

UNIVERSIDAD SAN FRANCISCO DE QUITO

Colegio de Posgrados

Development of a tool for determining speed and road directions
using GPS vehicle devices and free resources

José Luis Aragón Osejo

Richard Resl, Ph.Dc., Director de Tesis

Tesis de grado presentada como requisito
para la obtención del título de Magister en Sistemas de Información Geográfica

Quito, enero de 2014

Universidad San Francisco de Quito

Colegio de Posgrados

HOJA DE APROBACIÓN DE TESIS

Development of a tool for determining speed and road directions
using GPS vehicle devices and free resources

José Luis Aragón Osejo

Richard Resl, Ph.Dc. ..…….……………………………

Director de Tesis

Pablo Cabrera, Ms. …………………………………..
Miembro del Comité de Tesis

Richard Resl, Ph.Dc. …………………………………..

Director de la Maestría en Sistemas

de Información Geográfica

Stella de la Torre, Ph.D. …………………………………..

Decana del Colegio de Ciencias

Biológicas y Ambientales

Víctor Viteri Breedy, Ph.D. …………………………………..

Decano del Colegio de Posgrados

Quito, enero de 2014

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído la Política de Propiedad Intelectual de

la Universidad San Francisco de Quito y estoy de acuerdo con su contenido, por lo que los

derechos de propiedad intelectual del presente trabajo de investigación quedan sujetos a lo

dispuesto en la Política.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo de

investigación en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley

Orgánica de Educación Superior.

Firma:

Nombre: JOSÉ LUIS ARAGÓN OSEJO

C. I.: 1708885643

Quito, 10 de enero 2014

5

Agradecimientos y dedicatoria

“El presente trabajo es un esfuerzo de aprendizaje, que espero rinda frutos

concretos en el futuro, siguiendo los principios que me guían.

Por eso, lo dedico a quienes me han apoyado en el camino. Especialmente

a mi familia, nunca dejaré de crecer gracias a ellos.”

6

Resumen

Los dispositivos de localización satelital (GPS) en vehículos son cada vez
más populares en países como el Ecuador, lo que significa que datos GPS se
generan todos los días (por ejemplo los datos provistos para este trabajo,
provenientes de una flota de 50 buses de la ciudad de Portoviejo, Ecuador).
Estos datos pueden luego convertirse, si son procesados, en información
relacionada con redes viales.

Aunque estos datos estén disponibles como archivos de texto, para
adquirir información útil desde ellos debe existir una herramienta desarrollada con
este propósito, que sea accesible para usuarios comunes, usando recursos
libres, y capaz de procesar y proveer como resultado una red vial complementada
y utilizable.

Este trabajo intenta proveer una herramienta para realizar este
procesamiento, usando recursos libres, como Python, Quantum GIS (QGIS) y
OpenStreetMap (OSM). Se desarrolló un algoritmo para adquirir información
sobre direcciones de vías y promedios de velocidad, usando los datos disponibles
de GPS de vehículos. Para esto, se modificó un complemento de QGIS, mediante
las capacidades de geoprocesamiento de Python. Se diseñó e implementó una
fase de pruebas para comprobar el funcionamiento de los algoritmos y de la
capacidad del hardware, especialmente trabajando con archivos grandes.

Durante esta fase de pruebas surgieron errores que obligaron a realizar las
correcciones respectivas hasta que el procesamiento se desarrolló de forma
correcta. Los resultados obtenidos demostraron que se puede adquirir
información de sentidos viales y promedios de velocidad, a pesar de los eventos
que causan confusión en la herramienta desarrollada.

7

Abstract

Vehicle GPS devices in countries like Ecuador have increased, meaning
that new GPS data is collected every day (for example the data provided for this
work, collected from a 50 buses fleet in the city of Portoviejo, Ecuador). This data
can later become (if processed) information corresponding to road networks.

Although GPS data is available as text files, to acquire useful information
from it there must exist a tool developed for this matter, accessible to common
users (using free resources), and able to process it and provide a usable
completed road network as a result.

This work intends to provide a tool to perform this processing, using free
resources, such as Python, Quantum GIS (QGIS) and OpenStreetMap (OSM). An
algorithm was developed to acquire road direction and speed average
information, using provided GPS data from vehicles. For this, OSM plugin from
QGIS was modified, through Python geoprocessing capabilities. A testing phase
was designed and implemented to try out algorithms performance, and hardware
capacity, specially handling large files.

During this testing phase programming errors appeared obligating to
correct these issues until processing was done correctly. Results demonstrated
that road direction and speed average information can be acquired, despite
events that can confuse the tool.

8

Tabla de contenidos

Agradecimientos y dedicatoria .. 5

Resumen .. 6

Abstract .. 7

Tabla de contenidos .. 8

Lista de Tablas .. 12

Lista de Figuras .. 13

1. Introduction .. 15

1.1. Background ... 15

1.2. Problem ... 17

1.3. Hypothesis .. 18

1.4. Research question .. 19

1.5. Targets of this work .. 19

1.6. Definitions of terms .. 21

1.7. Presumptions of the author ... 22

1.8. Assumptions of this thesis study .. 22

2. Literature Review ... 23

2.1. Open resources .. 23

2.2. OpenStreetMap ... 25

2.2.1. User generated content ... 25

2.2.2. OpenStreetMap overview .. 25

9

2.2.3. OSM data .. 26

2.2.3.1. OSM: XML based format .. 26

2.2.3.2. OSM tags ... 28

2.2.4. License .. 29

2.3. Open Geographic Information Systems .. 30

2.3.1. QGIS overview .. 30

2.3.2. Geoprocessing with Python (plugins) 31

2.3.3. License .. 31

2.4. Python ... 32

2.4.1. Python overview .. 32

2.4.1. Python programming ... 33

2.4.2. Python and QGIS .. 34

2.4.3. License .. 34

2.5. Qt4 ... 34

2.5.1. Qt4 overview ... 34

2.5.2. License .. 35

2.6. Used open resources summary ... 36

2.7. Vehicle tracking .. 36

2.7.1. Software and hardware ... 36

2.7.2. GPS Technical specifications .. 37

3. Methods .. 38

10

3.1. Initial resources .. 38

3.1.1. OSM Plugin ... 38

3.1.2. Original data file .. 40

3.2. Results obtainment .. 42

3.2.1. Maximum speed .. 42

3.2.2. Average speed .. 42

3.2.3. Road direction ... 43

3.3. Tool design ... 47

3.3.1. Tool design .. 47

3.3.2. Python programming ... 49

3.4. Testing phase ... 53

3.4.1. Simplified test .. 54

3.4.2. Simplified georeferenced test .. 55

3.4.3. Real simplified test .. 55

3.4.4. Real test .. 56

3.4.5. Checklist .. 56

4. Results .. 57

4.1. Testing phase ... 57

4.1.1. Simplified test .. 57

4.1.2. Simplified georeferenced test .. 58

4.1.3. Real simplified test .. 59

11

4.1.4. Real test .. 62

4.2. Testing phase synthesis .. 63

4.2.1. Average speed .. 63

4.2.2. Road directions results .. 67

5. Discussion .. 70

5.1. QGIS and OSM plugin ... 70

5.2. Average Speed .. 71

5.3. Directions .. 73

5.4. Performance .. 73

5.5. Programming errors ... 74

6. Conclusions.. 75

7. References .. 76

8. Appendices ... 80

Appendix 1: Testing phase Check List .. 80

Appendix 2: Python Syntax .. 81

12

Lista de Tablas

Table 1.- Resources used ... 36

Table 2.- Information provided by CSV original file 41

Table 3.- Actions regarding the modified algorithm 46

Table 4.- Scripts created and Python Classes involved............................. 51

Table 5.- Modules used in generated scripts ... 53

Table 6.- Tests description .. 54

Table 7.- Events of the first scenario for Simplified test 57

Table 8.- Results of third test. .. 61

Table 9.- Files used for Real test ... 62

Table 10.- Processing time for Real Test .. 63

Table 11.- Calculated average speed examples 66

Table 12.- Determined road direction examples .. 69

Table 13.- Checklist used in Testing phase ... 80

13

Lista de Figuras

Figure 1.- Basic Project Flow ... 20

Figure 2.- List of files inside the OSM plugin folder 38

Figure 3.- Modules invoked when “Load OSM from file” button is clicked . 40

Figure 4.- Elements used to determine average speed 43

Figure 5.- Elements used to determine road directions 44

Figure 6.- Decision process for determining the direction of a road, from a

pair of points .. 44

Figure 7.- Decision process for determining the direction of a road, from

direction percentages ... 45

Figure 8.- Basic tool work flow ... 47

Figure 9.- Maximum speed information flow .. 48

Figure 10.- Average speed and road direction information flow 48

Figure 11.- New toolbar, including OSM process button 50

Figure 12.- New button .. 50

Figure 13.-Scripts used and classes invoked .. 52

Figure 14.- Information flow between python scripts 52

Figure 15.- Simplified Test data ... 54

Figure 16.- Simplified Georeferenced test data ... 55

Figure 17.- Streets considered for Simplified real test 56

14

Figure 18.- Results of first test, “yes” value for “oneway” tag. 58

Figure 19.- Example of a change for Simplified georeferenced test 59

Figure 20.- Results of second test, “yes” value for “oneway” tag. 59

Figure 21.- Example of GPS data for a stationary vehicle 71

Figure 22.- Example of OSM editing issues .. 73

15

1. Introduction

Tracking and routing are becoming very common scheduling components

for vehicle, bicycle or any other transport means, when people or institutions deal

with route planning. In 2009, about half of United States transit buses were using

GPS devices for tracking purposes (American Public Transportation Association,

2009).

