

UNIVERSIDAD SAN FRANCISCO DE QUITO

Colegio de Ciencias e Ingeniería

Wind Power & Sound Generation: Aero-acoustic Noise Prediction for

Wind Turbines

Sterling McBride

Patricio Chiriboga, PhD, Director de Tesis

Ricardo Burdisso, PhD, Co-Director de Tesis

Tesis de grado presentada como requisito

para la obtención del título de Ingeniero Mecánico

Quito, mayo de 2015

UNIVERSIDAD SAN FRANCISCO DE QUITO

COLEGIO DE CIENCIAS E INGENIERÍA

HOJA DE APROBACIÓN DE TESIS

Wind Power & Sound Generation: Aero-acoustic Noise Prediction for Wind Turbines

Sterling McBride

Patricio Chiriboga, Ph.D.,

Director de la tesis ______________________________________

David Escudero, Ph.D.,

Miembro del Comité de Tesis ______________________________________

Edison Bonifaz, Ph.D.,

Miembro del Comité de Tesis ______________________________________

Alfredo Valarezo, Ph.D.,

Director del programa ______________________________________

Ximena Córdova, Ph.D.,

Decana de la Escuela de Ingeniería ______________________________________

Colegio de Ciencias e Ingeniería

Quito, mayo de 2015

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído la Política de Propiedad

Intelectual de la Universidad San Francisco de Quito y estoy de acuerdo con su contenido,

por lo que los derechos de propiedad intelectual del presente trabajo de investigación quedan

sujetos a lo dispuesto en la Política.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo de investigación en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144

de la Ley Orgánica de Educación Superior.

Firma: _____________________________________

Nombre: Sterling McBride

C. I.: 1712339884

Lugar y fecha: Quito, mayo de 2015

5

DEDICATORIA

Para mi familia, por su incondicional apoyo.

6

AGRADECIMIENTOS

 Este proyecto no hubiera sido posible sin el apoyo de Ricardo Burdisso, a quien

agradezco por haber sido mi mentor y guía durante el desarrollo del mismo. Las enseñanzas

que me ha transmitido, han despertado en mí un espíritu de investigación y de excelencia.

Adicionalmente, agradezco a Patricio Chiriboga, ya que gracias a su respaldo y

asesoramiento, pude exitosamente llevar a consecución ésta investigación.

7

RESUMEN

El sonido producido por turbinas de viento se ha convertido en un asunto de

preocupación durante los últimos años, especialmente debido a que con el pasar del tiempo se

están construyendo turbinas de mayor tamaño, y muchas de ellas se encuentran cerca de

lugares poblados. El objetivo principal de este trabajo es crear un modelo que prediga los

niveles de presión de sonido [dBa] en una malla esférica alrededor de la turbina. En este caso,

se ha utilizado una turbina de modelo Nordtank NTK 500/4, y para obtener los resultados

deseados, se han utilizado datos experimentales realizados en un túnel de viento.

Los resultados obtenidos muestran que los niveles de presión de sonido, con

ponderación-A tienen valores máximos de 35 [dBa], y mínimos de 0 [dBa]. Los valores más

altos se encuentran localizados en los polos de la esfera, en dirección paralela a la rotación de

los alabes. Los valores más bajos se encuentran en el centro de la esfera, en dirección

perpendicular a la rotación de los alabes. Adicionalmente, se observa que a medida que los

alabes giran, el sonido está caracterizado por un comportamiento oscilatorio.

8

ABSTRACT

The noise produced by wind turbines has become a matter of concern during the last

few years, especially since larger wind turbines are being built and some of them near

populated areas. The main purpose of this thesis is to create a model that predicts the overall

A-weighted sound pressure levels on a spherical grid around a wind turbine. In this case, the

wind turbine used for modeling was Nordtank NTK 500/4, and in order to obtain results,

experimental wind tunnel airfoil noise data was used.

The obtained results show that the overall A-weighted sound pressure levels on the

sphere grid surrounding the wind turbine have maximum values that are around 35 [dBa] and

minimum of 0[dBa]. The highest values are located on the poles of the sphere, parallel to the

plain of rotation of the blades. The lowest values are located at the center of the sphere,

perpendicular to the plain of rotation of the blades. Additionally, it was determined that as the

blades of the wind turbine rotate, the noise is characterized by an oscillating behavior.

9

TABLE OF CONTENTS

INTRODUCTION.. 17

1.1 Justification .. 17

1.2 Objectives.. 18

1.3 Background .. 19

1.4 Methodology ... 19

1.5 Literature Review .. 19

1.5.1 Investigations Focused on the Sound Produced by Wind Turbines. 20

1.5.2 Investigations on the Structural Behavior of Wind Turbines. 22

THEORETICAL FRAMEWORK ... 24

2.1 Speed of Sound ... 24

2.2 Spherical Acoustic Waves ... 25

2.3 Pressure Root Mean Square Values ... 25

2.4 Sound Pressure Levels ... 26

2.5 1/3rd Octave Frequency Bands .. 27

2.6 Overall Sound Pressure Levels ... 29

2.7 A-Weighting.. 29

2.8 Directivity ... 30

2.9 Sound Intensity and Power ... 30

2.10 Anechoic and Reverberant Chambers ... 31

2.11 Microphone Phased Arrays .. 33

2.12 Flow around Wind Turbine Blades .. 35

2.13 Lift and Drag .. 37

2.14 Flows Past an Object & Boundary Layer Structures ... 38

2.15 Boundary Layer Thickness ... 39

WIND TUNNEL AIRFOIL NOISE DATA ... 41

3.1 Aero-acoustic Test Facilities ... 41

3.2 Experimental Test Procedure ... 44

3.3 Data Processing & Results .. 46

3.3.1 Kevlar Window Associated Sound Pressure Level Corrections. 47

3.3.2 Normalization procedure. ... 51

3.4 DU96_main.m MATLAB Code Description.. 60

EXPERIMENTAL RESULTS ANALYSIS AND DISCUSSION 64

4.1 NAFNoise Program Description ... 64

4.1.1 Airfoil Noise Sources. ... 65

4.1.2 NAFNoise Inputs & Outputs. ... 69

4.2 Experimental & Modeled data Analysis .. 73

4.3 NAFNOISE_main.m MATLAB Code Description ... 81

WIND TURBINE NOISE PREDICTION ... 83

5.1 Prediction Model Description ... 83

5.1.1 Incoming Wind Velocity Modeling. ... 84

5.1.2 Wind Turbine Blade Geometry Modeling. ... 85

5.1.3 Rotational Positions Modeling. ... 89

5.1.4 Spherical Grid Modeling... 91

5.1.5 Noise Source Modeling... 92

5.1.6 Overall A-Weighted Sound Pressure Levels Computation. 95

10

5.2 Noise Prediction Results .. 96

5.3 WTNOISE_main.m MATLAB Code Description .. 100

CONCLUSIONS & RECOMMENDATIONS .. 104

REFERENCES ... 106

APPENDIX A: DU96.xlsx File .. 109

APPENDIX B: DU96_main.m .. 110

APPENDIX C: nafnoise.ipt file .. 131

APPENDIX D: nafnoise.out File .. 132

APPENDIX E: NAFNoise_main.m .. 133

APPENDIX F: WTNOISE_main.m ... 143

11

LIST OF TABLES

Table 1. Sound pressure levels for some sources. Retrieved from: Biess, D. & Hansen (2009),

Engineering Noise Control, Fourth Edition, CRC Press –USA .. 27

Table 2. Octave and 1/3rd Octave Frequency Bands. Retrieved from: Biess, D. & Hansen

(2009), C., Engineering Noise Control, Fourth Edition, CRC Press -USA. 28

Table 3. Acoustic Coefficient for Acoustic Materials. Retrieved from: Biess, D. & Hansen

(2009), Engineering Noise Control, Fourth Edition, CRC Press -USA 32

Table 4. Target and Actual Flow Velocities for Wind Tunnel Test. 46

Table 5. Curve Fit Coefficients for Each Angle of Attack. ... 57

Table 6. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34

m/s & AOA=4 deg, b) flow velocity = 44 m/s & AOA=4 deg, c) flow velocity = 54 m/s

& AOA=4 deg, d) flow velocity = 64 m/s & AOA=4 deg. ... 75

Table 7. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34

m/s & AOA=8 deg, b) flow velocity = 44 m/s & AOA=8 deg, c) flow velocity = 54 m/s

& AOA=8 deg, d) flow velocity = 64 m/s & AOA=8 deg. ... 77

Table 8. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34

m/s & AOA=12 deg, b) flow velocity = 44 m/s & AOA=12 deg, c) flow velocity = 54

m/s & AOA=12 deg, d) flow velocity = 64 m/s & AOA=12 deg. 79

Table 9. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34

m/s & AOA=16 deg, b) flow velocity = 44 m/s & AOA=16 deg, c) flow velocity = 54

m/s & AOA=16 deg, d) flow velocity = 64 m/s & AOA=16 deg. 80

Table 10. Twist and Chord distributions for a Nordtank NTK 500/41 blade. Retrieved From:

Hansen, M. (2008). Aerodynamics of Wind Turbines. (pp.58) Earthscan, Sterling, VA-

USA. .. 86

12

Table 11. Interpolated Twist Distribution for a Nordtank NTK 500/41 blade 87

LIST OF FIGURES

Figure 1. International A, B, and C weighting curves for sound level meters. Retrieved from:

Bies, D. & Hansen, C. (2009). Engineering Noise Control: Theory and Practice (4th

edition). New York, NY, USA: Taylor and Francis. .. 29

Figure 2. Anechoic Chamber Walls Assembly. Retrieved from

http://www.ilcc.inf.ed.ac.uk/facilities/facilities-images/IMG-2965-

1.JPG/image_view_fullscreen. .. 33

Figure 3. Plane Microphone Phased Array. Retrieved From: http://xn--

42cga5ca0b6cdc2bzb3a7ble0ewa3nna3m.com/en/portfolio/microphone-array/. 34

Figure 4. Acoustic Map from Wind Tunnel Test. Retrieved from "Aero-acoustic Testing of

Wind Turbine Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471. National

Renewable Energy Laboratory. ... 35

Figure 5. Airfoil with Definition of Flow Angles and Forces. Retrieved from: Gipe, P.

(2004), Renewable Power: Renewable Energy for Home, Farm, and Business, Chelsea

Green Publishing Company, USA. ... 36

Figure 6. Change of Flow Velocity Components along an Un-Twisted Wind Turbine Blade.

Retrieved From: http://www.learnengineering.org/2013/08/Wind-Turbine-Design.html.

 ... 37

Figure 7. Pressure & Shear Stress Distributions. Retrieved from: Munson, B, Okiishi, T.,

Huebsch, W., Rothmayer, A. (2013). Fundamentals of Fluid Mechanics. P.482. John

Wiley & Sons. Hoboken, NJ. .. 38

13

Figure 8. Laminar & Turbulent Boundary Layer. Retrieved from: Munson, B, Okiishi, T.,

Huebsch, W., Rothmayer, A. (2013). Fundamentals of Fluid Mechanics. P.490. John

Wiley & Sons. Hoboken, NJ. .. 39

Figure 9.Boundary Layer Thickness: a) Standard Boundary Layer Thickness, b) Boundary

Layer Displacement Thickness. Retrieved from: Munson, B, Okiishi, T., Huebsch, W.,

Rothmayer, A. (2013). Fundamentals of Fluid Mechanics. P.491. John Wiley & Sons.

Hoboken, NJ. ... 40

Figure 10. General layout of the Virginia Tech Stability Wind Tunnel in Anechoic

Configuration. Retrieved from

http://www.aoe.vt.edu/research/facilities/stabilitytunnel/acoustics-stabilitytunnel.html. . 42

Figure 11. Side Cross Section Area of Anechoic Chambers. Retrieved from "Aero-acoustic

Testing of Wind Turbine Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471.

National Renewable Energy Laboratory. .. 43

Figure 12. Top Cross Section View of Anechoic System. Retrieved from "Aero-acoustic

Testing of Wind Turbine Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471.

National Renewable Energy Laboratory. .. 43

Figure 13. Chord and Span of the DU-96 Airfoil. ... 44

Figure 14. Wind Tunnel Airfoil Test Configuration (Angle of Attack of Zero Degrees). 45

Figure 15. Attenuation of sound passing through acoustic Kevlar windows as a function of

frequency. Retrieved from "Aero-acoustic Testing of Wind Turbine Airfoils", W.

Davenport et al., 2010. NREL/SR-500-43471. National Renewable Energy Laboratory.48

Figure 16. Attenuation of sound passing through the shear boundary layer as a function of

frequency. Retrieved from "Aero-acoustic Testing of Wind Turbine Airfoils", W.

Davenport et al., 2010. NREL/SR-500-43471. National Renewable Energy Laboratory.49

14

Figure 17. Corrected SPL [dB] vs. Strouhal Number for all Velocities, When the Angle of

Attack is a) 4 Degrees, b) 8 Degrees. .. 54

Figure 18. Corrected SPL [dB] vs. Strouhal Number for all Velocities, When the Angle of

Attack is a) 12 Degrees, b) 16 Degrees. .. 54

Figure 19. Collapsed Curves for Each Angle of Attack, for all Free Stream Velocities. 54

Figure 20. Collapsed Data Curve Fit for an Angle of Attack of 4 Degrees. 55

Figure 21. Collapsed Data Curve Fit for an Angle of Attack of 16 Degrees. 56

Figure 22. Collapsed Data Curve Fit for an Angle of Attack of 8 Degrees. 56

Figure 23. Collapsed Data Curve Fit for an Angle of Attack of 12 Degrees. 57

Figure 24. First Coefficient (a) Fit as a Function of the Angle of Attack. 58

Figure 25. Second Coefficient (b) Fit as a Function of the Angle of Attack. 59

Figure 26. Third Coefficient (c) Fit as a Function of the Angle of Attack. 59

Figure 27. SPL as a Functions of the Strouhal Number for an Angle of Attack of a) 4

Degrees, b) 8 Degrees, c) 12 Degrees, d)16 Degrees. ... 60

Figure 28. DU96_main.m Code Flow Chart. ... 62

Figure 29. Turbulent Boundary Layer-Trailing Edge Noise. Retrieved From: Brooks, F.,

Pope, S., Marcolini, M. (1989). Airfoil Self-Noise and Prediction. NASA Reference

Publication 1218. ... 65

Figure 30. Flow Separation Noise. Retrieved From: Brooks, F., Pope, S., Marcolini, M.

(1989). Airfoil Self-Noise and Prediction. NASA Reference Publication 1218. 66

Figure 31. Laminar Boundary Layer-Vortex Shedding Noise. Retrieved From: Brooks, F.,

Pope, S., Marcolini, M. (1989). Airfoil Self-Noise and Prediction. NASA Reference

Publication 1218. ... 67

15

Figure 32. Trailing Edge Bluntness-Vortex Shedding Noise. Retrieved From: Brooks, F.,

Pope, S., Marcolini, M. (1989). Airfoil Self-Noise and Prediction. NASA Reference

Publication 1218. ... 68

Figure 33. Trailing Edge Angle ... 72

Figure 34. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=4 deg, b)

flow velocity = 44 m/s & AOA=4 deg, c) flow velocity = 54 m/s & AOA=4 deg, d) flow

velocity = 64 m/s & AOA=4 deg. ... 74

Figure 35. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=8 deg, b)

flow velocity = 44 m/s & AOA=8 deg, c) flow velocity = 54 m/s & AOA=8 deg, d) flow

velocity = 64 m/s & AOA=8 deg. ... 76

Figure 36. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=12 deg, b)

flow velocity = 44 m/s & AOA=12 deg, c) flow velocity = 54 m/s & AOA=12 deg, d)

flow velocity = 64 m/s & AOA=12 deg. ... 78

Figure 37. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=16 deg, b)

flow velocity = 44 m/s & AOA=16 deg, c) flow velocity = 54 m/s & AOA=16 deg, d)

flow velocity = 64 m/s & AOA=16 deg. ... 80

Figure 38. NAFNOISE_main.m Flow chart. ... 82

Figure 39. Effect of terrain roughness on the wind velocity profile. Retrieved from: Rao,C.S.

(2006). Environmental Pollution Control Engineering. New Age International Ltd., New

Delhi. ... 84

Figure 40. United States-Land Based and Offshore Annual Average Wind Speed at 100 m.

Retrieved from: http://www.nrel.gov/gis/wind.html ... 85

Figure 41. Wind Turbine Blade divided into sections. Retrieved From:

http://www.becas.dtu.dk/About... 86

16

Figure 42. Airfoil with Definition of Flow Angles and Forces. Retrieved from: Gipe, P.

(2004), Renewable Power: Renewable Energy for Home, Farm, and Business, Chelsea

Green Publishing Company, USA. ... 88

Figure 43. Wind Turbine Coordinates. Retrieved From: van Rooij, R. (2001). Terminology,

Reference Systems and Conventions. Duwind 2001.004 ... 89

Figure 44. Blades Rotation Given by Azimuth Angle. Retrieved from: Hansen, M. (2008).

Aerodynamics of Wind Turbines. (pp.58) Earthscan, Sterling, VA-USA. 90

Figure 45. Spherical Grid. Retrieved From: http://www-

personal.umich.edu/~cjablono/dycore_test_suite.html. .. 91

Figure 46. Spherical Coordinates Definition. Retrieved From: Larson, R. &Edwards, B.

(2010). Multivariable Calculus. Cengage Learning, Inc. Belmont, CA, USA. 92

Figure 47. Radiation Pattern of a Dipole at the Trailing Edge of an Airfoil 93

Figure 48. Dipole Unit Vector for each blade section for all azimuth rotation blade positions.

 ... 95

Figure 49. Angles of Attack for all Rotational Positions of the Blades. 97

Figure 50. Apparent or Relative Flow Velocities for all Rotational Positions of the Blades. . 98

Figure 51. Predicted OASPL Over Spherical Grid around Turbine (First Position of Blades),

with 2501 Grid Points. .. 99

Figure 52. Predicted OASPL Over Spherical Grid around Turbine (First Position of Blades),

with 121 Grid Points. .. 100

Figure 53. WTNOISE_main.m flowchart. ... 101

17

CHAPTER I

 INTRODUCTION

1.1 Justification

The worldwide wind power capacity has constantly been growing each year during

the last two decades, as it is evidenced by the Global Wind Council’s, Global Wind Statistics

Report from 2014, where it is shown that the global cumulative installed wind capacity has

increased from 7,600 MW in 1997 to 369,553 MW in 2014. The main reason for this, are the

low costs involved with building and operating wind power facilities, compared to other

renewable energy production methods. For example, in the United States of America, where

one of the world’s largest wind power capacity is installed, the levelized cost of electricity for

wind power is one of the lowest. The levelized cost represents the amount of dollars per

kilowatt-hour necessary for building and operating a generation plant over a given time cycle

(U.S. Energy Information Administration, 2014).

Even though wind power generation has certain economic advantages and is

considered a very favorable renewable energy production process, there is a concern over the

noise produced by them, and how it affects to humans and the environment. There are

research studies that provide information supporting the argument that wind turbine noise has

a direct cause on powerful adverse health conditions, whereas there are others that claim that

wind turbine noise direct effects are harmless (Ryan, 2014).

According to Pedersen et al. (2004), a wind turbine has high annoyance noise effects

on a person who is close to it a considerable amount of time. This is due to both the quality

and oscillating levels (beating character) of the sound produced by the aerodynamic

movement of air around the wind turbines, as the blades rotate. Another concern with wind

turbine noise is concentrated on the effects on human health due to the production of

infrasound (sound frequencies lower than 20 Hz), for the reason that studies show that this

18

phenomena causes fatigue, lack of sleep, feeling of apathy, irritability and loss of

concentration (Roberts & Roberts, 2009).

Alternatively, some of the negative effects on people’s behavior and on their health

could be explained by a psychological phenomenon where negative thoughts associated with

the wind turbines’ noise environmental changes, stimulate negative outcomes. This argument

has been supported by the fact that the reported expectations of people has a significant role

on their reported symptoms (Ryan, 2014).

Nonetheless of the causes of noise emission related afflictions on people living close

to wind turbines, better tools that assist on the research of wind turbine noise and its

consequences are needed. This is the reason why the prediction of wind turbine noise is a

matter of great importance.

1.2 Objectives

The main purpose of the research is to develop a tool that predicts the propagation of

noise produced by wind turbines, through theoretical and experimental procedures, in order

to obtain a model that is as accurate as possible with real conditions. The specific objectives

include:

 Obtain empirical sound pressure level data, through airfoil wind tunnel

experimental procedures, so the noise produced by an airfoil is known.

 Determine how wind tunnel experimental data for an airfoil compares to semi-

empirical models developed by other researchers, in order to analyze the

behavior of both data sets, and how adequate both fit.

 Establish wind turbine’s noise sources and their behavior, by using

experimental and theoretical modeling techniques, so a noise propagation

model is proposed.

19

1.3 Background

According to the 2011 World Health Organization Report, traffic noise is the second

largest environmental factor affecting human health in the European Union and Norway.

Nevertheless, turbine noise is often estimated more annoying that the one produced by

transportation systems because of its high variability in both level and quality (Ryan, 2014).

Therefore, it has become an imperative need to investigate the sound propagation of the noise

produced by wind turbines, by using computerized models.

A tool that predicts the behavior of wind turbine noise, accurately, has not yet been

reproduced. Yet, some research models studies have determined certain possible methods that

could be useful in determining how noise produced by wind turbines behave. All these

resources should be used to reproduce an efficient tool that determines the wind turbine noise

propagation.

1.4 Methodology

 In order to develop the project, a computational MATLAB code is to be used to

reproduce every activity planed. This includes the modeling of noise sources, the

determination of influence variables, the introduction of wind tunnel test data, processing

experimental data, reproduce semi-empirical data, and finally obtaining results. The results

shall be presented, discussed, and conclusion should be withdrawn.

1.5 Literature Review

 Currently 65% of electricity production in industrialized countries comes from

fossil fuels, which constantly contributes to pollution of the environment (Ryi , Choi, Lee, &

Lee , 2014) . Hence the development of renewable energies that are reliable is necessary.

Wind turbines have proven to be an innovative and effective solution, however they still need

to be improved in terms of their efficiency and production of noise pollution. This means that

20

Research in areas of propagation and behavior of sound is essential for the optimization of

this system of electricity production.

1.5.1 Investigations Focused on the Sound Produced by Wind Turbines.

 Sound propagation of a wind turbine can be determined by a prediction obtained

from scaled models. Ryi et al. (2013) carried out a process of experimentation to find a

methodology that results in the prediction of sound. This was done first, by using an airfoil in

a wind tunnel, then using a scale model turbine in the wind tunnel, and finally a full-size

turbine test was done. The results obtained determined the errors between 5 and 15 [dBa] on

the total sound pressure levels, and for each 1/3rd octave frequency band there were also

observed inconsistencies. This shows that the method of weighting should be analyzed

thoroughly to determine results consistent with reality.

 According to Oerlemans & Schepers (2009), a semi - empirical prediction of the

trailing edge of the airfoil of a turbine would be computationally achieved through a code that

uses as input the geometry of the turbine and the conditions under which this operates. As a

validation method, measurements of directivity and acoustic arrangements are used. The

results of such techniques show that there is less than 2 dB difference between the predicted

and the real sound pressure levels. It also shows that the average pressure levels are higher

downwind of the wind turbine, when the turbine operates under crosswinds.

 On the other hand, according to a study conducted by Tadamasa & Zangeneh

(2011), in order to determine a method that obtains the contribution of aerodynamic sound on

discrete frequency bandwidth of a wind turbine, numerical methods must be applied. This can

achieved through a program that solves computational fluid dynamics (CFD), which gives as

a result the relevant parameters used in the equations of Ffowcs Williams- Hawkings (FW-

H). Thus, sound loading and the overall sound radiated by the turbine can be obtained. This

21

study´s results covers a wide range of working conditions of the turbine, and an experimental

validation of the results. Furthermore, it utilizes tools such as CFD in an innovative manner

and a code where FW- H can be used to obtain more efficient turbine blade designs.

