3.

Similarly, the stress distribution in the ith layer can be calculated as:
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for y 2 [h
i�1, hi], where �(i,n)(y) is the same as calculated in Section 2.1.3.

On the other hand, for y 2 [�h
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] the stress distribution on the kth layer on

the other side of the substrate is:
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2.2 Analytic Model for Thermal Stress (during deposition and

post deposition)

In thermal spray, the substrate temperature is raised due to the torch heating. In most cases,

the temperature reached is not constant and it presents variations (sometimes not negligible)

as the touch moves depositing several layers. Due to torch rastering and free or forced cooling

by convection these temperature gradients (specially the first onset of spraying session) induce

a misfit strain due to CTE mismatch, which produces a thermal stress distribution through

the beam thickness. This CTE misfit generates a curvature change �
T

which depends on

the temperature gradient during processing. Once the deposition is completed, the same

e↵ect occurs during cooling. A typical graph of a praying session can be found on Figure 2.1.

during deposition some � responds to thermal stresses and not only due to intrinsic stresses.

The goal here is to calculate that curvature portion and subtract it from the experimental

data to obtain the exact � that responds to intrinsic stresses.

2.2.1 Thermal Stresses of n layers on the substrate

The strain in the multilayer system can be decomposed into a uniform component due to ther-

mal mismatch product of the tensile/compressive forces and a bending component (product

of the bending moment). [13] It can be calculated as:

"
n

(y) = c
n

� (y � �
n

)�(T,n)

where c
n

is the uniform strain component when the nth layer is deposited due to thermal

mismatch, �
n

is the neutral axis position for the composite beam, and �(T,n) is the change

in curvature due to temperature di↵erence, when the beam has n layers of the coating.
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As an equilibrium requirement, the resultant force due to the uniform strain component must

be zero: [13]
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Therefore, the uniform strain component is:
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The normal stress in the substrate and the coating are related to strains by: [13]
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where �(s,n) is the stress distribution in the substrate, and �(i,n) is the stress distribution in

the ith layer after the deposition/cooling stage of the nth layer, respectively. Finally, the sum

of the bending moment with respect to the bending axis is zero, [13] therefore:
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Using this expression it is possible to obtain the change in curvature due to a temperature

gradient, as follows:
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Therefore, the curvature change due to the temperature di↵erence is:
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2.2.2 Thermal Stresses of m layers on the other side of the substrate

Similarly to Section 2.2.1, the resultant force due to the uniform strain component must be

zero:
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Therefore, the uniform strain component is:

c
m

=

0

@E
s

t
s

↵
s

+
nX

j=1

E
j

t
j

↵
j

+
mX

j=1

E
j

t
j

↵
j

1

A�T
m

E
s

t
s

+
nX

j=1

E
j

t
j

+
mX

j=1

E
j

t
j

(2.8)

The normal stresses in the substrate and the layers are related to strains by:
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where �(s,n+m)(y) is the stress distribution in the substrate, and �(i,n+m) is he stress distri-

bution on the ith layer after deposition of the mth layer. Finally, the sum of the bending

moment with respect to the bending axis is zero, [13] therefore:
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Using this expression it is possible to obtain the change in curvature as follows:
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Therefore, the curvature change due to temperature di↵erence is:
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Remark 2.2. Recall from Section 2.2.1 that
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If the same number of layers on both sides of the substrate is applied and each layer is made

of the same material with the same thickness, the numerator in the curvature Equation 2.9

can be computed as:
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The uniform strain component can be simplified from Equation 2.8 as:
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Therefore:
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Thus, the total curvature change from the beginning of the process until coatings are deposited

in both side of the substrate is zero.

2.3 Final Stress Distribution

Since all this analytic analysis so far assumes a linear elastic behavior for the substrate and

the coating, the superposition principle can be used to add the stresses developed in the

deposition (intrinsic: quenching+penning, and thermal during deposition) and cooling (only

thermal) stages.

For this section, the calculation is applied for a substrate coated with n layers in one side of

the substrate.

2.3.1 Deposition Stage

The deposition process generates a residual stress distribution due to the quenching and

peening e↵ects and the CTE misfit. Since the stress distribution is linear for the substrate
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(due to linearity assumptions) it su�ces to calculate the top and bottom stresses, and then

interpolate the values for points in the inside. Let �
s

(1, n) = �(s,n)(0) as in Section 2.1.3; i.e

the stress at the top part of the substrate after the nth layer has been deposited. Similarly,

let �
s

(2, n) = �(s,n)(�t
s

) as in Section 2.1.3; i.e the stress at the bottom part of the substrate

after the nth layer has been deposited.

For thermal stress distribution, recall from Section 2.2.1 that �(s,n)(y) is the stress induced

on the substrate by deposition of the nth layer. Let �(s,T )(1, n) = �(s,n)(0); i.e the stress at

the top part of the substrate due to the nth temperature gradient required to deposit the nth

layer. Similarly, let �(s,T )(2, n) = �(s,n)(�t
s

) be the stress at the bottom part of the substrate

due to the nth temperature gradient.

Let �
s

(1) be the stress at the top part of the substrate (y = 0) at the end of the coating

precess, it can be calculated as follows:
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Let �
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(2) be the stress at the bottom part of the substrate (y = �t
s

) at the end of the coating

process, it can be calculated as follows:
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For the stress distribution on the coatings layers, the stress of the middle point of each layer

is determined. Since the thickness of the layers are relatively small in comparison with the

thickness of the substrate, the middle point stress can be taken as an approximated average
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of the stress distribution on that specific layer. For the ith layer, the midpoint is located in

y = h
i

� t
i

/2. Let �
d

(i, n) = �(i,n)(hi� t
i

/2) as in Section 2.1.3; i.e the stress at the midpoint

of ith layer after the nth layer has been deposited.

For thermal stress distribution on the deposit, recall from Section 2.2.1 that �(i,n)(y) is the

stress induced on the ith layer by deposition of the nth layer. Let �(d,T )(i, n) = �(i,n)(hi�t
i

/2);

i.e the stress at midpoint of the ith layer due to the nth temperature gradient required to

deposit the nth layer.

Let �
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(i) be the stress at the midpoint of the ith layer (y = h
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/2) at the end of the coating

process, it can be calculated as follows:
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2.3.2 Cooling stage: post spraying

After the n layers have been deposited on the substrate, the composite beam will cool down

until it reaches room temperature. In this case, thermal stress is developed by a temperature

gradient �T
c

. This gradient induces a change in curvature �
c

. Subindex c corresponds to

cooling.

Let �(s,T c)(1, n) the the stress at the top part of the substrate due to the cooling process after

deposition of the nth layer, and let �(d,T c)(i, n) be the stress at the midpoint of the layer i

once it is cooled down after deposition of the nth layer.
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Let �(s,c)(1) be the stress at the top part of the substrate (y = 0) at the end of the cooling

process, it can be calculated as follows:

�(s,c)(1) = �(s,T c)(1, n)

�(s,c)(1) = E
s

(c
n

� ↵
s

�T
c

+ �
n

�
c

)

Let �(s,c)(2) be the stress at the bottom part of the substrate (y = �t
s

) at the end of the

cooling process, it can be calculated as follows:

�(s,c)(2) = �(s,T )(2, j)

�(s,c)(2) = E
s
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n
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s
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For the coating layers, Let �(d,c)(i) be the stress at the midpoint of the ith layer (y = h
i

�t
i

/2)

at the end of the cooling process, it can be calculated as follows:

�(d,c)(i) = �(d,T c)(i, n)

�(d,c)(i) = E
i

(c
n

� ↵
i

�T
c

� (h
i

� t
i

/2� �
n

)�
c

)

2.4 Multilayer model of a coating of a single material

Suppose that the same material is deposited over a substrate in n di↵erent layers. All coating

layers can be assumed identical as they are deposited continuously and using a robotic arm.

The following section shows a simplified version of the equations stated in Sections 2.1.3

and 2.2.1 when the modulus of each layer can be generalized for a single material, where:

E
i

= E
d

8i 2 {1, · · · , n} and t
i

= t
d

8i 2 {1, · · · , n}. Recall that h
n

=
P

t
j

= n(t
d

). For

proofs of summation identities refer to Appendix A.
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The neutral axis position is:
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The equivalent thickness is:
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The stress distribution determined during the deposition stage is:
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2.5 Application: Prediction of intrinsic stresses in bulky parts

based on curvature experiment

Consider coating processes in which the substrate is sti↵ and thick enough to resist changes

in curvature; i.e the curvature change after every deposition is negligible. In such case there

is no need to measure the change in curvature. Nevertheless, the curvature method can still

be applied to calculate the stress distribution in the following way:

1. Calculate the intrinsic stress using the curvature method for a experiment in which the

same substrate and the coating material are used.

2. Use the intrinsic stress as an input (instead of the curvature) for the bulky part in order

to calculate the force generated during the process.

3. Neglect the stress due to the curvature change and calculate only the one generated by

the normal force.