Schedules can take into account external conditions such as traffic, vehicle

size, cargo, hour restrictions, weekend days, and others, although, most times it is

just a plain route to reach a target site.

Nowadays there are several online and desktop tools that can achieve

routes in a very trustable and fast way. There are also several algorithms used for

routing, implemented through software development continuously improved,

making its use intuitive so not only GIS specialists can profit from it. Most of these

tools are now widely available through Internet.

These tools need good local cartographic information to achieve results,

but that’s not always the case, or it is not easily available.

1.1. Background

Needs for monitoring, surveillance, control were the reasons to develop a

wide range of GPS devices meant to be used in cars, buses, motorcycles and

others. These devices collect current data, as vehicles travel their day to day

routine paths through city streets. This data is exceptionally used and analyzed,

but most times it is not even stored.

16

The devices send the GPS location as latitude and longitude coordinates to

a server, through GPRS (cellular signal), satellite signal, or other means. The

server recognizes this data, and might use it to perform processing analysis, such

as calculating speed information, vehicle productivity, and distance to a given

facility.

GPS devices are used for routing purposes, which means to find the best

way to go from a starting point to another point or points. Algorithms used to

resolve this matter might take into account many elements like road restrictions,

ground elevation and others, according to the complexity of the problem and the

resources available, and especially road directions.

Nowadays GPS devices are very common, but depending on legal

contracts, there is restricted access to this data and no storage involved. Vehicle

owners cannot process or do not care about these data, as long as the service

they requested is provided. So a great amount of data collected is never used.

On one hand, before GIS desktop software and open source software

came into scene, data processing needed a GIS specialist (or a GIS department),

to handle difficult and expensive software. On the other hand, the cartographic

information needed is generated through expensive field and desktop work.

Companies investing in the generation of this cartographic information charge

high prices to make profit, otherwise this kind of investment cannot be done. This

causes that although the information and software needed to do routing exists, not

all companies or institutions can afford them, so the implementation of GIS

analysis and custom processing is not possible in most cases, with the exception

of few large institutions.

17

1.2. Problem

Nowadays business are conceived and designed to be efficient, in terms of

money and time. Resources are handled through sharp flows intended to enhance

productivity with minimum expense. Even common drivers are usually trying to

spend minimum time on the road.

In the case of routing, vehicles have to attend their target sites according to

previous planning, with minimum delay. This includes the possibility that a vehicle

gets stolen or damaged. Besides that, as unforeseen events happen, real time

rescheduling could be needed. Therefore vehicles are tracked, so their

productivity is assured.

Currently online free systems like Google Maps allow users for tracking

purposes, but only for a small amount of cars. A paid license is necessary beyond

that.

Some countries started the development of free maps such as

OpenStreetMap (OSM) many years ago, and have now consolidated free maps,

available for anyone to use them. Some commercial companies, which used

Google Maps before, now prefer OSM because of its reliability and because of its

license permissions.

Road networks of cities should be updated as often as possible so routing

results are accurate and useful, because streets get closed, their directions get

changed, and as cities grow more roads are added to the street network. Updates

can be very expensive and usually depend on private offer.

18

Conversely, free resources imply no cost, but depend on their developers

and the community involved to be up to date. Specific technical knowledge is

needed to assemble free resources and develop a specific tool like the one this

work is trying to obtain. This is not always available, as developers are not

capable to do all the software development needed. Also, satisfying

documentation and adequate support are not always available.

Currently in Ecuador, there are various sources of updated cartographic

information but they are not free, and can be used only through the software

provided by the vendor, this means to be used only the way the provider intended.

Free maps are neither updated nor complete.

1.3. Hypothesis

Vehicle GPS data can be used to obtain road directions and speed

information to complement a road network, using only free resources.

Determination of road directions and speed depends on the data provided,

its format, technical characteristics, and quantity. If the combination of these

aspects does not achieve a solid base to determine road directions and speed, no

algorithm, program or code can get trustable results.

A logical procedure has to be developed, taking into account essential

routing procedures, and use road directions and speed information so the

information incorporated does not stop, interfere or mislead routing calculating

processes.

Free resources are going to be used, this implies that there’s not going to

be a technical service to demand for an answer or solution to any given problem,

19

instead programmers and user communities might provide a solution. There is

technical information, especially online, but it is not always updated or it is

incomplete.

The solution to these problems is a program that works with a set of GPS

data provided; it must calculate speed, as well as determine road directions. If

possible, the result has to be a file ready to be used. Users could use the program

regularly, so it must be as easy and intuitive as possible. Also there might be the

need to use it with different type of GPS data or including other functionalities, so

it must allow expansion in the future.

1.4. Research question

How and to what extent vehicle GPS data can be used to obtain road

directions and speed information, using free resources?

To answer the proposed research question, a logical flow is exposed and

taken into account, from income to output. From this flow, results are obtained,

and demonstrate the capabilities of the program and to what extent the question

has been answered, and provide (or not) a satisfying solution, to be discussed in

terms of scope and limitations.

1.5. Targets of this work

This work assembles all of the above mentioned and tries to improve the

current free resources situation for routing technology in Ecuador, using free

resources.

20

Figure 1.- Basic Project Flow

21

General objective

 Develop a tool for determining speed and road directions using GPS

vehicle devices and free resources

Specific objectives

 Find a convenient methodology to process and determine speed and

road directions

 Establish free resources to develop the tool

 Write code to customize the tool

 Achieve a successful run of the entire process

1.6. Definitions of terms

Some specific terms are repeatedly used along this work, outside GIS

environment, so they are defined here.

 GPRS: General Packet Radio Service (cellular communication

system)

 GPS: stands for Global Positioning System

 GPS device: apparatus used to catch GPS satellites signal and

calculate a location

 Road direction: sense in which a vehicle is allowed to go over a road

 Speed average: speed calculated from a set of determined speeds,

taking into account high and low speed values

 Speed legal limit: legal limit according to the type of road

22

1.7. Presumptions of the author

It was expected that the information provided containing GPS data was

adequate regarding its precision and format to be processed.

Hardware resources are the same as regular GIS specialist could get, that

is a desktop computer with regular processing capabilities.

Open software (and proprietary) is not always easily compatible with other

resources; the tool that was assembled was not tested on all possible platforms,

or all possible software versions, including later versions.

Some open resources (e.g. OpenStreetMap) are maintained by a large

community, with both local and worldwide organization voluntarily engaged. There

might be some situations or procedures with no literature to relay on.

1.8. Assumptions of this thesis study

The product expected from the tool to be created is a dataset ready to be

used, which includes new road directions and speed information. This depends on

the initial data and the inherent capabilities of the resources to be used.

The tool itself intends to be friendly and straightforward, so its use is

encouraged. Also, the tool should be available under the correct license terms to

encourage common users and possible feedback.

23

2. Literature Review

2.1. Open resources

A creator decides how his or her creation may be made available to the

public, or if it is not available at all. As he claims his or her rights, he may also

decide how the creation is available to others, conditions put into license

documents. Licenses claim intellectual property, establishing “the legal rights

which result from intellectual activity in the industrial, scientific, literary and artistic

fields” (World Intellectual Property Organization, 2004). Otherwise, the creation

goes to the public domain.

Nowadays, regarding software and other resources, there are different

license options: open source, free and commercial licenses, with many inner

variations, like dual licenses agreements (both commercial and non-commercial).

Depending on the importance given to a license issue, some open source

licenses are incompatible, or compatible. Besides, intellectual property rights are

limited territorially; they exist and can be exercised only within the jurisdiction of a

country (World Intellectual Property Organization, 2004).

In this work’s context and the topics dealt in it (software and geographic

information), open resources refer to any resource that can be used without a fee

and whose internal structure may be known to anyone (i.e. software’s code, vector

map files, etc.).

24

 “Open Source” implies three dimensions as it applies to computing

(Tomer, 2002):

1. A philosophy about computing and sharing programming code to improve

the quality of computing.

2. A wide array of operating systems and applications that have been

developed under this philosophy.

3. A general approach to the treatment of intellectual property, usually in

reference to licensing software or documentation.