 Undoubtedly, the sound caused by a wind turbine comes from the airflow that

makes it rotate, so its operation conditions should be studied. Makarewicz (2013) has

determined that the velocity gradient of the wind, under which the wind turbine is exposed,

causes a refraction phenomenon that affects levels of average sound pressure over time.

Additionally, the sound source of the turbine can be modeled as a series of points around a

circle. This only if the effects of directivity of the edge of the airfoil and Doppler

amplification are not taken into account. Under these concepts the sound pressure levels

around the turbine can be determined, and the existence of a fully sonified zone and shadow

zone.

 According to Makarewicz & Golebiewski (2014), there is an edge called Partial

Ensonified completely separating the sonified area (near the turbine) from the shadow zone

(away from the turbine). To obtain an appropriate behavior model of the average A-weighted

pressure levels in the time, instead of using point sources, a rotor and a two-dimensional

simulation of drive sound source is used. Following these guidelines, a correction of the

sound pressure levels in the ensonified region takes into account only the emission

corresponding to a certain distance from the blade. In this research, the behavior of the

desired pressure levels are obtained successfully, however it is unclear why only the upper tip

of the blades is used as the only reference in obtaining the sound pressure levels on the

ensonified area.

 The shape of the blades of a turbine are directly responsible for the aerodynamic

conditions under which it operates. Simulations to determine the interaction between the edge

of the airfoil and formed vortices determine the behavior of the sound emitted by the turbine.

22

Arakawa et al. (2005) developed an aerodynamic computational model in order to find a tool

that serves to predict the far-field sound and encourage the use of such research to study the

near field, considering reflection phenomena. This research is based on three essential points:

a compressible simulation LES (Large Eddy Simulation), a direct simulation of acoustic

propagation of hydrodynamic field, and a long field prediction using the method of

integration of Ffowcs Williams- Hawkings (FW -H). It also emphasizes that through other

more common methods such as the use of a Reynolds Averaged Navier Stokes (RANS)

simulation, concrete results that determine best designs of airfoils with better accuracy, may

not be obtained.

1.5.2 Investigations on the Structural Behavior of Wind Turbines.

 The structure of a wind turbine is constantly vibrating, which is important not only

from a structural and materials point of view, but also from the point of view of sound

production. All kinds of vibration produces sound, so it is imperative to know the vibrational

behavior of turbine blades. The maximum deformation that occurs at the tip of the blades

must be studied in conjunction with the vibration modes and natural frequencies obtained

after vibration analysis (Kumar Dwivedi , Paliwal , & Patil, 2014) . It is important to note that

the natural frequencies of the turbine blades may result in structural deformation and

therefore an increase in the loads that these support. This can affect the behavior of the fluid

on the turbine and result in turbulent flows over the airfoil, which determines the amount of

sound emitted.

 According to Mollaselehi et al. (2013) , the sound generated by the structure of the

tower of small wind turbines cannot be neglected , because this type of turbines are usually

placed in populated areas and at small distances the tower acts as a source of line sound .

Operational modal analysis was performed by placing accelerometers, so that the natural

23

frequencies and forms of deflection of the tower can be obtained. When analyzing the

spectrum created, it was determined that most of the vibration happens at low frequency

bands, especially under 10 Hz. In the same study, a model of a tower was performed to

determine the structural fluid-acoustic interaction and it was determined that there is a

significant vibrational frequency content about at 48 Hz, despite not being one of the natural

frequencies.

 The sources of mechanical noise from a wind turbine come from the transmission,

generator, electric motors, cooling fans, auxiliary equipment and brakes. All these

components are constantly vibrating and usually the sound is shaped as tones even if it has

components in the spectrum band. However, in modern turbines mechanical sound is usually

not significant in comparison to the aerodynamic sound (Tonin, 2012).

 It can be concluded that the investigation on the production and propagation of

sound from wind turbines, covers a range of expertise in aerodynamics, vibration and

acoustics. Most of these focus on modeling using computational analysis using CFD, FEA

analysis and others. Only in a few cases it is observed a computational analysis of discrete

sound sources where geometric, dynamic and aerodynamic factors are included.

24

CHAPTER II

 THEORETICAL FRAMEWORK

 In this chapter, theoretical concepts that are used throughout the entire thesis are

explained. These include basic acoustic definitions, a noise measuring method, aerodynamics

of airfoils and wind turbines, and some fluid mechanics principles.

2.1 Speed of Sound

Sound is conducted through a surrounding medium which is generally air, but it can

also be any fluid or solid. In fluids, the sound is conducted through longitudinal waves where

there’s is a particle motion parallel to the direction of propagation. The propagation speed or

speed of sound is dependent of stiffness D and density ρ of the medium, as shown in equation

2.1.

 𝑐 = √
𝐷

𝜌
 [𝑚/𝑠] (2.1)

In the case of a fluid, the stiffness is the bulk modulus or the reciprocal of the

compressibility. The definition of the compressibility is defined in equation 2.2, where V is a

unit volume and
𝛿𝑉

𝛿𝑃
 is the incremental change in volume associated with the incremental

change in static pressure.

 𝐷𝑓 = −𝑉 (
𝛿𝑉

𝛿𝑃
)
−1

= 𝜌 (
𝛿𝑃

𝛿𝜌
) [𝑃𝑎−1] (2.2)

In the cases of gases, temperature and density are two important variables because

they are associated with variations in pressure. For gases, the equation for adiabatic

compression and the equation of state for gases gives the speed of sound, shown in equation

2.3, where 𝛾 the ratio of specific heats, T is the temperature in degrees Kelvin, R is the

universal constant of gases equivalent to 8.314 𝐽𝑚𝑜𝑙−1𝐾−1, and M is the molecular weight.

25

𝑐 = √
𝛾𝑃

𝜌
= √

𝛾𝑅𝑇

𝑀
[𝑚 𝑠⁄] (2.3)

If the sound propagates through air, the speed of sound will be given by equation 2.4,

where T is the temperature in degrees Celsius (Bies & Hansen, 2009).

𝑐 = 331 + 0.6𝑇 [𝑚 𝑠⁄] (2.4)

2.2 Spherical Acoustic Waves

The propagation of sound of a small source in free space, with no boundaries, is given

by spherical wave propagation. A source that produces spherical waves is called a monopole

or point source, and is characterized by the fact that the physical dimension of the source is

smaller than the wave´s wavelength (Bies & Hansen, 2009). The pressure equation for a

spherical wave is given in equation 2.5. P is a constant that can be obtained by using

boundary conditions that establish that the pulsating velocity of the source, is equal to the air

particles velocity at the source’s surface. r is the radial distance from the source [m], w is the

wave’s frequency [rad/s], t is time [s], and 𝑘 =
𝑤

𝑐
, c is the speed of sound [m/s] (Pierce,

2014).

𝑝(𝑟, 𝑡) =
𝑃

𝑟
𝑒𝑗(𝜔𝑡−𝑘𝑟) (2.5)

 The analysis of sound wave propagation is usually complicated. Nevertheless, the

propagation properties of spherical and plane waves permit a simplified analysis, because

they can be described in terms of one dimension.

2.3 Pressure Root Mean Square Values

 The root mean square value of a function is defined in equation 2.6, where T is the

time duration over which the average value is taken. When the applied function corresponds

to a sound pressure wave equation, the root of the time averaged squared sound pressure is

obtained.

26

𝑋𝑟𝑚𝑠 = √ lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡)2 𝑑𝑡

𝑇

0
 (2.6)

For a sinusoidal function, such as those given by sound pressure wave equations, the

root mean square value is equal to the amplitude A of the wave, divided by the square root of

two, as shown in equation 2.7 (Bell & Bell, 1994).

 𝑃𝑟𝑚𝑠 =
𝐴

√2
 (2.7)

2.4 Sound Pressure Levels

The minimum sound pressure that the human ear is able to detect is 20 × 10−6 [Pa]

and the maximum is 60 [Pa]. According to Bies & Hansen (2009), “The incredible dynamic

range of the ear suggests that some kind of compressed scale should be used. A scale suitable

for expressing the square of the sound pressure in units best matched to subjective response is

logarithmic rather than linear.” (p. 38). Consequently, sound pressure levels 𝐿𝑝 are

determined, as observed in equation 2.8.

𝐿𝑝 = 10 𝑙𝑜𝑔10
𝑃𝑟𝑚𝑠

2

𝑃𝑟𝑒𝑓
2 (2.8)

The levels are expressed in terms of the lowest pressure a human ear can detect, which is

called 𝑃𝑟𝑒𝑓. Additionally, a factor of 10 is added so the scale is not too compressed, and the

square of the pressure root mean square values are used. The units of sound pressure levels

are the Decibels [dB]. Some different noise sources and their corresponding sound pressure

levels are presented in Table 1.

27

Table 1. Sound pressure levels for some sources. Retrieved from: Biess, D. & Hansen (2009), Engineering Noise Control,
Fourth Edition, CRC Press –USA

2.5 One Third Octave Frequency Bands

One third octave frequency bands are used to represent sound spectrums. The reason

why this is done, is because these type of bands facilitate the comparison of noise data

measurements. Moreover, they have been determined to be the preferred ones for noise

applications by The International Standards Organization, because they have the widest band

for frequency analysis.

Each octave band is characterized by an upper limit, lower limit and center frequency,

from a narrowband spectrum. An octave band center frequency is related to a designated

band number, and the center frequency is equal to the square root of the upper and lower

frequencies of the band. This is shown in equations 2.9 and 2.10, where BN is the band

number, 𝑓𝑐 is the center band frequency, 𝑓𝑙 is the lower limit band frequency, and finally 𝑓𝑢 is

the upper limit band frequency.

 𝐵𝑁 = 10 𝑙𝑜𝑔10𝑓𝑐 (2.9)

 𝑓𝑐 = √𝑓𝑢𝑓𝑙 (2.10)

 A small adjustment to octave frequency bands determines the 1/3rd octave frequency

bands, and defines new center, lower limit and upper limit band frequencies. Equation 2.11

28

shows this adjustment. For octave frequency bands N=1, and for 1/3rd octave frequency

bands, N=3.

𝑓𝑢

𝑓𝑙
⁄ = 2

1
𝑁⁄ (2.11)

On the other hand, the band width Δ𝑓 is given by equation 2.12.

 Δ𝑓 = 𝑓𝑐
2

1
𝑁⁄ −1

2
1

2𝑁⁄
 (2.12)

A list of octave and 1/3rd octave frequency bands is shown in Table 2 (Bies & Hansen, 2009).

Table 2. Octave and 1/3rd Octave Frequency Bands. Retrieved from: Biess, D. & Hansen (2009), C., Engineering Noise
Control, Fourth Edition, CRC Press -USA.

29

2.6 Overall Sound Pressure Levels

 The overall or total sound pressure levels are determined by the sum of incoherent

sounds, which corresponds to noise produced by different sources or bands with random

phases. The computation is done by using equation 2.13 (Bies & Hansen, 2009).

 𝑂𝑆𝑃𝐿 = 𝐿𝑝𝑡 = 10 𝑙𝑜𝑔10 (10
𝐿1

10⁄ + 10
𝐿2

10⁄ + ⋯+ 10
𝐿𝑁

10⁄) (2.13)

2.7 A-Weighting

 The apparent loudness sensed by the ear varies with frequency and sound pressure.

Measuring instruments permit allowances that take into account the ears behavior by

providing weighting methods, recommended by standard organizations. A, B, and C

networks are the most utilized, but the A-weighting curve has higher approximation accuracy

of the ear response to low level sound. Figure 1 shows the correction that must be added to a

reading, for a determined 1/3rd octave frequency band.

Figure 1. International A, B, and C weighting curves for sound level meters. Retrieved from: Bies, D. & Hansen, C. (2009).
Engineering Noise Control: Theory and Practice (4th edition). New York, NY, USA: Taylor and Francis.

30

 The expression to determine the A-weighting values is given by equation 2.14a and

2.14b.

 𝑅𝐴(𝑓) =
122002×𝑓4

(𝑓2+20.62)√(𝑓2+107.72)(𝑓2+737.92)(𝑓2+122002)
 (2.14a)

 𝐴 = 2.0 + 20 𝑙𝑜𝑔10(𝑅𝐴(𝑓)) [𝑑𝐵] (2.14b)

2.8 Directivity

 The noise radiation produced by a source is dependent on the type of source, and is

usually directional, meaning that it is larger in some directions. In the case of far filed

radiation, the directional behavior of sound may be quantified by a dimensionless directivity

factor, which is shown in equation 2.15. Here, < 𝐼 > = 𝑊 4𝜋𝑟2⁄ [
𝑊𝑎𝑡𝑡

𝑚2] is the mean intensity

averaged over a spherical surface, and 𝐼𝜃 [
𝑊𝑎𝑡𝑡

𝑚2] is the intensity in the desired direction as a

function of two angles: (𝜃, 𝜓).

 𝐷𝜃 =
𝐼𝜃

<𝐼>
 (2.15)

Alternatively, it can also be expressed in logarithmic scale with the directivity index,

as shown in equation 2.16 (Bies & Hansen, 2009).

 𝐷𝐼 = 10 𝑙𝑜𝑔10 𝐷𝜃 (2.16)

2.9 Sound Intensity and Power

 The sound intensity of a source a vector obtained from the product of the sound

pressure and the component of particle velocity in the direction of the intensity vector, as

shown in equation 2.17 The intensity represents the rate at which work is done on a

conducting medium by an advancing sound wave, or the rate of the power transmitted

through a surface normal to the intensity vector.

31

 𝐼(𝑟)̅̅ ̅̅ ̅ = < 𝑝(𝑟̅, 𝑡)𝑢̅(𝑟̅, 𝑡) > = lim
𝑇→∞

1

𝑇
∫ 𝑝(𝑟̅, 𝑡)𝑢̅(𝑟̅, 𝑡)

𝑇

0
 𝑑𝑡 [𝑊𝑎𝑡𝑡

𝑚2⁄] (2.17)

 When obtaining the resulting expressions for intensity, for the cases of plane waves

and spherical waves, two components are obtained. The first one is the propagated active

intensity and the second one is the reactive intensity, which is a measure of the energy stored

in the field during each cycle, but is not transmitted.

 Given that the intensity of a source measures the power passing through unit area of

an acoustic medium, the power is obtained as shown in equation 2.18, where 𝑛̅ is the unit

vector normal to the surface S. In the case where a noise source produces uniform spherical

waves, a spherical surface is convenient and the power is determined as shown in equation

2.19 (Bies & Hansen, 2009).

 𝑊 = ∫ 𝐼̅ ∙ 𝑛̅ 𝑑𝑆 (2.18)

 𝑊 = 4𝜋𝑟2 𝐼 [𝑊𝑎𝑡𝑡] (2.19)

2.10 Anechoic and Reverberant Chambers

In order to reproduce a free field in which the radiation of sound is studied, an

anechoic room should be used. Within this type of chamber, all the acoustic energy that

strikes the walls is absorbed (Barron, 2003). This means that the energy from the source is

directly transmitted to a receiver, without wall reflections (direct field). Anechoic rooms

permit the extraction of precise noise data and noise directivity information, however they are

limited by their dimensions and therefore the possibility to reach the far field, for some type

of noise sources (Bies & Hansen, 2009).

The radiation of sound in a free field is divided into three regions. The first one

corresponds to the hydrodynamic near filed, which is the region immediately adjacent to the

source’s vibrating surface. In this case, the fluid motion does not have a relation with sound

propagation. The second region is known as the geometric near field and is located adjacent

32

to the hydrodynamic field. This region is characterized by the interference of sound waves

that come from different parts of the source, and the pressure and the particle velocities of the

resulting combination of waves are not in phase. The final region is known as the far field

and extends beyond the geometric field. Here, the sound pressure levels decrease by 6 [dB] as

the distance from the source is doubled. In order to achieve the far field region, three

conditions must be met. These are shown in equation 2.20.

 𝛾 ≫ 1
𝑘⁄ , 𝛾 ≫ 2 & 𝛾 ≫ 𝑘 (2.20)

Where, 𝛾 = 2𝑟
𝑙⁄ , 𝑘 = 𝜋𝑙

𝜆⁄ , 𝜆 is the wavelength of the radiated sound, 𝑟 is the distance of

the source to the measurement position [m], and 𝑙 is the characteristic source dimension [m]

(Bies & Hansen, 2009).

Table 3. Acoustic Coefficient for Acoustic Materials. Retrieved from: Biess, D. & Hansen (2009), Engineering Noise
Control, Fourth Edition, CRC Press -USA

All the walls of an anechoic room must be covered with sound absorbing material

such as sheets of glass wool or plastic foam. These materials have high sound absorption

coefficients, as it is observed in Table 3. Additionally, they are usually cut into wedges and

assembled as observed in Figure 1 walls (Kleiner & Tichy, 2014). The purpose of this is to

33

achieve full absorption of the sound waves, because if any of them enters into the cavity

between the wedges it will be reflected back and forth until it is fully absorbed into the walls

(Randall, 2005).

Figure 2. Anechoic Chamber Walls Assembly. Retrieved from http://www.ilcc.inf.ed.ac.uk/facilities/facilities-
images/IMG-2965-1.JPG/image_view_fullscreen.

On the other hand, a reverberant chamber is a room in which reflected sound waves

from the room’s surfaces superimpose the source original waves. The sound field generated

by the reflections is called the reverberant field. All the surfaces in this type of room have a

low absorption coefficient, and the energy field within it is uniform (Barron, 2003).

2.11 Microphone Phased Arrays

 An array of microphones located at different positions (Microphone Phased Array),

provides a solution for acoustical applications such as eliminating reverberation noise from

enclosed spaces, localizing noise sources, and sound field reconstruction. Microphone arrays

can be constructed in different geometries. A plane geometry array such as the one shown in

Figure 3 is one of the most popular, and it is principally used for reconstruction of complex

radiating sources.

34

Figure 3. Plane Microphone Phased Array. Retrieved From: http://xn--
42cga5ca0b6cdc2bzb3a7ble0ewa3nna3m.com/en/portfolio/microphone-array/.

In order to determine any sound field, a procedure called beamforming is utilized. It

consists on maximizing the total summed output of the microphones for sound coming from a

specific direction, and minimizing it for sound coming from different directions (Bader,

2014).

The beamforming procedure starts by creating a plane grid of points on any area that

is being tested. Later one point on the grid is chosen, and the distance from it to each

microphone is determined. Because each distance is different, if there is a noise source at the

chosen point, the source’s sound waves should arrive to each microphone with a different

phase. These phases can be calculated and added to the signals from each microphone, so the

summed output of all the microphones is maximized. In the case were there is not a noise

source at the chosen grid point, at the moment of adding the phases to the signals, the output

should result in lower values.

This method is then repeated for all the points on the grid, and after analyzing the

data, a noise map can be produced for the entire chosen grid (Bies & Hansen, 2009). Figure 4

35

shows how a noise map obtained from a wind tunnel airfoil test looks. Each frequency band

used in the analysis should have its own map.

Figure 4. Acoustic Map from Wind Tunnel Test. Retrieved from "Aero-acoustic Testing of Wind Turbine Airfoils", W.
Davenport et al., 2010. NREL/SR-500-43471. National Renewable Energy Laboratory.

2.12 Flow around Wind Turbine Blades

 A common approach used to study the aerodynamic properties of a wind turbine blade

and its geometry, is with a two-dimensional blade element (aerodynamic airfoil) taken at a

radial distance r from the rotor axis of the wind turbine. This approach permits the analysis of

upwind flow conditions and aerodynamic reacting forces (Hau, 2013).

Figure 5 shows a blade element (airfoil) from a wind turbine blade. In it, the airfoil’s

upstream velocity vectors are shown. They are: the flow velocity 𝑊̅ perceived by the blade,

the wind velocity 𝑉̅ that flows towards the turbine, and the rotational flow speed 𝑈̅ of the

blade.

A wind turbine airfoil is designed with a geometric shape that diverts the incoming

flow towards the rotor plane. Therefore a reaction force 𝐹̅ and its two components, the Lift 𝐿̅

36

and the Drag 𝐷̅ are produced. The lift component produced on the airfoil is what makes the

entire blade rotate. The surface of the airfoil were there are relatively low flow velocities and

high pressure is called the pressure side, and the surface were there are high flow velocities

and low pressure is called the suction side.

 The angle formed between the direction of the perceived flow velocity and the chord

line of the airfoil is the angle of attack 𝛼. The angle 𝛽 formed between the rotor plane and the

chord line, is the sum of the local fixed blade twist angle and the adjustable blade pitch angle

(Bowlder & Leventhal, 2011).

Figure 5. Airfoil with Definition of Flow Angles and Forces. Retrieved from: Gipe, P. (2004), Renewable Power:
Renewable Energy for Home, Farm, and Business, Chelsea Green Publishing Company, USA.

As shown in Figure 6, the rotational velocity 𝑈̅ must increase from the base to the tip

of the blade, and the wind velocity 𝑉̅ does not vary significantly. This causes an increase of

the flow perceived velocity 𝑊̅, and a change on its direction, from the base to the tip of the

37

blade. These changes in the flow velocity 𝑊̅̅̅̅ also cause variations on the local angles of

attack of each blade element, by making them decrease from the base to the tip of the blade.

This is only applies for the case for a flat blade.

The lift to drag ratio is dependent of the angle of attack, and wind turbine designers

use high ratios to obtain higher performance. Therefore, a constant angle of attack that

optimizes the design is always chosen along the blade for each element contained in it. This

means that the blade design should have its elements gradually twisted from base to tip, in

order to guarantee a constant angle of attack. Additionally, turbines usually are equipped with

blades that can rotate a determined angle (pitch angle), so that the optimum angle of attack is

maintained for varying wind conditions (Gipe, 2004).

Figure 6. Change of Flow Velocity Components along an Un-Twisted Wind Turbine Blade. Retrieved From:
http://www.learnengineering.org/2013/08/Wind-Turbine-Design.html.

2.13 Lift and Drag

 The interactions of an object with the fluid in which it is immersed are determined by

the reacting forces on the body. These forces are caused by the wall shear stress 𝜏𝑤 that is

generated because of viscous effects, and the normal stress that is determined by the pressure

P, as observed in Figure 7.

38

Figure 7. Pressure & Shear Stress Distributions. Retrieved from: Munson, B, Okiishi, T., Huebsch, W., Rothmayer, A.
(2013). Fundamentals of Fluid Mechanics. P.482. John Wiley & Sons. Hoboken, NJ.

In the case of an airfoil, the integrated effects of both the shear stress distribution and

the pressure distribution, for the total body area, determine the lift and drag forces. They can

be obtained as shown in equation 2.21a & 2.21b (Munson et al, 2013).

 𝐷𝑟𝑎𝑔 = ∫ 𝑑𝐹𝑥 = ∫𝑝 𝑐𝑜𝑠𝜃 𝑑𝐴 + ∫ 𝜏𝑤 sin 𝜃 𝑑𝐴 [N] (2.21a)

 𝐿𝑖𝑓𝑡 = ∫ 𝑑𝐹𝑦 = ∫𝑝 sin 𝜃 𝑑𝐴 + ∫ 𝜏𝑤 cos 𝜃 𝑑𝐴 [N] (2.21b)

2.14 Flows Past an Object & Boundary Layer Structures

 The most important dimensionless parameter for typical external flows is the

Reynolds number, which is given by 𝑅𝑒 =
𝜌𝑈𝑙

𝜇
, where l is the characteristic length of the

object [m], U is the flow velocity[m/s], ρ is the density [
𝐾𝑔

𝑚3⁄], and 𝜇 is the viscosity of the

fluid [Pa s]. For a flow past an object, as the Reynolds number increases, the flow is

dominated by inertial forces and the viscous effects become negligible, except in a thin

region close to the object’s surface called the boundary layer.