Neglecting the stress caused by the curvature in equations described in Section 2.3, the final

stress distribution is:
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First of all, note that the stress distribution in the substrate is constant and the stress

distribution in the entire ith layer is constant too. Recall that the force F
i

is generated due

to quenching and peening misfit; therefore, even though there is no curvature in the system

there is a misfit strain that causes a tensile/compressive force to the layers and the substrate.
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Considering the linear elastic case, each new layer has to agree with the stress-strain equation

�
q

= �"E
d

where �
q

is the intrinsic stress and �" is the misfit strain. [12]

2.5.1 Deposition of the first layer

Consider the coating process showed in Figure 2.6. The misfit strain generates a pair of equal

and opposite forces acting on the substrate and the first layer, each one generates a strain "
s

and "
d

respectively.

t1

t
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Substrate

First Layer

"

d

"
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F1

F1

F1
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M1 M1

Figure 2.6: Normal strain generated in deposition of the first layer

Thus, the strain compatibility equation is:

�"1 = "
d

� "
s

=
F1

bt1E1
+
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s

E
s

=
�(q,1)

E1
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Therefore, the value of the intrinsic stress can be calculated as follows:
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2.5.2 Deposition of the second layer

Similarly, the deposition of the second layer generates a misfit strain �"2 which causes a pair

of normal forces acting on both, the composite beam (substrate + first layer) and the second

layer. Thus, the strain compatibility equation is:
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Where E(s,2) is the equivalent Young’s modulus for the composite beam.
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Therefore, the value of the quenching stress can be computed as follows:
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2.5.3 Deposition of the nth layer

Finally, after the deposition of the nth layer the strain compatibility equation is:
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Where E(s,n) is the equivalent Young’s modulus for the composite beam.
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Therefore, the value of the intrinsic stress can be calculated as follows:
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2.5.4 Deposition of m layers on the other side of the substrate

Following the same logic, the quenching stress developed on the mth layer on the other side

of the substrate will be calculated as follows:
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2.5.5 Final stress distribution

This is method can only be use if the experimental deposition system agrees with the real

deposition system; in other words, the substrate material and the coating material have to be

the same for both process and they have to be deposited using the same techniques in both

scenarios.

Experimentally it is possible to predict �(q,n) using the equations stated above. To apply

this analysis to a problem where the change of curvature is negligible, the intrinsic stress

is determined from the curvature method. Then the normal force acting on each layer is

calculated. Therefore, using the experimental values of �(q,n) the force per width is determined

as follow:
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Finally, this value is replaced in equations stated at the beginning of this section in order to

get the stress distribution of the coating process.

For an example of this application refer to Section 3.6.1.



Chapter 3

Computer Model

The program presented in this section is an automatic stress distribution solver for a linear

elastic multilayer deposition system, taking in consideration deposition and cooling stages and

using as input data curvature and temperature measurements during the coating processing

(in-situ). In the program, it is possible to divide the whole process in several deposition

cycles. Each deposition cycle is constituted by a continuous deposition stage and a continuous

cooling stage. It is assumed that a robotic arm will be used for the deposition process. In

consequence, the thickness of each layer in a deposition cycle is assumed to be uniform. Figure

3.1 shows how the stages are divided in the process.

The necessity of an automatic program is due to the complexity of the stress distribution

that can be developed in the deposit layers. Although the stress distribution is linear in the

substrate, it is not necessarily linear in the coating (note that the distribution is linear in each

layer, but not in the whole coating). In this study only the stress corresponding to the middle

point of each layer is taken into count in order to predict how the stress distribution results

in the composite beam. Figure 3.2 shows a possible scenario for the final stress distribution

in a particular deposition process.

52
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Figure 3.2: Schematic description of stress distribution through the thickness of the coating-
substrate system
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The software implemented in Matlab R� based on the analytic model presented in this study

fulfills the following goals (as of Version 2.0):

• Calculates residual stresses and thermal stresses as a result of the coating processing.

• Allows for data acquisition and selection for further calculations.

• Solves multilayer system of various materials divided by several deposition cycles.

• Generate user-friendly results and graphics.

• Integration of curvature/temperature data produced by sensors (e.g. ICP-in-situ coat-

ing property sensor).

3.1 Data Acquisition

The curvature method applied to the measurements of the evolution of residual stress in

thermal spray coatings requires acquisition of two variables: Temperature and Curvature.

These variables allow to calculate the stress distribution from linear elastic mechanics with

few assumptions and the feed of few parameters. Laser sensors and thermocouples set on the

back of the substrate retrieve data during the thermal spraying. This data can be read by

the program as an array. Each new layer contributes with a new pair of data (, T ).

Tsui and Clyne in their paper [12] describe the logic of a computer program used to solve

the multilayer deposition of a single coating material, which was developed in Section 2.4. It

is noteworthy the the authors use the quenching stress as an input to the program and they

calculate the curvature using that information. Whereas in this study, the curvature data is

fed in the program to calculate the stress and every process e↵ect in thermal stresses is also

taken into account. Table 3.1 compares the input data required for both models.
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Tsui-Clyne [12] Multilayer [present study]

Mechanical Elastic Modulus (E
s

) Elastic Modulus (E
s

)

Properties Poisson Ratio (⌫
s

) Poisson Ratio (⌫
s

)

Substrate CTE (↵
s

) CTE (↵
s

)

Mechanical Elastic Modulus (E
d

) Elastic Modulus (E
d

)

Properties Poisson Ratio (⌫
d

) Poisson Ratio (⌫
d

)

Deposit CTE (↵
d

) CTE (↵
d

)

Specimen Width (b)

Dimensions Substrate Thickness (H) Substrate Thickness (t
s

)

Layer Thickness (w) Layer Thickness (t
d

)

Main Input Quenching Stress (�
q

) Curvature change (�)

parameters/ Cooling Temperature (T
c

) Instantaneous temperature (T )

data Number of Layers (n) Number of Layers (n)

Deposition One As necessary

session

Table 3.1: Input data comparison between Tsui-Clyne model and multilayer analytic linear
elastic model

Appendix C shows how data can be read from an external database. Every coating material

has its deposition session and each one has its deposition and cooling stages. Every coating

material has its own data set. In the example in Appendix C there is only one coating material,

for this reason there is only one set of variables (Time, Temperature, and Curvature). Once

the data is read from the external file it is filtered depending of how exact the measures of

the set of variables is needed. In the example he have chosen to take data every 0.25 seconds.

The last step in data acquisition is to define which points represent better the deposition and

cooling process as the data itself is produced with some noise. The user has to choose the

time coordinate at which one layer starts being deposited and one where the deposition of

that layer is finished. In the example, as we have two deposition sessions the set points of

interest: time h11, temp h11, kappa h11 to represent the first deposition session (0.4 mm

of NiCr coating on Steel) and the set of points of interest time h12, temp h12, kappa h12

to represent the second deposition session (another 0.4 mm of NiCr coating). For the points
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of interest at the cooling stage it is necessary to determine the start and the end points for

this stage, and decide the number of data points desired from this stage. In the example, the

data from the cooling stages is taken every 15 degrees Celsius.

Figure 3.3 shows how data is read from the curvature-temperature file. In this case, the

black line represents the data once filtered out (simply reducing the number of points as data

input) and the blue asterisks represent the points of interest chosen by the user. Note that

since there were deposited 10 layers in each deposition cycle there are 11 points of interest in

each deposition stage.
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Figure 3.3: Points of interest used as input for calculations

3.2 Thermal Stress during deposition routine

Because of the thermal gradient during processing, some thermal stress during deposition

occurs due to CTE mismatch. The curvature produced by the composite beam due to the

thermal gradient generated by the heat input of a deposited layer can be calculated. The

temperature gradient �T
i

corresponding to the deposition of the ith layer is the di↵erence of

the values T
i�1 and T

i

acquired in the reading routine. Note that only temperature data is

needed, Figure 3.4 shows the temperature gradient they produces the thermal stresses during
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deposition. Appendix E shows how this routine calculates thermal stresses and curvature

variation (�
T

) at the end of every layer application.

3.3 Evolving Stress routine

For this calculation; curvature data is required from the data acquisition routine, and from

the thermal stress during deposition routine. The curvature change �
i

corresponding to the

deposition of the ith layer is the di↵erence of the values 
i�1 and 

i

acquired in the reading

routine minus the curvature change due to thermal stress (calculated in Equation 2.7). The

curvature data recorded by the lasers correspond to both thermal and intrinsic stresses.

Therefore, the curvature calculated in the thermal stress during deposition routine for each

layer is subtracted from the one acquired from the lasers, i.e � = �
recorded

��
T

, Figure

3.4 shows how total curvature change is calculated. Appendix F describes this calculation.

The final result is the residual stress distribution in the substrate and the deposit in each

layer applied due to the quenching and peening, which in this paper is defined as evolving

stress.

3.4 Intrinsic Stress routine

As pointed in Section 2.5, quenching stress (or evolving stress in a more general description)

has to be calculated in the experimental model in order to be capable of calculate stress

distribution in a real engineering problem where curvature change is negligible. In addition

to this method, Stoney’s approximation is also calculated in order to compare the exact

method proposed in this study with the approximation given buy the following equation: [14]

�
SF

=
E

s

t2
s

6

�

�t
d
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Figure 3.4: Data acquired in deposition

Where �
SF

is the average stress due to the deposition coating in the layer of thickness �t
d

,

E
s

is the e↵ective Young modulus for the substrate, t
s

is the substrate thickness, and �

is the curvature change due to the deposition. Recall that the main assumption of Stoney

formula is that the coating layer is much less thicker than the substrate. Appendix G shows

the calculation of both linear elastic model and approximated intrinsic stress.