It started as a reaction to software restrictions that hardware sellers

imposed. As the open source movement was growing, some dedicated

organizations appeared, like the Free Software Foundation or the Open Source

Initiative. The latter proposes the following guidelines (among others) to define

open source licenses (Open Source Initiative, n.d.):

1. Free Redistribution: no fee required

2. Source Code: access to code to modify it

3. Derived Works: must be allowed and available to distribution

4. License Must Not Be Specific to a Product

5. License Must Be Technology-Neutral: not predicated on any individual

technology or style of interface.

General Public License (GPL) is one of the most popular open source

licenses, and follows these guidelines. Other licenses following GPL guidelines

are known as being “GPL Compatibles”. “GPL Compatibility” means, among other

issues, that any derivative work must itself be distributed under GPL, and no

additional restrictions may be placed on the redistribution of either the original

25

work or a derivative work (Fogel, 2005). The requirement for derivative work to

use the same license as the original work (also known as reciprocal or viral) is

known as “Copyleft”.

2.2. OpenStreetMap

2.2.1. User generated content

There are several initiatives that allow users to contribute to a database,

making its content available to others, which are called “wikis”. “Wiki is a website

that lets people freely create, edit, and link a collection of articles. (...) Wikis allow

the content and the structure to be changed by a community” (Barret, 2008).

Wikipedia, for example, shares its articles freely as the community involved

improves its contents. Wikipedia has quickly become one of the largest and most

accessed Web sites in the Internet, appearing atop GoogleTM searches for

millions queries (Chatfield, 2009).

Wiki concept is used by OpenStreetMap.

2.2.2. OpenStreetMap overview

OpenStreetMap (OSM) main web site and documentation are mainly

available through http://www.openstreetmap.org . Its aim is to eventually have a

record of every geographic feature on the planet in a free geographic database of

the world.

OSM is built through volunteer effort. Each contributor develops a map of

his local streets using GPS tracking; and individual contributions are assembled

and reconciled into a single patchwork. Extensive metadata is incorporated, since

http://www.openstreetmap.org/

26

each piece of the patchwork may have different levels of accuracy and may have

been acquired at different dates (Goodchild, 2007).

Nowadays there are over a million users (MapBox, 2013), and most big

and medium cities have already been fully mapped.

2.2.3. OSM data

OSM data is stored in its own format, which enables some features and

capabilities. These specifications are explained in the next chapters.

2.2.3.1. OSM: XML based format

Extensible Markup Language (XML) is a simple, flexible text format. It was

originally conceived to help with large-scale electronic publishing; although is now

also playing an increasingly important role in the exchange of a wide variety of

data on the Web and elsewhere (World Wide Web Consortium, 2012).

OSM uses a format based on XML structure to store spatial data, which

was specially developed. It represents geo-spatial data “in the form of nodes

(single points), ways (sequence of points that define a line), areas (closed ways

that represent polygons), and relations (collections of other elements) (Westra,

2010).

An example of OSM code is explained below, which was downloaded from

OSM website, and edited to fit the explanation.

General structure starts with a header and general data specifications, like

XML and OSM data version, license and bounds. The part containing nodes,

27

ways and relations may be very long, depending on the spatial extent and the

amount of data within that extent.

<?xml version="1.0" encoding="UTF-8"?>

<osm version="0.6" generator="CGImap 0.1.0" copyright="OpenStreetMap and contributors"

attribution="http://www.openstreetmap.org/copyright"

license="http://opendatacommons.org/licenses/odbl/1-0/">

 <bounds minlat="-0.1561420" minlon="-78.4777500" maxlat="-0.1531750" maxlon="-78.4760230"/>

<!-- Nodes, ways and relations. -->

</osm>

A node is defined by its coordinates (latitude and longitude) and its

identification number, which is unique for that node worldwide. It can show other

useful information, like changeset identification, which can be used to remove

entire sets of information if a problem is detected.

<node id="269572065" lat="-0.1549247" lon="-78.4768789" user="rafatenor" uid="118380"

visible="true" version="11" changeset="5078579" timestamp="2010-06-26T06:27:22Z"/>

Nodes might have tags, providing extra information about it. Tags are

already defined (and are continually getting improved) so all OSM users can profit

from that information. OSM uses “key – value” format to define a node, for

example k=”highway” and v=”bus_stop” defines a bus stop.

<node id="262203745" lat="-0.1589536" lon="-78.4837410" user="LLAQWA" uid="77114"

visible="true" version="15" changeset="10971169" timestamp="2012-03-13T19:59:29Z">

 <tag k="highway" v="bus_stop"/>

 <tag k="public_transport" v="stop_position"/>

 </node>

Ways are collections of nodes, so a list of nodes is given. Ways might also

have tags, different from node tags as they show ways information. If a way is

closed, which means that its first and last node are the same, then that way is a

polygon, and might add some other specific tags.

<way id="24812835" user="lxbarth" uid="589596" visible="true" version="7" changeset="15915658"

timestamp="2013-04-30T02:08:35Z">

<nd ref="269572115"/>

<nd ref="269572240"/>

<tag k="hgv" v="no"/>

<tag k="highway" v="residential"/>

<tag k="name" v="El Morlan"/>

</way>

28

Relations are collections of nodes, ways and other relations. They are used

when different features define spatial information, for example, a forbidden left

turn, a compulsory turn right, and others, which involve two or more ways and

intersection nodes.

<relation id="2081539" user="LLAQWA" uid="77114" visible="true" version="1"

changeset="10969244" timestamp="2012-03-13T17:16:50Z">

<member type="relation" ref="2081508" role=""/>

<member type="relation" ref="88867" role=""/>

<tag k="bus" v="regular"/>

<tag k="fixme" v="yes"/>

<tag k="name" v="Q5 Comité de Pueblo"/>

<tag k="network" v="Metrobus-Q"/>

<tag k="on_demand" v="no"/>

<tag k="type" v="route_master"/>

</relation>

2.2.3.2. OSM tags

As mentioned before, tags used in OSM code are already defined, although

related discussion and improvement is permanent. A lot of them are common to

all users in a given language; others are specific to a country.

Regarding Ecuador defined tags; they have not been translated yet from

original English tags. Values to “highway” tag are: Motorway, Trunk, Primary,

Secondary, Tertiary, Residential, living_street, Unclassified, Road, and Pedestrian

(OpenStreetMap, 2011).

The other tags used for this study are shown below (OpenStreetMap,

2013).

 Directions are defined by “oneway” tag, and the values are “yes”

(oneway from starting node to ending node), “-1” (from ending node

to starting node), and “no” (two way street).

29

 The tag for maximum speed is “maxspeed”, and the value for

Ecuador is 50 km/h (Asamblea Nacional Constituyente - Ecuador,

2012).

 There is no average speed tag, so the tag used is “avgspeed”.

2.2.4. License

OSM uses Open Database License (ODbL) 1.0. This license agreement

was first used by OSM, and it guides the usage of its spatial data contents

(OpenStreetMap, 2011).

ODbL allows users to (Open Data Commons, n.d.):

 Share: To copy, distribute and use the database.

 Create: To produce works from the database.

 Adapt: To modify, transform and build upon the database.

These rights are granted as long as users:

 Attribute any public use of the database, or works produced from the

database. It must make clear to others the license of the database.

 Share-Alike, any adapted database must also be offered under the

ODbL.

 Keep open, any distribution is permitted, as long a version without

restrictions is also redistribute.

The cartography in OSM map tiles and the documentation are licensed

under the Creative Commons Attribution-ShareAlike 2.0 license (OpenStreetMap,

n.d.).

30

2.3. Open Geographic Information Systems

Open source GIS programs are based on different base programming

languages. There are three main groups of open source GIS (outside of web GIS)

in terms of programming languages: “C” languages, Java, and .NET (GISLounge,

2012).

The first group is the more mature one, for it has been working the longest

and has a long history of reuse of code. Popular “C” based GIS software includes

GRASS and QGIS. The second group uses JAVA; GeoTools, Geoserve, and

OpenMap, are among the most popular in this group. The third most influential

group integrates applications that use “.NET”, like SharpMap and WorldWind.

2.3.1. QGIS overview

The Quantum GIS project was officially born in May of 2002, when coding

began. The first release supported only PostGIS layers (The Quantum GIS

project, n.d.). There are at least 100,000 QGIS users around the world (Sherman,

2011). Currently, version 2.0.1 is available.

QGIS project offers QGIS Desktop, QGIS Browser, QGIS Server and QGIS

Client. The desktop application used for this work is version 1.7.0 (Wroclaw), and

its principal features include (Quantum GIS web site, n.d.):

 Direct viewing of vector and raster data in different formats and

projections. Supported formats include PostGIS and ESRI

shapefiles, also raster formats like GRASS locations and mapsets,

and online spatial data (WMS , WMS-C (Tile cache), WFS and WFS-

T).

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://grass.itc.it/
http://en.wikipedia.org/wiki/Web_Map_Service
http://wiki.osgeo.org/wiki/WMS_Tile_Caching
http://en.wikipedia.org/wiki/Web_Feature_Service
http://en.wikipedia.org/wiki/Web_Feature_Service
http://en.wikipedia.org/wiki/Web_Feature_Service

31

 Mapping and interactive exploration of spatial data. Tools include

on-the-fly reprojection, print composer, edit/view/search attributes,

and others.