 The behavior of a fluid particle along the flow past an object, retains its original shape

as it flows in the uniform flow outside of the boundary layer. This is observed in Figure 8.

39

When a particle enters the boundary layer, it gets distorted because of the velocity gradient

present within the layer.

Figure 8. Laminar & Turbulent Boundary Layer. Retrieved from: Munson, B, Okiishi, T., Huebsch, W., Rothmayer, A.
(2013). Fundamentals of Fluid Mechanics. P.490. John Wiley & Sons. Hoboken, NJ.

At some point of the boundary layer, there is a transition from laminar to a turbulent

flow, where the particles become greatly distorted. The values of the Reynolds number at the

transition zone is a function of various parameters such as roughness of the surface, curvature

and disturbances outside the boundary layer, and for a flat plate the typical values go from

2 × 105 and 3 × 106. The structure of a turbulent boundary layer is characterized by the

random unsteady velocities of the flow at any given location, and flatter velocity profile with

larger velocity gradients at the wall (Munson et al, 2013).

2.15 Boundary Layer Thickness

 At the boundary layer, the velocity profile changes from the flow velocity U, which is

the velocity outside the boundary layer, to zero at the surface of the object on which the flow

passes through. The boundary layer thickness is defined as the distance between the plate and

an upstream velocity value. Typically, the velocity value is 99% of the velocity U, as shown

in Figure 9a.

40

Figure 9.Boundary Layer Thickness: a) Standard Boundary Layer Thickness, b) Boundary Layer Displacement Thickness.
Retrieved from: Munson, B, Okiishi, T., Huebsch, W., Rothmayer, A. (2013). Fundamentals of Fluid Mechanics. P.491. John

Wiley & Sons. Hoboken, NJ.

 In order to remove the arbitrary percentage used for the definition of boundary layer

thickness, the boundary layer displacement thickness is determined, as shown in Figure 9b.

According to Munson et al (2013), “The displacement thickness represents the amount that

the thickness of the body must be increased so that the fictitious uniform inviscid flow has

the same mass flowrate properties as the actual viscous flow.” The boundary displacement

thickness is determined by equation 2.22 (Munson et al, 2013).

 𝛿∗ = ∫ (1 −
𝑢

𝑈
)

∞

0
 𝑑𝑦 (2.22)

41

CHAPTER III

WIND TUNNEL AIRFOIL NOISE DATA

In order to determine the sound power of the noise produced by a wind turbine airfoil,

experimental wind tunnel noise data such as the sound pressure level spectrum, is to be

obtained. In this case, the data was gathered from experimental testing performed on a DU-96

airfoil at the Virginia Polytechnic Institute and State University Stability Wind Tunnel. This

type of airfoil was chosen because it was developed, designed and extensively tested at Delft

University, The Netherlands, specifically for wind turbine applications (Timmer & van Rooij,

2001). All the measurements were conducted by Virginia Tech personnel, and the sound

pressure levels for 1/3rd octave frequency bands, for different flow velocities, angles of attack

and trip conditions, were provided.

 The objective of this chapter is to explain how the experimental wind tunnel test on

the airfoil was performed. Additionally, it demonstrates how the obtained noise data must be

processed, so it is useful on wind turbine noise prediction computations, which will be

performed in Chapter 5. Therefore, this chapter consists of four sections, the first one

describes the facilities in which the test was conducted, the second one explains how it was

done, the third one explains how and why the resulting data has been processed, and finally,

the last section explains the programmed MATLAB code used for the data processing.

3.1 Aero-acoustic Test Facilities

A scheme of the Virginia Tech Stability Wind Tunnel that was used to obtain the

experimental noise data is observed in Figure 10. The facility is equipped with a 0.45-MW

variable speed motor that achieves rotation velocities close to 600 rpm. The motor is

connected to a 4.3 meter propeller that allows maximum flow speeds of 75 m/s and a

Reynolds number of 5 × 106. In addition, the closed loop shaped tunnel is equipped with an

42

arrangement of seven screens that serve for turbulence reduction purposes. They are located

in a downstream direction from an air exchanger tower, which has access to the atmosphere,

and serves to stabilize the internal temperature of the tunnel.

Figure 10. General layout of the Virginia Tech Stability Wind Tunnel in Anechoic Configuration. Retrieved from
http://www.aoe.vt.edu/research/facilities/stabilitytunnel/acoustics-stabilitytunnel.html.

The test section of the tunnel has 7.3 meters in length and a cross sectional area

shaped as a square with an edge of 1.83 meters. This section is removable and can be

configured according to aero-acoustic test requirements. It is also hermetically sealed,

because the pressure inside is lower than the atmospheric pressure, and equal to the static

pressure of the flow that passes through it. Upstream of the test section, there is a contraction

nozzle that reduces turbulence and accelerates the speed of the flow. On the other hand, in a

downstream direction, there is a diffuser with vortex generators at all the walls, which serve

to delay local flow separation and prevent the surge of instabilities within the tunnel

(Davenport et al., 2010).

Figure 11 shows a side cross sectional view from the test section of the wind tunnel.

As observed, it is equipped with acoustically treated walls at the ceiling and floor, and at the

http://www.aoe.vt.edu/research/facilities/stabilitytunnel/acoustics-stabilitytunnel.html

43

sides there are two anechoic chambers. An explanation on how an anechoic chamber works is

provided in the theoretical framework section of this thesis. In Figure 12, a top cross sectional

view of the test section is observed. It shows that between the anechoic chambers and the test

section, there are Kevlar cloth windows that serve to contain the flow, but let the sound pass

through with minimum losses (Davenport et al., 2010).

Figure 11. Side Cross Section Area of Anechoic Chambers. Retrieved from "Aero-acoustic Testing of Wind Turbine
Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471. National Renewable Energy Laboratory.

Figure 12. Top Cross Section View of Anechoic System. Retrieved from "Aero-acoustic Testing of Wind Turbine
Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471. National Renewable Energy Laboratory.

44

3.2 Experimental Test Procedure

 In order to obtain the airfoil’s sound pressure levels at its trailing edge (where most of

the noise is observed), the DU-96 airfoil was placed within the test area section of the

stability wind tunnel, which was configured in an aero-acoustic mode. The used profile

consisted of a chord distance of 0.9 meters and a span of 6 feet or 1.83 meters, as represented

in Figure 13.

Figure 13. Chord and Span of the DU-96 Airfoil.

 Figure 14 shows the test configuration that was used. It consisted of a microphone

phased array that had its centroid located at a distance of 1.6 meters from the leading edge. It

was placed on the pressure side of the airfoil, in such a manner that the array’s plane was

parallel to the chord line when the angle of attack had a value of zero (i.e. when chord line is

parallel to the direction of the incoming flow). It has been assumed that as the angle of attack

is altered and the airfoil rotates, the change in the distance of 1.6 meters is negligible.

The microphone array was therefore outside of the test section of the wind tunnel and

inside of one of the anechoic chambers, which means that one of the Kevlar cloth windows

was located between the airfoil and the microphones. The definition of airfoil flow angles

such as the angle of attack, as well as an explanation on how a microphone phased array is

45

used to obtain sound measurements, is provided in the theoretical framework section of this

thesis.

Figure 14. Wind Tunnel Airfoil Test Configuration (Angle of Attack of Zero Degrees).

The experimental test was conducted with four different uniform flow velocities of 34

[m/s], 44 [m/s], 54 [m/s] and 64 [m/s], each with four different angles of attack of

4𝑂,8𝑂, 12𝑂and 16𝑂. These flow velocities where chosen because they fall within typical

relative flow speeds experienced by functional wind turbine blades. On the other hand, the

angles of attack where chosen based on distinctive ranges that prevent the airfoil to stall.

 The actual experimental velocities reached and their respective Mach number, for

each angle of attack, are shown in Table 4. It is observed that the Mach number for all the

cases is within a range of 0.09 to 0.19. This falls within a low Mach number range, which is

in accordance to real wind turbine blade functioning conditions. Wind turbines are usually

designed in this way, so that non-linearities like shock waves are prevented (Wagner, Bareib

& Guidati, 1996).

46

Additionally, the airfoil was tested with and without a trip, for each flow velocity and

angle of attack. A trip is a small surface disturbance that is used to create a physically

realistic model, because it accounts for surface imperfections or debris stuck to a wind

turbine blade, while it operates (Moriarty & Migliore, 2003). According to Wagner, Bareib

and Guidati (1996), it also prevents laminar vortex shedding noise because it induces a

transition from laminar to turbulent flow. Vortex shedding is a phenomena that happens when

laminar flow regions extend to the trailing edge, and instabilities such as separation bubbles

that propagate along the chord, trigger a raise on the produced noise levels.

 Flow Target

Velocity of

34[m/s]

Flow Target

Velocity of

44[m/s]

Flow Target

Velocity of

54[m/s]

Flow Target

Velocity of

64[m/s]

Angle

of

Attack

Actual

Flow

Velocity

Actual

Mach

Number

Actual

Flow

Velocity

Actual

Mach

Number

Actual

Flow

Velocity

Actual

Mach

Number

Actual

Flow

Velocity

Actual

Mach

Number

4𝑂 34.124 0.0992 44.036 0.1275 54.024 0.1562 64.029 0.1842

8𝑂 34.001 0.0988 44.251 0.1281 54.039 0.1562 64.283 0.1849

12𝑂 33.998 0.0988 43.993 0.1274 53.937 0.1554 63.850 0.1835

16𝑂 34.004 0.0988 44.156 0.1278 54.623 0.1578 63.940 0.1837

Table 4. Target and Actual Flow Velocities for Wind Tunnel Test.

3.3 Data Processing & Results

The data provided by Virginia Tech was composed of the sound pressure levels as a

function of frequency in 1/3rd octave bands, for each angle of attack, flow test velocity, and

tripped condition (the definition of 1/3rd octave frequency bands is contained in the

47

theoretical framework of this thesis). It was all presented in an excel .xlsx file. Additionally, it

contained the uncorrected data and the corresponding correction due to the losses associated

with the Kevlar cloth window, from the wind tunnel test section

This section of the thesis is divided into 2 sub-sections. First there is brief explanation

on how to correct the sound pressure level losses in dB associated with the Kevlar windows.

The second sub-section explains how all the data for every different case (different flow

velocities and angles of attack) is normalized to a specific value of flow velocity, airfoil span

and distance between the airfoil and the microphone array. The objective of this procedure is

to obtain a straightforward normalized equation for the sound pressure levels [dB], produced

by an airfoil. It should result to be only as a function of the dimensionless Strouhal number

and the angle of attack of the airfoil. This is because in this way the equation can be easily

plugged into wind turbine noise prediction computations, as it will be seen in Chapter 5.

3.3.1 Kevlar Window Associated Sound Pressure Level Corrections.

Given that between the airfoil and the microphone phased array there is a Kevlar

window, the measured sound pressure levels do not represent the real airfoil noise. This is

because when the sound waves pass through the Kevlar, there are sound pressure level losses.

Furthermore, there are losses caused by the shear boundary layer at the window’s surfaces.

This means that the true sound pressure levels should be expressed as shown in equation 3.1,

where 𝑆𝑃𝐿𝑡𝑟𝑢𝑒 are the corrected sound pressure level values, 𝑆𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 are the sound

pressure level measured values, ∆𝐾 is the Kevlar window correction, and ∆𝐵 is the shear

boundary layer correction (Davenport et al., 2010).

 𝐿𝑝𝑡𝑟𝑢𝑒 = 𝐿𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + ∆𝐾 + ∆𝐵 (3.1)

48

Within the data provided by Virginia Tech, these corrections were already applied. In

this section, a step by step explanation is provided on how a correction equation was obtained

and then implemented.

For frequencies less than 5000 [Hz], the value of ∆𝐾 is insignificant and therefore

equal to zero. Since the higher frequency band used in this analysis was up to 7100 [Hz], the

value of ∆𝐾 will have a maximum value of 1 [dB]. This analysis was conducted on the

Virginia Tech wind tunnel and was provided by Davenport et al., as shown in Figure 15.

Figure 15. Attenuation of sound passing through acoustic Kevlar windows as a function of frequency. Retrieved from
"Aero-acoustic Testing of Wind Turbine Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471. National

Renewable Energy Laboratory.

On the other hand, in order to obtain the value of ∆𝐵. Davenport et al. determined that

there was a difference of 2 [dB] when the free stream velocity within the tunnel changed

from 58 [m/s] to 41 [m/s], independently from the frequency. This is shown in Figure 16,

where the speed of sound used was 341.67 [m/s].

49

Figure 16. Attenuation of sound passing through the shear boundary layer as a function of frequency. Retrieved from
"Aero-acoustic Testing of Wind Turbine Airfoils", W. Davenport et al., 2010. NREL/SR-500-43471. National

Renewable Energy Laboratory.

In order to obtain the value of ∆𝐵, first the sound pressure levels for the two velocities

were defined as shown in equation 3.2 and equation 3.3.

 𝐿𝑝58 𝑚/𝑠 = 10 𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−58 𝑚/𝑠

2

𝑃𝑟𝑒𝑓
2) (3.2)

 𝐿𝑝41 𝑚/𝑠 = 10 𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−41 𝑚/𝑠

2

𝑃𝑟𝑒𝑓
2) (3.3)

Where 𝑃𝑟𝑒𝑓 is the reference pressure, and 𝑃𝑟𝑚𝑠 refer to the pressure root mean square value.

Further explanation on how these acoustic equations are obtained and what 𝑃𝑟𝑒𝑓 and 𝑃𝑟𝑚𝑠

mean, is found in the theoretical framework section of this thesis.

Next, the expression for the sound pressure level difference between 𝑆𝑃𝐿58 𝑚/𝑠

and 𝑆𝑃𝐿41 𝑚/𝑠 was obtained. This was done by subtracting equation 3.3 from equation 3.2,

and determining the expression that is shown in equation 3.4, after various simplifications.

𝐿𝑝58 𝑚/𝑠 − 𝐿𝑝41 𝑚/𝑠 = 10 𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−58 𝑚/𝑠

2

𝑃𝑟𝑒𝑓
2) − 10 𝑙𝑜𝑔10 (

𝑃𝑟𝑚𝑠−41 𝑚/𝑠
2

𝑃𝑟𝑒𝑓
2)

𝐿𝑝58 𝑚/𝑠 − 𝐿𝑝41 𝑚/𝑠 = 10 × [𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−58 𝑚/𝑠

2

𝑃𝑟𝑒𝑓
2) − 𝑙𝑜𝑔10 (

𝑃𝑟𝑚𝑠−41 𝑚/𝑠
2

𝑃𝑟𝑒𝑓
2)]

50

𝐿𝑝58 𝑚/𝑠 − 𝐿𝑝41 𝑚/𝑠 = 10 ×

[

𝑙𝑜𝑔10

(

𝑃𝑟𝑚𝑠−58 𝑚/𝑠
2

𝑃𝑟𝑒𝑓
2

𝑃𝑟𝑚𝑠−41 𝑚/𝑠
2

𝑃𝑟𝑒𝑓
2

⁄

)

]

 𝐿𝑝58 𝑚/𝑠 − 𝐿𝑝41 𝑚/𝑠 = 10 × [𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−58 𝑚/𝑠

2

𝑃𝑟𝑚𝑠−41 𝑚/𝑠
2)] (3.4)

After this, a power law was defined as a proportional relation between 𝑃𝑟𝑚𝑠
2 and any

free stream flow velocity 𝑈∞. This is shown in equation 3.5, where C is a constant and the

power S is unknown.

𝑃𝑟𝑚𝑠
2 ∝ 𝑈∞

𝑆

 𝑃𝑟𝑚𝑠
2 = 𝐶 × 𝑈∞

𝑆 (3.5)

Equation 3.5 was then replaced into equation 3.4, for each of the two free stream flow

velocities and simplified into equation 3.6. In this way the value of S was obtained, since it

was the only unknown.

𝐿𝑝58 𝑚/𝑠 − 𝐿𝑝41 𝑚/𝑠 = 10 × [𝑙𝑜𝑔10 (
𝐶 × 58𝑆

𝐶 × 41𝑆
)]

 𝐿𝑝58 𝑚/𝑠 − 𝐿𝑝41
𝑚

𝑠
= 2[𝑑𝐵] = 𝑆 × 10 × [𝑙𝑜𝑔10 (

58

41
)] (3.6)

𝑆 = 1.3

 This means that the value of ∆𝐵 was given by the expression on equation 3.7. In this

case 𝑈𝑡𝑒𝑠𝑡 is the free stream flow velocity used for each test performed on the wind tunnel.

 ∆𝐵 = 𝑆 × 10 × [𝑙𝑜𝑔10 (
𝑈𝑡𝑒𝑠𝑡

41
)] = 1.3 × 10 × [𝑙𝑜𝑔10 (

𝑈𝑡𝑒𝑠𝑡

41
)] (3.7)

All the data provided by Virginia Tech has been corrected using these methods, and therefore

more precise sound pressure levels were able to be used in further normalization procedures.

51

3.3.2 Normalization procedure.

The data provided by Virginia Tech contains the SPL [dB] for 1/3rd octave frequency

bands, for each of the four angles of attack tested and each flow velocity. Even though, the

data set contains tripped and un-tripped experiment sets, only the tripped ones were chosen

for further analysis. This is because of their resemblance to real turbine working conditions

and favorable noise reduction circumstances. In addition, only the Kevlar corrected values

were used.

 This section of the thesis first explains the procedure to perform four normalizations

on the sound pressure levels for each frequency band of all the chosen data (Strouhal number

scaling, airfoil span normalization, airfoil-microphones distance normalization & free stream

velocity normalization), and the reason why this is done. Additionally, the results obtained

from applying this process are presented in various figures. Next, this section illustrates how

regression methods applied to the normalized data, are used to determine an equation for the

sound pressure levels [dB] as a function of the angle of attack and the Strouhal number. This

equation is very important because it provides a simplistic empirical airfoil sound pressure

level computation method. Furthermore, its versatility will be shown later in Chapter 5, were

it will be plugged into wind noise turbine prediction calculations.

The first step to process the selected data, was to scale the frequency domain of all the

data with the use of the Strouhal number, shown in equation 3.8. This dimensionless

parameter multiplies the airfoil’s chord [m] and the frequency [Hz], and then divides it by the

free stream velocity [𝑚/𝑠] used in the experiment.

 𝑆𝑡 =
𝑓[𝐻𝑧]×𝐶ℎ𝑜𝑟𝑑[𝑚]

𝑈∞[𝑚/𝑠]
 (3.8)

The objective of scaling the frequency is to normalize the frequency axis, according to the

free stream velocity of each of the performed tests and the chord of the airfoil.

52

 The next step was to proceed with the airfoil span normalization, the airfoil-

microphones distance normalization (i.e. distance between the chord line of the airfoil and the

plane of the microphone array), and the free stream flow velocity normalization. This was

done for the sound pressure level data corresponding to all frequency bands, and each of the

four angles of attack used for the experimental tests done by Virginia Tech. In order to do

this, a power law was defined as 𝑃𝑟𝑚𝑠
2 ∝ 𝑆𝑝𝑎𝑛, 𝑃𝑟𝑚𝑠

2 ∝ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑖𝑟𝑓𝑜𝑖𝑙−𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒𝑠
2

and 𝑃𝑟𝑚𝑠
2 ∝ 𝑈∞

5 . Equation 3.9 shows the proportionality between 𝑃𝑟𝑚𝑠
2 and the airfoil span,

equation 3.10 shows it between 𝑃𝑟𝑚𝑠
2 and the airfoil-microphones distance, and equation 3.11

shows it between 𝑃𝑟𝑚𝑠
2 and the free stream flow velocity. In each case K is a random constant.

 𝑃𝑟𝑚𝑠
2 = 𝐾 × 𝑆𝑝𝑎𝑛 (3.9)

 𝑃𝑟𝑚𝑠
2 = 𝐾 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑖𝑟𝑓𝑜𝑖𝑙−𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒𝑠

2 (3.10)

 𝑃𝑟𝑚𝑠
2 = 𝐾 × 𝑈∞

5 (3.11)

In order to obtain the span normalized sound pressure levels, they must be defined as

it is in equation 3.12, and for the measured sound pressure levels in equation 3.13.

 𝐿𝑝−𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 10 𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

2

𝑃𝑟𝑒𝑓
2) (3.12)

 𝐿𝑝−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 10 𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2

𝑃𝑟𝑒𝑓
2) (3.13)

Because the values of both 𝑃𝑟𝑚𝑠−𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
2 and 𝑃𝑟𝑚𝑠−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 are not known, the

difference between 𝐿𝑝−𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 and 𝐿𝑝−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is implemented using the

expressions on equations 3.13 and 3.12. The result is shown in equation 3.14, which is then

simplified into equation 3.15. Finally the proportionality expression shown in equation 3.9 is

applied and equation 3.16 is obtained, which is the final equation that normalizes all the data,

for all angles of attack. The span normalization value used was of 1 [m].

53

 𝐿𝑝𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 − 𝐿𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 10 × 𝑙𝑜𝑔10 [(

𝑃𝑟𝑚𝑠−𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
2

𝑃𝑟𝑒𝑓
2

𝑃𝑟𝑚𝑠−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2

𝑃𝑟𝑒𝑓
2

)] (3.14)

 𝐿𝑝𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 − 𝐿𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 10 × 𝑙𝑜𝑔10 [
𝑃𝑟𝑚𝑠−𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

2

𝑃𝑟𝑚𝑠−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2] (3.15)

 𝐿𝑝𝑠𝑝𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐿𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 10 × 𝑙𝑜𝑔10 [
𝑆𝑝𝑎𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑆𝑝𝑎𝑛 𝑎𝑖𝑟𝑓𝑜𝑖𝑙
] (3.16)

 A similar process was used to perform the normalization on the microphone-airfoil

distance, as well as the free stream velocities. This was done using the proportionality

expressions shown in equations 3.10 and 3.11, and the final expressions are shown in

equations 3.17 and 3.18. The used airfoil-microphones distance normalization value was 1

[m] and the velocity normalization value was 1 [m/s].

𝐿𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑖𝑟𝑓𝑜𝑖𝑙−𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐿𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 20 ×

[𝑙𝑜𝑔10 (
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑒𝑠𝑡
)] (3.17)

 𝐿𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝐿𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 50 × [𝑙𝑜𝑔10 (
𝑈𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑈𝑡𝑒𝑠𝑡
)] (3.18)

The purpose of properly normalizing the data is to be able to collapse the sound

pressure level values from the four different flow test velocities in one curve, for each angle

of attack. All this as a function of the Strouhal number. The values of the powers (from each

power-law shown in equations 3.9 through 3.11) used for each normalization determined how

well the data collapsed, so they were carefully selected, in order to guarantee accurate curves.

All the collapsed curves for each experimental angle of attack were computed within the

MATLAB code DU96_main.m. The results for a 4 degree angle of attack, and for an 8 degree

angle of attack are shown in Figure 17. The results for a 12 degree angle of attack, and for a

16 degree angle of attack are shown in Figure 18, and finally all the curves are shown in a 3D

plot (Angle of attack vs. Strouhal number vs. SPL [dB]) in Figure 19.

54

Figure 17. Corrected SPL [dB] vs. Strouhal Number for all Velocities, When the Angle of Attack is a) 4 Degrees, b) 8
Degrees.

Figure 18. Corrected SPL [dB] vs. Strouhal Number for all Velocities, When the Angle of Attack is a) 12 Degrees, b) 16
Degrees.

Figure 19. Collapsed Curves for Each Angle of Attack, for all Free Stream Velocities.

55

After the data was properly normalized and collapsed, it was proceeded to obtain an

equation for the sound pressure levels produced by the airfoil as a function of the angle of

attack and Strouhal number. To do so, the initial step was to fit each of the collapsed curves

for each of the four experimental angles of attack into a polynomial of the form shown in

equation 18, where St is the Strouhal number, SPL are the sound pressure levels and a, b and

c are constant coefficients.