3.5 Thermal Stress during cooling post-deposition routine

Appendix D shows the logic for calculating the stress distribution in the cooling stage. Every

two consecutive data pair (
i�1, Ti�1) and (

i

, T
i

) determines an interval i whose data pair

associated is (�
i

,�T
i

). Using the program, the output generated is the stress �(d,c)(i) (as

in Section 2.3.2). Figure 3.3 shows how the intervals are taken for calculations.
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3.6 Results

Stress distribution at the end of the process is shown as a plot of stress as a function of

the thickness position. Appendix H shows how the figures are constituted. As an example,

the deposition process of NiCr over AISI 1018 steel is presented. HVOF has been used for

the deposition and two deposition sessions have been accomplished. Each deposition cycle

counts with a 10-layer continuous deposition stage and a cooling stage. As shown in Figure

3.3, there will be 11 points of interest for each deposition stage and the number of points of

interest for the cooling stage varies according to how much the temperature drops. Appendix

B shows the Main window in which the user has to establish the process parameters. Table

3.2 summarizes properties and parameters used for calculations. In Chapter 4, the method

of calculating the elastic modulus and CTE for the deposit is discussed.

Mechanical Properties

E [GPa] ↵ [10�6K�1] ⌫ Thickness [mm] Number of Passes

Substrate 200 12.2 0.29 2.431 —

Deposit 140 14.0 0.30 0.893 20

Table 3.2: Parameters used in deposition of NiCr on AISI1018

The final step is the plotting routine and it takes all the three di↵erent stress values calculated

before (thermal stress during deposition, evolving stress, and thermal stress during cooling)

and adds them together in order to calculate the final stress distribution. The result is

presented in Figure 3.5.

This routine also provides a comparison between the intrinsic stress calculated and the Stoney

formula approximation as shown in Figure 3.6.
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Figure 3.5: Final stress distribution in thermal spray NiCr on AISI 1018
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Figure 3.6: Comparison between analytic linear elastic model and Stoney formula (NiCr)
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3.6.1 Prediction for bulky parts

Suppose that the same deposition process described above is used on a much thicker substrate.

The same 20 layers of NiCr will be deposited on AISI1018 which thickness is 25 mm. In

this case, assumptions made in Section 2.5 are met. Therefore, using the intrinsic stress

distribution described in Figure 3.6 it is possible to predict the stress distribution resulting

after the same deposition process on the bulky part.

Figure 3.7 shows the residual stress distribution calculated using equations in Section 2.5

and the intrinsic stress distribution shown in Figure 3.6. It is assumed that the curvature-

temperature data is the same as in Figure 3.3.
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Figure 3.7: Final stress distribution in thermal spray NiCr on AISI 1018 (bulky)
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3.6.2 Multilayer system with two di↵erent coating materials

As an example for a multilayer system where more two coating materials are deposited on

a substrate, thermal spray of NiCrAlY followed by YSZ on a substrate of Inconel 718 has

been analyzed. Figure 3.8 shows the curvature-temperature input data as a function of time.

The first deposition session corresponds to 9 layers of NiCrAlY, the second deposition session

corresponds to 10 layers of YSZ. A robotic arm was used for the deposition.
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Figure 3.8: Points of interest used as input for calculations in multilayer case with two
coating materials

Table 3.3 summarizes the parameters used for the residual stress calculation in the computer

program.

Mechanical Properties

E [GPa] ↵ [10�6K�1] ⌫ Thickness [mm] Number of Passes

Substrate 205 13.0 0.30 1.652 —

NiCrAlY Deposit 96.5 12.5 0.30 0.194 9

YSZ Deposit 40 10.0 0.20 0.511 10

Table 3.3: Parameters used in deposition of YSZ+NiCrAlY on Inconel 718

Figure 3.9 shows the stress distribution obtained at the end of the coating processing. In

addition, Figure 3.10 shows the intrinsic stress developed during the deposition session.
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Figure 3.9: Final stress distribution in thermal spray YSZ+NiCrAlY on Inconel 718
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Figure 3.10: Comparison between analytic linear elastic model and Stoney formula
(YSZ+NiCrAlY)
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3.6.3 Multilayer system with one coating material

As an example for a multilayer system where only one coating material has been deposited,

thermal spray of YSZ on a substrate of Aluminium has been analyzed. Figure 3.11 shows the

curvature-temperature input data as a function of time. The deposition session corresponds

to 10 layers of YSZ deposited by a robotic arm.
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Figure 3.11: Points of interest used as input for calculations in multilayer case with one
coating material

Table 3.4 summarizes the parameters used for the residual stress calculation in the computer

program.

Mechanical Properties

E [GPa] ↵ [10�6K�1] ⌫ Thickness [mm] Number of Passes

Substrate 70 23.0 0.33 2.25 —

Deposit 40 10.0 0.20 0.644 10

Table 3.4: Parameters used in deposition of YSZ on Aluminium

Figure 3.12 shows the stress distribution obtained at the end of the coating processing. In ad-

dition, Figure 3.13 shows the intrinsic stress developed at di↵erent positions in the deposition

stage.
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Figure 3.12: Final stress distribution in thermal spray YSZ on Aluminium
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Figure 3.13: Comparison between analytic linear elastic model and Stoney formula (YSZ)
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3.7 Architecture

Since this program has been implemented in Matlab R�, every routine has been defined as a

function. The Main program is typical *.m file calling the other “main” functions which also

call another more basic functions. This architecture has been chosen due to the e�ciency

granted by Matlab R� to work with functions. If another language shall be desired (Python

or C# for example) it is recommended to conceive the main routines as classes instead of

functions. Figure 3.14 shows how all the sequence of functions *.m are related and how the

main routines call the subroutines. Appendices I, J, and K contains the subroutines needed

for calculating the stress distribution at every point of the process (thermal stress during

deposition, evolving stress, and thermal stress during cooling).

young moduli.m

Out: Modulus Assignation

neutral axis.m

Out: Neutral Axis Position

strain uniform.m

Out: Uniform Strain

curvature.m

Out: Curvature Change

stress sust.m

Out: Stress on Substrate

stress depo.m

Out: Stress on Deposit

sti↵.m

Out: Beam Sti↵ness

force.m

Out: Normal Force

quench.m

Out: Intrinsic Stress

stoney.m

Out: Stoney Approximation

CTE Stress c.m

Out:
Stress Distribution
Young Modulus

CTE Stress h.m
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Stress Distribution
Curvature

Evolving Stress.m

Out: Stress Distribution

Intrinsic.m

Out: Stress Distribution

Main.m

Main Program

Plot.m

Out: Result Graphics

Data.cvs

In:
Curvature
Temperature

Figure 3.14: Program Diagram



Chapter 4

Calculation of Properties for

Coating Materials by the Curvature

Method

Consider two samples in which the same coating material has been deposited on two di↵erent

substrates. After the coating process, both composite beams are subjected to heating/cooling

ex-situ cycles while temperature-curvature data is acquired. Let E(s,1),↵(s,1), ⌫(s,1) be the

mechanical properties for the first substrate, E(s,2),↵(s,2), ⌫(s,2) be the mechanical properties

for the second substrate, and E
d

,↵
d

be the mechanical properties for the coating material.

E
eft

is the e↵ective elastic modulus for the substrate and it is calculated as follows:

E
eff

=
E

s

1� ⌫
s

For now on, E(s,1), E(s,2), and E
d

are all e↵ective modulus of each material. From Section

2.4, the curvature change in a cooling/heating cycle post-spraying for the thermal cycle of

67
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the first composite beam can be calculated as:

�1 =
6E(s,1)t(s,1)Ed

h(n,1)(t(s,1) + h(n,1))(↵(s,1) � ↵
d

)�T1

E2
(s,1)t

4
(s,1) + 4E(s,1)t

3
(s,1)Ed

h(n,1) + 6E(s,1)t
2
(s,1)Ed

h2(n,1) + 4E(s,1)t(s,1)Ed

h3(n,1) + E2
d

h4(n,1)

and for the second composite beam:

�2 =
6E(s,2)t(s,2)Ed

h(n,1)(t(s,2) + h(n,2))(↵(s,2) � ↵
d

)�T2

E2
(s,2)t

4
(s,2) + 4E(s,2)t

3
(s,2)Ed

h(n,2) + 6E(s,2)t
2
(s,2)Ed

h2(n,2) + 4E(s,2)t(s,2)Ed

h3(n,2) + E2
d

h4(n,2)

In equations above t(s,i) is the substrate deposit for beam i and h(n,i) = nt(d,i) is the coating

thickness for beam i. Let:

A
i

= 6E(s,i)t(s,i)h(n,i)(t(s,i) + h(n,1))

B
i

= h4(n,i)

C
i

= 4E(s,i)t
3
(s,i)h(n,i) + 6E(s,i)t

2
(s,i)h

2
(n,i) + 4E(s,i)t(s,i)h

3
(n,i)

D
i

= E2
(s,i)t

4
(s,i)

F
i

=
�

i

A
i

�T
i

for i 2 {1, 2}. Thus, the following system of equations which variables are E
d

and ↵
d

can be

constructed: 8
>><

>>:

F1 =
E

d

↵(s,1) � E
d

↵
d

B1E2
d

+ C1E
d

+D1

F2 =
E

d

↵(s,2) � E
d

↵
d

B2E2
d

+ C2E
d

+D2

Now, let X
i

= F
i

B
i

, Y
i

= F
i

C
i

� ↵(s,i), and Z
i

= F
i

D
i

. Then the system of equations can be

written as: 8
><

>:

X1E
2
d

+ Y1E
d

+ Z1 = �E
d

↵
d

X2E
2
d

+ Y2E
d

+ Z2 = �E
d

↵
d
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Subtracting both equation the following quadratic equation is obtained:

aE2
d

+ bE
d

+ c = 0

where a = X1 �X2, b = Y1 � Y2, c = Z1 � Z2. Usually, the e↵ective elastic modulus has a

magnitude of 1011 Pascals, i.e E(s,i) ⇠ O(1011); in the other hand, the thickness are usually

given in millimeters, i.e t(s,i), h(n,i) ⇠ O(10�3), and the coe�cient of thermal expansion is

given in micro units, i.e ↵(s,1) ⇠ O(10�6). The change of curvature is usually less than 1

m�1 and the temperature in the thermal cycle is around 200 �C. Then �
i

⇠ O(10�1), and

�T1 ⇠ O(102).