 Creating, editing and exporting spatial data using digitizing tools for

vector features, field and raster calculator.

2.3.2. Geoprocessing with Python (plugins)

QGIS has been designed with plugin architecture. This allows many new

features/functions to be easily added to the application. There exist two kinds of

plugins (Open Source Geospatial Foundation, 2011):

 Core Plugins, which are maintained by the QGIS Development

Team and are automatically part of every QGIS distribution. They

are written in C++ or Python.

 External Plugins, which are currently all written in Python. They are

stored in external repositories and maintained by the individual

authors.

OpenStreetMap plugin is a Python plugin.

2.3.3. License

QGIS is licensed under the GNU General Public License. OpenStreetMap

plugin code is available and can be modified also under the GNU GPL license

terms.

32

2.4. Python

2.4.1. Python overview

Python is an open-source general-purpose programming language. Python

has distributions available for many platforms, like Microsoft Windows, Apple Mac

OS X, GNU/Linux (Wikibooks, 2013). This makes the programs very portable, as

any program written for one platform can be used in another.

Big companies or institutions are using Python nowadays. For example

NASA has used Python for its software systems and has adopted it as the

standard scripting language for its Integrated Planning System. Python is also

extensively used by Google to implement many components of its Web Crawler

and Search Engine & Yahoo! for managing its discussion groups (Wikibooks,

2013).

According to its web site, Python has some distinguishing features (Python

Software Foundation, 2013):

 very clear, readable syntax

 strong introspection capabilities

 intuitive object orientation

 natural expression of procedural code

 full modularity, supporting hierarchical packages

 very high level dynamic data types

 extensive standard libraries and third party modules for virtually

every task

 extensions and modules easily written in C, C++

33

 embeddable within applications as a scripting interface

Currently, there are two major Python stable distributions in Python web

site (http://www.python.org/), versions 2.7.6 and 3.3.3, that are the most updated

versions of Python 2.x and 3.x releases. These two releases are not compatible,

so a lot of libraries still use 2.x versions of Python. That is the case of QGIS 1.7.0,

which uses version 2.5.

2.4.1. Python programming

Python is a high level programming language, and it includes several

libraries and modules which functionality is exploited through Python classes.

Functions and classes are used so excerpts of code can be easily invoked

without having to rewrite them. Instead functions or classes are called. An

example of a class and inner functions is shown next.

class MyClass:

def __init__(self, parameter1, parameter2):

 #do something when class is called

def function1(self, parameter3, parameter4):

 #do something when function1 is called

 return value1

def function2(self, parameter5, parameter6):

 #do something when function2 is called

Functions __init__ are already defined by Python to be used when a class

is called, at starting point. After this, functions can be called after creating an

instance of that class. Parameter “self” refers to the new instance itself.

instance = class(parameter1, parameter2)

instanceValue1 = instance.function1(parameter3,parameter4)

instance.function2(parameter5,parameter6)

34

As for programming itself, some conventions have been defined so code

can be easily readable and modified. Appendix 2 shows the most important

conventions used.

2.4.2. Python and QGIS

Python has become one of the key languages to use with GIS. This is

mainly because it’s very commonly available and integrates well with the C++

code which forms the basis of a lot of GIS functionality (MacWright, 2012).

Several open software GIS applications use Python, among the most

important are GDAL/OGR Python bindings, shapely, pyproj, Fiona, geopy,

geodjango, MapFish, owslib, MapServer, Mapnik (Corti, 2012).

QGIS has Python language scripting capabilities, to enable usage of QGIS

libraries, through PyQGIS bindings. (Dobias, 2011). It uses Python 2.5.

2.4.3. License

Python distribution uses Python Software Foundation License,

administered by Python Software Foundation and compatible with GPL license.

This open source license makes it freely usable and distributable, even for

commercial use (Python Software Foundation, 2013).

2.5. Qt4

2.5.1. Qt4 overview

Qt is a platform development framework, designed to create applications

and user interfaces. It supplies APIs for C++ and CSS/JavaScript-like

35

programming, an integrated development environment, including UI designer tools

and debugging. It is usable with all major platforms, like Windows and Linux

(Digia, 2013).

Some of the applications developed with Qt are KDE, Opera, Google Earth,

Skype, VLC, Maya or Mathematica (ZetCode, 2012), also QGIS (The Quantum

GIS project, n.d.).

Qt has bindings allowing programmers to use it with several programming

languages. There is the Python binding, PyQt. The version used for this study is

PyQt4, and it is composed by many modules, like QtCore which contains non

Graphical User Interface (GUI) classes, and QtGui module which contains GUI

widgets.

2.5.2. License

Qt4 and PyQt4 have open and commercial licenses, although not the same

ones and they must be compatible. Both commercial licenses are used for

creating commercial applications. Qt4 is licensed under LGPL v. 2.1 (Qt Project

Hosting, 2013). PyQt4 is licensed on all platforms under a commercial license, the

GPL v2 and the GPL v3. PyQt4, unlike Qt, is not available under the LGPL

(Riverbank Computing Limited, 2011).

PyQt used under GPL is compatible with Qt under LGPL and GPL licenses.

The commercial version of PyQt is compatible with both the commercial and

LGPL versions of Qt (Riverbank Computing Limited, 2013).

36

2.6. Used open resources summary

Resource Logo Version License

QGIS

1.7.0 Wroclaw GPL

OpenStreetMap plugin

0.5 GPL

Python

2.5 Python License

Qt4

4.7.1 LGPL v. 2.1

OpenStreetMap

 ODbL 1.0.

Table 1.- Resources used

2.7. Vehicle tracking

2.7.1. Software and hardware

Vehicle tracking uses a device installed in a vehicle, which transmits its

location (coordinates) via GPRS (cell signal). A system operator can track that

vehicle (or vehicles, for example from a fleet of buses), visualizing it on a map on

screen.

The system must be able to manage the information from several vehicles

at the same time, thus collecting it in a database, usually located on a server.

37

2.7.2. GPS Technical specifications

There are two different types of GPS tracking devices: active tracking

devices and passive tracking devices. The active tracking devices have the ability

to communicate through cellular or satellite networks to report their location in real

time. Passive devices store GPS location, speed, heading and sometimes a

trigger event. Once the vehicle returns to a predetermined point, the data is

downloaded to a computer.

The devices that acquired the data available for this work, used active and

passive tracking abilities: when a cellular network is available it transmits data to a

server; when a network is not available the device stores data in internal memory

and transmits stored data to the server later when the network becomes available

again (Bartlett, 2009).

GPS devices use WGS-84 geographical coordinates system.

The margin of error of commercial vehicle GPS devices is about 15 meters

in an open field. However, in an urban setting, the determination of a vehicle’s

position can be off by more than 50 meters, due to the signals bouncing off of

obstacles like buildings, trees, or narrow streets, for example (Universidad Carlos

III de Madrid, 2013).

38

3. Methods

The process of acquiring information from GPS dataset involves the design

of logic algorithms, the design of the tool according to these algorithms and the

programming itself.

This chapter shows the details regarding these phases.

3.1. Initial resources

3.1.1. OSM Plugin

OSM Plugin has been assembled as a Python Package, which means a

“collection of modules” (Python Software Foundation, 2013), holding and

maintaining the plugin data. The name of this package and the folder containing

all programming is “osm”. Inside the “osm” folder, several python modules and two

additional folders containing specific procedures and styles are found.

Figure 2.- List of files inside the OSM plugin folder

39

When QGIS starts, so do QGIS enabled plugins, like the OSM Plugin. The

__init__.py module is then called automatically, which invokes the OsmPlugin.py

module through its class “OsmPlugin”. This is the main class holding all the

buttons, forms and procedures, and constructs the plugin itself, as a python

object, creating the “python actions” that are presented to the user as buttons in

the OSM toolbar.

Python OSM Plugin Graphical User Interface (GUI) is composed of six

buttons, each of them pointing to specific Python modules. When a button is

clicked, an action is invoked, calling another class in the corresponding module,

which in turn calls a module with the GUI of the specific tool.

The button actions to be used in this GUI are defined in the main tool

module. All GUI objects used, like buttons, combo styles, and the form itself, come

from the PyQt4 modules, imported to the specific module at the beginning of the

script.

As an example, the process from QGIS starting to the GUI appearing is

shown for the “Load OSM from file” button.

40

Figure 3.- Modules invoked when “Load OSM from file” button is clicked

3.1.2. Original data file

Vehicle GPS devices data to be used comes from SGAINNOVAR S.A.

databases, from one of its customers in Portoviejo, Ecuador. This data is received

41

and stored in a PostgreSQL database that cannot be reached from external

applications. So an excerpt was provided, that contains all important data. This

excerpt was generated as a CSV (Comma Separated Values) file.

Data is sent by every vehicle GPS device, every minute. When an event

like speeding is reported, data is sent too. So a new record is added to the

database for each vehicle every minute, and when an event occurs.