 𝐿𝑝 [𝑑𝐵] = 𝑎𝑆𝑡𝑏 + 𝑐 (3.19)

The regressions were performed on MATLAB, as part of DU96_main.m.The results

obtained for the fitted curve and its residuals for the angle of attack of 4 degrees is shown in

Figure 20, for the angle of attack of 8 degrees in Figure 21, for the angle of attack of 12

degrees in Figure 22, and finally for the angle of attack of 16 degrees in Figure 23.

Figure 20. Collapsed Data Curve Fit for an Angle of Attack of 4 Degrees.

56

Figure 21. Collapsed Data Curve Fit for an Angle of Attack of 8 Degrees.

Figure 22. Collapsed Data Curve Fit for an Angle of Attack of 12 Degrees.

57

Figure 23. Collapsed Data Curve Fit for an Angle of Attack of 16 Degrees.

The type of function used for the regression is the one which most adequately fits the

data because it provides the lowest residuals on all the collapsed curves. In order to create

this regressions, the MATLAB curve fit toolbox was used. The obtained coefficients, a, b and

c from equation 3.19, for each angle of attack, are presented on Table 5.

 Angle of Attack [deg.]

4 8 12 16

C
o
ef

fi
ci

en
ts

a -60.9403 -14.3460 -3.3064 -1.3070

b 0.1364 0.2752 0.4705 0.6197

c 46.9239 -12.0984 -27.6123 -29.5599

Table 5. Curve Fit Coefficients for Each Angle of Attack.

58

From the data provided in Table 5, it is seen that each coefficient can be fitted as a

function of the angle of attack. This means that the final sound pressure level equation would

be a function of the Strouhal number and the angle of attack, as observed on equation 3.20

where AOA is the angle of attack, St is the Strouhal number.

 𝐿𝑝 = 𝑎(𝐴𝑂𝐴)𝑆𝑡𝑏(𝐴𝑂𝐴) + 𝑐(𝐴𝑂𝐴) (3.20)

Therefore, each coefficient was fitted to a polynomial, using the MATLAB curve fit toolbox.

The regression and its residuals resulted for coefficient a is shown in Figure 24, for

coefficient b in Figure 25, and for coefficient c in Figure 26. The resulting sound pressure

level expression is shown in equation 3.21.

𝐿𝑝 = [(−823.5139 × 𝐴𝑂𝐴−1.8263 + 4.5162) × 𝑆𝑡(0.0301×𝐴𝑂𝐴1.0974−0.0056)] +

 (958.8100 × 𝐴𝑂𝐴−1.7456 − 38.2905) (3.21)

Figure 24. First Coefficient (a) Fit as a Function of the Angle of Attack.

59

Figure 25. Second Coefficient (b) Fit as a Function of the Angle of Attack.

Figure 26. Third Coefficient (c) Fit as a Function of the Angle of Attack.

Finally, equation 3.21 was plotted for angles of attack of 4, 8, 12 and 16 degrees. The

normalized sound pressure levels as a function of the Strouhal number for an angle of attack

of 4, 8, 12 and 16 degrees are shown in Figure 27. It is noted that the obtained sound pressure

60

levels in the curves are negative for all the Strouhal number domain. This is because of the

normalizing for 1 [m] span and airfoil-microphones distance, as well as the free stream

velocity of 1[m/s] that was previously applied to the experimental data.

Equation 3.21 will later be used in Chapter 5 and it will be a crucial part in the

computations of wind turbine noise predictions. This is why it was essential to use data from

thorough experimental wind tunnel tests, as well as proper data processing methods.

Figure 27. SPL as a Functions of the Strouhal Number for an Angle of Attack of a) 4 Degrees, b) 8 Degrees, c) 12 Degrees,
d)16 Degrees.

3.4 DU96_main.m MATLAB Code Description

 The routine DU96_main.m is contained in the appendix of this thesis. This code runs

a total of 11 sub-routines that perform different tasks, as it is observed in the flow chart on

61

Figure 28. The first sub-routine is DU96_input.m, and its main function is to define values

for reference and geometric variables. These are: reference free stream velocity, reference

airfoil span, reference airfoil-microphones distance, airfoil chord, airfoil span and airfoil-

microphones distance. It also extracts and saves the experimental data from an Excel .xlsx

file, into separate arrays. The Excel file DU96.xlsx is found in the appendix of this thesis, and

contains the wind tunnel SPL for each 1/3rd octave frequency band, angle of attack and free

stream flow velocity.

Once all the needed inputs are available to the main routine, it runs

DU96_Strouhal.m, which computes four vectors containing the values of the Strouhal

numbers for each flow velocity, and all frequency bands. Later, the sub-routine

DU96_Uref_Correction.m applies the free stream flow velocity normalization to all the

sound pressure level experimental data. On the other hand, DU96_Span_Corrections.m,

performs the reference span normalization and DU96_distacnce_Corrections.m scales the

airfoil-microphone distance. All the corrections performed in these sub-routines is saved in

separate arrays.

62

Figure 28. DU96_main.m Code Flow Chart.

The sub-routine DU96_Plots.m, plots all the corrected SPL that were previously

obtained as a function of the Strouhal number. This is done for each angle of attack, and all

the free stream velocities. Therefore, four plots are generated and they show how well the

data has collapsed for each angle of attack; they are shown in Figures 17 and 18.

DU96_3DPlot.m also plots the collapsed data, but it does so in a 3D visualization with the

sound pressure levels as a function of the Strouhal number and the angle of attack, as shown

in Figure 19.

MATLAB provides a curve fitting tool that generates the code for the given data and

provided regression. This tool was used to create the sub-routine DU96_Power_fit.m, which

fits a curve for the collapsed data, for the four experimental angles of attack of 4, 8, 12 and

16 degrees. This code also provides four plots of the fitted curves with their corresponding

residuals, as seen in Figures 20 through 23. In addition, the code was edited so that each

coefficient a, b and c, shown in equation 3.19, are saved with appropriate variable names.

63

 Given that each coefficient from equation 3.19 was determined to be a function of the

angle of attack, a plot of each one was generated in order to observe the trend of the resulting

curves. To do so, the sub-routine DU96_coefficients.m was incorporated in the code.

Moreover, DU96_coefficients_power_fit.m determines the curve fit, so each coefficient from

the previous regression is structured as a function of the angle of attack, as seen in equation

3.20 and Figures 24 through 26. This code was also generated with the MATLAB curve

fitting tool, and was properly edited.

 The last sub-routine run by DU96_main.m, is DU96_SPLplot.m. The purpose of this

sub-routine is to plot the sound pressure levels as a function of the Strouhal number for four

different angles of attack, using equation 3.21. In this way, the normalized data for an angle

of attack of 4, 8, 12 and 16 degrees can be easily observed. The final results are shown in

Figure 27.

64

CHAPTER IV

EXPERIMENTAL RESULTS ANALYSIS AND DISCUSSION

 The experimental results from wind tunnel test procedures, used to obtain airfoil noise

data, are essential to the investigation of all the implicated noise sources. Given the many

uses of airfoil profiles, including those in renewable energy applications, theoretical

approaches on modeling the noise produced by an airfoil, are in need. Moriarty (2005),

developed a program called NAFNoise that stands for NREL AirFoil Noise, and predicts the

noise produced by an airfoil. This program uses various semi-empirical sub-routines for

different types of noise sources, where, models based on other author’s work are integrated.

This program has been developed specifically for wind turbine applications, because it is

designed so the output data is used for discretized individual blade segments from a wind

turbine (Moriarty & Migliore, 2003).

 The main purpose of this chapter is to use the model developed by Moriarty and

Migliore, to simulate the airfoil wind tunnel experimental test performed at the Virginia Tech

Polytechnic Institute and State University Stability Wind Tunnel, shown in Chapter 3. Then

the results from the experimental and modeled data are analyzed and compared, by using a

MATLAB code that permits running the NAFNoise program multiple times for all the

different combinations of test flow velocities and angles of attack used on the test.

4.1 NAFNoise Program Description

 The NAFNoise program predicts the noise produced by any airfoil profile from five

different independent noise sources, while it is operating. In this section, the five sources

used by the software, as well as its required inputs, will be explained. The inputs must be

carefully selected, so the experimental wind tunnel test performed at Virginia Tech on the

DU-96 airfoil, is coherently modeled with NAFNoise.

65

4.1.1 Airfoil Noise Sources.

The first four noise sources were determined by Brooks, Pope and Marcolini. They

developed semi-empirical formulations for each one of them, in their publication (Brooks,

Pope & Marcolini, 1989). The last noise source was developed by Lowson (1993), and Amiet

(1975). Each of this noise sources are explained in the following paragraphs.

a) Turbulent Boundary Layer-Trailing Edge Noise (TBL-TE)

The first noise source is determined by the interaction between the turbulent boundary

layer and the trailing edge of the airfoil, as shown in Figure 29.

Figure 29. Turbulent Boundary Layer-Trailing Edge Noise. Retrieved From: Brooks, F., Pope, S., Marcolini, M. (1989).
Airfoil Self-Noise and Prediction. NASA Reference Publication 1218.

This type of noise source is very common at high Reynolds numbers, and it can

originate in both the suction and pressure side of an airfoil. The noise produced for the

pressure side is shown in equation 4.1, where 𝛿∗is the boundary layer thickness [m], M is the

Mach number, L is the span of the airfoil [m], 𝐷ℎ is the noise directivity (a unit-less value

that corrects the sound pressure levels as it sound propagates in specific directions), 𝑟𝑒 is the

distance to the observer, St is the Strouhal number, 𝑆𝑡1 = 0.02𝑀6, 𝐾1(𝑅𝑒𝑐) is an empirical

function obtained by experimentation that depends on the Reynolds number based on the

chord 𝑅𝑒𝑐, ∆𝐾1(𝛼, 𝑅𝑒𝛿∗) is an empirical function obtained by experimentation that depends

on the Reynolds number based on boundary layer thickness 𝛿∗ and the angle of attack, and

finally A is an empirical spectral shape obtained from experimentation. In the case of the

66

suction side, a similar equation is used (Moriarty & Migliore, 2003). Explanation on

variables such as the Directivity of the noise sources, and boundary layer properties, are

provided on the theoretical framework of this thesis.

 𝐿𝑝(𝑇𝐵𝐿−𝑇𝐸) = 10 𝑙𝑜𝑔10 [
𝛿∗𝑀5𝐿𝐷ℎ

𝑟𝑒
2] + 𝐴 (

𝑆𝑡

𝑆𝑡1
) + (𝐾1 − 3) + ∆𝐾1 [dB] (4.1)

b) Separated Flow Noise (SF)

As the angle of attack of an airfoil is larger, the lift to drag coefficient gets smaller.

This is because the size of the turbulent boundary layer, on the suction side becomes very

large in size, as observed in Figure 30. This causes stalling, and large amounts of noise. The

equation for the noise produced in this case is similar to equation 4.1, the difference is that it

contains different empirical functions that are only a function of the angle of attack (Moriarty

& Migliore, 2003).

Figure 30. Flow Separation Noise. Retrieved From: Brooks, F., Pope, S., Marcolini, M. (1989). Airfoil Self-Noise and
Prediction. NASA Reference Publication 1218.

c) Laminar Boundary Layer-Vortex Shedding Noise (LBL-VS)

In this case, the noise is generated when there is a feedback loop, caused by the

interaction of the laminar boundary layer and the vortices that are being shed at the trailing

edge of the airfoil, as shown in Figure 31. This type of noise source has more probability of

being present at the pressure side of an airfoil, and is tonal in nature because of the

amplification caused by the feedback loop (Moriarty & Migliore, 2003).

67

Figure 31. Laminar Boundary Layer-Vortex Shedding Noise. Retrieved From: Brooks, F., Pope, S., Marcolini, M. (1989).
Airfoil Self-Noise and Prediction. NASA Reference Publication 1218.

 According to Raju (2011), vortex shedding is an unsteady flow that takes place at

specific flow velocities and is caused when air flows past a blunt structure. They consist of

alternating low pressure instabilities. At very low Reynolds numbers, the fluid has a creeping

motion behavior, where there is no separation of the fluid. As the Reynolds number gets

larger, a stable vortex is formed downstream of the blunt object. The oscillatory wake starts

to have higher amplitudes and to show different flow patterns when the Reynolds number

gets even larger. This happens until a phenomena called the Von Kármán vortex street takes

place, where, the vortices alternate and detach downstream of the flow. For very large

Reynolds numbers, the laminar boundary layer becomes turbulent, therefore, the laminar

vortices become turbulent (Granger, 1995). This means that this type of laminar noise is not

significant in wind turbines, because most of them operate while having very large Reynolds

numbers across their blades.

The noise produced by this source is determined by equation 4.2, where 𝛿∗is the

boundary [m], M is the Mach number, L is the span of the airfoil [m], 𝐷ℎ is the noise

directivity, 𝑟𝑒 is the distance to the observer, ∝ is the angle of attack, 𝐺1, 𝐺2, 𝐺3, are

empirical relation functions based on 𝑆𝑡′, which is the Strouhal number based on the

boundary layer thickness, 𝑆𝑡′
𝑝𝑒𝑎𝑘 is the strouhal number based on 𝑅𝑒𝑐, and 𝑅𝑒′ is a Reynolds

number at the based on the angle of attack (Moriarty & Migliore, 2003) .

68

𝐿𝑝(𝐿𝐵𝐿−𝑉𝑆) = 10 𝑙𝑜𝑔10 [
𝛿∗𝑀5𝐿𝐷ℎ

𝑟𝑒
2] + 𝐺1 (

𝑆𝑡 ,

𝑆𝑡′
𝑝𝑒𝑎𝑘

) + 𝐺2 (
𝑅𝑒𝑐

𝑅𝑒′) + 𝐺3 [dB] (4.2)

d) Trailing Edge Bluntness-Vortex Shedding Noise (TEB-VS)

 The geometry of the trailing edge of an airfoil determines the amount of noise

produced by an airfoil. In the case, if the airfoil trailing edge thickness is very large compared

to the boundary layer thickness, the bluntness vortex shedding noise will be dominating. This

case is shown in Figure 32.

Figure 32. Trailing Edge Bluntness-Vortex Shedding Noise. Retrieved From: Brooks, F., Pope, S., Marcolini, M. (1989).
Airfoil Self-Noise and Prediction. NASA Reference Publication 1218.

 This type of noise source is determined by equation 4.3, where 𝛿∗is the boundary [m],

M is the Mach number, L is the span of the airfoil [m], 𝐷ℎ is the noise directivity, 𝑟𝑒 is the

distance to the observer, ∝ is the angle of attack,𝐺4,𝐺5, are empirical relation functions, 𝛿𝑎𝑣𝑔
∗

is the average boundary layer thickness, h is the trailing edge thickness, ψ is the trailing edge

angle (between the two surfaces of the trailing edge), and 𝑆𝑡′′ and 𝑆𝑡𝑝𝑒𝑎𝑘
′′ are the Strouhal

numbers based on h and ℎ 𝛿𝑎𝑣𝑔
∗ ⁄ , respectively (Moriarty & Migliore, 2003) .

𝐿𝑝(𝑇𝐸𝐵−𝑉𝑆) = 10 𝑙𝑜𝑔10 [
𝛿∗𝑀5𝐿𝐷ℎ

𝑟𝑒
2] + 𝐺4 (

ℎ

𝛿𝑎𝑣𝑔
∗ , 𝜓) + 𝐺5 (

ℎ

𝛿𝑎𝑣𝑔
∗ , 𝜓,

𝑆𝑡′′

𝑆𝑡𝑝𝑒𝑎𝑘
′′) + 𝐺3(∝) [dB] (4.3)

e) Turbulent Inflow Noise

This type of noise source is determined by the interaction of turbulent incoming flow

and the leading edge of an airfoil. It becomes of great importance, in the case where the

69

turbulent eddies from the incoming flow are significantly larger than the leading edge radius

of the airfoil. This noise source is determined by equation 4.4.

 𝐿𝑝(𝐼𝑛𝑓𝑙𝑜𝑤) = 𝐿𝑝(𝐼𝑛𝑓𝑙𝑜𝑤)
𝐻 + 10 𝑙𝑜𝑔10 [

𝐿𝐹𝐶

1+𝐿𝐹𝐶
]

(4.4)

Here, 𝐿𝑝(𝐼𝑛𝑓𝑙𝑜𝑤)
𝐻 = 10 𝑙𝑜𝑔10 [

𝜌0
2𝑐0

2𝑙𝐿

2𝑟𝑒
2 𝑀3𝑢2𝐼2 𝑘3

(1+𝑘2)
7

3⁄
𝐷𝐿] + 58.4, where 𝜌0is the air

density, 𝑐0is the speed of sound, 𝑙 is the turbulence scale (parameter used according to

International Electrotechnical Commission-IEC), u is the wind mean speed, I is percentage of

wind turbulence, 𝐷𝐿 is the directivity, M is the Mach number, and K is the local wave number

that is given by 𝐾 =
𝜋𝑓𝑐

𝑈⁄ (f is the frequency of interest, c is the local airfoil chord, and U is

the local flow velocity over the airfoil).

On the other hand, 𝐿𝐹𝐶 = 10𝑆2𝑀𝐾2𝛽−2 , where 𝑆2 = (
2𝜋𝐾

𝛽2 + (1 + 2.4
𝐾

𝛽2)
−1

)
−1

,

and 𝛽2 = 1 − 𝑀2 (Moriarty & Migliore, 2003) .

4.1.2 NAFNoise Inputs & Outputs.

The NAFNoise software is available for download from the National Renewable

Energy Laboratory, on the National Wind Technology Center Information Portal. The

software contains an executable file called NAFNoise.exe, and in order to run it, an input file

called nafnoise.ipt is required. The input file needs to be modified according to the shape of

the airfoil, and the required flow conditions. In this case, these conditions were determined by

the fact that the objective of using this program was to model the experiment performed at

the wind tunnel at Virginia Tech, on a DU-96 airfoil. An example of the input file

nafnoise.ipt is included in the appendix of this thesis.

70

In the input file nafnoise.ipt, the first three lines are comments. After this, the first

section of the file contains atmospheric constants. The speed of sound of the air was chosen

to be 337.7559 [m/s], which is approximately the equivalent value for 10 degrees Celsius.

This temperature was chosen because it is the one expected during experimental wind tunnel

tests. For the same temperature, the kinematic viscosity and density were chosen to be 1.4529

E-5 [𝑚
2

𝑠⁄] and 1.225 [
𝐾𝑔

𝑚3⁄] , respectively.

The next section of the input file correspond to the settings that determine which

noise sources will be computed and how. In this case, all the variables were chosen so that

the developed noise model created with NAFnoise.exe simulates the same conditions as the

experimental wind tunnel test from Chapter 3. The first setting is the tripping condition.

Because all of the DU-96 airfoil experimental data chosen was for a tripped condition, a

heavy trip was selected (0 is equivalent to no trip, 1 is equivalent to heavy trip, and 2 is

equivalent to light trip). The difference between the light and heavy trip, is that for the second

one a larger boundary layer thickness is produced (Moriarty, 2005).

The second setting corresponds to the method used to determine the boundary layer

thickness. One of them is proposed by Brooks, Pope and Marcolini (1989), and the other is

determined by a set of routines that pertain to a program called Xfoil, which was developed at

MIT for the analysis of subsonic isolated airfoils (Moriarty, 2005). Because for a heavy trip

only the Brooks, Pope and Marcolini method is permitted by the program, this one was

chosen (1is equivalent to BPM & 2 is equivalent to Xfoil).

The next setting is the parameter that determines the method for the calculation of the

turbulent boundary layer-trailing edge noise. The two methods that can be used are one

proposed by Brooks, Pope and Marcolini (1989), and other proposed by Moriarty, Guidati

and Migliore (2005). In this case the second one was chosen because as stated by the authors,

71

this method has shown more accurate results than those from Brooks, Pope & Marcolini (0

equivalent to no noise of this source, 1 equivalent to BPM, 2 equivalent to MGM).

The final three settings of this section are set to a value of zero (in all cases 0 is

equivalent to the absence of the feature), because in the wind tunnel experiment there was not

a turbulent inflow, the airfoil did not have trailing edge bluntness, and there was not laminar

boundary layer-vortex shedding noise, because it is prevented with the trip in the airfoil.

The subsequent section of the input file consists on defining the airfoil properties. The

first line corresponds to the airfoil chord and the second one to the airfoil span. The third and

fourth lines correspond to the income flow velocity and angle of attack, respectively. These

two variables have to be changed for all the four experimental flow velocities and angles of

attack, and each time this is done the NAFNoise.exe program needs to be executed again.

Finally, the trailing edge thickness of the airfoil was set to zero, and the trailing edge angle

between the upper and bottom surface was calculated.

In order to calculate the trailing edge angle, the coordinates of the airfoil profile were

required. These were obtained from The Institute of Aeronautics and Astronautics (AIAA)

web site. The airfoil coordinates consist of a file containing two columns corresponding to

the chord normalized x-values, and y-values of the airfoil profile. From it, three points were

chosen, the first one corresponding to the tip trailing edge point, the second one to the point

on the pressure side surface of the airfoil which is the closest to the trailing edge tip, and the

third to the point on the suction side surface of the airfoil which is the closest to the trailing

edge tip.

72

Figure 33. Trailing Edge Angle

Thus, as observed in Figure 33, two angles are formed, and the trailing edge angle 𝛼

is obtained as the sum of 𝛼1 and 𝛼2, as shown in equation 4.5.

𝛼 = 𝛼1 + 𝛼2 = 𝑡𝑎𝑛−1 (
0.001207

0.004785
) + 𝑡𝑎𝑛−1 (

0.000069

0.004915
) = 14.16960 (4.5)

The next section of the input file has four lines, the first and second one determine the

upper and lower trip chord normalized locations. These values were not known for the

experimental data shown in Chapter 3, but it has been assumed a value of 0.1 at the pressure

and suction side, because a trip is typically located close to the leading edge of the airfoil, in

order to induce a transition from laminar to turbulent flow and a thicker boundary layer. The

next line of this section is to determine if the program will be using a NACA airfoil profile or

not. In this case, since this is not true because a DU-96 profile is used, .FALSE. is written in

this line. The final line of this section corresponds to the name of the file containing the

coordinates of the airfoil. In this case DU96.dat was used.

The subsequent section of the input file is ignored, because no turbulent inflow has

been used, thus all of the inputs concerning this feature have been set to zero. The final

section of the input file corresponds to the position of the viewer. In this case this is the

position of the microphone array in the wind tunnel experiment. This was at 1.6 meters, with

73

a -90 degrees for the angle relative to the span and -90 degrees for the angle relative to the

chord line.

The output file that NAFNoise.exe creates is called nafnoise.out. In it, noise data is

presented for 1/3rd octave frequency bands, from 10 [Hz] to 20000 [Hz]. The noise sound

pressure level values is presented for each frequency band, for the five noise sources in 5

columns, and a final column for the total sound pressure levels produced, corresponding to

the sum of all the sources. An example of an output file nafnoise.out is included in the

appendix of this thesis.

4.2 Experimental & Modeled data Analysis

Since the experimental data contained the sound pressure levels for each 1/3rd octave

frequency band, for the four velocities of 34 m/s, 44 m/s, 54 m/s and 64 m/s, and for each

one, four angles of attack of 4, 8, 12, 16 degrees, the modeled data had to be presented in the

same manner for comparison purposes. To do this, a MATLAB code was developed so that

by using NAFNoise software, the modeled and experimental data is compared and analyzed.

For each case, the experimental and modeled data are presented in a single chart.

First, for an angle of attack of 4 degrees, for the each of the four velocities, the data is

presented in Figures 34 a, b, c and d.

74

Figure 34. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=4 deg, b) flow velocity = 44 m/s & AOA=4
deg, c) flow velocity = 54 m/s & AOA=4 deg, d) flow velocity = 64 m/s & AOA=4 deg.