It is easy to show that A
i

⇠ O(102), then F
i

⇠ O(10�5). Similarly, B
i

⇠ O(10�12), C
i

⇠

O(10�1), and D
i

⇠ O(1010). Finally, a ⇠ O(10�17), b ⇠ O(10�6), and c ⇠ O(105).

Note that a ⌧ c. To avoid catastrophic cancellation while solving the quadratic equation in

a computer software, it is recommendable to use the linear approximation (a ⇡ 0); otherwise,

the quadratic formula will solve it. In conclusion, to calculate the mechanical properties of

the coating material it su�ces to solve the following equations1:

E
d

=
�b�

p
b2 � 4ac

2a

↵
d

= �
X1E

2
d

+ Y1E
d

+ Z1

E
d

It is noteworthy that if only one sample is available for the thermal cycle test, either the

modulus or the CTE must be known or assumed. The elastic modulus in thermal spray

coatings is regularly a fraction (0.3 - 0.8) of the bulk material. Therefore, the CTE is most

commonly assumed to be of the bulk material.

1
The sign of the discriminant in the quadratic equation has been determined experimentally, the plus sign

will give negative answers for the elastic modulus
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4.1 Determination of mechanical properties for NiCr

Elastic modulus and coe�cient of thermal expansion has been calculated as a function of

temperature for a NiCr coating. In order to calculate such properties two di↵erent materials

has been used as substrates for NiCr, aluminum Al6061 and stainless steel SS316. Each

composite beam has been taken to two consecutive heating/cooling thermal cycles as shown

in Figure 4.1. The linear elastic behavior is clear in the experimental results.
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Figure 4.1: Thermal cycles for NiCr on both, Al6061 and SS316

Parameters used in equations described previously are summarized in Table 4.1. In order to

improve the precision of the answer, the coe�cient of thermal expansion has been considered

as temperature dependent.

Property Material

NiCr Al6061 SS316

Elastic Modulus [GPa] — 68.9 193

Poisson Ratio — 0.33 0.33

CTE [10�6K�1] — 22.76 + 0.0185T 16.5 + 0.0071T

Thickness (1st beam) [mm] 0.2330* 3.1455 —

Thickness (2nd beam) [mm] 0.2316* — 1.4902

Table 4.1: Parameters used for thermal cycle calculations

*
Samples were sprayed simultaneously. Processing manner is similar to the processing described in [14]
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The system of equations for E
d

and ↵
d

is solved for di↵erent temperature intervals. The

temperature range of the experiment (between 20 and 180 Celsius degrees) is divided in

smaller segments in order to have several point to interpolate a linear equation describing the

dependence in temperature of the properties. If the partition is finer then the results can be

noisy, but if the partition is too rough then accuracy can be lost. In this case the selected

intervals are of 20�C each one in both cycles. Results can be observed in Figure 4.2 and the

resultant dependency can be stated as:

E
d

= 195.9 + 0.1647T [GPa]

↵
d

= 12 + 9.335⇥ 10�3T [10�6C�1]
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Figure 4.2: Elastic modulus and CTE as a function of temperature

Remark 4.1. Note that this elastic modulus is in fact the e↵ective elastic modulus for an

in-plane geometry.



Chapter 5

Sensitivity Analisys

Consider a heating/cooling ex-situ experiment as in Chapter 4. In this section, the sensitivity

of the measurements of curvature-temperature with respect to the material properties of the

substrate and the deposit is analyzed. First, recall the curvature equation deduced in Section

2.4:

� =
6E

s

t
s

E
d

h
n

(t
s

+ h
n

)(↵
s

� ↵
d

)�T

E2
s

t4
s

+ 4E
s

t3
s

E
d

h
n

+ 6E
s

t2
s

E
d

h2
n

+ 4E
s

t
s

E
d

h3
n

+ E2
d

h4
n

where h
n

is the total coating thickness at the end of the deposition process. Any infinitesimal

measurement along the thermal cycle curvee denotes a curvature change d as a response to

a temperature gradients dT . This ex-situ experiment is linear elastic, and therefore the curve

 vs T is a straight line as in Figure 4.1. This misfit strain due to temperature di↵erence

between substrate and deposit is �" = (↵
s

� ↵
d

)�T . The slope of the experimental curve

M = d/d" is constant along the process.

In this section, the sensitivity of the thermal cycling  vs T test is studied in order to:

1. Maximize the magnitude of the beam deflection in the test to aver the resolution of the

technique.
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2. Deduce the error of the model when high sensitivity is expected with respect to the

ratio of the thickness (t
s

/h
n

) or the ratio of the elastic moduli between coating and

substrate (E
s

/E
d

).

Thus, the slope M can be calculated as:

M =
6E

s

t
s

E
d

h
n

(t
s
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+ 6E
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E
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s

h
n

+ 6t2
s

h2
n

+ 4t
s

h3
n

+
E

d

E
s

h4
n

=

6

✓
1

h
n

+
1

t
s

◆

E
s

E
d

t2
s

h2
n

+ 4
t
s

h
n

+ 6 + 4
h
n

t
s

+
E

d

E
s

h2
n

t2
s

=
1

t
s

6

✓
t
s

h
n

+ 1

◆

E
s

E
d

t2
s

h2
n

+ 4
t
s

h
n

+ 6 + 4
h
n

t
s

+
E

d

E
s

h2
n

t2
s

Let’s define:

x =
t
s

h
n

and y =
E

s

E
d

Then the slope turns out to be:

M =
1

t
s

6(x+ 1)

yx2 + 4x+ 6 + 4
1

x
+

1

yx2

=
1

t
s

f(x, y)

In this analysis, a substrate thickness must be given (t
s

= constant). Since the slope is a

function of x and y, i.e M = 1/t
s

f(x, y), it is necessary to establish how M varies when x

and y vary. In most of the cases t
s

> h
n

and E
s

> E
d

; thus, the analysis focuses on studying

the variation when x 2 [0.5, 30] and y 2 [0.5, 10] (typical experimental values).

Figure 5.1 shows the function f(x, y) for the values considered for x and y. Note that when x

and y tend to the maximum values (x ! 30 and y ! 10), the value of the function tends to
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zero. This means that when the thickness of the coating is much thiner than the substrate,

and the substrate is significantly sti↵er than the coating the e↵ect of bending is negligible.
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Figure 5.1: 3D plot for the function f(x, y) for x 2 [0.5, 30] and y 2 [0.5, 10]

Figure 5.2 shows a contour plot of the function f(x, y). Note that the maximum value of the

function is reached at the point (x, y) = (2.7, 0.5) which is f
max

⇡ 1.
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To determine the sensitivity of and how M varies when x varies it is necessary to calculate

the following partial derivative:
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Similarly, to calculate how M varies if y varies it su�ces to compute:
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Figure 5.3 shows the function M
x

(x, y) for the values considered for x and y. Note that for

x � 5 the value for M
x

is almost constant (and equal to zero). Similarly, Figure 5.4 shows

the plot for function M
y

(x, y); in this case, for y � 5 the value for M
y

is almost constant

(and equal to zero).
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Figure 5.3: Plot for the function M
x

(x, y) for x 2 [0.5, 30] and y 2 [0.5, 10]

Recall that d" = (↵
s

� ↵
d

)dT , and ↵ ⇠ O(10�6), T ⇠ O(102); thus, d" ⇠ O(10�4). In the

other hand, d ⇠ O(10�1), and t
s

⇠ O(10�3). Since f(x, y) = t
s

d

d"
then f(x, y) ⇠ O(1).

Lets consider an error less than 5% as negligible; in other words, if M
x

,M
y

< 0.05 then the

error is considered as negligible while measuring M . Previously, it was concluded that for

x � 5 and y � 5, both functions (M
x

and M
y

) reach a constant value; which is actually less
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Figure 5.4: Plot for the function M
y

(x, y) for x 2 [0.5, 30] and y 2 [0.5, 10]

that the 5% relative error as it can be appreciated in Figure 5.5. Therefore, if x � 5 and

y � 5 then M
x

= M
y

⇡ 0.
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Figure 5.5: Negligible region for M
x

(x, y) and M
y

(x, y)

Consider the region where x 2 [0.5, 5] and y 2 [5, 10]. In order to reduce at the minimum

the functions M
x

and M
y

, the point (x, y) must be chosen such that it lies around zero in

both plots, M
x

(x, y) and M
y

(x, y). Recall from Figure 5.4 that in this region almost every

value of M
y

(x, y) is constant, thus it su�ces to stay near zero for M
x

(x, y). Figure 5.6 shows

a band where M
x

(x, y) = 0± 0.05, in which any value is acceptable for minimizing the error.
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In conclusion, if x 2 [0.5, 5] and y 2 [5, 10], a point (x, y) should be picked in such a way that

it lies within the band described previously in Figure 5.6, note that the x axis was drawn in

logarithmic scale.
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Figure 5.6: Values for M
x

(x, y) and M
y

(x, y) for x 2 [0.5, 5] and y 2 [5, 10]

Consider the region where x 2 [5, 30] and y 2 [0.5, 5]. Same as before, the point (x, y) needs

to be chosen in such a way that it lies around zero in both plots, M
x

(x, y) and M
y

(x, y).