A sample of this data is shown below, with 4 records.

560030;2012-10-01 06:00:57;0;-80.47162550;-1.05872900;.00;.00;Portoviejo;Washington y Calle

Chone;12.92;2012-10-01 06:01:03;602

560030;2012-10-01 06:01:57;0;-80.47172350;-1.05871583;.00;.00;Portoviejo;Washington y Calle

Chone;11.01;2012-10-01 06:02:04;602

560030;2012-10-01 06:02:11;0;-80.47186533;-1.05872300;.00;263.00;Portoviejo;Washington y

Calle Chone;15.81;2012-10-01 06:02:17;61

560030;2012-10-01 06:02:57;0;-80.47180967;-1.05872617;.00;.00;Portoviejo;Washington y Calle

Chone;6.21;2012-10-01 06:03:02;602

Attributes are separated by semicolons, and are explained in the next table.

Data in CSV file Description

560030 Device ID

2012-10-01 06:02:11 Date and time

0 0 means data was real-time transmitted

-80.47186533 Longitude

-1.05872300 Latitude

.00 Speed, not always available

263.00 Direction or sens

Portoviejo City, according to Longitude and Latitude

Washington y Calle Chone Current adress, according to Longitude and Latitude

15.81 Distance from last recorded point

2012-10-01 06:02:17;61 Date and time record was stored in the database

Table 2.- Information provided by CSV original file

Attributes Device ID, Date and time, Longitude, Latitude are the only ones

to be considered for the development of this work, as the objectives of this work

intends to use only basic resources.

42

3.2. Results obtainment

Next sub-chapters show how the acquisition of average speed, maximum

speed and road directions was oriented. This chapter includes solutions to logic

issues that were found during the testing phase.

3.2.1. Maximum speed

Maximum speed in Ecuador is determined by the corresponding legal

document: “Reglamento General para la Aplicación de la Ley Orgánica de

Transporte Terrestre, Tránsito Y Seguridad Vial” (Comisión de Tránsito del

Ecuador, 2011).

Article 192 mentions that within urban boundaries, maximum speed is 50

km/h for light vehicles, and 40 km/h for public transportation. As this tool is

intended to be eventually used by common users, light vehicle limit was used, that

is 50 km/h.

3.2.2. Average speed

Average speed is calculated for a given OSM way. For this, pairs of

consecutive points that correspond to a specific way were used. Each point

included information about its location and corresponding time, so speed can be

calculated. The figure below shows some points corresponding to the red road,

and for every pair of points, a speed value is calculated.

43

Figure 4.- Elements used to determine average speed

Average speed (AS) is calculated from location and time information, as

follows:

Ecuador uses speed values measured in unit kilometers per hour (km/h),

so location and time values have to be transformed to this unit system.

3.2.3. Road direction

Basic algorithm

As mentioned earlier, OSM ways may have the “oneway” tag to store

information about road directions. If “oneway” tag value is “yes”, then it is a one

way direction road from starting node to ending node; if value is “-1”, the direction

is from ending node to starting node, and “no” means it is a two-way street. Roads

that have no “oneway” tag are treated as two-way roads. Routing systems

assume there is no restriction and use them in both directions.

As for Speed Average calculations, pairs of consecutive points were used.

Points must be consecutive in time, which means the second point is a minute

later (or less) than the first one. The tool evaluates, for each point of a specific

pair, the distance from beginning and ending nodes, and determines the direction.

44

Figure 5.- Elements used to determine road directions

If the first point is closer to the beginning node than the second point, and

the second point is closer to the ending node than the first one, then the road’s

direction is “from beginning node to ending node”. For example, in the figure

shown before, it is determined that P1 (Point 1) is closer to beginning node (b),

and P2 is closer to ending node (e).

On the contrary, if the first point is closer to the ending node, and the

second point is closer to the beginning node, then the road’s direction is “from

ending node to beginning node”.

Figure 6.- Decision process for determining the direction of a road, from a pair of points

Roads are not always straight, and there is a minute of delay between point

locations that could be used, for example, for a vehicle to go around a block, or

making a U turn, or other situations that could confuse the tool. Because these

cases might occur, all possible pairs are evaluated, and then percentages are

given for each direction found. If a given direction obviously prevails, that direction

is kept. If none of the directions prevail, then it is a two way road.

45

Figure 7.- Decision process for determining the direction of a road, from direction
percentages

Algorithm considerations

The algorithm to find the directions of roads mentioned earlier assumes

vehicles go over streets randomly, and there is enough data for each road to

process. But the data provided for this work does not come from random vehicles;

instead it comes from a set of urban buses that go over roads according to a

predetermined schedule. So roads that are two ways could be used only in one

direction, other roads are not used at all.

If the directions are determined as shown in the basic algorithm, it could

happen that a road is only used in one direction by urban buses, so the tool

assigns the value “yes” or “-1” to the “oneway” tag. If it is actually a two-way

street, then that direction is wrong. A routing tool using “oneway” tag information

would not allow cars to use the road in both directions.

Because of this, the basic decision algorithm must be modified, so actions

taken do not provoke routing systems to throw results with errors.

All possibilities are shown in the next table, for a given road.

46

Tag Scenario Preferred action

"no" (two ways)
Buses go over road two ways Do nothing, information is updated

Buses go over road only one
way

Do nothing, buses might not go over a
two-way road both ways

"yes" or "-1"
(one way)

Buses go over road two ways Update, it is a two way road

Buses go over road only one
way, same way

Do nothing, information is updated

Buses go over road only one
way, opposite way

Update to two-way road (case
explained below)

no "oneway" tag
Buses go over road two ways Update, it is a two-way road

Buses go over road only one
way

Do nothing, buses might not go over a
two-way road both ways

Table 3.- Actions regarding the modified algorithm

If a road is one way (“yes” or “-1” tags), and the tool finds only the opposite

direction, it could imply that direction has been changed to that road, from one

way to the opposite way. But it could also imply that urban buses go over it the

opposite way, being a two-way street. In this case the tool should assign the “no”

tag, because of the cases explained before, the second one does not restrict

vehicles to use that road.

In all tag cases, if there are no vehicles going over a given street, no action

is taken.

Need for external assistance

As mentioned, the algorithm can determine a probable road direction, but

not solve all logic cases, due to data limitations. The cases explained before

propose logic solutions to the cases that can be found, but not all of them can be

solved this way, because doing so would provoke some updates to be incorrect.

Therefore, it is required that a person with road direction knowledge of a

given city provides external assistance to the tool. The proposed way to achieve

this is including an approval stage to updating process.

47

3.3. Tool design

The tool to be developed has to deliver an OSM file processed according to

the GPS data and the user criteria. Therefore GUI must guide the user from

opening an OSM file and a GPS data file, until processing the whole file.

3.3.1. Tool design

To create the new tool, original OSM plugin was modified, so users could

still use buttons and procedures as they used to. Original tools remained the

same, and a new button was created. From this button, forms appear to provide

basic configuration settings. After these settings, processing and solving start.

Figure 8.- Basic tool work flow

Settings refer to selecting, opening and displaying an OSM file, and

opening a CSV file containing GPS data. Besides this, users might decide to

include the maximum speed tag for considered roads. After this, the tool

processes the files and determines a list of proposed road directions, and average

speeds, generating a set of possible changes that users can then solve.

These three stages are not common to all the information to be determined,

so they are explained in the next figures.

48

Maximum speed

Ecuadorian

Law
OSM file processed

Settings:

Solving

User approval to add maximum

speed information?

Add maximum

speed information
Yes

No

Ask user if

maximum

speed is

going to be

included in

OSM file?

Figure 9.- Maximum speed information flow

If the maximum speed information is going to be used, it should be used for

all city streets to be processed. User should decide this before solving. No

processing is needed, only setting and solving.

Average speeds and road directions

OSM file processed

Settings

Solving

User approval to incorporate

changes? Add changes approved

Yes

No

Ask user for

OSM and

CSV files to

use

Processing

Average speed and

road direction

processing, resulting in

a list of changes

Ask user

approval to

incorporate

a specific

change

Are there more changes

proposed to solve?

No

Yes

Figure 10.- Average speed and road direction information flow

49

Tool GUI

A form is generated every time user interaction is needed. As shown in the

figures about information flows, users should be asked for interaction in settings

and in solving stages, so two forms are generated.

The settings form asks the following:

 OSM file to use

 CSV file to use

 Approval to add maximum speed to all urban roads considered

The solving form asks for the following approvals:

 Include the proposed average speed

 Change to proposed road direction

This last form must be shown to users simultaneously with map

information. Users should be able to visualize the road being considered, and the

changes being proposed, to approve (or not) those changes.

3.3.2. Python programming

As said before, all original buttons and their corresponding procedures

remained the same. All additional programming was made creating new scripts or

modifying the original scripts, only adding required programming statements or

functions.

Python scripts

OSM package consists of various python scripts necessary to develop all

procedures. At starting, __init__.py is invoked. This script was modified to provide

50

users information regarding the modified status of the plugin. New name to be

shown to users is “OpenStreetMap plugin, Modified for GPS data processing”.