It is observed that for the four cases, the experimental data follows a similar trend line

as the modeled data. For the flow velocities of 34 m/s and 44 m/s, the experimental data has

a large deviation from the modeled one, between 4000[Hz] and 5000[Hz], and for 54 m/s and

64 m/s, between 5000[Hz] and 6000[Hz]. The large sound pressure level drop for these

frequencies indicates that the experimental measurements for three or four bands was

probably inaccurate. This could have happened as a result of faulty measuring equipment or a

mistake done while performing frequency analysis.

Apart from this, the program has under-predicted the sound pressure levels by a value

of approximately 5 [dB] for all frequencies staring at a 1000 [Hz]. The under-prediction

could be caused by the fact that the NAFNoise.exe uses an empirical modeled boundary layer

75

thickness computation method, based on a NACA 0012 airfoil which has a different

geometry from a DU96 airfoil. Moreover, for this case the Turbulent Boundary Layer-

Trailing Edge Noise would be dominant, and the Separated Flow Noise grows as the angle of

attack increases. This means that there is a clear dependence of the sound pressure levels on

the boundary layer thickness, as observed in equation 4.1. Additionally, it should be taken

into account that the boundary layer thickness is dependent on the Reynolds number and it

determines how turbulent the flow is. Therefore, it models the frequencies at which the flow

separates and vortices are created, that ultimately determine the noise produced at any given

frequency, as shown in equation 4.1 where empirical functions depending on the Strouhal

number are introduced.

An explanation on how to compute the overall sound pressure levels (OSPL) is

contained in the theoretical framework of this thesis. On Table 6, it is shown that the

resulting difference between the experimental and modeled overall sound pressure levels, for

all the cases are between 1 [dB] and 2 [dB]. Moreover, the modeled overall sound pressure

levels deviate by very low percentages from the experimental ones, specifically between

1.36% and 3.92%. This means that both the experimental and modeled overall sound pressure

level data fit relatively well. It can also be concluded that for an angle of attack of 4 degrees,

as the flow velocity increases, the modeled and experimental data have a closer fit.

CASE (flow velocity, angle of attack) Experimental OSPL [dB] Modeled OSPL [dB] %

34 m/s ,4 deg. 51 53 3.92

44 m/s ,4 deg. 60 62 3.33

54 m/s ,4 deg. 67 69 2.98

64 m/s ,4 deg. 73 74 1.36

Table 6. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34 m/s & AOA=4 deg, b) flow
velocity = 44 m/s & AOA=4 deg, c) flow velocity = 54 m/s & AOA=4 deg, d) flow velocity = 64 m/s & AOA=4 deg.

76

 For an angle of attack of 8 degrees, for each of the four flow velocities, the data is

presented in Figures 35 a, b, c and d.

Figure 35. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=8 deg, b) flow velocity = 44 m/s & AOA=8
deg, c) flow velocity = 54 m/s & AOA=8 deg, d) flow velocity = 64 m/s & AOA=8 deg.

For these cases, where the angle of attack is 8 degrees, it is observed that for the

velocities of 34 m/s and 44 m/s, both the experimental and the modeled data follow the same

trend line. In these cases there is an approximate over-prediction of 10 [dB] to 15[dB] for all

frequencies, between the experimental and modeled data. For the cases where the flow

velocities are 54 m/s and 64 m/s, the modeled data is under-predicted by values of 5 [dB] to

15 [dB] from 500 [Hz] and 4000 [Hz]. The over-prediction and under-prediction could be

77

caused by the boundary layer thickness computation and empirical functions that depend on

the Strouhal number, as explained previously for the cases shown in Figure 34.

CASE (flow velocity, angle of attack) Experimental OSPL [dB] Modeled OSPL [dB] %

34 m/s ,8 deg. 50 64 28.00

44 m/s ,8 deg. 58 72 24.14

54 m/s ,8 deg. 66 61 8.19

64 m/s ,8 deg. 73 68 6.85

Table 7. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34 m/s & AOA=8 deg, b) flow
velocity = 44 m/s & AOA=8 deg, c) flow velocity = 54 m/s & AOA=8 deg, d) flow velocity = 64 m/s & AOA=8 deg.

The overall sound pressure levels obtained are shown in Table 7. It is observed that

for the under-predicted cases, the modeled OSPL values are deviated from the experimental

ones by 6.85% and 8.19 %, and for the over-predicted cases the percentages are higher and

have a value of 24.14% and 28%. This shows that for an angle of attack of 8 degrees, the

modeled data did not fit very well. Nevertheless, for both the under-predicted cases and over-

predicted cases, it is evidenced the percentages become lower as the flow velocity increases.

 For an angle of attack of 12 degrees, for each of the four flow velocities, the data is

presented in Figures 36 a, b, c and d.

78

Figure 36. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=12 deg, b) flow velocity = 44 m/s &
AOA=12 deg, c) flow velocity = 54 m/s & AOA=12 deg, d) flow velocity = 64 m/s & AOA=12 deg.

For a 12 degree angle of attack, for all flow velocities, the experimental and modeled

data fits very well, except for frequencies lower to a 1000[Hz]. The values are over-predicted

for these frequencies and have a maximum of 10 [dB]. This could be because at these

frequencies the modeled noise is different from the experimental one due to innacurate

boundary layer computations and Strouhal number dependent empirical functions (as

explained for Figure 34).

79

CASE (flow velocity, angle of attack) Experimental OSPL [dB] Modeled OSPL [dB] %

34 m/s ,12 deg. 53 57 7.55

44 m/s ,12 deg. 62 68 9.68

54 m/s ,12 deg. 69 77 11.59

64 m/s ,12 deg. 74 83 12.16

Table 8. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34 m/s & AOA=12 deg, b) flow
velocity = 44 m/s & AOA=12 deg, c) flow velocity = 54 m/s & AOA=12 deg, d) flow velocity = 64 m/s & AOA=12 deg.

 The OSPL for the modeled and experimental data differ from 4[dB] to 9 [dB]. This is

shown in Table 8, where there are also the percentages showing the modeled OSPL deviation

from the experimental ones. Unlike the two previous cases for an angle of attack of 4 degrees

and 8 degrees, in this case, as the flow velocity increases the percentage grows from 7.55 %

to 12.16%.

 Finally, for an angle of attack of 16 degrees, for each of the four flow velocities, the

data is presented in Figures 37 a, b, c and d. It can be observed that for all these cases, for all

frequencies the modeled data is under-predicted with values varying from 1 to 15 [dB]. As

explained before this could be because of the boundary layer computation inaccuracy and the

use of empirical Strouhal number dependent empirical functions.

80

Figure 37. Experimental and Modeled Data for a) flow velocity = 34 m/s & AOA=16 deg, b) flow velocity = 44 m/s &
AOA=16 deg, c) flow velocity = 54 m/s & AOA=16 deg, d) flow velocity = 64 m/s & AOA=16 deg.

As observed in Table 9, the values for the OSPL for these two velocities the modeled

overall sound pressure levels differ from the experimental by 4 to 11 [dB]. The percentages

that determine the modeled OSPL deviation from the experimental values vary from 5.13%

to 18.06%. In this case, these percentages are random to any of the four velocities used.

CASE (flow velocity, angle of attack) Experimental OSPL [dB] Modeled OSPL [dB] %

34 m/s ,16 deg. 55 51 7.27

44 m/s ,16 deg. 64 58 9.38

54 m/s ,16 deg. 72 59 18.06

64 m/s ,16 deg. 78 74 5.13

Table 9. Experimental and Modeled Overall Sound Pressure levels for a) flow velocity = 34 m/s & AOA=16 deg, b) flow
velocity = 44 m/s & AOA=16 deg, c) flow velocity = 54 m/s & AOA=16 deg, d) flow velocity = 64 m/s & AOA=16 deg.

81

 After comparing the modeled and experimental data, it can be concluded that the

sound pressure levels determined by the NAFNoise.exe program are relatively inaccurate

when compared to the experimental wind tunnel test data, from Chapter 3. This may be

because of the turbulent boundary layer computation method used, as well as the empirical

functions that depend on the Strouhal number that the program uses. Because a NACA 0012

was used for these calculations, the geometric differences with a DU-96 airfoil could

introduce errors. This is reflected on the fact that for certain angles of attack, the modeled

data is more closely predicted than for others. Nevertheless, most of the predicted curves

follow the same trend line as the experimental data, and from all the cases a maximum of a

28% of OSPL deviation was obtained, but a minimum of 1.36% also reflects very accurate

predictions for some cases.

4.3 NAFNOISE_main.m MATLAB Code Description

The routine NAFNOISE_main.m is contained in the appendix of this thesis. This code

consists of 5 sub-routines that perform different tasks, as observed in the flow chart in Figure

38. The first sub-routine is NAFNOISE_RUN.m, and the objective of it is to run

NAFNoise.exe for all the four angles of attack of 4, 8, 12 and 16 degrees, for each of the four

flow velocities of 34 m/s, 44 m/s, 54 m/s and 64 m/s. To do this, the lines corresponding to

the angle of attack and flow velocity on the input file nafnoise.ipt, must be changed. Within a

loop for each flow velocity and angle of attack, the code opens the input file, saves each line

of the file in a cell, closes the file, changes the required lines of the file, writes a new input

file, runs NAFNoise.exe, and finally retrieves the data from the output file nafnoise.out.

82

Figure 38. NAFNOISE_main.m Flow chart.

The sub-routine NAFNOISE_interpolation.m is required because the output file

nafnoise.out, from the NAFNoise.exe software, does not contain the sound pressure levels

generated by the airfoil, for all the 1/3rd octave frequency bands used on the experimental

data. This means that some modeled sound pressure level values must be interpolated, so that

the modeled and experimental data are both as a function of the same frequency bands.

The sub-routine DU96_input.m, extracts the experimental sound pressure levels for

each flow velocity and angle of attack, from an excel file DU96.xlsx (this file is contained in

the appendix of this thesis). The sub-routine NAFNOISE_OSPL.m computes the overall

sound pressure levels for each flow velocity and angle of attack, of both the modeled and

experimental data. The values computed in this part of the code, for each case are presented

in Tables 6, 7, 8 & 9.

Finally, the sub-routine NAFNOISE_plots.m, plots the experimental and modeled

sond pressure levels, as a function of 1/3rd octave frequency bands. This is, for every case of

flow velocity and angle of attack combination. In this way the experimental and modeled

results can be compared and analyzed. The plots generated by this sub-routine are presented

in Figures 34, 35, 36 & 37.

83

CHAPTER V

WIND TURBINE NOISE PREDICTION

The main purpose of this chapter is to show how a wind turbine noise prediction tool

has been developed using MATLAB. In this case, the prediction was performed on a

Nordtank NTK 500/41 wind turbine, because all its geometric properties were able to be

obtained from the book Aerodynamics of Wind Turbines, by Martin O. L. Hansen. All the

implemented computations, used methods and results, are thoroughly explained, and a

description of the programmed MATLAB code is presented.

5.1 Prediction Model Description

 The process used to obtain wind turbine noise predictions will be described, by

dividing it into six sections. Each section concatenates with the next one, until an explanation

on how to determine the final results is explained in the last one. The first one describes how

the turbine’s incoming wind velocity was modeled, the second one corresponds to the

geometric modelling of each of the wind turbine’s blades, the third one explains how each

blade rotate around the turbine hub, the fourth one explains the grid in which the predicted

noise was calculated, the fifth one corresponds to the noise source modeling, and the last one

explain how the predicted overall A-weighted sound pressure levels were computed on the

spherical shell grid.

The modeled incoming wind velocity determined in section 5.1.1 is necessary in order

to obtain geometric variables from each of the blades, which is the task in section 5.1.2. On

the other hand, section 5.1.3 explains how the positions of the blades are determined, as they

rotate. Section 5.1.4 explains how the positions for all the points on a spherical shell grid

were obtained, so the predicted noise is computed at these points. Only when all the data

from the previous four sections has been determined, the noise sources modeling can be

84

completed, as explained in section 5.1.5. Finally, the predicted noise is obtained by

determining the contribution from all noise sources, at each point on the grid.

5.1.1 Incoming Wind Velocity Modeling.

The motion of air on the earth’s surface is dependent of both surface friction and the

pressure and temperature gradients determined by solar heating. These factors determine the

formation of a boundary layer or wind velocity profile. Usually, it extends for up to one

kilometer above the surface, and it is influenced by the time of the day. An example of wind

vleocity profiles for different types of terrain are shown in Figure 39. Here it can be observed

that in an urban area, wind profiles are higher than for suburb and level country areas.

Figure 39. Effect of terrain roughness on the wind velocity profile. Retrieved from: Rao,C.S. (2006). Environmental
Pollution Control Engineering. New Age International Ltd., New Delhi.

A wind velocity profile is determined by equation 5.1, where u [m/s] is the wind

velocity at height z [m], and 𝑢1 [m/s] is the wind velocity at height 𝑧1 [m], α is a unit-less

exponent that varies depending on the surface’s roughness (Rao, 2006).

𝑢

𝑢1
= (

𝑧

𝑧1
)
𝛼

 (5.1)

This equation was used to determine the incoming wind flow velocity experienced by

the wind turbine, at different heights. The value of α was determined to be 0.16, which is the

85

value for flat open country, as it was established by Rao (2006). The values of 𝑧1 and 𝑢1

were obtained from Figure 40, where the wind velocities at a 100[m] height is shown for

different parts of the United States. A value of a 100[m] was chosen for 𝑧1, and a value of

10.5 [m/s] for 𝑢1. Figure 40 was retrieved from the National Renewable Energy

Laboratory’s, Dynamic Maps, GIS Data, & Analysis Tools web page.

Figure 40. United States-Land Based and Offshore Annual Average Wind Speed at 100 m. Retrieved from:
http://www.nrel.gov/gis/wind.html

5.1.2 Wind Turbine Blade Geometry Modeling.

In order to determine the noise produced by each one of the wind turbine blades, as

they rotate, they were modeled as a rigid body and broken down into equal sections, as

shown in Figure 41. In the case of the Nordtank NTK 500/41 the blade has a length of 20.5

[m], and the twist and chord distributions along the blade’s span is shown in Table 10.

Because the number of sections into which the blade was divided for computational purposes

is different from those shown in table 10, all the values of the twist were interpolated

accordingly to the chosen value of blade sections. In this case, the blades were divided into

86

20 sections, as shown in table 11, where the interpolated radius and twist appear. It should be

noted that the chord was not interpolated, because this variable is not necessary on noise

computations.

Figure 41. Wind Turbine Blade divided into sections. Retrieved From: http://www.becas.dtu.dk/About

Table 10. Twist and Chord distributions for a Nordtank NTK 500/41 blade. Retrieved From: Hansen, M. (2008).
Aerodynamics of Wind Turbines. (pp.58) Earthscan, Sterling, VA-USA.

http://www.becas.dtu.dk/About

87

r [m] twist [degrees]

4.9 18.5200

5.7 15.6400

6.5 13.0000

7.3 10.6400

8.1 8.4900

8.9 6.8100

9.7 5.6500

10.5 4.8500

11.3 4.1700

12.1 3.4900

12.9 2.9300

13.7 2.4840

14.5 2.0200

15.3 1.4920

16.1 1.0060

16.9 0.5940

17.7 0.2920

18.5 0.1400

19.3 0.0680

20.1 0.0275

Table 11. Interpolated Twist Distribution for a Nordtank NTK 500/41 blade

Each section of the blade was considered to be an airfoil profile, and three angles

were computed for each one, as shown in Figure 42. These three angles were computed

because they determine the noise radiation directivity produced by a noise source located at

each blade section, as it will be explained in section 5.1.5. The first one corresponds to the

sum of the segment’s pitch and local twist and was called β. The second one was determined

to be the angle between the rotational flow velocity and the relative wind velocity, and it was

called γ. In order to compute γ, equation 5.2 was used. The rotational flow velocity

magnitude |𝑊̅| was computed for each segment by using the distance from the turbine’s hub

to the segment position, and the fact that this turbine is designed to rotate at 27.1 [rpm]. This

is shown in equation 5.3. On the other hand, the wind velocity |𝑉̅| computation was obtained,

as explained in section 5.1.1.

88

 γ = 𝑡𝑎𝑛−1
|𝑉̅|

|𝑊̅|

(5.2)

 |𝑊̅|[𝑚 𝑠⁄] = 27.1 [𝑟𝑝𝑚] ×
2𝜋

60
× 𝑟[𝑚]

(5.3)

Figure 42. Airfoil with Definition of Flow Angles and Forces. Retrieved from: Gipe, P. (2004), Renewable Power:
Renewable Energy for Home, Farm, and Business, Chelsea Green Publishing Company, USA.

 The third angle computed for each segment of the blade was the angle of attack,

which was computed as the subtraction of the angle γ minus β. Additionally, with the angle γ

and the rotational flow velocity, the apparent or relative wind was also computed as shown in

equation 5.4.

|𝑈̅| = |𝑊̅| × cos γ (5.4)

89

5.1.3 Rotational Positions Modeling.

 The blade positions, determined by their rotation, were obtained by using a

rectangular coordinate system located at the hub of the turbine, as shown in Figure 43. The

direction parallel to the turbine’s tower was determined to be the z –axis, the x-axis direction

was perpendicular to the rotation of the blades, and finally the y-axis direction was

determined to be parallel to the rotation of the blades. This is shown in Figure 43.

Figure 43. Wind Turbine Coordinates. Retrieved From: van Rooij, R. (2001). Terminology, Reference Systems and
Conventions. Duwind 2001.004

The first step in order to obtain the rotational positions was to determine a vector 𝑑̅

from the center of the hub towards all the sections contained in one blade. This, when one of

the blades was on a position parallel to the turbine’s tower, as shown on Figure 44. After, the

vectors corresponding to each blade section were rotated around the x –axis with the rotation

matrix shown in equation 5.5a, for various equal azimuth angles ∆𝜃, until 360 degrees were

90

reached. In this way, all the positions of the blade’s sections, for all azimuth angles, were

determined.

 𝑅 = [

1 0 0
0 cos (∆𝜃) sin (∆𝜃)
0 −sin (∆𝜃) cos (∆𝜃)

] (5.5a)

 For example, for the first blade section, the vector 𝑑̅ = [0 0 4.9], and the rotation

positions were computed as shown in equation 5.5b. This is also shown in Figure 44.

 𝑑̅ 𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = [

1 0 0
0 cos (∆𝜃) sin (∆𝜃)
0 −sin (∆𝜃) cos (∆𝜃)

] [
0
0

4.9
] = [

0
4.9sin (∆𝜃)
4.9cos (∆𝜃)

] (5.5b)

Figure 44. Blades Rotation Given by Azimuth Angle. Retrieved from: Hansen, M. (2008). Aerodynamics of Wind Turbines.
(pp.58) Earthscan, Sterling, VA-USA.

91

5.1.4 Spherical Grid Modeling.

A spherical shell grid in which the predicted sound pressure levels were calculated,

was determined. It was constructed, as shown in Figure 45. To do so, the location for each

point on the grid was determined by using vectors with a spherical coordinate system

centered at the turbine’s hub. It was defined by a radius 𝑝, an angle 𝜃 and an angle ∅, as

shown in Figure 46. Additionally, the spherical coordinates were transformed to rectangular

coordinates, for computational purposes, as explained in section 5.1.5. The sphere grid was

located at the center of the hub, with a radius of 35 [m]. It should be taken into account that

the turbine’s hub height is also 35[m], so part of the predicted sound pressure levels would be

calculated at the ground or near it.

Figure 45. Spherical Grid. Retrieved From: http://www-personal.umich.edu/~cjablono/dycore_test_suite.html.

92

Figure 46. Spherical Coordinates Definition. Retrieved From: Larson, R. &Edwards, B. (2010). Multivariable Calculus.

Cengage Learning, Inc. Belmont, CA, USA.

5.1.5 Noise Source Modeling.

As explained in chapter four, all the noise sources for an airfoil are determined by

fluctuating instabilities on the flow. The noise produced by these sources can be modeled as a

compact dipole at the trailing edge of the airfoil, as shown in Figure 47. This means that for

all the positions computed in section 5.1.3, a compact dipole was modeled to be at the trailing

edge of all the blades’ sections airfoil profiles.

 A dipole is determined by a directivity pattern that has maximum radiation in the

direction perpendicular to the mean flow (Bowdler & Leventhall, 2011). For a dipole, the

root mean square sound pressure value at an angle θ from a line perpendicular to the chord

line and a distance r [m], is given by equation 5.6. Here, 𝑊𝐷[𝑊] is the sound power of the

dipole, 𝜌 [
𝐾𝑔

𝑚3⁄] is the air density and 𝑐 [𝑚 𝑠⁄] is the speed of sound (Bies & Hansen,

2009).

 𝑃𝑟𝑚𝑠
2 = 3 𝑊𝐷

𝜌 𝑐

4 𝜋 𝑟2
 𝑐𝑜𝑠2 θ [Pa] (5.6)

93

Figure 47. Radiation Pattern of a Dipole at the Trailing Edge of an Airfoil

 Using equation 5.6 to obtain the sound pressure levels produced by a dipole, the

expression on equation 5.7a is resultant, which is simplified into equation 5.7b. It is observed

that the value of 10 ∗ 𝑙𝑜𝑔10 (
3 𝑊𝐷 𝜌 𝑐

4 𝜋𝑃𝑟𝑒𝑓
2) is equivalent to the sound pressure levels produced by

a dipole, when cos 𝜃 = 0 and r=1, as shown on equation 5.7c.

 𝐿𝑃𝑑𝑖𝑝𝑜𝑙𝑒 = 10 ∗ 𝑙𝑜𝑔10 (
3 𝑊𝐷 𝜌 𝑐

4 𝜋𝑟2𝑃𝑟𝑒𝑓
2 𝑐𝑜𝑠2 θ) [dB] (5.7a)

𝐿𝑃𝑑𝑖𝑝𝑜𝑙𝑒 = 10 ∗ 𝑙𝑜𝑔10 (
3 𝑊𝐷 𝜌 𝑐

4 𝜋𝑃𝑟𝑒𝑓
2) + 10 ∗ 𝑙𝑜𝑔10 (

𝑐𝑜𝑠2 θ

𝑟2) [dB] (5.7b)

𝐿𝑃𝑑𝑖𝑝𝑜𝑙𝑒 = 𝐿𝑃(𝑐𝑜𝑠𝜃=0,𝑟=1) + 10 ∗ 𝑙𝑜𝑔10 (
𝑐𝑜𝑠2 θ

𝑟2) [dB] (5.7c)

In Chapter 3, equation 3.21 was established by using the experimental data from a

wind tunnel airfoil test. It determined the sound pressure levels produced by an airfoil as a

function of Strouhal number and the angle of attack. These values were normalized to a 1[m]

distance from the airfoil to the used microphone array (distance source-observer,

perpendicular to the airfoil’s chord line). This means that the sound pressure levels from

94

equation 3.21 are equivalent to the value of 𝐿𝑃(𝑐𝑜𝑠𝜃=0,𝑟=1) on equation 5.7c, for any given

angle of attack and Strouhal number (The Strouhal number introduces sound pressure level

values for all frequency bands).

Each blade section position computed in section 5.1.3 has a specific airfoil span, and

is exposed to different relative incoming flow velocities. Therefore, before replacing equation

3.21 into 𝐿𝑃(𝑐𝑜𝑠𝜃=0,𝑟=1) of equation 5.7c, a rescaling procedure is required for all blade

section positions, according to their local span and relative flow velocity. This is because all

the values from equation 3.21 were normalized to an incoming relative flow velocity of

1[m/s] and an airfoil span of 1[m]. The rescaling procedure is a normalization to new values

of incoming relative flow velocities, and span, and it is done in the same way as it was

explained in section 3.3.2

It has to be taken into account that the second expression, 10 ∗ 𝑙𝑜𝑔10 (
𝑐𝑜𝑠2 θ

𝑟2) on

equation 5.7c, permits the computation of noise at all the grid locations from section 5.1.4.