Recall from Figure 5.3 that in this region almost every value of M
x

(x, y) is constant, thus

it su�ces to stay around zero for M
y

(x, y). Note in Figure 5.7 that there is no line where

M
y

= 0, but there is one where M
y

= �0.05. In Figure 5.4 it is possible to see that for values

above the line M
y

= �0.05 the values are nearly constant. Thus, trying to minimize the

relative error in the region where x 2 [5, 30] and y 2 [0.5, 5], it is necessary to pick a point

above the line M
y

= �0.05. Note that the x axis was drawn in logarithmic scale.

Let x 2 [0.5, 5] and y 2 [0.5, 5]. Figure 5.8 shows the values of the function f(x, y) in this
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Figure 5.7: Values for M
x

(x, y) and M
y
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region, Figure 5.9 shows the values of the function M
x

(x, y), and Figure 5.10 shows the values

of the function M
y

(x, y).
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Figure 5.8: Plot of function f(x, y) for x 2 [0.5, 5] and y 2 [0.5, 5]

To select optimum values of (x, y)and minimize the error (M
x

(x, y),M
y

(x, y)) in the heating

cycle test, the point (x, y) must be chosen where M
x

= 0 and M
y

= 0. Figure 5.11 shows
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Figure 5.9: Plot of function M
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(x, y) for x 2 [0.5, 5] and y 2 [0.5, 5]
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Figure 5.10: Plot of function M
y

(x, y) for x 2 [0.5, 5] and y 2 [0.5, 5]

asymptotic lines for M
x

= 0 and for M
y

= 0. Note that there is not a point of intersection

where M
x

= M
y

= 0, so it is needed to find a point that lies within the regions A = {(x, y) |

M
x

(x, y) = 0±0.05} and B = {(x, y) | M
y

(x, y) = 0±0.05}. Finally, to minimize the relative

error in the region where x, y 2 [0.5, 5] it is necessary to pick a point (x, y) 2 A \ B. Figure

5.11 shows the region where such point should be chosen, note that the x axis was drawn in

logarithmic scale.

In conclusion, given a substrate and a coating material, it is possible to determine the coating

thickness to minimize the error while measuring  and T in an ex-situ experiment. Defining

x = t
s

/h
n

and y = E
s

/E
d

, typically the following values: x 2 [0.5, 30] and y 2 [0.5, 10] are
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Figure 5.11: Values for M
x

(x, y) and M
y

(x, y) for x, y 2 [0.5, 5]

expected. Table 5.1 presents a quick way to use Figures 5.6, 5.7 and 5.11 presented in this

section. Finally, pick x such that minimizes the value for M
x

and M
y

simultaneously.

Region Action

Value of y Desirable value of x

y 2 [5, 10] x 2 [5, 30] Pick any point (x, y), M
x

= M
y

⇡ 0

x 2 [0.5, 5] Pick a point near the line M
x

= 0 in Figure 5.6

y 2 [0.5, 5] x 2 [5, 30] Pick a point above the line M
y

= �0.05 in Figure 5.7

x 2 [0.5, 5] Pick a point where M
x

and M
y

are minimal in Figure 5.11

Table 5.1: Actions to take given the value of y = E
s

/E
d

Example 5.1. Suppose that we have a metal sheet of stainless steel SS316 (E
s

= 193GPa)

with thickness of 3mm. We want to coat this substrate with NiCr (E
d

= 140GPa) and we

would like to know how much deposit we should use in order to obtain accurate measurements

during a given coating process. First of all, we get the value for the e↵ective modulus ratio,

i.e y = 1.38 (supposing that both materials have the same Poisson ratio). Check Figure 5.11.
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Note that there is not any point with y = 1.38 such that (x, y) 2 A \ B where A = {(x, y) |

M
x

(x, y) = 0± 0.05} and B = {(x, y) | M
y

(x, y) = 0± 0.05}, then we are forced to favor the

region where M
x

is minimum (since this region is the narrowest) so we choose the point on

the line M
x

= 0.05. This point is around 100.21 ⇡ 1.62 (recall that 2 ⇡ 100.3). Finally, since

t
s

= 3 and x = t
s

/h
n

we conclude that the coating thickness should be h
n

= 1.85mm.

Remark 5.1. Since the analysis takes di↵erential intervals d and dT , it is possible to apply

the same conclusions to the in-situ experiment described in Chapter 2 where the curve  vs

T is not a straight line.



Chapter 6

Conclusion

Tsui-Clyne analytical model for intrinsic stress and Hsueh analytical model for thermal stress

have been used as a starting point for the project. Intrinsic and thermal stress have been

added together in the same analysis for a more real model of stress distribution. Results

allow to track the stress distribution in the composite beam at any stage of the entire coating

process (including deposition stage and cooling stage). A multilayer linear elastic computer

model for di↵erent coating materials in the same process has been implemented in Matlab R�.

Moreover, a multilayer linear elastic analysis for coating at both sides of the substrate has

been developed.

The results obtained indicate that there is a relatively high contribution of residual stress

in the deposition of the first layer in each deposition session. Although this e↵ect is due to

both, intrinsic and thermal stress, intrinsic stress is predominant. The residual stress plots

indicates that in between di↵erent materials there is a tensile force acting.

Temperature-Curvature data in an ex-situ experiment is enough to determine the mechanical

properties for the coating material as a function of temperature. A linear interpolation

is enough to guarantee an accurate value of mechanical properties in a given interval. Data

83
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filtering is necessary in order to reduce the sensitivity of the slope d/dT . Sensitivity analysis

allows to determine the appropriate relation between substrate and deposit in order to get

an accurate measurements of curvature-temperature regardless the sensor accuracy.

The curvature method allows to experimentally calculate the intrinsic stress distribution for

a given deposition process of a certain number of layers for di↵erent coating materials onto

a given substrate. This stress can be applied to calculate the residual stress distribution for

coating process where curvature measures can be neglected (bulky substrate. This type of

processing is really common in the coating industry.

Finally, the curvature method gives a way to select the coating thickness required to minimize

the relative errors while taking curvature-temperature measurements in ex-situ and in-situ

experiments.



Appendix A

Proof of Summation Identities
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Appendix B

Program Main Routine

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Analytic Linear�Elastic Analisis of Stress Distribution in %
3 % Thermal Spray Coatings %
4 % Multilayer System %
5 % Bryan Maldonado %
6 % Version 2.0 %
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 %% Program Initialization
10

11 clear all
12 close all
13

14 Process = Thermal Spray: NiCr on AISI 1018 ;
15 filename = NiCr on AISI1018.csv ;
16

17 %% Substrate Data
18

19 E s = 200e9; % Elastic Modulus [Pa]
20 a s = 12.2e�6; % CTE [Cˆ�1]
21 nu s = 0.29; % Poisson Ratio
22 t s = 2.431e�3; % Substrate Thickness [m]
23

24 %% Deposits Data
25

26 E d1 = 140e9; % Elastic Modulus [Pa]
27 a d1 = 14e�6; % CTE [Cˆ�1]
28 nu d1 = 0.3; % Poisson Ratio
29 N 1 = 20; % Number of passes
30 w 1 = 0.893e�3; % Substrate Thickness [m]
31

32 %% Deposit Properties summary
33

34 E d1 = E d1/(1�nu d1);
35

36 E d = [E d1 E d1];
37 a d = [a d1 a d1];
38 N = [N 1/2 N 1/2];
39 w = [w 1/2 w 1/2];
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40

41 %% Process Data
42

43 [˜,˜,˜,˜, Temp h, Kappa h, ˜, Temp c, Kappa c] = Read Data2(filename);
44

45 %% Thermal Stress in Cooling Stage
46

47 [sigma s c, sigma d c, E d] = CTE Stress c(N, w, a d, E d, t s, a s, ...
48 E s, nu s, Kappa c, Temp c);
49

50 %% Thermal Stress in Coating Stage
51

52 [sigma s h, sigma d h, dkappa h] = CTE Stress h(N, w, a d, E d, t s, ...
53 a s, E s, nu s, Temp h);
54

55 %% Evolving Stress in Coating Stage
56

57 [sigma s, sigma d] = Evolving Stress(N, w, E d, t s, E s, nu s, ...
58 Kappa h, dkappa h);
59

60 %% Intrinsic Stress
61

62 [sigma q, sigma st] = Intrinsic(N, w, E d, t s, E s, nu s, Kappa h, dkappa h);
63

64 %% Results
65

66 Plot Result(N, w, t s, sigma s, sigma d, sigma s h, sigma d h, sigma s c, ...
67 sigma d c, sigma q, sigma st, Process, filename);



Appendix C

Data Acquirement

1 % Input Data
2 % Data acquired from external program
3

4 function [Time, Temp, Kappa, Time h, Temp h, Kappa h, Time c, Temp c, ...
5 Kappa c] = Read Data2(filename)
6 %% Curvature � Temperature Input
7

8 fileID = fopen(filename);
9 Data = textscan(fileID, repmat( %f ,1,3), Delimiter , , , ...