Also new description is "Viewer and editor for OpenStreetMap data (Modified

UNIGIS)".

OsmPlugin.py is invoked to construct the plugin, as a python class. Within

this python script a new button was created, that launches new procedures to

process GPS data.

New toolbar presents a new button, as shown in the next figure.

Figure 11.- New toolbar, including OSM process button

A new icon was created for this button, as a “jpg” file.

Figure 12.- New button

“__init__” and “OsmPlugin” were the only original scripts modified; only

adding references to new scripts. The rest of the programming was included in

five new scripts that were created, and organized in two categories: processing

scripts and solving scripts. Main processing and solving classes are invoked from

“OsmPlugin” through the new button. As shown in the code below, first python

class invoked is GPSProcess, which results in all proposed changes to approve

later, and the second class is GPSSolve, that goes through those changes and

asks the user for approval, one by one.

 def processGPSData(self):

 """Main procedures to process GPS data and an OSM file

 UNIGIS

 """

 self.processedData=GPSProcess(self)

 # continue only if OK button was clicked

51

 if self.processedData.exec_()==0:

 return

 for i in self.processed:

 self.solvedData=GPSSolve(self, i)

 # continue only if OK button was clicked

 if self.solvedData.exec_()==0:

 return

The rest of the scripts created are called from these two classes, and are

explained in the next table.

Category Name Class Description

Processing

UNIGIS_
ProcessMain

GPSProcess

This class calls the form to provide
initial information. It uses original
OSM OsmLoadDlg.py to load OSM
files, and a modified version of this
script to open CSV files. Once
opened, it also invokes the
processing class,
updateDirectionsAndSpeed.

UNIGIS_
ProcessTools

updateDirections
AndSpeed

All functions to process average
speed and road direction are
contained by this class. It uses
OSM and CSV files determined by
the GPSProcess class, resulting in
a list of changes to be approved
later.

UNIGIS_
ProcessUI

Ui_processGPS

Creates the form to ask initial
settings: OSM and CSV files, and if
maximum speed limit is included in
processed OSM file.

Solving

UNIGIS_
SolveMain

GPSSolve
Takes the list of proposed changes
from GPSProcess class, and
guides the user to go over it.

UNIGIS_
SolveUI

Ui_solveGPS

Creates the form to ask for
approval: This form also sets the
map canvas to show the features
involved, and indicates actual and
proposed road directions.

Table 4.- Scripts created and Python Classes involved

This classes and scripts flow is presented in the next figure.

52

__init__.py
OsmPlugin.py

UNIGIS_Process

Main.py

UNIGIS_Process

Tools.py

UNIGIS_ProcessUI.py

UNIGIS_SolveMain.py

GPSSolve class

UNIGIS_SolveUI.py

Invokes

OsmPlugin

class

Invokes

GPSProcess

Class

Invokes

Ui_processGPS

class

Invokes

GPSSolve

Class

Invokes

updateDirecions

AndSpeed

class

Invokes

Ui_solveGPS

class

Figure 13.-Scripts used and classes invoked

This classes flow share information between scripts. The next figure shows

this information flow.

OsmPlugin.py

UNIGIS_ProcessMain.py

UNIGIS_Process

Tools.py

UNIGIS_ProcessUI.py

UNIGIS_SolveMain.py

UNIGIS_SolveUI.py

Sends path to OSM

 and CSV files

Sends changes

 to be approved,

 one by one

Returns list of changes

 to be approved

Sends changes

 to be approved,

 one by one

Returns

path to files and

approval for

maximum speed

approval

Returns list of changes

 to be approved

Returns changes approved

Figure 14.- Information flow between python scripts

53

Python resources used

The tool generated uses modules from the standard library for Python 5.1

version, or from installed modules provided by QGIS. Each of the modules used is

imported into a specific script where it is used. Those scripts are listed in the next

table.

Module name Imported by Module description

CSV UNIGIS_ProcessMain Used to parse CSV files. Handles CSV
reading and writing capabilities.

xml.etree.
ElementTree

UNIGIS_ProcessMain
UNIGIS_SolveMain

Creates a “Tree” readable by python from a
XML file, can be used for an OSM file too.
Handles reading and writing capabilities.

math UNIGIS_ProcessTools
UNIGIS_SolveUI

Provides mathematical functions to scripts.

qgis.gui UNIGIS_ProcessTools
UNIGIS_SolveUI

This class allows canvas interaction, like
zooming or creating temporary objects.

PyQt4 (QtCore
and QtGui)

All scripts. Qt is used for GUI implementation, and for
message used in testing phase.

Table 5.- Modules used in generated scripts

3.4. Testing phase

The tool to be developed in this work was compulsory oriented to the

resources available, especially GPS data provided by a specific company. This

issue reduces the possibilities to test the tool, as only GPS vehicle data for a

buses fleet was provided.

Therefore, the tool was considered ready as it produced accurate results

with available data. For this matter the tests described next were conducted.

54

Test Description

1 Simplified test A scenario with unreal coordinates values was created, so
values can be tested in a simplified way. This test allows
algorithm issues to be solved.

2 Simplified
georeferenced test

This scenario shows possible problems when dealing with
simplified real coordinates (the tool works with GPS dataset
coordinates, latitude and longitude).

3 Real simplified
tests

Samples of few streets were tested against a sample of real
GPS dataset. Algorithm can be fully tested.

4 Real test Complete tests were conducted, using full Portoviejo OSM
streets and samples of GPS data. These tests show
performance issues.

Table 6.- Tests description

Besides algorithm issues, programming issues were also corrected as they

were detected.

3.4.1. Simplified test

Streets and GPS coordinates are simple and unreal, as shown next. They

are contained in an OSM and a CSV file. Length unit is meters, so a temporary

change of programming was made to perform speed calculation from these

coordinates.

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

1

3

5

7

2

4

6

8

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

17 18 19 20 21 22 23 24

32 31 30 29 28 27 26 25

101

102

103

104

Figure 15.- Simplified Test data

Each GPS point (shown in red from 1 to 32) is given a different time, with a

minute of delay. The last road does not have any corresponding points, as a

55

control road that must not be changed. Expected results are directions as shown

in red arrows. Average speed is

3.4.2. Simplified georeferenced test

This test is very similar to the Simplified test, but GPS data was

transformed to values that could be found in real life (latitude and longitude within

Portoviejo).

-8
0

.4
8

7

0

1

3

5

7

2

4

6

8

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

17 18 19 20 21 22 23 24

32 31 30 29 28 27 26 25

0

-1.078 1

3

5

7

2

4

6

8

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

17 18 19 20 21 22 23 24

32 31 30 29 28 27 26 25

-8
0

.4
7

7

-8
0

.4
6

7

-8
0

.4
5

7

-8
0

.4
4

7

-8
0

.4
3

7

-8
0

.4
2

7

-8
0

.4
1

7

-8
0

.4
9

7

-8
0

.4
0

7

-1.068

-1.058

-1.048

Figure 16.- Simplified Georeferenced test data

GPS points in CSV file are distributed as GPS points for Simplified test.

Expected results are directions as shown in red arrows in Figure 17. Exact

average speed depends on latitude, but is close to

3.4.3. Real simplified test

This test was conducted for five different small sets of real streets of

Portoviejo, from OpenStreetMap. These streets were tested against a set of GPS

vehicle data from only two months, so CSV file size does not provoke

performance problems.

56

Average speed and directions depend on each street and available data.

Figure 17.- Streets considered for Simplified real test

3.4.4. Real test

All algorithm and procedure should have been solved to this point. So

performance tests were performed to prove capacity of the tool under normal

conditions of hardware.

3.4.5. Checklist

For each test, a checklist was used to control results. Four scenarios were

considered, regarding the “oneway” tag, and are shown in Appendix 1.

57

4. Results

This chapter shows the results of the testing phase.

4.1. Testing phase

4.1.1. Simplified test

This test is intended to review general flow of the tool.

Stage Event Event screen

1 Click new button

2 Settings form appears

3 Choose CSV and OSM files. Check

inclusion of urban speed limit. Click
“Ok” to start and processing begins.

4 First change to approve appears on

screen. Road involved is
highlighted. Also, road name and ID
are shown as form title (“None” if
there is no name). Average speed
and road directions are shown as
expected.

5 Check for inclusion of approved
changes. Click “Ok” button. Repeat
until all changes are reviewed.

Table 7.- Events of the first scenario for Simplified test

58

This flow remains the same for all tests.

OSM file changes are shown below, using XML notepad tool “Compare

XML files”. Text highlighted in yellow shows xml code added, and green shows

changes, comparing “way” identified by the “id” tag.

Figure 18.- Results of first test, “yes” value for “oneway” tag.

Changes are made as expected.

This test resulted in programming changes and algorithm changes, which

were made until the checklist used was completely positive.

4.1.2. Simplified georeferenced test

This test is similar to the first one, but coordinates are now intended to be

real, keeping the simple way distribution of the first test.