Therefore, for each of the blade section positions from section 5.1.3, the noise on the grid

was computed by using equation 5.7c. For example, at a specific blade section position, in

order to obtain the values of cos 𝜃 towards each of the points on the gird, a dot product

between two unit vectors has to be determined. The first one is the unit vector 𝑠̅

corresponding to the direction perpendicular to the blade’s section chord at the trailing edge

of its airfoil profile, and parallel to the maximum radiation from the dipole, as shown in

Figure 48. The second one is a unit vector 𝑔̅ that is directed from the trailing edge of the

blade section towards each point on the spherical shell grid.

95

Figure 48. Dipole Unit Vector for each blade section for all azimuth rotation blade positions.

Finally, the value of 𝑟2 from the second expression on equation 5.7c, is defined as the

square of the distance between the blade section positions from section 5.1.3, and the

spherical grid points from section 5.1.4.

5.1.6 Overall A-Weighted Sound Pressure Levels Computation.

 The sound pressure levels on the grid, predicted by applying equation 5.7c for all the

blade section rotational positions from section 5.1.3, have to be A-weighted. The reason for

this, is that by adding the frequency dependent values from equation 2.14b, the resulting

sound pressure levels are adapted to the loudness perceived by the human ear.

On the other hand, since equation 5.7c determines the sound pressure levels on the

spherical grid, originated at a dipole located at a specific blade section position, for various

Strouhal numbers, then the resultant sound pressure levels from all frequencies have to be

summed. To do so, an overall A-weighted sound pressure level corresponding to a specific

noise source (𝑂𝐴𝑆𝑃𝐿𝑠𝑜𝑢𝑟𝑐𝑒), has to be obtained by applying equation 5.9. In this case, n is

the number of frequency bands (or Strouhal numbers), and 𝐿𝑝𝑠𝑜𝑢𝑟𝑐𝑒−𝑠𝑡(𝑖) are the A-weighted

sound pressure levels corresponding to each frequency band (or Strouhal number).

96

 𝑂𝐴𝑆𝑃𝐿𝑠𝑜𝑢𝑟𝑐𝑒 = ∑ 10𝐿𝑝𝑠𝑜𝑢𝑟𝑐𝑒−𝑠𝑡(𝑖)/10𝑛
𝑖=1 [dBa] (5.9)

Afterwards, all the 𝑂𝐴𝑆𝑃𝐿𝑠𝑜𝑢𝑟𝑐𝑒 contained in one blade are summed into overall A-

weighted sound pressure levels on the spherical grid called 𝑂𝐴𝑆𝑃𝐿𝐵𝑙𝑎𝑑𝑒. This is performed

for all the azimuth rotational positions from section 5.1.3, and equation 5.10 is used, where m

is the number of sources contained in one blade, which is the same number of sections

contained in one blade.

 𝑂𝐴𝑆𝑃𝐿𝐵𝑙𝑎𝑑𝑒 = ∑ 10𝑂𝐴𝑆𝑃𝐿𝑠𝑜𝑢𝑟𝑐𝑒(𝑖)/10𝑚
𝑖=1 [dBa] (5.10)

 Since the sound pressure levels on the grid are obtained from the contribution of three

different blades at different positions in time, the overall A-weighted sound pressure levels

from three blades 𝑂𝐴𝑆𝑃𝐿𝑡𝑢𝑟𝑏𝑖𝑛𝑒, are obtained using equation 5.11. This is done for every

possible azimuth rotational position of the three blades (the blades are carefully positioned at

120 degrees from each other as observed in Figure 44), therefore three 𝑂𝐴𝑆𝑃𝐿𝑏𝑎𝑑𝑒 values

have to be carefully chosen. In this way, the predicted values of the OASPL produced by the

turbine on the grid are obtained, at every instant of rotation of the three blades.

 𝑂𝐴𝑆𝑃𝐿𝑡𝑢𝑟𝑏𝑖𝑛𝑒 = ∑ 10𝑂𝐴𝑆𝑃𝐿𝑏𝑎𝑑𝑒(𝑖)/103
𝑖=1 [dBa] (5.11)

5.2 Noise Prediction Results

 Given the importance of the angles of attack on the noise computations and

aerodynamic performance of the blades, they were plotted as shown in Figure 49, where they

are observed for all rotational positions, from an upstream view that is centered at the hub of

the wind turbine. The number of segments into which the blade was divided was 20 and the

number of azimuth rotational positions was 45. It is observed that the maximum angle of

attack is close to 14 degrees, and the minimum of 8 degrees. The reason why the highest

angles of attack are distributed right below the turbine’s hub, and the lowest are located at the

tip on the top of the wind turbine’s hub, is because the angle of attack is ultimately dependent

97

of the incoming wind velocity, as shown in equation 5.12. At the top of the turbine’s hub the

incoming wind has higher values than at the bottom of it because of the modeled wind

velocity profile.

 ∝= 𝛾 − 𝛽 = (𝑡𝑎𝑛−1
|𝑉̅|

|𝑊̅|
) – 𝛽 (5.12)

Figure 49. Angles of Attack for all Rotational Positions of the Blades.

The apparent flow velocity experienced by all the blade’s sections at all positions is

also of interest, because its values determine the incoming flow rescaling of the experimental

sound pressure levels. The relative flow velocities are shown in Figure 50, where they are

observed for all rotational positions, from an upstream view that is centered at the hub of the

wind turbine. It is observed that the maximum relative flow velocity is close to 55 [m/s] at

the tip of the blades, and the minimum close to 20 [m/s] at the hub.

98

Figure 50. Apparent or Relative Flow Velocities for all Rotational Positions of the Blades.

 The predicted OASPL on the sphere grid were obtained for all the sources at each

blade section positions and the azimuth rotational positions of the three blades of the wind

turbine. In this way, the fluctuation of the OASPL on the grid could be observed, as the

blades rotate. In Figure 51 the OASPL for the first position of the three blades is observed,

for a spherical grid containing 2501 points. The first position is determined as the one where

one of the blades is at the top of the hub, parallel to the wind turbine tower, as seen in Figure

44. On Figure 51, it is observed that the OASPL have a maximum value of 35 [dBa] on the

sphere’s poles, perpendicular to the turbine’s rotation plane. At the center of the sphere, close

to the x-values of zero, the OASPL values have a minimum of 0 [dBa]. For all the rotational

positions of the blades, the OASPL grid distribution fluctuates between these two values.

99

Figure 51. Predicted OASPL Over Spherical Grid around Turbine (First Position of Blades), with 2501 Grid Points.

The reason for the phenomena where there are various points on the gird with very

low sound pressure level values, is determined by the directivity from all the sources towards

these grid points. In these cases the unit vector 𝑠̅ from the sources (shown in Figure 48), and

the unit vector 𝑔̅, form angles that are close to 90 degrees. This means that the value of 𝑐𝑜𝑠2𝜃

from equation 5.7c is close to zero, and therefore the values of 10 ∗ 𝑙𝑜𝑔10 (
𝑐𝑜𝑠2 θ

𝑟2) are

negative. This results in OASPL values that are close to zero when the summations on

section 5.1.6 are performed.

 The number of grid points is very important so more accurate results are obtained. For

example, in Figure 52, the OASPL grid had 121 points and it was for the first position of the

blades. It is observed that the OASPL values that are very low, are only positioned at the

sphere upper and lower poles. This is because a spherical grid has more points on these poles,

100

as observed in Figure 45, and on other parts of the sphere, the interpolated values are not as

accurate. Therefore, a larger number of grid points of 2501 was used to obtain more accurate

results, as shown in Figure 51.

Figure 52. Predicted OASPL Over Spherical Grid around Turbine (First Position of Blades), with 121 Grid Points.

 Additionally, a video was constructed with the OASPL distribution over the sphere

grid, as the turbine’s blades rotate.

5.3 WTNOISE_main.m MATLAB Code Description

The routine WTNOISE_main.m is contained in the appendix of this thesis. This code consists

of 18 sub-routines, as shown in the flowchart on Figure 52. The first sub-routine is

WTNOISE_input.m, and the objective of it is to read and save the input variables from three

.txt input files. The first file is called weather_parameter.txt, and it there is contained wind

speed, temperature, pressure, density and relative humidity, as a function of the height above

101

the ground. From this file, only the wind speed was used. The second file is called

general_parameters.txt, and in it there are general variables from the wind turbine such as

hub height, pitch of the blades, number of blades, rotational blade speed, cut in wind speed,

and cut out wind speed. The third file is called blade_parameters.txt, and it contains the

length of the blades, the chord distribution, and the twist distribution along the blade. The

blade parameters and general parameters from the Nordtank NTK 500/41 wind turbine were

obtained from the book Aerodynamics of Wind Turbines, by Martin O. L. Hansen.

Figure 53. WTNOISE_main.m flowchart.

 The second sub-routine is called WTNOISE_default_parameters.m, and it defines

default variables that are needed for the noise computations. These are, the air density, speed

102

of sound on air, reference pressure, and all 1/3rd octave frequency bands. The third sub-

routine is called WTNOISE_rotational_positions.m, and what it does is the computation of

the locations of each blade sections, for all azimuth rotational positions, as well as their

corresponding height and rotation velocity.

 The fourth sub-routine is called WTNOISE_wind_interpolation.m, and what it does is

to interpolate the wind velocity values for all the heights of the sources corresponding to each

blade section rotational position, by using the input wind profile data. The subsequent sub-

routine WTNOISE_twist_interpolation.m, interpolates the twist for the blade sections, by

using the input twist distribution for the Nordtank NTK 500/41 wind turbine.

 The sixth sub-routine is called WTNOISE_AOA.m and it calculates the angles β, γ and

angle of attack for all the blade section rotational positions. Accordingly, the sub-routine

WTNOISE_AOA_plot.m plots the angles of attack, as observed in Figure 49. The sub-routine

WTNOISE_relative_velocities.m computes the relative velocities, and

WTNOISE_relative_velocities_plot.m, plots the results, as observed in Figure 50.

 The sub-routine WTNOISE_Grid.m computes the location of all the points on the

spherical grid in which the OASPL are obtained. WTNOISE_distance_source_grid.m

determines the distance from each source to the points on the grid. This sub-routine also

calculates the unit vector corresponding to the direction of the source-grid distances.

 WTNOISE_experimental_SPL.m computes the sound pressure levels using equation

3.21, for all the blade segment positions for all azimuth rotational positions, and Strouhal

numbers. Additionally, all the rescaling procedures described in section 5.1.4 are performed.

In order to apply equation 5.7c, the directivity factor was computed for all blade segment

positions for all azimuth rotational positions. This was done in the sub-routine

WTNOISE_source_directivity.m. Finally, equation 5.7c is applied in the sub-routine

WTNOISE_predicted_SPL.m.

103

 WTNOISE_OASPL.m computes the overall A-weighted sound pressure levels for all

the points of the grid, using equation 5.9. The sub-routine WTNOISE_OASPL_per_blade.m

applies equation 5.10, and WTNOISE_OASPL_per_positon.m applies equation 5.11.

 The final sub-routine is called WTNOISE_plot.m, and generates all the plots

corresponding to the predicted OASPL produced by the three blades, as they rotate.

Additionally, it creates a video that records in time all the OASPL, depending on the position

of the three blades.

104

CHAPTER VI

CONCLUSIONS & RECOMMENDATIONS

This thesis determined the propagation of noise produced by wind turbines. To do so,

the predicted overall A-weighted sound pressure levels on a grid around a Nordtank NTK

500/41 wind turbine, were computed. In order to achieve this goal, the usage of experimental

data from airfoil noise tests on a wind tunnel, provided the necessary inputs for noise sources

modeling. Moreover, the experimental data was compared with semi-empirical models

developed by other researchers, so a better understanding of the aero-acoustic behavior of an

airfoil is achieved.

The aero-acoustic noise prediction of the propagation of noise produced by a wind

turbine was successfully obtained. Even though many other factors have to be added to the

model, so more realistic results are obtained, the empirical airfoil sound pressure level data

along with theoretical procedures, have determined very accurate results.

The data obtained from airfoil wind tunnel experimentation was able to be processed,

and a useful sound pressure level equation, only dependent on the angle of attack and

Strouhal number, was obtained. This straightforward equation is crucial because it effectively

demonstrated how it can be applied to a modeled dipole noise source, and simplify unknown

terms such as the source’s noise power.

 On the other hand, a comparison of modeled data by other researchers and the

experimental data, permitted the development of certain conclusions. It was resolved that all

the noise sources explained by Moriarty and Migliore were thoroughly determined, and close

to real physical phenomena. Nevertheless, the expressions used to obtain the sound pressure

levels of the noise caused by the sources, relies on semi-empirical methods. This causes

105

inaccuracies at certain frequencies, for some the angles of attack and relative inflow

velocities.

 The characteristic trailing edge noise source used for a wind turbine airfoil, was a

dipole. It allowed the prediction of overall A-weighted sound pressure levels on a spherical

grid. The maximum sound pressure levels obtained were parallel to the plane of rotation of

the turbine, and that the minimum perpendicular to it. This behavior pattern was determined

to be characteristic of a wind turbine. Furthermore, as the blades rotate, an oscillating effect

was observed, proving the existence of the beating character of the sound that causes high

annoyance levels for human beings. The frequency of the beating character was determined

to be dependent of the rotation velocity of the blades.

Even though the maximum overall sound pressure levels were of approximately 35

[dBa], which is not a considerable amount of noise, the overall sound pressure levels

produced by a wind power generation farm would be higher. Additionally, the wind turbine

used for the model prediction was relatively not as large as new modern wind turbines, which

would also produce higher sound pressure levels.

From the obtained results, it could also be concluded that if a small number of points

are used in the grid, the prediction results will not be accurate. Therefore, a relatively large

number of points on the grid should be used to guarantee a more accurate model.

 Finally, even though the model developed is fairly accurate, other variables that are

present in reality should be taken into account for future research. These include, noise

ground reflections, atmospheric attenuation on the sound pressure levels, deflection of the

turbine’s blades (by not assuming the blades are rigid bodies), vibration analysis on the

blades ,and determining how the Doppler effect (apparent change of frequency of a wave for

an observer moving relative to the source) affects the sound pressure levels prediction.

106

REFERENCES

Technial University of Denmark. (2015, 04 19). BECAS. Retrieved from

http://www.becas.dtu.dk/About

Amiet, R. (1975). Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound

and Vibration, 41(4), 407-420.

Bader, R. (2014). Microphone Array. In T. Rossing, Springer Handbook of Acoustics (pp.

1179-1204). Stanford, California: Springer-Verlag Berlin Heidelberg.

Barron, M. (2003). Industrial Noise Control and Acoustics. New York, NY: Marcel Dekker,

INC.

Bell, L., & Bell, D. (1994). Industrial Noise Control: Fundamentals and Applications. New

York, New York: Marcel Dekker, INC.

Bies, D., & Hansen, C. (2009). Engineering Noise Control: Theory and Practice (4th ed.).

New York, NY, USA: Taylor and Francis.

Bowdler, D., & Leventhall, G. (2011). Wind Turbine Noise. Essex, UK: Multi-Science

Publishing Co. Ltd.

Brooks, T., Pope, D., & Marcolini, M. (1989). Airfoil Self-Noise Prediction. NASA

Reference Publication 1218.

Davenport, W., Burdisso, R., Camargo, H., Crede, E., Remillieux, M., Rasnick, M., & Van

Seeters, P. (2010). Aeroacoustic Testing of Wind Turbine Airfoils. Subcontract

Report NREL/SR-500-43471.

Gipe, P. (2004). Wind Power: Renewable Energy for Home, Farm, and Buisness. White

River Junction, VT: Chelsea Green Pub. Co.

Global Wind Energy Council. (2015). Global Wind Statistics 2014. Burssels, Belgium:

Global Wind Energy Council.

Granger, R. (1995). Fluid Mechanics. Mineola, NY: Courier Corporation.

Hansen, M. (2008). Aerodynamics of Wind Turbines (2nd edition ed.). Sterling, VA, USA:

EARTHSACAN.

Hau, E. (2013). Wind Turbines: Fundamentals, Technologies, Application, Economics. New

York, NY: Springer.

Jablonowski, C. (2015, 04 19). Idealized Dynamical Core Test Cases for Weather and

Climate Models. Retrieved from Test of the Dynamical Core of General Circulation

107

Models: Short deterministic and long climate simulations: http://www-

personal.umich.edu/~cjablono/dycore_test_suite.html

Kleiner, M., & Tichy, J. (2014). Acoustics of Small Rooms. Boca Raton, Florida: CRC Press.

Kumar, A., Dwivedi, A., Paliwal, V., & Patil, P. (2014). Free Vibration Analysis of AL 2024

Wind Turbine Blade Designed for Uttarakhand Region Based on FEA. Procedia

Technology, 14 (2014), 336-347.

Larson, R., & Edwards, B. (2010). Calculus Multivariable. Cengage Learning Inc. : Belmont,

CA. USA.

Lowson, M. (1993). Assesment and Prediction of Wind Turbine Noise. Bristol, England:

Department of Trade and Industry W/13/00284/REP.

Makarewicz, R. (2013). The influence of refractipon on turbine noise. International journal

of aeroacoustics, 12 (4), 349-362.

Makarewicz, R., & Golebiewski, R. (2014). The partially ensonified zone of wind turbine

noise. Journal of Wind Engineering and Industrial Aerodynamics, 132 (2014), 49-53.

Mollasalehi, E., Qiao, S., & Wood, D. (2013). Contribution of Small Wind Turbine Structural

Vibration to Noise Emission. Energies (19961073), 6(8), 3669-3691. doi:

10.3390/en6083669.

Moriarty, P. (2005). NAFNoise User's Guide. Golden, Colorado: National Wind Technology

Center, National Renewable Energy Laboratory.

Moriarty, P., & Migliore, P. (2003). Semi-Empirical Aeroacoustic Noise Prediction Code for

Wind Turbines. Golden, Colorado: National Renewable Energy Laboratiry,

NREL/TP-500-34478.

Moriarty, P., Guidati, G., & Migliore, P. (2005). Prediction of Turbulent Inflow and Trailing

Edge Noise for Wind Turbines. 11 th AIAA/CEAS Aeroacoustics Conference (26th

AIAA Aeroacoustics Conference) (pp. 2005-2881). Monterey, California: AIAA.

Munson, B., Okiishi, T. H., & Rothmayer, A. (2013). Fundamentals of Fluid Mechanics.

Hoboken, NJ: John Wiley & Sons.

National Renewabl Energy Laboratory . (2015, 04 19). Dynamic Maps, GIS Data, & Analysis

Tools. Retrieved from http://www.nrel.gov/gis/wind.html

Norton, M., & Karczub, D. (2003). Fundamentals of Noise and Vibration Analysis for

Engineers. Cambridge, UK: Cambridge University Press.

Oerlemans, S., & Schepers, J. (2009). Prediction of wind turbine noise and validation against

experiment. International Journal of Aeroacoustics, 8(6), 555-584.

108

Pierce, A. (2014). Basic Linear Acoustics. In T. Rossing, Springer Handbook of Acoustics

(pp. 29-112). Stanford, California: Springer-Verlag Berlin Heidelberg.

Randall, R. (2005). An Introduction to Acoustics. Mineola, New York: Dover Publications

INC.

Rao, C. (2006). Enviromental Pollution Control Engineering. New Delhi, India: New Age

International Publishers.

Ryi, J., Choi, J., Lee, S., & Lee, S. (2014). A full-scale prediction method for wind turbine

rotor noise by using wind tunnel test data. Renewable Energy, 65 (2014), 257-264.

Timmer, W., & vanRoiij, R. (2001). Some aspects of high angle-of-attac flow on airfoils for

wind turbine application. DUWIND, the Delft University Wind Energy Reseacrh

Institute.

Tonin, R. (2012). SOURCES OF WIND TURBINE NOISE AND SOUND

PROPAGATION. Acoustics Australia, 40(1), 20-27.

U.S. Energy Information Administration. (2014). Levelized Cost and Levelized Avoided Cost

of New Generation Resources in the Annual Energy Outlook 2014. U.S. Energy

Information Administration.

van Rooij, R. (2001, October). Terminology, Refernce Systems and Conventions. Duwind

2001.004.

Virginia Polytechnic Institute and State University. (2015, February 11). Virginia Tech

Stability Wind Tunnel. Retrieved from

http://www.aoe.vt.edu/research/facilities/stabilitytunnel/index.html

Wagner, S., Bareib, R., & Guidati, G. (1996). Wind Turbine Noise. Stuttgart, Germany:

Springer-Verlag Berlin Heidelberg.