10 HeaderLines ,1, EmptyValue ,NaN);
11 fclose(fileID);
12

13 Time = Data{1};
14 Temp = Data{2};
15 Kappa = Data{3};
16

17 %% Signal filtering
18

19 Time( isnan(Time) ) = [];
20 Temp( isnan(Temp) ) = [];
21 Kappa = Kappa( 1:length(Time) );
22

23 delta t = 0.25;
24 tempo1 = Time(1):delta t:Time(end);
25 index = zeros( size(tempo1) );
26

27 for i = 1:length(tempo1);
28 [˜, index(i)] = min( abs( Time � tempo1(i) ) );
29 end
30

31 Time = [Time(index) ; Time(end) ];
32 Temp = [Temp(index) ; Temp(end) ];
33 Kappa = [Kappa(index); Kappa(end)];
34

35 %% Points of interes
36

37 [˜,ini] = min( abs(Time � 57.1) );
38 [˜,r1] = min( abs(Time � 68.3) );
39 [˜,r2] = min( abs(Time � 81.1) );
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40 [˜,r3] = min( abs(Time � 92.2) );
41 [˜,r4] = min( abs(Time � 103.3) );
42 [˜,r5] = min( abs(Time � 114.6) );
43 [˜,r6] = min( abs(Time � 126.1) );
44 [˜,r7] = min( abs(Time � 137.1) );
45 [˜,r8] = min( abs(Time � 147.1) );
46 [˜,r9] = min( abs(Time � 158.3) );
47 [˜,r10] = min( abs(Time � 168.4) );
48 [˜, last] = min( abs(Time � 276.8) );
49

50 time h11 = Time ( [ini r1 r2 r3 r4 r5 r6 r7 r8 r9 r10] );
51 kappa h11 = Kappa( [ini r1 r2 r3 r4 r5 r6 r7 r8 r9 r10] );
52 temp h11 = Temp ( [ini r1 r2 r3 r4 r5 r6 r7 r8 r9 r10] );
53

54 Time c = Time(r10:last);
55 Temp c = Temp(r10:last);
56 Kappa c = Kappa(r10:last);
57 index = divide(Temp c, 15);
58

59 time c11 = Time c ( index );
60 kappa c11 = Kappa c( index );
61 temp c11 = Temp c ( index );
62

63 [˜,ini] = min( abs(Time � 331.8 ) );
64 [˜,r1] = min( abs(Time � 343.8) );
65 [˜,r2] = min( abs(Time � 354.1) );
66 [˜,r3] = min( abs(Time � 365.3) );
67 [˜,r4] = min( abs(Time � 378.6) );
68 [˜,r5] = min( abs(Time � 390.1) );
69 [˜,r6] = min( abs(Time � 399.2) );
70 [˜,r7] = min( abs(Time � 410.1) );
71 [˜,r8] = min( abs(Time � 422.6) );
72 [˜,r9] = min( abs(Time � 433.9) );
73 [˜,r10] = min( abs(Time � 443.9) );
74

75 time h12 = Time ( [ini r1 r2 r3 r4 r5 r6 r7 r8 r9 r10] );
76 kappa h12 = Kappa( [ini r1 r2 r3 r4 r5 r6 r7 r8 r9 r10] );
77 temp h12 = Temp ( [ini r1 r2 r3 r4 r5 r6 r7 r8 r9 r10] );
78

79 Time c = Time(r10:end);
80 Temp c = Temp(r10:end);
81 Kappa c = Kappa(r10:end);
82 index = divide(Temp c, 15);
83

84 time c12 = Time c ( index );
85 kappa c12 = Kappa c( index );
86 temp c12 = Temp c ( index );
87

88 %% Curvature � Temperature Data
89

90 Time h = {time h11 time h12};
91 Temp h = {temp h11 temp h12};
92 Kappa h = {kappa h11 kappa h12};
93

94 Time c = {time c11 time c12};
95 Temp c = {temp c11 temp c12};
96 Kappa c = {kappa c11 kappa c12};
97

98 end



Appendix D

Cooling Stress Routine

1 % CTE Stresses cooling
2 %
3 % Matrix
4 % sigma s CTE(i,2) = Stress at the top and bottom of the substrate after
5 % the i�th temperature gradient
6 % sigma d CTE(i,j) = Stress at the midpoint of the j�th layer of the deposit
7 % after the i�th temperature gradient
8 % Vector
9 % E d(j) = Young Modulus for the j�th layer

10 %
11 % Units: [Pa]
12

13 function [sigma s CTE, sigma d CTE, E d] = CTE Stress c(N, w, a d, E d, ...
14 t s, a s, E s, nu s, Kappa, Temp c)
15

16 % Parameters
17

18 E s = E s/(1�nu s);
19 t d = w./N;
20

21 dkappa = cell(1, length(N));
22 dtemp = cell(1, length(N));
23

24 for i = 1:length(N)
25 dkappa{i} = diff(Kappa{i});
26 dtemp{i} = diff(Temp c{i});
27 end
28

29 % Elastic modulus assignation
30

31 E d = young moduli(N, E d);
32

33 % Neutral axis position
34

35 delta = neutral axis(N, t d, E d, t s, E s);
36

37 % Uniform strain component per temperature difference
38

39 uniform = strain uniform(N, t d, E d, a d, t s, E s, a s);
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40

41 % Stress distribution on the substrate
42

43 sigma s CTE = stress sust CTE(N, E s, a s, t s, uniform, delta, ...
44 dkappa, dtemp);
45

46 % Stress distribution on the deposit
47

48 sigma d CTE = stress depo CTE(N, E d, a d, t d, uniform, delta, ...
49 dkappa, dtemp);
50

51 end



Appendix E

Heating Stress Routine

1 % CTE Stresses heating
2 %
3 % Matrix
4 % sigma s CTE(i,2) = Stress at the top and bottom of the substrate after
5 % deposition of the i�th layer
6 % sigma d CTE(i,j) = Stress at the midpoint of the j�th layer of the deposit
7 % after deposition of the i�th layer
8 % Units: [Pa]
9 %

10 % Vector
11 % dkappa(j) = Change of curvature due to the j�th layer
12 % Units: [mˆ�1]
13

14

15 function [sigma s CTE, sigma d CTE, dkappa] = CTE Stress h(N, w, a d, ...
16 E d, t s, a s, E s, nu s, Temp h)
17 % Parameters
18

19 E s = E s/(1�nu s);
20

21 dtemp = cell(1, length(N));
22

23 for i = 1:length(N)
24 dtemp{i} = diff(Temp h{i});
25 end
26

27 t d = w./N;
28

29 % Neutral axis position
30

31 delta = neutral axis(N, t d, E d, t s, E s);
32

33 % Uniform strain component per temperature difference
34

35 uniform = strain uniform(N, t d, E d, a d, t s, E s, a s);
36

37 % Curvature change due to temperature difference
38

39 dkappa = curvature(N, t d, E d, a d, t s, E s, a s, dtemp, uniform, delta);
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40

41 % Stress distribution on the substrate
42

43 sigma s CTE = stress sust CTE(N, E s, a s, t s, uniform, delta, ...
44 dkappa, dtemp);
45

46 % Stress distribution on the deposit
47

48 sigma d CTE = stress depo CTE(N, E d, a d, t d, uniform, delta, ...
49 dkappa, dtemp);
50

51 end



Appendix F

Evolving Stress Routine

1 % Intrinsic Stresses
2 % Matrix
3 % sigma s(i,2) = Stress at the top and bottom of the substrate after
4 % deposition of the i�th layer
5 % sigma d(i,j) = Stress at the midpoint of the j�th layer of the deposit
6 % after deposition of the i�th layer
7 % Units: [Pa]
8

9 function [sigma s, sigma d] = Evolving Stress(N, w, E d, t s, E s, ...
10 nu s, Kappa h, dkappa h)
11 % Parameters
12

13 E s = E s/(1�nu s);
14 t d = w./N;
15 dkappa = cell(1, length(N));
16 for i = 1:length(N)
17 dkappa{i} = diff(Kappa h{i}) � dkappa h{i};
18 end
19

20 % Neutral axis position
21

22 delta = neutral axis(N, t d, E d, t s, E s);
23

24 % Composite beam stiffness per width
25

26 Sigma b = stiff(N, t d, E d, t s, E s, delta);
27

28 % Tensile/Compresive force per width
29

30 F b = force(N, t d, t s, dkappa, delta, Sigma b);
31

32 % Stress distribution on the substrate
33

34 sigma s = stress sust(N, t d, E d, t s, E s, dkappa, delta, F b);
35

36 % Stress distribution on the deposit
37

38 sigma d = stress depo(N, t d, E d, t s, E s, dkappa, delta, F b);
39 end
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Appendix G

Intrinsic Stress Routine

1 % Quenching Stress
2 % Vector
3 % sigma q(i) = quenching stress at the layer i
4 % sigma st(i) = Stoney approximation stress at the layer i
5 % Units: [Pa]
6

7 function [sigma q, sigma st] = Intrinsic(N, w, E d, t s, E s, nu s, ...
8 Kappa h, dkappa h)
9

10 % Parameters
11

12 E s = E s/(1�nu s);
13 t d = w./N;
14 dkappa = cell(1, length(N));
15

16 for i = 1:length(N)
17 dkappa{i} = diff(Kappa h{i}) � dkappa h{i};
18 end
19

20 % Neutral axis position
21

22 delta = neutral axis(N, t d, E d, t s, E s);
23

24 % Composite beam stiffness per width
25

26 Sigma b = stiff(N, t d, E d, t s, E s, delta);
27

28 % Tensile/Compresive force per width
29

30 F b = force(N, t d, t s, dkappa, delta, Sigma b);
31

32 % Quenching Stress
33

34 sigma q = quench(N, t d, E d, t s, E s, F b);
35

36 % Stoney approximation
37

38 sigma st = stoney(N, t d, t s, E s, dkappa);
39 end
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Appendix H