59

Figure 19.- Example of a change for Simplified georeferenced test

As for the first test, changes in OSM file are shown next.

Figure 20.- Results of second test, “yes” value for “oneway” tag.

Direction changes and average speed calculations are changed as

expected.

4.1.3. Real simplified test

Five random excerpts of roads were tested.

60

Excerpt Screen example Example of OSM file changes

1

2

61

Excerpt Screen example Example of OSM file changes

3

4

5

Table 8.- Results of third test.

Real simplified tests resulted in a series of compulsory corrections made to

code, as many issues were detected concerning programming errors that did not

emerge in the tests before.

62

4.1.4. Real test

For this test, some excerpts were created from CSV and OSM complete

files, to measure the amount of data a desktop computer can handle.

The goal of the tool is to process all Portoviejo OSM dataset so only two

files were created. The first one was a small excerpt, to be tested first, so possible

procedural errors could be detected before having to wait the time needed to

process the complete file. The second one was the entire file downloaded.

File type File name File size (KB)

Osm Portoviejo0010k 12

Osm Portoviejo3300k 3299

Csv CSV000030 28

Csv CSV000200 190

Csv CSV001000 996

Csv CSV010000 10916

Csv CSV100000 102210

Csv CSV380000 382729

Table 9.- Files used for Real test

All CSV were tested against OSM files. Programming errors were still

found, during this phase, and were solved.

Full CSV file containing GPS data is a large file, and not all of its content is

usable. From this file all data concerning night hours was removed, that is from 23

p.m. to 6 a.m. (outside working hours), and only was kept data for a period of time

of two months. From this new file, smaller files were created: (approx.) 30 KB, 200

KB, 1000 KB and 10000 KB, that were tested against a full Portoviejo OSM

dataset.

As CSV files increase, processing time increased as well. These

processing times are shown next, when processed against complete Portoviejo

OSM dataset.

63

CSV File Processing time

CSV000030 3 minutes

CSV000200 16 minutes

CSV001000 58 minutes

CSV010000 3 hours

CSV100000 Over 10 hours

CSV380000 Memory error

Table 10.- Processing time for Real Test

Large CSV files are difficult for normal computers to handle, when

processed with the tool created.

4.2. Testing phase synthesis

Testing phase permitted to expose how the tool worked with real data, and

how its performance achieved the results expected, regarding average speed and

road direction calculations. A brief synthesis is presented in this chapter.

The cases intend to present logical results, which mean that are presented

events where the tool works in a coherent way, as expected. All other cases are

analyzed in the Discussion chapter.

4.2.1. Average speed

From tests conducted with real Portoviejo road OSM data, example

average speeds are shown in the table below.

64

 Print screens

1

2

65

3

4

66

5

6

Table 11.- Calculated average speed examples

These examples have been ordered increasingly, according to speed

average value. Low values (cases 1 to 4) are found downtown, where heavy

traffic can be expected. Cases 5 and 6 correspond to larger roads so higher

speeds values are found.

67

4.2.2. Road directions results

Algorithm for determine road directions functions according to logical flow

from which the tool was designed and created. This implies that always colored

arrows appear onscreen as expected, proposing a change to be approved by final

user.

68

Road and changes proposed OSM addition (yellow)

ID: 59640277

ID 59640275:

69

ID 39654557:

ID 39909192:

Table 12.- Determined road direction examples

This examples show how the tool handles given conditions, and integrates,

as commanded by the user, road directions into the OSM file. For the examples

shown, always the proposed option was chosen.

70

5. Discussion

As mentioned earlier, not always the tool could achieve results as

expected. This chapter exposes the reasons found for the tool not to perform

correctly, or special conditions for a result to be inaccurate.

It is convenient to mention that there was no field work developed for this

work (logistic issues), instead of which support from people with knowledge of

Portoviejo’s road network was used.

5.1. QGIS and OSM plugin

QGIS was chosen because of its OSM plugin, and the possibility of

building, from a GIS environment, a tool that could provide different processing

options from its core modules.

This tool was developed for version 1.7 of QGIS, and is compatible with

other 1.x releases. QGIS version 2 is nowadays available (it was not when the

development of this tool began), and OSM processing functions are still available

and have been improved. But these new capabilities are now not available as a

plugin, but as a part of QGIS core functionality, making the previous plugin

obsolete (OpenStreetMap Wiki, 2013). QGIS 2 does not support plugins for early

QGIS versions, like the modified plugin created in this work, so it would have to be

transformed to new standards and specifications to be used.

71

But other OSM specific developed tools still provide an easier and more

powerful environment when handling OSM data, like JOSM (Java OpenStreetMap

Editor), making this effort suited specially for QGIS users.

5.2. Average Speed

Average speeds are calculated from pairs of points and their coordinates.

Pairs are considered valid if:

 Are less than 15 meters distant from a road

 Have the same ID

 Are not more than a minute far in time

 Beginning and ending nodes are different (not a polygon)

 Are not too close from each other

The latter criterion was necessary to consider because of the errors

produced averaging speeds when a vehicle remained still for a long time on a

particular location. Pairs of vehicle location coordinates, when a vehicle does not

move, are considered as short movements with a minute of delay, thus misleading

algorithm and the tool.

Figure 21.- Example of GPS data for a stationary vehicle

72

The figure above shows the distribution of GPS locations, for a bus, from a

sample of data taken from 18h00 to 23h00, over a Google Earth image. This is an

example of a vehicle standing still, points are roughly in a 40 meter diameter

circle, but most of them inside a 16 meter diameter circle. This is a problem for a

tool like the one presented here, because during extreme traffic jams a car may

not move at all for a minute, or move less than 40 meters. If these groups of

points are suppressed from calculations, these jams are not considered, thus

calculating a wrong average speed value. But if considered, average speeds

would be calculated using parking locations, flat tires events, or others. The tool

should eventually consider the possibility of managing these events, and

discriminate them from traffic jams.

Besides this, the tool does not discriminate GPS data by groups of hours

(e.g.: morning, morning rush hours, afternoon, etc.), this causes for average

speeds to merge values from rush hours and not traffic jam hours. A routing tool

could use and inform this criterion to a user. But if an “hour discrimination”

criterion was taken into account, then its information would have to be contained

by specific tags, which should been developed and approved by communities of

OSM users, before it could be used massively.

Another consideration to be made involves roads that are long, for example

beginning outside the city, going through its perimeter and downtown zones, and

continuing until it leaves the city again. Speed values are compulsory be higher in

external zones, but if a road is represented as a unique feature, its average speed

value merges all zones values. Also, if GPS data does not “cover” all road,

73

average speed is calculated for a portion of it, but value is assigned to the

complete road.

5.3. Directions

One of the problems found when determining road directions was that

assistance of a person with direction knowledge of the city roads was needed to

assure accurate data. The fact that outside support is needed limits its users, as a

person is needed, could not be a GIS specialist himself.

Other problem is that OSM network was not edited correctly, which was a

presumption when designing the tool. Some roads should be divided in many

smaller roads, but algorithm does not look for this editing mistakes. An example is

exposed in the next Figure.

Figure 22.- Example of OSM editing issues

5.4. Performance

A laptop or a desktop computer with regular processing capabilities was

used, finding performance problems when dealing with large amount of data.

74

When first testing was being developed, memory errors were recursive,

even with small OSM datasets. This was caused by a Python resource used:

python lists that were used as containers for OSM datasets and CSV datasets.

This problem obligated to find an alternative, so auxiliary CSV files are created

every time a process is performed, that contain all GPS and OSM data to be used

when solving.

Even then, tests conducted could determine road directions and speed

averages, but for a limited amount of GPS data. This could obligate to generate

some strategies to process GPS data with the tool, for example:

 Use smaller GPS datasets, excerpts

 Generate datasets using vehicles schedules, looking to update a

specific road or zone

 Perform a unique processing phase, and then make the corrections

required as errors appear

Also, a server could be used, enhancing processing periods of time

needed.

5.5. Programming errors

Testing phases 3 and 4 had to be reproduced several times until checking

lists were completely positive. Final run was held without problems or issues, but

any change on processing conditions (resources, environment) may need a new

testing phase to solve possible problems.

75

6. Conclusions

 The two principal elements mentioned in this work hypothesis are

average speed and road direction, expecting them to be determined

with a new tool, using GPS data provided and free resources.

Testing phase demonstrates that, given specific conditions, it is

feasible.

 Average speed is intended to give users a routing resource so travel

time is saved. This tool does calculate average speed, but due to

limitations on GPS data and characteristics of the roads network of

Portoviejo, its real use should still be determined.

 Portoviejo’s road network, after processed with the tool developed

for this work and its information about road directions being

improved, is more complete than before. But, if there is no control

over massive processing, it may imply massive errors. They must be

performed with special attention.

 This tool should be tested with a dataset of GPS data from random

vehicles, not only buses. This would allow most roads to be

considered in both senses (if it is a two-way street); also average

speeds would allow a more realistic average calculated.