109

APPENDIX A: DU96.xlsx File

110

APPENDIX B: DU96_main.m

%% DU96_input.m
% This routine reads the input to the code from an excel file
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% DU96.xslx
%
% OUTPUTS:
%
% U_1_data = Frequency and SPL for each AOA for a flow velocity of 34 m/s
% U_2_data = Frequency and SPL for each AOA for a flow velocity of 44 m/s
% U_3_data = Frequency and SPL for each AOA for a flow velocity of 54 m/s
% U_4_data = Frequency and SPL for each AOA for a flow velocity of 64 m/s
% U_1 = First velocity of 34 m/s
% U_2 = First velocity of 44 m/s
% U_3 = First velocity of 54 m/s
% U_4 = First velocity of 64 m/s
% AOA_1_vec = Vector containing an angle of attack of 4 degrees
% AOA_2_vec = Vector containing an angle of attack of 8 degrees
% AOA_3_vec = Vector containing an angle of attack of 12 degrees
% AOA_4_vec = Vector containing an angle of attack of 16 degrees
% U_ref = reference flow velocity;
% chord = chord for the airfoil;
% Span = Span used;
%---
% Reference and geometric values

U_ref = 1;
chord = 0.9;
Span = 1.8288; %6 feet
Sm = 1;
distance = 1.6;
ref_distance = 1;

%--
% Data extraction from the excel file
% SPL and Frequency
filename = 'DU96.xlsx';
sheet = 1;

xlRange_1 = 'A4:E50';
U_1_data = xlsread(filename, sheet, xlRange_1);
xlRange_2 = 'F4:J50';
U_2_data = xlsread(filename, sheet, xlRange_2);
xlRange_3 = 'K4:O50';
U_3_data = xlsread(filename, sheet, xlRange_3);
xlRange_4 = 'P4:T50';
U_4_data = xlsread(filename, sheet, xlRange_4);

111

%--
% Data extraction from the excel file
% Flow velocities

xlRange_5 = 'B1';
U_1 = xlsread(filename, sheet, xlRange_5);
xlRange_6 = 'G1';
U_2 = xlsread(filename, sheet, xlRange_6);
xlRange_7 = 'L1';
U_3 = xlsread(filename, sheet, xlRange_7);
xlRange_8 = 'Q1';
U_4 = xlsread(filename, sheet, xlRange_8);

%--
% Data extraction from the excel file
% Angles of attack

xlRange_9 = 'B2';
AOA_1 = xlsread(filename, sheet, xlRange_9);
xlRange_10 = 'C2';
AOA_2 = xlsread(filename, sheet, xlRange_10);
xlRange_11 = 'D2';
AOA_3 = xlsread(filename, sheet, xlRange_11);
xlRange_12 = 'E2';
AOA_4 = xlsread(filename, sheet, xlRange_12);

AOA_1_vec = ones(length(U_1_data),1)*AOA_1;
AOA_2_vec = ones(length(U_2_data),1)*AOA_2;
AOA_3_vec = ones(length(U_3_data),1)*AOA_3;
AOA_4_vec = ones(length(U_4_data),1)*AOA_4;
%---
% End of DU96_input.m
%---

112

%% DU96_STROUHAL.m
% This routine calculates the Strouhal number for every
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% chord = airfoil chord
% U_1_data = Frequencies used
% U_1 = flow velocities used
%
% OUTPUTS:
% st_1 = Strouhal numbers when flow velocity is 34 m/s
% st_2 = Strouhal numbers when flow velocity is 44 m/s
% st_3 = Strouhal numbers when flow velocity is 54 m/s
% st_4 = Strouhal numbers when flow velocity is 64 m/s
%---
% Strouhal number calculations

for n=1:length(U_1_data)
st_1(n)=chord*U_1_data(n,1)/U_1;
end

for n=1:length(U_2_data)
st_2(n)=chord*U_2_data(n,1)/U_2;
end

for n=1:length(U_3_data)
st_3(n)=chord*U_3_data(n,1)/U_3;
end

for n=1:length(U_4_data)
st_4(n)=chord*U_4_data(n,1)/U_4;
end

%---
% End of DU96_STROUHAL.m
%---

113

%% DU96_Uref_Correction.m
% This routine does the SPL correction using the a refrence flow velocity
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% U_ref = reference velocity
% U_1_data = Frequencies used
% U_1 = flow velocities used
%
% OUTPUTS:
% SPL_1_1 = SPL normalized using U_ref when the flow velocity is 34 m/s
% SPL_1_2 = SPL normalized using U_ref when the flow velocity is 44 m/s
% SPL_1_3 = SPL normalized using U_ref when the flow velocity is 54 m/s
% SPL_1_4 = SPL normalized using U_ref when the flow velocity is 64 m/s
%--
% Normalization procedure
%
% Loop over every SPL for a flow velocity of 34 m/s
power_law = 5;
power_law = power_law*10;
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)
 SPL_1_1(l,m-1) = U_1_data(l,m)-power_law*log10(U_1/U_ref);
 end
end

% Loop over every SPL for a flow velocity of 44 m/s
for m = 2:size(U_2_data,2)
 for l = 1: size(U_2_data,1)
 SPL_1_2(l,m-1) = U_2_data(l,m)-power_law*log10(U_2/U_ref);
 end
end

% Loop over every SPL for a flow velocity of 54 m/s
for m = 2:size(U_3_data,2)
 for l = 1: size(U_3_data,1)
 SPL_1_3(l,m-1) = U_3_data(l,m)-power_law*log10(U_3/U_ref)
 end
end

% Loop over every SPL for a flow velocity of 64 m/s
for m = 2:size(U_4_data,2)
 for l = 1: size(U_4_data,1)
 SPL_1_4(l,m-1) = U_4_data(l,m)-power_law*log10(U_4/U_ref);
 end
end
%--
% End of DU96_Uref_Correction.m
%--

114

%% DU96_Span_Correction.m
% This routine does the SPL correction using the a refrence flow velocity
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% SPL_1_1 = SPL normalized using U_ref when the flow velocity is 34 m/s
% SPL_1_2 = SPL normalized using U_ref when the flow velocity is 44 m/s
% SPL_1_3 = SPL normalized using U_ref when the flow velocity is 54 m/s
% SPL_1_4 = SPL normalized using U_ref when the flow velocity is 64 m/s
%
% OUTPUTS:
% SPL_4deg = SPL corrected using the Span when the flow velocity is 34

m/s
% SPL_8deg = SPL corrected using the Span when the flow velocity is 44

m/s
% SPL_12deg = SPL corrected using the Span when the flow velocity is 54

m/s
% SPL_16deg = SPL corrected using the Span when the flow velocity is 64

m/s
%
%--
% correction procedure
% Loop over every SPL for a flow velocity of 34 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)
 SPL_4deg(l,m-1) = SPL_1_1(l,m-1)-10*log10(Span/Sm);
 end
end

% Loop over every SPL for a flow velocity of 44 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)
 SPL_8deg(l,m-1) = SPL_1_2(l,m-1)-10*log10(Span/Sm);
 end
end
% Loop over every SPL for a flow velocity of 54 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)

 SPL_12deg(l,m-1) = SPL_1_3(l,m-1)-10*log10(Span/Sm);
 end
end

% Loop over every SPL for a flow velocity of 64 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)

 SPL_16deg(l,m-1) = SPL_1_4(l,m-1)-10*log10(Span/Sm);
 end
end
%--
% End of DU96_Span_Correction.m
%--

115

%% DU96_distance_Correction.m
% This routine does the SPL correction using the a refrence flow velocity
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% SPL_4deg = SPL corrected using the Span when the flow velocity is 34

m/s
% SPL_8deg = SPL corrected using the Span when the flow velocity is 44

m/s
% SPL_12deg = SPL corrected using the Span when the flow velocity is 54

m/s
% SPL_16deg = SPL corrected using the Span when the flow velocity is 64

m/s
%
% OUTPUTS:
%
% SPL_1 = SPL corrected using the Span when the flow velocity is 34 m/s
% SPL_2 = SPL corrected using the Span when the flow velocity is 44 m/s
% SPL_3 = SPL corrected using the Span when the flow velocity is 54 m/s
% SPL_4 = SPL corrected using the Span when the flow velocity is 64 m/s
%--
% correction procedure
% Loop over every SPL for a flow velocity of 34 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)
 SPL_1(l,m-1) = SPL_4deg(l,m-1)-20*log10(distance/ref_distance);
 end
end

% Loop over every SPL for a flow velocity of 44 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)

 SPL_2(l,m-1) = SPL_8deg(l,m-1)-20*log10(distance/ref_distance);
 end
end

% Loop over every SPL for a flow velocity of 54 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)
 SPL_3(l,m-1) = SPL_12deg(l,m-1)-20*log10(distance/ref_distance)
 end
end
% Loop over every SPL for a flow velocity of 64 m/s
for m = 2:size(U_1_data,2)
 for l = 1: size(U_1_data,1)

 SPL_4(l,m-1) = SPL_16deg(l,m-1)-20*log10(distance/ref_distance);
 end
end
%--
% End of DU96_distance_correction.m
%--

116

%% DU96_Plots.m
% This routine plots the SPL as a function of the Strouhal number
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% SPL_1 = Corrected SPL when flow speed is 34 m/s
% SPL_2 = Corrected SPL when flow speed is 44 m/s
% SPL_3 = Corrected SPL when flow speed is 54 m/s
% SPL_4 = Corrected SPL when flow speed is 64 m/s
%
% OUTPUT:
%
% plots of the SPL as a function of the Strouhal number for each AOA and
% flow velocity
%
% ROUTINES USED: none
%
%--
% Create a folder in the directory
mkdir('SPL(corrected) vs Strouhal')
%--
%Plot the SPL for AOA of 4 degrees as a function of the stouhal number for

all wind speeds
figure(1);
st_total_1 = [st_1 st_2 st_3 st_4];
SPL_inv_1 = [SPL_1(:,1); SPL_2(:,1); SPL_3(:,1); SPL_4(:,1)];
SPL_total_1 = SPL_inv_1';
scatter(st_1,SPL_1(:,1),'r','*')
hold on
scatter(st_2,SPL_2(:,1),'b','*')
hold on
scatter(st_3,SPL_3(:,1),'g','*')
hold on
scatter(st_4,SPL_4(:,1),'k','*')
title('SPL corrected vs. Strouhal for AOA of 4 degrees');
xlabel('Strouhal number');
ylabel('SPL[dB]');
grid on
hleg1 = legend('34 m/s','44 m/s','54 m/s','64 m/s');
saveas(figure(1),[pwd '/SPL(corrected) vs Strouhal/AOA 4.fig']);

%Plot the SPL for AOA of 8 degrees as a function of the stouhal number for

all wind speeds
figure(2);
st_total_2 = [st_1 st_2 st_3 st_4];
SPL_inv_2 = [SPL_1(:,2); SPL_2(:,2); SPL_3(:,2); SPL_4(:,2)];
SPL_total_2 = SPL_inv_2';
scatter(st_1,SPL_1(:,2),'r','*')
hold on
scatter(st_2,SPL_2(:,2),'b','*')
hold on
scatter(st_3,SPL_3(:,2),'g','*')
hold on

117

scatter(st_4,SPL_4(:,2),'k','*')
title('SPL corrected vs. Strouhal for AOA of 8 degrees');
xlabel('Strouhal number');
ylabel('SPL[dB]');
grid on
hleg2 = legend('34 m/s','44 m/s','54 m/s','64 m/s');
saveas(figure(2),[pwd '/SPL(corrected) vs Strouhal/AOA 8.fig']);

%Plot the SPL for AOA of 12 degrees as a function of the stouhal number for

all wind speeds
figure(3);
st_total_3 = [st_1 st_2 st_3 st_4];
SPL_inv_3 = [SPL_1(:,3); SPL_2(:,3); SPL_3(:,3); SPL_4(:,3)];
SPL_total_3 = SPL_inv_3';
scatter(st_1,SPL_1(:,3),'r','*')
hold on
scatter(st_2,SPL_2(:,3),'b','*')
hold on
scatter(st_3,SPL_3(:,3),'g','*')
hold on
scatter(st_4,SPL_4(:,3),'k','*')
title('SPL corrected vs. Strouhal for AOA of 12 degrees');
xlabel('Strouhal number');
ylabel('SPL[dB]');
grid on
hleg3 = legend('34 m/s','44 m/s','54 m/s','64 m/s');
saveas(figure(3),[pwd '/SPL(corrected) vs Strouhal/AOA 12.fig']);

%Plot the SPL for AOA of 16 degrees as a function of the stouhal number for

all wind speeds
figure(4);
st_total_4 = [st_1 st_2 st_3 st_4];
SPL_inv_4 = [SPL_1(:,4); SPL_2(:,4); SPL_3(:,4); SPL_4(:,4)];
SPL_total_4 = SPL_inv_4';
scatter(st_1,SPL_1(:,4),'r','*')
hold on
scatter(st_2,SPL_2(:,4),'b','*')
hold on
scatter(st_3,SPL_3(:,4),'g','*')
hold on
scatter(st_4,SPL_4(:,4),'k','*')
grid on
title('SPL corrected vs. Strouhal for AOA of 16 degrees');
xlabel('Strouhal number');
ylabel('SPL[dB]');
hleg4 = legend('34 m/s','44 m/s','54 m/s','64 m/s');
saveas(figure(4),[pwd '/SPL(corrected) vs Strouhal/AOA 16.fig']);
close all
%--
% End of routine DU96_Plots.m
%--

118

%% DU96_3DPlot.m
% This routine plots the SPL as a function of the of the AOA and Strouhal

number
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% ROUTINES USED: none
%
%---
% Create a folder in the directory
mkdir('SPL(corrected) vs Strouhal vs AOA')
%--
% each curve is plotted, for AOA of 4 degrees
figure(5);
plot3(st_1,AOA_1_vec,SPL_1(:,1),'r')
hold on
plot3(st_2,AOA_1_vec,SPL_2(:,1),'b')
hold on
plot3(st_3,AOA_1_vec,SPL_3(:,1),'g')
hold on
plot3(st_4,AOA_1_vec,SPL_4(:,1),'y')

% each curve is plotted, for AOA of 8 degrees
plot3(st_1,AOA_2_vec,SPL_1(:,2),'r')
hold on
plot3(st_2,AOA_2_vec,SPL_2(:,2),'b')
hold on
plot3(st_3,AOA_2_vec,SPL_3(:,2),'g')
hold on
plot3(st_4,AOA_2_vec,SPL_4(:,2),'y')

% each curve is plotted, for AOA of 12 degrees
plot3(st_1,AOA_3_vec,SPL_1(:,3),'r')
hold on
plot3(st_2,AOA_3_vec,SPL_2(:,3),'b')
hold on
plot3(st_3,AOA_3_vec,SPL_3(:,3),'g')
hold on
plot3(st_4,AOA_3_vec,SPL_4(:,3),'y')

% each curve is plotted, for AOA of 16 degrees
plot3(st_1,AOA_4_vec,SPL_1(:,4),'r')
hold on
plot3(st_2,AOA_4_vec,SPL_2(:,4),'b')
hold on
plot3(st_3,AOA_4_vec,SPL_3(:,4),'g')
hold on
plot3(st_4,AOA_4_vec,SPL_4(:,4),'y')

grid on
title('SPL(Str,AOA)')
xlabel('Strouhal number')

119

ylabel('Angle of Attack')
zlabel('SPL [dB]')
view([135 45])
hleg5 = legend('34 m/s','44 m/s','54 m/s','64 m/s');
saveas(figure(5),[pwd '/SPL(corrected) vs Strouhal vs AOA/AOA 16.fig']);
close all
%--
% End of routine DU96_3DPlot.m
%--

120

%% DU96_Power_fit.m
% The curve fitted is of the form f(x) = a*x^b + c
%
% INPUTS:
%
% Data for 'untitled fit 1' fit:
% X Input : st_total_1
% Y Output: SPL_total_1
% Data for 'untitled fit 2' fit:
% X Input : st_total_2
% Y Output: SPL_total_2
% Data for 'untitled fit 3' fit:
% X Input : st_total_3
% Y Output: SPL_total_3
% Data for 'untitled fit 4' fit:
% X Input : st_total_4
% Y Output: SPL_total_4
% Output:
% fitresult : a cell-array of fit objects representing the fits.
% gof : structure array with goodness-of fit info.
%
% Auto-generated by MATLAB on 10-Jun-2014 13:18:04, edited by Sterling

% McBride

%% Initialization.
% Initialize arrays to store fits and goodness-of-fit.
fitresult = cell(4, 1);
gof = struct('sse', cell(4, 1), ...
 'rsquare', [], 'dfe', [], 'adjrsquare', [], 'rmse', []);
%--
% Create a folder in the directory
mkdir('AOA curve fits')
%% Fit: 'Fit for AOA of 4 degrees'.
[xData, yData] = prepareCurveData(st_total_1, SPL_total_1);

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.913375856139019 0.63235924622541 0.0975404049994095];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{1}, gof(1)] = fit(xData, yData, ft, opts);
coeffs_1 = coeffvalues(fitresult{1});

% Create a figure for the plots.
figure(6);

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{1}, xData, yData, 'predobs');
legend(h, 'SPL [dB] vs. Strouhal Number', 'Fit for AOA of 4 degrees',

'Lower bounds (Fit for AOA of 4 degrees)', 'Upper bounds (Fit for AOA of 4

degrees)', 'Location', 'NorthEast');
% Label axes
xlabel('Strouhal Number');

121

ylabel('SPL [dB]');
title('Fit for AOA of 4 degrees');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{1}, xData, yData, 'residuals');
legend(h, 'untitled fit 1 - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Residuals');
grid on
saveas(figure(6),[pwd '/AOA curve fits/AOA 4 fit.fig']);
%% Fit: 'Fit for AOA of 8 degrees'.
[xData, yData] = prepareCurveData(st_total_2, SPL_total_2);

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.964888535199277 0.157613081677548 0.970592781760616];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{2}, gof(2)] = fit(xData, yData, ft, opts);
coeffs_2 = coeffvalues(fitresult{2});

% Create a figure for the plots.
figure(7);

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{2}, xData, yData, 'predobs');
legend(h, 'SPL [dB] vs. Strouhal Number', 'Fit for AOA of 8 degrees',

'Lower bounds (Fit for AOA of 8 degrees)', 'Upper bounds (Fit for AOA of 8

degrees)', 'Location', 'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Fit for AOA of 8 degrees');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{2}, xData, yData, 'residuals');
legend(h, 'untitled fit 2 - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Residuals');
grid on
saveas(figure(7),[pwd '/AOA curve fits/AOA 8 fit.fig']);
%% Fit: 'Fit for AOA of 12 degrees'.
[xData, yData] = prepareCurveData(st_total_3, SPL_total_3);

122

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.915735525189067 0.792207329559554 0.959492426392903];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{3}, gof(3)] = fit(xData, yData, ft, opts);
coeffs_3 = coeffvalues(fitresult{3});

% Create a figure for the plots.
figure(8);

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{3}, xData, yData, 'predobs');
legend(h, 'SPL [dB] vs. Strouhal Number', 'Fit for AOA of 12 degrees',

'Lower bounds (Fit for AOA of 12 degrees)', 'Upper bounds (Fit for AOA of

12 degrees)', 'Location', 'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Fit for AOA of 12 degrees');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{3}, xData, yData, 'residuals');
legend(h, 'untitled fit 3 - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Residuals');
grid on
saveas(figure(8),[pwd '/AOA curve fits/AOA 12 fit.fig']);
%% Fit: 'Fit for AOA of 16 degrees'.
[xData, yData] = prepareCurveData(st_total_4, SPL_total_4);

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.757740130578333 0.743132468124916 0.392227019534168];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{4}, gof(4)] = fit(xData, yData, ft, opts);
coeffs_4 = coeffvalues(fitresult{4});

% Create a figure for the plots.
figure(9);

123

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{4}, xData, yData, 'predobs');
legend(h, 'SPL [dB] vs. Strouhal Number', 'Fit for AOA of 16 degrees',

'Lower bounds (Fit for AOA of 16 degrees)', 'Upper bounds (Fit for AOA of

16 degrees)', 'Location', 'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Fit for AOA of 16 degrees');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{4}, xData, yData, 'residuals');
legend(h, 'untitled fit 4 - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('Strouhal Number');
ylabel('SPL [dB]');
title('Residuals');
grid on
saveas(figure(9),[pwd '/AOA curve fits/AOA 16 fit.fig']);
%%
%--
% End of DU96_Power_fit.m
%--

124

%% DU96_coefficients.m
% This routine plots the coefficients from the polynomial fit of the
% corrected SPL vs. AOA
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% INPUTS:
%
% alpha = angles of attack used
%
% coeff_one = coefficient number one of the polynomial
% coeff_two = coefficient number one of the polynomial
% coeff_three = coefficient number one of the polynomial
% coeff_four = coefficient number one of the polynomial
%
% OUTPUTS:
%
% Plots of the coefficients from the polynomial fit of the
% corrected SPL vs. AOA
%
% Routines used:none
%--
% Create a folder in the directory
mkdir('Fitted coefficients vs. AOA')
%--
% First coefficient plot
figure(10);
alpha = [4,8,12,16];
coeff_one = [coeffs_1(1),coeffs_2(1),coeffs_3(1),coeffs_4(1)];
plot(alpha,coeff_one);

title('First Coefficient vs. Strouhal');
xlabel('Strouhal number');
ylabel('Fit coefficients');
grid on
saveas(figure(10),[pwd '/Fitted coefficients vs. AOA/First

coefficient.fig']);

% Second coefficient plot
figure(11);
alpha = [4,8,12,16];
coeff_two = [coeffs_1(2),coeffs_2(2),coeffs_3(2),coeffs_4(2)];
plot(alpha,coeff_two);

title('Second coefficients vs. Strouhal');
xlabel('Strouhal number');
ylabel('Fit coefficients');
grid on
saveas(figure(11),[pwd '/Fitted coefficients vs. AOA/Second

coefficient.fig']);

% Third coefficient plot
figure(12);
alpha = [4,8,12,16];
coeff_three = [coeffs_1(3),coeffs_2(3),coeffs_3(3),coeffs_4(3)];

125

plot(alpha,coeff_three);

title('Third coefficients vs. Strouhal')
ylabel('Fit coefficients');
grid on
saveas(figure(12),[pwd '/Fitted coefficients vs. AOA/Third

coefficient.fig']);
close all
%--
% End of DU96_coefficients.m
%--

126

%% DU96_coefficients_power_fit.m
% The curve fitted is of the form f(x) = a*x^b + c
%
% Data for 'untitled fit 1' fit:
% X Input : alpha
% Y Output: coeff_one
% Data for 'untitled fit 2' fit:
% X Input : alpha
% Y Output: coeff_two
% Data for 'untitled fit 3' fit:
% X Input : alpha
% Y Output: coeff_three
% Output:
% fitresult : a cell-array of fit objects representing the fits.
% gof : structure array with goodness-of fit info.
%
% See also FIT, CFIT, SFIT.

% Auto-generated by MATLAB on 10-Jun-2014 15:14:18 edited by Sterling

McBride

%% Initialization.

% Initialize arrays to store fits and goodness-of-fit.
fitresult = cell(3, 1);
gof = struct('sse', cell(3, 1), ...
 'rsquare', [], 'dfe', [], 'adjrsquare', [], 'rmse', []);
%--
% Create a folder in the directory
mkdir('Coefficients Curve Fits')
%% Fit: 'Coefficient one fit'.
[xData, yData] = prepareCurveData(alpha, coeff_one);

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.317099480060861 0.950222048838355 0.0344460805029088];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{1}, gof(1)] = fit(xData, yData, ft, opts);
coefficient1 = coeffvalues(fitresult{1});
save('coefficient1');

% Create a figure for the plots.
figure(13);

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{1}, xData, yData, 'predobs');
legend(h, 'First coefficient vs. AOA', 'Coefficient one fit','Lower bounds

(Coefficient one fit)', 'Upper bounds (Coefficient one fit)', 'Location',

'NorthEast');
% Label axes
xlabel('alpha [deg]');

127

ylabel('coefficient one');
title('First Coefficient vs. AOA [deg]');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{1}, xData, yData, 'residuals');
legend(h, 'Coefficient one fit - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('alpha [deg]');
ylabel('coefficient one');
grid on
saveas(figure(13),[pwd '/Coefficients Curve Fits/First coefficient.fig']);

%% Fit: 'Coefficient two fit'.
[xData, yData] = prepareCurveData(alpha, coeff_two);

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.031498938662723 1.07375914827211 0.0032142660933091];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{2}, gof(2)] = fit(xData, yData, ft, opts);
coefficient2 = coeffvalues(fitresult{2});
save('coefficient2');

% Create a figure for the plots.
figure(14);

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{2}, xData, yData, 'predobs');
legend(h, 'Second coefficient vs. AOA', 'Coefficient two fit','Lower

bounds (Coefficient two fit)', 'Upper bounds (Coefficient two fit)',

'Location', 'NorthEast');
% Label axes
xlabel('alpha [deg]');
ylabel('coefficient two');
title('Second Coefficient vs. AOA [deg]');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{2}, xData, yData, 'residuals');
legend(h, 'Coefficient two fit - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('alpha [deg]');
ylabel('coefficient two');
grid on
saveas(figure(14),[pwd '/Coefficients Curve Fits/Second coefficient.fig']);

%% Fit: 'Coefficient three fit'.