Plotting Results Routine

1 % Plotting Results
2

3 function Plot Result(N, w, t s, sigma s, sigma d, sigma s h, sigma d h, ...
4 sigma s c, sigma d c, Sigma q, Sigma st, Process, filename)
5

6 [Time, Temp, Kappa, Time h, Temp h, Kappa h, Time c, Temp c, Kappa c] ...
7 = Read Data2(filename);
8

9 y s = [�t s 0];
10 h 0 = 0;
11 t d = w./N;
12

13 sigma s = sigma s + sigma s h;
14 sigma d = sigma d + sigma d h;
15

16 y d = [];
17

18 time h = [];
19 temp h = [];
20 kappa h = [];
21

22 time c = [];
23 temp c = [];
24 kappa c = [];
25

26 sigma q = [];
27 sigma ev = [];
28

29 for i = 1:length(N)
30

31 h n = h 0 + N(i)⇤t d(i);
32 y d = [y d, h 0 + t d(i)/2:t d(i):h n � t d(i)/2];
33 h 0 = h n;
34

35 time h = [time h; Time h{i}];
36 temp h = [temp h; Temp h{i}];
37 kappa h = [kappa h; Kappa h{i}];
38

39 time c = [time c; Time c{i}];
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40 temp c = [temp c; Temp c{i}];
41 kappa c = [kappa c; Kappa c{i}];
42

43 sigma q = [sigma q; Sigma q{i}];
44 sigma ev = [sigma ev; Sigma st{i}];
45

46 end
47

48 % Curvature Plot
49

50 figure
51 plot(Time , Kappa, black , ...
52 time h, kappa h, ⇤b , ...
53 time c, kappa c, ⇤b )
54 title(Process, fontsize ,20, FontWeight , bold , Interpreter , latex )
55 xlabel( Time (s) , fontsize , 18, Interpreter , latex )
56 ylabel( Curvature (m$ˆ{�1}$) , fontsize , 18, Interpreter , latex )
57 legend1 = legend( Experimental , In the model );
58 set(legend1, Interpreter , latex , FontSize ,14)
59 grid on
60

61 % Temperature Plot
62

63 figure
64 plot(Time , Temp, black , ...
65 time h, temp h, ⇤b , ...
66 time c, temp c, ⇤b )
67 title(Process, fontsize ,20, FontWeight , bold , Interpreter , latex )
68 xlabel( Time (s) , fontsize , 18, Interpreter , latex )
69 ylabel( Temperature ($ˆ\circ$C) , fontsize , 18, Interpreter , latex )
70 legend1 = legend( Experimental , In the model );
71 set(legend1, Interpreter , latex , FontSize ,14)
72 grid on
73

74 % Coat Final Stresses Plot
75

76 figure
77 hold on
78 h1 = plot( y s⇤1e3, sigma s(end,:)⇤1e�6, red );
79 plot( y d⇤1e3, sigma d(end,:)⇤1e�6, red );
80 h2 = plot( y s⇤1e3, sigma s c(end,:)⇤1e�6, blue );
81 plot( y d⇤1e3, sigma d c(end,:)⇤1e�6, blue );
82 h3 = plot( y s⇤1e3, (sigma s(end,:)+sigma s c(end,:))⇤1e�6, black );
83 plot( y d⇤1e3, (sigma d(end,:)+sigma d c(end,:))⇤1e�6, black );
84 title(Process, fontsize ,20, FontWeight , bold , Interpreter , latex )
85 xlabel( Distance from Interface (mm) , fontsize ,18, Interpreter , latex )
86 ylabel( Residual Stress (MPa) , fontsize ,18, Interpreter , latex )
87 leg1 = legend([h1,h2,h3], Coating Stress , Post�Dep. Stress , Final Stress );
88 set(leg1, Interpreter , latex , FontSize ,14)
89 grid on
90

91 % Stoney Formula Comparison
92

93 figure
94 plot(y d⇤1e3, sigma q⇤1e�6, black , ...
95 y d⇤1e3, sigma ev⇤1e�6, blue )
96 title(Process, fontsize ,20, FontWeight , bold , Interpreter , latex )
97 xlabel( Distance from Interface (mm) , fontsize ,18, Interpreter , latex )
98 ylabel( Intrinsic Stress (MPa) , fontsize ,18, Interpreter , latex )



98

99 legend1 = legend( Linear�elastic Model , Stoney Approx. );
100 set(legend1, Interpreter , latex , FontSize ,12)
101 grid on
102 end



Appendix I

Subroutines for Thermal Stress
Distribution

I.1 Young modulus assignation

1 % Young Modulus assignation
2 % Vector
3 % E d(i) = Elastic Modulus for the layer i
4 % Units: [Pa]
5

6 function E d = young moduli(N, E)
7

8 E d = cell(1, length(N));
9

10 for i = 1:length(N)
11

12 E d{i} = E(i)⇤ones(N(i),1);
13

14 end
15 end

I.2 Neutral axis position

1 % Neutral Axis Position
2 % Vector
3 % delta(i) = Neutral axis after deposition of the i�th layer
4 % Units: [m]
5

6 function delta = neutral axis(N, t d, E d, t s, E s)
7

8 sum1 = 0;
9 sum2 = 0;

10 h 0 = 0;
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11 h n = 0;
12 delta = cell(1:length(N));
13

14 for i=1:length(N)
15

16 h n = h n(end) + t d(i)⇤(1:N(i)) ;
17 h ant = [h 0; h n(1:end�1)];
18 h 0 = h n(end);
19

20 sum1 = sum1(end) + t d(i)⇤cumsum( E d{i}.⇤(2⇤h ant + t d(i)) );
21 sum2 = sum2(end) + t d(i)⇤cumsum( E d{i} );
22

23 delta{i} = ( �E s⇤t sˆ2 + sum1) ./ ( 2⇤(E s⇤t s + sum2) );
24

25 end
26 end

I.3 Uniform strain component

1 % Uniform misfit strain per temperature difference
2 % Vector
3 % uniform(i) = Strain due to the temperature difference i
4 % Units: [Cˆ�1]
5

6 function uniform = strain uniform(N, t d, E d, a d, t s, E s, a s)
7

8 sum1 = 0;
9 sum2 = 0;

10 uniform = cell(1,length(N));
11

12 for i=1:length(N)
13 sum1 = sum1(end) + t d(i)⇤a d(i)⇤cumsum( E d{i} );
14 sum2 = sum2(end) + t d(i)⇤cumsum( E d{i} );
15

16 uniform{i} = ( E s⇤t s⇤a s + sum1 )./( E s⇤t s + sum2 );
17

18 end
19 end

I.4 Curvature

1 % Curvature
2 % Vector
3 % dkappa(i) = Curvature change after deposition/temperature gradient i
4 % Units: [mˆ�1]
5

6 function dkappa = curvature(N, t d, E d, a d, t s, E s, a s, dtemp, ...
7 uniform, delta)
8

9 sum1 = 0;
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10 sum2 = 0;
11 h 0 = 0;
12 h n = 0;
13 dkappa = cell(1, length(N));
14

15 for i = 1:length(N)
16

17 h n = h n(end) + t d(i)⇤(1:N(i)) ;
18 h ant = [h 0; h n(1:end�1)];
19 h 0 = h n(end);
20

21 sum1 = sum1(end) + cumsum( E d{i}.⇤(2⇤h ant + t d(i)) );
22 sum2 = sum2(end) + cumsum( E d{i}.⇤(3⇤h ant.ˆ2 + 3⇤h ant⇤t d(i) + ...
23 t d(i)ˆ2) );
24

25 num = 3⇤dtemp{i}.⇤( t sˆ2⇤( uniform{i} � a s )⇤E s � ...
26 t d(i)⇤( uniform{i} � a d(i) ).⇤sum1 );
27 den = 2⇤t sˆ3⇤E s + 3⇤t sˆ2⇤delta{i}⇤E s + ...
28 2⇤t d(i)⇤sum2 � 3⇤t d(i)⇤delta{i}.⇤sum1;
29

30 dkappa{i} = � num ./ den;
31

32 end
33 end

I.5 Stress distribution in substrate

1 % Stress distribution in the substrate due to temperature difference
2 % Matrix
3 % sigma sust CTE(i,2) = Stress at the top and bottom of the substrate due
4 % to the temperature difference i
5 % Units: [Pa]
6

7 function sigma sust CTE = stress sust CTE(N, E s, a s, t s, uniform, ...
8 delta, dkappa, dtemp)
9

10 y = [�t s 0];
11 col = length(y);
12 sigma = zeros(1, col);
13

14 sigma s CTE = cell(1, length(N));
15

16 for i = 1:length(N)
17

18 row = length(dtemp{i});
19 dsigma = zeros(row,col);
20

21 if sum(dtemp{1}) < 0
22

23 for j = 1:col
24

25 depsilon = uniform{i}(end)⇤dtemp{i} � ...
26 (y(j) � delta{i}(end)).⇤dkappa{i};
27 dsigma(:,j) = E s⇤(depsilon � a s⇤dtemp{i});
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28