 The tool should allow in the future other formats of GPS data,

according to necessity, and according to improvements of

technology.

76

7. References

American Public Transportation Association. (2009, january 20). Comments to
Access Board Docket Number 2007-1. Retrieved september 08, 2013, from
http://www.apta.com/gap/fedreg/documents/apta_comments_access_boar
d_bus_2009.pdf

Asamblea Nacional Constituyente - Ecuador. (2012). Reglamento General para la
Aplicación de la Ley Orgánica de Transporte Terrestre, Tránsito y
Seguridad Vial. Quito, Ecuador.

Barret, D. J. (2008). In O'Reilly Media, Inc. Retrieved july 30, 2012, from
Mediawiki:
http://books.google.com.ec/books?id=2dhL5V3pLHkC&printsec=frontcover
&hl=es#v=onepage&q&f=false

Bartlett, G. (2009, April 10). Vehicle Tracking Systems – Which One Is Right For
You? Retrieved July 03, 2013, from
http://www.rmtracking.com/blog/2009/04/10/vehicle-tracking-systems-
which-one-is-right-for-you/

Chatfield, T. B. (2009). The Complete Guide To Wikis: How to Set Up, Use, and
Benefit from Wikis for Teachers, Business Professionals, Families, and
Friends. (pp. 22, 25). Retrieved July 2012, 30, from
http://books.google.com.ec/books?id=TSdRIqD865sC&printsec=frontcover
&hl=es#v=onepage&q&f=false

Comisión de Tránsito del Ecuador. (2011, 04 19). Reglamento de la Ley Orgánica
de Transporte Terrestre, Tránsito y Seguridad Vial. Retrieved from
http://www.cte.gob.ec/wp-
content/uploads/2011/04/ReglamentoGralAplicaLOTTTSV.pdf

Corti, P. (2012, February 03). Thinking in GIS. Retrieved June 02, 2013, from
Python for geospatial developers:
http://www.paolocorti.net/2012/02/03/python_for_geospatial_developers/

Digia. (2013). Qt |The Power of a Complete Development Framework. Retrieved
June 03, 2013, from http://qt.digia.com/Product/#.UavHe5y0TsA

Dobias, M. (2011). PyQGIS documentation. Retrieved June 02, 2013, from
Introduction: http://www.qgis.org/pyqgis-cookbook/intro.html

Fogel, K. (2005). Producing Open Source Software. Retrieved 12 08, 2013, from
The GPL and License Compatibility: http://producingoss.com/en/license-
compatibility.html

77

GISLounge. (2012, November 26). Open Source GIS and Freeware GIS
Applications. Retrieved 09 08, 2013, from http://www.gislounge.com/open-
source-gis-applications/

Goodchild, M. F. (2007). Citizens as Voluntary Sensors: Spatial Data
Infrastructure. International Journal of Spatial Data Infrastructures
Research, 2, 27.

Jon, G.-B. (n.d.). What is software licensing? Retrieved July 30, 2012, from
http://web.archive.org/web/20110721052929/http://knol.google.com/k/jon-
gillespie-brown/what-is-software-licensing/3v64x901bjfe2/2#

MacWright, T. (2012, October 31). GIS with Python, Shapely, and Fiona.
Retrieved June 02, 2013, from http://macwright.org/2012/10/31/gis-with-
python-shapely-fiona.html

MapBox. (2013). OpenStreetMap Data Report. Retrieved august 27, 2013, from
2013: http://www.mapbox.com/osm-data-report/

Open Data Commons. (n.d.). ODC Open Database License (ODbL) Summary.
Retrieved June 01, 2013, from
http://opendatacommons.org/licenses/odbl/summary/

Open Source Geospatial Foundation. (2011). Quantum GIS userguide. Retrieved
from version 1.7.0 ‘Wroclaw’:
http://download.osgeo.org/qgis/doc/manual/qgis-1.7.0_user_guide_en.pdf

Open Source Initiative. (n.d.). The Open Source Definition. Retrieved May 12,
2013, from http://opensource.org/docs/osd

OpenStreetMap. (2011, August 02). Ecuador/normalizacion de vias. Retrieved
June 01, 2013, from
http://wiki.openstreetmap.org/wiki/Ecuador/normalizacion_de_vias

OpenStreetMap. (2011, July 09). License/We Are Changing The License.
Retrieved June 01, 2013, from
http://www.osmfoundation.org/wiki/License/We_Are_Changing_The_Licens
e

OpenStreetMap. (2013, March 29). OSM tags for routing. Retrieved June 01,
2013, from http://wiki.openstreetmap.org/wiki/OSM_tags_for_routing

OpenStreetMap. (n.d.). Copyright and License. Retrieved June 01, 2013, from
http://www.openstreetmap.org/copyright

OpenStreetMap Wiki. (2013). QGIS OSM Plugin. Retrieved december 17, 2013,
from http://wiki.openstreetmap.org/wiki/QGIS_OSM_Plugin

Python Software Foundation. (2012). The Python Tutorial. Retrieved 2013, from
4.7.6 Documentation Strings, 4.8 Intermezzo: Coding Style:
http://docs.python.org/tutorial/controlflow.html

78

Python Software Foundation. (2013). About. Retrieved June 02, 2013, from
http://www.python.org/about/

Python Software Foundation. (2013). The Python Tutorial. Retrieved september
08, 2013, from Modules:
http://docs.python.org/2/tutorial/modules.html#packages

Qt Project Hosting. (2013). Qt Licensing. Retrieved june 02, 2013, from http://qt-
project.org/products/licensing

Quantum GIS web site. (n.d.). QGIS Features. Retrieved July 13, 2012, from
http://www.qgis.org/en/site/about/features.html

Riverbank Computing Limited. (2011). PyQt 4.10.1 Reference Guide. Retrieved
June 2013, 2013, from Introduction:
http://pyqt.sourceforge.net/Docs/PyQt4/introduction.html#license

Riverbank Computing Limited. (2013). PyQt. Retrieved June 02, 2013, from
License: http://www.riverbankcomputing.co.uk/software/pyqt/license

Sherman, G. (2011, December 19). QGIS users around the world. Retrieved July
15, 2012, from Blog Post: http://spatialgalaxy.net/2011/12/19/qgis-users-
around-the-world/

The Quantum GIS project. (n.d.). About QGIS. Retrieved June 02, 2013, from
http://www.qgis.org/en/about-qgis.html

Tomer, C. (2002). "Open Source." Computer Sciences. Retrieved July 26, 2012,
from http://www.encyclopedia.com/doc/1G2-3401200413.html

Universidad Carlos III de Madrid. (2013). Oficina de Información Científica -
Noticias. Retrieved september 08, 2013, from A system that improves the
precision of GPS in cities by 90 percent:
http://www.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/improv
es_precision_gps

Westra, E. (2010). Python Geospatial Development. Birmingham: Packt
Publishing.

Wikibooks. (2013, May 16). Python Programming. Retrieved June 02, 2013, from
http://en.wikibooks.org/wiki/Python_Programming

Wikibooks. (2013, January 19). Python Programming/Overview. Retrieved June
02, 2013, from http://en.wikibooks.org/wiki/Python_Programming/Overview

World Intellectual Property Organization. (2004). The Concept of Intellectual
Property. Retrieved July 26, 2012, from WIPO Intellectual Property
Handbook. Second Edition: http://www.wipo.int/export/sites/www/about-
ip/en/iprm/pdf/ip_handbook.pdf

79

World Wide Web Consortium. (2012). Extensible Markup Language (XML).
Retrieved May 2013, 31, from http://www.w3.org/XML/

ZetCode. (2012, September 26). Introduction to Qt4 toolkit. Retrieved June 02,
2013, from http://www.zetcode.com/gui/qt4/introduction/

80

8. Appendices

Appendix 1: Testing phase Check List

Topic Questions One way tag

“Yes” “-1” “No” No tag

1 Maximum speed Is it added when commanded?

2 Average speed Is it accurate?

3 Is it added when commanded?

4 Road direction Is it accurate?

5 Does it respond to logical flow?

6 Procedure errors Detected errors were corrected?

Table 13.- Checklist used in Testing phase

81

Appendix 2: Python Syntax

The Python Tutorial (Python Software Foundation, 2012) is available online

and proposes some python writing guidelines that ensure readability in Python

Scripts. Highlights of this coding style are mentioned below.

 Wrap lines so that they don’t exceed 79 characters.

 Use blank lines to separate functions and classes, and larger blocks

of code inside functions.

 When possible, put comments on a line of their own.

 Use spaces around operators and after commas, but not directly

inside bracketing constructs: a = f(1, 2) + g(3, 4).

 Name your classes and functions consistently; the convention is to

use CamelCase for classes and lower_case_with_underscores for

functions and methods. Always use self as the name for the first

method argument

 Don’t use fancy encodings if your code is meant to be used in

international environments. Plain ASCII works best in any case.

Besides these above mentioned items, classes were given an explanatory

text to be read when help function is used.