29 end
30 else
31

32 for j = 1:col
33

34 depsilon = uniform{i}.⇤dtemp{i} � ...
35 (y(j) � delta{i}).⇤dkappa{i};
36 dsigma(:,j) = E s⇤(depsilon � a s⇤dtemp{i});
37

38 end
39 end
40

41 sigma = ones(row, 1)⇤sigma(end,:) + cumsum(dsigma);
42

43 sigma s CTE{i} = sigma;
44

45 end
46

47 sigma sust CTE = [];
48

49 for i = 1:length(N)
50

51 sigma sust CTE = [ sigma sust CTE; sigma s CTE{i} ];
52

53 end
54 end

I.6 Stress distribution in deposit

1 % Stress distribution in the deposit due to temperature difference
2 % Matrix
3 % sigma d CTE(i,j) = Stress at midpoint of layer j due to the temperature
4 % difference i
5 % Units: [Pa]
6

7 function sigma d CTE = stress depo CTE(N, E D, a D, t d, Uniform, Delta, ...
8 Dkappa, Dtemp)
9

10 h 0 = 0;
11

12 y = [];
13 dtemp = [];
14 dkappa = [];
15 E d = [];
16 a d = [];
17 uniform = [];
18 uniform c = [];
19 delta = [];
20 delta c = [];
21

22 for i = 1:length(N)
23

24 h n = h 0 + N(i)⇤t d(i);
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25 y = [y, h 0 + t d(i)/2:t d(i):h n � t d(i)/2];
26 h 0 = h n;
27 n = length(Dtemp{i});
28

29 dtemp = [dtemp; Dtemp{i}];
30 dkappa = [dkappa; Dkappa{i}];
31 E d = [E d E D{i} ];
32 a d = [a d a D(i)⇤ones(1,N(i))];
33 uniform = [uniform; Uniform{i}];
34 uniform c = [uniform c; Uniform{i}(end)⇤ones(n,1)];
35 delta = [delta; Delta{i}];
36 delta c = [delta c; Delta{i}(end)⇤ones(n,1)];
37

38 end
39

40 row = length(dtemp);
41 col = length(y);
42 dsigma = zeros(row,col);
43

44 if sum(Dtemp{1}) < 0
45

46 for j = 1:col
47

48 depsilon = uniform c.⇤dtemp � (y(j) � delta c).⇤dkappa;
49 dsigma(:,j) = E d(j)⇤(depsilon � a d(j)⇤dtemp);
50

51 end
52 else
53

54 for j = 1:col
55

56 depsilon = uniform.⇤dtemp � (y(j) � delta).⇤dkappa;
57 dsigma(:,j) = E d(j)⇤(depsilon � a d(j)⇤dtemp);
58

59 end
60

61 dsigma = tril( dsigma );
62

63 end
64

65 sigma d CTE = cumsum(dsigma);
66

67 end



Appendix J

Subroutines for Intrinsic Stress
Distribution

J.1 Composite beam sti↵ness

1 % Composite Beam Stiffness per width
2 % Vector
3 % Sigma b(i) = Beam stiffness per width after deposition of layer i
4 % Units: [Pa⇤mˆ3]
5

6 function Sigma b = stiff(N, t d, E d, t s, E s, delta)
7

8 sum1 = 0;
9 sum2 = 0;

10 sum3 = 0;
11 h 0 = 0;
12 h n = 0;
13 Sigma b = cell(1, length(N));
14

15 for i = 1:length(N)
16

17 h n = h n(end) + t d(i)⇤(1:N(i)) ;
18 h ant = [h 0; h n(1:end�1)];
19 h 0 = h n(end);
20

21 sum1 = sum1(end) + cumsum( E d{i}.⇤(h n.ˆ2 + h n.⇤h ant + h ant.ˆ2) );
22 sum2 = sum2(end) + cumsum( E d{i}.⇤(h n + h ant) );
23 sum3 = sum3(end) + cumsum( E d{i} );
24

25 Sigma b{i} = E s⇤t s⇤( t sˆ2/3 + t s⇤delta{i} + delta{i}.ˆ2 ) + ...
26 t d(i)⇤( sum1/3 � sum2.⇤delta{i} + sum3.⇤delta{i}.ˆ2 );
27

28 end
29 end
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J.2 Tensile/Compresive force

1 % Tensile/Compresive force per width
2 % Vector
3 % F(i) = Tensile/Compresive force per width developed during application
4 % of layer i
5 % Units: [N/m]
6

7 function F b = force(N, t d, t s, dkappa, delta, Sigma b)
8

9 h 0 = 0;
10 h n = 0;
11 delta 0 = �t s/2;
12 F b = cell(1, length(N));
13

14 for i = 1:length(N)
15

16 h n = h n(end) + t d(i)⇤(1:N(i)) ;
17 h ant = [h 0; h n(1:end�1)];
18 h 0 = h n(end);
19

20 delta ant = [delta 0; delta{i}(1:end�1)];
21 delta 0 = delta{i}(end);
22

23 F b{i} = ( Sigma b{i}.⇤dkappa{i} ) ./ ...
24 ( h ant � delta ant + t d(i)/2 );
25

26 end
27 end

J.3 Stress distribution in substrate

1 % Stress distribution on the substrate
2 % Matrix
3 % sigma t(i,2) = Stress at the top and bottom of the substrate after
4 % deposition of the i�th layer
5 % Units: [Pa]
6

7 function sigma sust = stress sust(N, t d, E d, t s, E s, dkappa, delta, F b)
8

9 y = [�t s, 0];
10 col = length(y);
11 equiv = t s;
12 t s 0 = t s;
13 sigma = zeros(1, col);
14

15 sigma s = cell(1, length(N));
16

17 for i = 1:length(N)
18

19 row = length(dkappa{i});
20 dsigma = zeros(row,col);
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21

22 equiv = equiv(end) + t d(i)⇤cumsum( E d{i} )/E s;
23 t equiv = [ t s 0; equiv(1:end�1) ];
24 t s 0 = equiv(end);
25

26 for j = 1:col
27

28 dsigma(:,j) = � ( F b{i} ./ t equiv + E s⇤dkappa{i}.⇤ ...
29 ( y(j) � delta{i} ) );
30

31 end
32

33 sigma = ones(row, 1)⇤sigma(end,:) + cumsum(dsigma);
34

35 sigma s{i} = sigma;
36

37 end
38

39 sigma sust = [];
40

41 for i = 1:length(N)
42

43 sigma sust = [ sigma sust; sigma s{i} ];
44

45 end
46 end

J.4 Stress distribution in deposit

1 % Stress distribution on the deposit
2 % Matrix
3 % sigma d(i,j) = Stress at the midpoint of layer j after applying
4 % layer i
5 % Units: [Pa]
6

7 function sigma d = stress depo(N, t D, E D, t s, E s, Dkappa, Delta, F B)
8

9 h 0 = 0;
10

11 y = [];
12 dkappa = [];
13 t d = [];
14 E d = [];
15 F b = [];
16 delta = [];
17

18 for i = 1:length(N)
19

20 h n = h 0 + N(i)⇤t D(i);
21 y = [y, h 0 + t D(i)/2:t D(i):h n � t D(i)/2];
22 h 0 = h n;
23

24 dkappa = [dkappa; Dkappa{i}];
25 t d = [t d t D(i)⇤ones(1,N(i))];
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26 E d = [E d E D{i} ];
27 F b = [F b; F B{i}];
28 delta = [delta; Delta{i}];
29

30 end
31

32 row = length(dkappa);
33 col = length(y);
34 dsigma = zeros(row,col);
35 bug = zeros(row,col);
36 equiv = E s⇤t s + cumsum( E d(1:end�1).⇤t d(1:end�1) );
37

38 for j = 1:col
39

40 dsigma(j,j) = � E d(j)⇤dkappa(j)⇤(y(j) � delta(j)) + F b(j)/t d(j) ;
41

42 dsigma(j+1:end,j) = � ( F b(j+1:end) ./ (equiv(j:end)/E d(j)) + ...
43 E d(j)⇤dkappa(j+1:end).⇤( y(j) � delta(j+1:end) ) );
44

45 end
46

47 sigma d = cumsum(dsigma);
48

49 end



Appendix K

Subroutines for Quenching Stress
Distribution

K.1 Quenching stress on deposit

1 % Quenching Stress acting on each layer
2 % Vector
3 % sigma q(i) = Quenching stress at the layer i
4 % Units: [Pa]
5

6 function sigma q = quench(N, t d, E d, t s, E s, F b)
7

8 sum1 = 0;
9 ini = 0;

10

11 sigma q = cell(1, length(N));
12

13 for i = 1:length(N)
14

15 sum1 = sum1 + cumsum( [ini; t d(i)⇤E d{i}(1:end�1)] );
16 Et equiv = E s⇤t s + sum1;
17 ini = t d(i)⇤E d{i}(end);
18

19 sigma q{i} = E d{i}.⇤F b{i}.⇤( Et equiv.ˆ(�1) + (E d{i}⇤t d(i)).ˆ(�1) );
20

21 sum1 = sum1(end);
22

23 end
24 end
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K.2 Stoney formula approximation

1 % Stoney formula aproximation for quenching stress
2 % Vector
3 % sigma q(i) = Stoney approximation stress at the layer i
4 % Units: [Pa]
5

6 function sigma ev = stoney(N, t d, t s, E s, dkappa)
7

8 sigma ev = cell(1, length(N));
9

10 for i = 1:length(N)
11

12 sigma ev{i} = E s⇤t sˆ2/6 ⇤ dkappa{i}/t d(i);
13

14 end
15 end
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