128

[xData, yData] = prepareCurveData(alpha, coeff_three);

% Set up fittype and options.
ft = fittype('power2');
opts = fitoptions(ft);
opts.Display = 'Off';
opts.Lower = [-Inf -Inf -Inf];
opts.StartPoint = [0.0971317812358475 0.823457828327293 0.694828622975817];
opts.Upper = [Inf Inf Inf];

% Fit model to data.
[fitresult{3}, gof(3)] = fit(xData, yData, ft, opts);
coefficient3 = coeffvalues(fitresult{3});
save('coefficient3');

% Create a figure for the plots.
figure(15);

% Plot fit with data.
subplot(2, 1, 1);
h = plot(fitresult{3}, xData, yData, 'predobs');
legend(h, 'Third coefficient vs. AOA', 'Coefficient three fit','Lower

bounds (Coefficient three fit)', 'Upper bounds (Coefficient three fit)',

'Location', 'NorthEast');
% Label axes
xlabel('alpha [deg]');
ylabel('coefficient three');
title('Third Coefficient vs. AOA [deg]');
grid on

% Plot residuals.
subplot(2, 1, 2);
h = plot(fitresult{3}, xData, yData, 'residuals');
legend(h, 'Coefficient three fit - residuals', 'Zero Line', 'Location',

'NorthEast');
% Label axes
xlabel('alpha [deg]');
ylabel('coefficient three');
grid on
saveas(figure(15),[pwd '/Coefficients Curve Fits/Third coefficient.fig']);
close all
%%
%--
% End of DU96_coefficients_power_fit.m
%--

129

%% DU96_SPLplot.m
% This routine plots the SPL as a function of the of the AOA and Strouhal

number
%
% Authors: Sterling McBride
% Ricardo Burdisso
%
% DATE:June 2014
%
% ROUTINES USED: none
%
%--
% The directory is created inb the same folder
mkdir('SPL corrected final curve')
%--
% Variables are defined
wind_velocity = 10;
chord=0.9;
AOA = [4,8,12,16];
P_ref = 20e-6;

f_bands = [40,42.5,45,47.5,50,53,56,60,63,67,71,75,80, ...
 85,90,95,100,106,112,118,125,132,140,150,160,170,180, ...
 190,200,212,224,236,250,265,280,300,315,335,355,375,400,425, ...
 450,475,500,530,560,600,630,670,710,750,800,850,900,950,1000,

...
 1060,1120,1180,1250,1320,1400,1500,1600,1700,1800,1900,2000, ...
 2120,2240,2360,2500,2650,2800,3000,3150,3350,3550,3750,4000, ...
 4250,4500,4750,5000];

Nb_3bands = length(f_bands);
AOA_count = 0;

% The final SPL equation is applied

 for l = 1: length(AOA)
 AOA_count = AOA_count+1;
 for n = 1:Nb_3bands
 st(n) = f_bands(n)*chord/wind_velocity;

 SPL_eq(n,AOA_count) =

((coefficient1(1)*(AOA(l))^coefficient1(2))+(coefficient1(3)))...

st(n)^((coefficient2(1)(AOA(l))^coefficient2(2))+(coefficient2(3)))...
 +

((coefficient3(1)*(AOA(l))^coefficient3(2))+(coefficient3(3))) ;

 Prms_square_source(n) = (P_ref^2)*(10^(SPL_eq(n,AOA_count)/10));
 end
 end

% The figures are plot

figure(16)
plot(st,SPL_eq(:,1));
title('SPL [dB] for AOA of 4 Degrees vs. Strouhal Number')
xlabel('Strouhal Number');
ylabel('SPL [dB]');

130

grid on
saveas(figure(16),[pwd '/SPL corrected final curve/SPL vs st1.fig']);
close all

figure(17)
plot(st,SPL_eq(:,2));
title('SPL [dB] for AOA of 8 Degrees vs. Strouhal Number')
xlabel('Strouhal Number');
ylabel('SPL [dB]');
grid on
saveas(figure(17),[pwd '/SPL corrected final curve/SPL vs st2.fig']);
close all

figure(18)
plot(st,SPL_eq(:,3));
title('SPL [dB] for AOA of 12 Degrees vs. Strouhal Number')
xlabel('Strouhal Number');
ylabel('SPL [dB]');
grid on
saveas(figure(18),[pwd '/SPL corrected final curve/SPL vs st3.fig']);
close all

figure(19)
plot(st,SPL_eq(:,4));
title('SPL [dB] for AOA of 16 Degrees vs. Strouhal Number')
xlabel('Strouhal Number');
ylabel('SPL [dB]');
grid on
saveas(figure(19),[pwd '/SPL corrected final curve/SPL vs st4.fig']);
close all
%%
%--
% End of DU96_SPLplot.m
%--

131

APPENDIX C: nafnoise.ipt file

132

APPENDIX D: nafnoise.out File

133

APPENDIX E: NAFNoise_main.m

%% NAFNOISE_RUN.m
% This is the main code the runs NAFNoise.exe, and extracts the total SPL
% for 4 different angles of attack and 4 different flow velocities.
%
% Author: Sterling McBride
%
%
% DATE:February 2015
%
%% --
clear
clc
tic
%% --
% The angles of attack and flow velocity are defined
AOA = [4,8,12,16];
Vel = [34,44,54,64];
ncount_1 = 0;

for n = 1:length(AOA)
 for m = 1:length(Vel)

 ncount_1 = ncount_1 + 1;
%% --
% Read nafnoise.inp file and save into cell A
fid = fopen('nafnoise.ipt','r'); %% open file for read

if fid == -1 % True: the file does not exist
 error(['ERROR: The file ','nafnoise.ipt',' could not be opened.'])
end

l = 1;
tline = fgetl(fid); % Returns the next line of the specified file,

removing the newline characters.
 % fid is an integer file identifier obtained

from fopen. tline is a text string
 % unless the line contains only the end-of-

file marker. In this case, tline is the numeric value -1.
A{l} = tline; % Define cell A.
while ischar(tline) % ischar(A) returns logical 1 (true) if A{1}

is a character array and logical 0 (false) otherwise.
 l = l+1; % Save each line contained in the file in cell

A.
 tline = fgetl(fid);
 A{l} = tline;
end
fclose(fid); % Close the open file.

% Change data in cell A
A{17} = sprintf('%d', Vel(m)); % Format the required data into a string

(Free Stream Velocity).
A{18} = sprintf('%d', AOA(n)); % Format the required data into a

string (Angle of Attack).
% Write the changed Cell A, into the new nafnoise.ipt file

134

fid = fopen('nafnoise.ipt', 'w'); % Create new file for writing.
for l = 1:numel(A) % Loop for the number of array elements

within cell A.
 if A{l+1} == -1 % If the array element contains numeric

value -1, it means end-of-line-file marker has been reached.
 fprintf(fid,'%s', A{l}); % Write the end-of-line-file marker in

the new nafnoise.ipt.
 break % Terminate Execution of for loop
 else
 fprintf(fid,'%s\n', A{l}); % In other cases write data into file,

from cell A.
 end
end
fclose(fid); % Close the open file.

%% --
% Run NAFNoise.exe
system('Directory of NAFNOISE.exe');

%% --
% Retreive and save data from nafnoise.out file
fid = fopen('nafnoise.out','r'); %% open file for read

if fid == -1 % True: the file does not exist
 error(['ERROR: The file ','nafnoise.out',' could not be opened.'])
end
% Read file into cell C line by line
C = textscan(fid,'%s','delimiter', '\n');
% Copy C cell into a string array
Datastring = char(C{1});
% Close file
fclose(fid);
%% --

% This section converts and saves data to proper format
ncount = 13;
% The sound pressure level data and the used frequencies are saved
for nl = 1:34
ncount = ncount + 1;

NAFnoise_SPL(nl,:) = textscan(Datastring(ncount,:), '%f %f %f %f %f %f %f

%f');
NAFNoise_TotalSPL(nl,ncount_1) = NAFnoise_SPL{nl,8};
Frequencies(nl) = NAFnoise_SPL{nl,1};
end

 end
end
toc
%% --
% End of NAFNOISE_RUN.m
%--

135

%% NAFNOISE_interpolation.m
% This code interpolates the nafnoise data for the frequency bands used on

DU-96 experimental data.
%
% Author: Sterling McBride
%
%
% DATE:February 2015
%% --
% The interpolation procedure
% The frequency bands used on the DU-96 experimental data are defined

Du96_bands =

[500,530,560,600,630,670,710,750,800,850,900,950,1000,1060,1120,1180,1250,1

320,1400,1500,1600,1700,1800,1900,2000,2120,2240,2360,2500,...

2650,2800,3000,3150,3350,3550,3750,4000,4250,4500,4750,5000,5300,5600,6000,

6300,6700,7100];

% Frequency bands used by nafnoise thaat are within 500 Hz and 7100 Hz are

defined in a vector

nafnoise_bands = Frequencies (17:30);

% The nafnoise data is interpolated for all the 1/3rd octave frequency
% bands used on the experimental DU96 data.

 for m = 1:16

 nafnoise_SPL_interpolated (:,m)= interp1(nafnoise_bands,

NAFNoise_TotalSPL(17:30,m),Du96_bands);

 end
%% --
% End of NAFNOISE_interpolation.m
%--

136

%% NAFNOISE_OSPL.m
% This routine computes the OASPL for all flow velocities for eacha ngle of

attack
% for experimental and modeled data
%
% DATE:March 2015
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%
%--
% First, all the power coefficientes from the formula are computed
f_count = 0;

for n=1:length (U_1_data(:,2))

f_count = f_count+1;

% 34 m/s, 4 degrees
power(f_count) = 10^((U_1_data(f_count,2))/10);
power1(f_count) = 10^((nafnoise_SPL_interpolated(f_count,1))/10);

% 34 m/s, 8 degrees
power2(f_count) = 10^((U_1_data(f_count,3))/10);
power3(f_count) = 10^((nafnoise_SPL_interpolated(f_count,5))/10);

% 34 m/s, 12 degrees
power4(f_count) = 10^((U_1_data(f_count,4))/10);
power5(f_count) = 10^((nafnoise_SPL_interpolated(f_count,9))/10);

% 34 m/s, 16 degrees
power6(f_count) = 10^((U_1_data(f_count,5))/10);
power7(f_count) = 10^((nafnoise_SPL_interpolated(f_count,13))/10);

% 44 m/s, 4 degrees
power8(f_count) = 10^((U_2_data(f_count,2))/10);
power9(f_count) = 10^((nafnoise_SPL_interpolated(f_count,2))/10);

% 44 m/s, 8 degrees
power10(f_count) = 10^((U_2_data(f_count,3))/10);
power11(f_count) = 10^((nafnoise_SPL_interpolated(f_count,6))/10);

% 44 m/s, 12 degrees
power12(f_count) = 10^((U_2_data(f_count,4))/10);
power13(f_count) = 10^((nafnoise_SPL_interpolated(f_count,10))/10);

% 44 m/s, 16 degrees
power14(f_count) = 10^((U_2_data(f_count,5))/10);
power15(f_count) = 10^((nafnoise_SPL_interpolated(f_count,14))/10);

% 54 m/s, 4 degrees
power16(f_count) = 10^((U_3_data(f_count,2))/10);
power17(f_count) = 10^((nafnoise_SPL_interpolated(f_count,3))/10);

137

% 54 m/s, 8 degrees
power18(f_count) = 10^((U_3_data(f_count,3))/10);
power19(f_count) = 10^((nafnoise_SPL_interpolated(f_count,7))/10);

% 54 m/s, 12 degrees
power20(f_count) = 10^((U_3_data(f_count,4))/10);
power21(f_count) = 10^((nafnoise_SPL_interpolated(f_count,11))/10);

% 54 m/s, 16 degrees
power22(f_count) = 10^((U_3_data(f_count,5))/10);
power23(f_count) = 10^((nafnoise_SPL_interpolated(f_count,15))/10);

% 64 m/s, 4 degrees
power24(f_count) = 10^((U_4_data(f_count,2))/10);
power25(f_count) = 10^((nafnoise_SPL_interpolated(f_count,4))/10);

% 64 m/s, 8 degrees
power26(f_count) = 10^((U_4_data(f_count,3))/10);
power27(f_count) = 10^((nafnoise_SPL_interpolated(f_count,8))/10);

% 64 m/s, 12 degrees
power28(f_count) = 10^((U_4_data(f_count,4))/10);
power29(f_count) = 10^((nafnoise_SPL_interpolated(f_count,12))/10);

% 64 m/s, 16 degrees
power30(f_count) = 10^((U_4_data(f_count,5))/10);
power31(f_count) = 10^((nafnoise_SPL_interpolated(f_count,16))/10);

end
%---
% The total SPL for each case areobtained
% 34 m/s, 4 degrees
Total_spl_v34a4_experiment = 10*log10(sum(power));
Total_spl_v34a4_modeled = 10*log10(sum(power1));

% 34 m/s, 8 degrees
Total_spl_v34a8_experiment = 10*log10(sum(power2));
Total_spl_v34a8_modeled = 10*log10(sum(power3));

% 34 m/s, 12 degrees
Total_spl_v34a12_experiment = 10*log10(sum(power4));
Total_spl_v34a12_modeled = 10*log10(sum(power5));

% 34 m/s, 16 degrees
Total_spl_v34a16_experiment = 10*log10(sum(power6));
Total_spl_v34a16_modeled = 10*log10(sum(power7));

% 44 m/s, 4 degrees
Total_spl_v44a4_experiment = 10*log10(sum(power8));
Total_spl_v44a4_modeled = 10*log10(sum(power9));

% 44 m/s, 8 degrees
Total_spl_v44a8_experiment = 10*log10(sum(power10));
Total_spl_v44a8_modeled = 10*log10(sum(power11));

138

% 44 m/s, 12 degrees
Total_spl_v44a12_experiment = 10*log10(sum(power12));
Total_spl_v44a12_modeled = 10*log10(sum(power13));

% 44 m/s, 16 degrees
Total_spl_v44a16_experiment = 10*log10(sum(power14));
Total_spl_v44a16_modeled = 10*log10(sum(power15));

% 54 m/s, 4 degrees
Total_spl_v54a4_experiment = 10*log10(sum(power16));
Total_spl_v54a4_modeled = 10*log10(sum(power17));

% 54 m/s, 8 degrees
Total_spl_v54a8_experiment = 10*log10(sum(power18));
Total_spl_v54a8_modeled = 10*log10(sum(power19));

% 54 m/s, 12 degrees
Total_spl_v54a12_experiment = 10*log10(sum(power20));
Total_spl_v54a12_modeled = 10*log10(sum(power21));

% 54 m/s, 16 degrees
Total_spl_v54a16_experiment = 10*log10(sum(power22));
Total_spl_v54a16_modeled = 10*log10(sum(power23));

% 64 m/s, 4 degrees
Total_spl_v64a4_experiment = 10*log10(sum(power24));
Total_spl_v64a4_modeled = 10*log10(sum(power25));

% 64 m/s, 8 degrees
Total_spl_v64a8_experiment = 10*log10(sum(power26));
Total_spl_v64a8_modeled = 10*log10(sum(power27));

% 64 m/s, 12 degrees
Total_spl_v64a12_experiment = 10*log10(sum(power28));
Total_spl_v64a12_modeled = 10*log10(sum(power29));

% 64 m/s, 16 degrees
Total_spl_v64a16_experiment = 10*log10(sum(power30));
Total_spl_v64a16_modeled = 10*log10(sum(power31));

%--
% End of routine NAFNOISE_OSPL.m
%--

139

%% NAFNOISE_plots.m
% This routine plots the SPL as a function of 1/3rd frequency bands, for
% experimental and modeled data
%
% DATE:March 2015
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%
%--
% Create a folder in the directory
mkdir('SPL vs band')
%--
% 34 m/s, 4 degrees
figure(1)
scatter(U_1_data(:,1),U_1_data(:,2),'b','*');
hold on
scatter(U_1_data(:,1),nafnoise_SPL_interpolated(:,1),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 34 m/s & Angle

of attack = 4 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg1 = legend('Experimental Data','Modeled Data');
saveas(figure(1),[pwd '/SPL vs band/AOA434ms.fig']);

% 34 m/s, 8 degrees
figure (2)
scatter(U_1_data(:,1),U_1_data(:,3),'*');
hold on
scatter(U_1_data(:,1),nafnoise_SPL_interpolated(:,5),'r','*');
grid on
title('SPL[dB] vs. 1/3rd frequency bands (flow velocity = 34 m/s & Angle of

attack = 8 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg2 = legend('Experimental Data','Modeled Data');
saveas(figure(2),[pwd '/SPL vs band/AOA834ms.fig']);

% 34 m/s, 12 degrees
figure(3)
scatter(U_1_data(:,1),U_1_data(:,4),'*');
hold on
scatter(U_1_data(:,1),nafnoise_SPL_interpolated(:,9),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 34 m/s & Angle

of attack = 12 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg3 = legend('Experimental Data','Modeled Data');
saveas(figure(3),[pwd '/SPL vs band/AOA1234ms.fig']);

140

% 34 m/s, 16 degrees
figure(4)
scatter(U_1_data(:,1),U_1_data(:,5),'*');
hold on
scatter(U_1_data(:,1),nafnoise_SPL_interpolated(:,13),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 34 m/s & Angle

of attack = 16 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg4 = legend('Experimental Data','Modeled Data');
saveas(figure(4),[pwd '/SPL vs band/AOA1634ms.fig']);

% 44 m/s, 4 degrees
figure(5)
scatter(U_2_data(:,1),U_2_data(:,2),'*');
hold on
scatter(U_2_data(:,1),nafnoise_SPL_interpolated(:,2),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 44 m/s & Angle

of attack = 4 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg5 = legend('Experimental Data','Modeled Data');
saveas(figure(5),[pwd '/SPL vs band/AOA444ms.fig']);

% 44 m/s, 8 degrees
figure(6)
scatter(U_2_data(:,1),U_2_data(:,3),'*');
hold on
scatter(U_2_data(:,1),nafnoise_SPL_interpolated(:,6),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 44 m/s & Angle

of attack = 8 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg6 = legend('Experimental Data','Modeled Data');
saveas(figure(6),[pwd '/SPL vs band/AOA844ms.fig']);

% 44 m/s, 12 degrees
figure(7)
scatter(U_2_data(:,1),U_2_data(:,4),'*');
hold on
scatter(U_2_data(:,1),nafnoise_SPL_interpolated(:,10),'r','*');
grid on
title('SPL[dB] vs. 1/3rd frequency bands (flow velocity = 44 m/s & Angle of

attack = 12 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg7 = legend('Experimental Data','Modeled Data');
saveas(figure(7),[pwd '/SPL vs band/AOA1244ms.fig']);

% 44 m/s, 16 degrees
figure(8)
scatter(U_2_data(:,1),U_2_data(:,5),'*');
hold on
scatter(U_2_data(:,1),nafnoise_SPL_interpolated(:,14),'r','*');

141

grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 44 m/s & Angle

of attack = 16 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg8 = legend('Experimental Data','Modeled Data');
saveas(figure(8),[pwd '/SPL vs band/AOA1644ms.fig']);

% 54 m/s, 4 degrees
figure(9)
scatter(U_3_data(:,1),U_3_data(:,2),'*');
hold on
scatter(U_3_data(:,1),nafnoise_SPL_interpolated(:,3),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 54 m/s & Angle

of attack = 4 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg9 = legend('Experimental Data','Modeled Data');
saveas(figure(9),[pwd '/SPL vs band/AOA454ms.fig']);

% 54 m/s, 8 degrees
figure(10)
scatter(U_3_data(:,1),U_3_data(:,3),'*');
hold on
scatter(U_3_data(:,1),nafnoise_SPL_interpolated(:,7),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 54 m/s & Angle

of attack = 8 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg10 = legend('Experimental Data','Modeled Data');
saveas(figure(10),[pwd '/SPL vs band/AOA854ms.fig']);

% 54 m/s, 12 degrees
figure(11)
scatter(U_3_data(:,1),U_3_data(:,4),'*');
hold on
scatter(U_3_data(:,1),nafnoise_SPL_interpolated(:,11),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 54 m/s & Angle

of attack = 12 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg11 = legend('Experimental Data','Modeled Data');
saveas(figure(11),[pwd '/SPL vs band/AOA1254ms.fig']);

% 54 m/s, 16 degrees
figure(12)
scatter(U_4_data(:,1),U_4_data(:,5),'*');
hold on
scatter(U_4_data(:,1),nafnoise_SPL_interpolated(:,15),'r','*');
grid on
title('SPL[dB] vs. 1/3rd frequency bands (flow velocity = 54 m/s & Angle of

attack = 16 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg12 = legend('Experimental Data','Modeled Data');

142

saveas(figure(12),[pwd '/SPL vs band/AOA1654ms.fig']);

% 64 m/s, 4 degrees
figure(13)
scatter(U_4_data(:,1),U_4_data(:,2),'*');
hold on
scatter(U_4_data(:,1),nafnoise_SPL_interpolated(:,4),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 64 m/s & Angle

of attack = 4 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg13 = legend('Experimental Data','Modeled Data');
saveas(figure(13),[pwd '/SPL vs band/AOA464ms.fig']);

% 64 m/s, 8 degrees
figure(14)
scatter(U_4_data(:,1),U_4_data(:,3),'*');
hold on
scatter(U_4_data(:,1),nafnoise_SPL_interpolated(:,8),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 64 m/s & Angle

of attack = 8 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg14 = legend('Experimental Data','Modeled Data');
saveas(figure(14),[pwd '/SPL vs band/AOA864ms.fig']);

% 64 m/s, 12 degrees
figure(15)
scatter(U_4_data(:,1),U_4_data(:,4),'*');
hold on
scatter(U_4_data(:,1),nafnoise_SPL_interpolated(:,12),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 64 m/s & Angle

of attack = 12 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg15 = legend('Experimental Data','Modeled Data');
saveas(figure(15),[pwd '/SPL vs band/AOA1264ms.fig']);

% 64 m/s, 16 degrees
figure(16)
scatter(U_4_data(:,1),U_4_data(:,5),'*');
hold on
scatter(U_4_data(:,1),nafnoise_SPL_interpolated(:,16),'r','*');
grid on
title('SPL [dB] vs. 1/3rd frequency bands (flow velocity = 64 m/s & Angle

of attack = 16 deg.)');
xlabel('1/3rd octave frequency bands');
ylabel('Sound Pressure Levels [dB]');
hleg16 = legend('Experimental Data','Modeled Data');
saveas(figure(16),[pwd '/SPL vs band/AOA1664ms.fig']);
%--
% End of routine NAFNOISE_plots.m
%--

143

APPENDIX F: WTNOISE_main.m

%% WTNOISE_input.m
% This routine reads the input to the code
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
% OUTPUT:
%
% ROUTINES USED: none
%
%--
disp(' ==> WTNOISE_input.m')
%%---
% ===> Read weather parameters input file
% Open and check that 'weather_parameters.txt' exists and it can be openned
fid = fopen(strcat('Directory if file','weather_parameters.txt'),'r');
if fid == -1 % True: the file does not exist.
 error(['ERROR: The file ','weather_parameters.txt',' could not be

opened.'])
end
% Read file into cell C line by line (comment lines indicated by "/") are

ignored
C = textscan(fid,'%s','delimiter', '\n','commentStyle', '/');
% Copy C cell into a string array
Weather_datastring = char(C{1});
% Close file
fclose(fid);
%% --
% ===> Read general parameters input file
% Open and check that 'general_parameters.txt' exists and it can be openned
fid = fopen(strcat('Directory of File','general_parameters.txt'),'r');
if fid == -1 % True: the file does not exist
 error(['ERROR: The file ','general_parameters.txt',' could not be

opened.'])
end
% Read file into cell C line by line (comment lines indicated by "/") are

ignored
C = textscan(fid,'%s','delimiter', '\n','commentStyle', '/');
% Copy C cell into a string array
General_datastring = char(C{1});
% Close file
fclose(fid);
%%---
% ===> Read blade parameters input file
% Open and check that 'blade_parameters.txt' exists and it can be openned
fid = fopen(strcat('Directory of File','blade_parameters.txt'),'r');
if fid == -1 % True: the file does not exist
 error(['ERROR: The file ','blade_parameters.txt',' could not be

opened.'])
end

144

% Read file into cell C line by line (comment lines indicated by "/") are

ignored
C = textscan(fid,'%s','delimiter', '\n','commentStyle', '/');
% Copy C cell into a string array
Blade_datastring = char(C{1});
% Close file
fclose(fid);

%% --
% This section converts and saves the weather data to proper format
weather_ncount = 0;
%
% Weather variables:
% height x-wind y-wind Temp Press Densisty RH

fraction
% m m/s m/s Kelvin kPa kg/m^3

RH%/100
for nl = 1:31
weather_ncount = weather_ncount + 1;
weather_variables(nl,:) = textscan(Weather_datastring(weather_ncount,:),'%f

%f %f %f %f %f %f %f');
end
% velocity_height = height at which weather data is reported [m]
velocity_height = [weather_variables{:,1}]';
% xwind_velocity = velocities on x direction reported at different heights

[m/s]
xwind_velocity = [weather_variables{:,2}]';
% ywind_velocity = velocities on x direction reported at different heights

[m/s]
ywind_velocity = [weather_variables{:,3}]';
% temperature
temperature_velocity = [weather_variables{:,4}]';
% Air Density
air_density = [weather_variables{:,6}]';
%% --
% This section converts and saves the wind turbine general data to proper

format
general_ncount = 0;
%
% hub_height = height of wind turbine tower [m]
general_ncount = general_ncount+1;
C = textscan(General_datastring(general_ncount,:),'%f');
hub_height = C{1,1};
% Pitch = pitch of the blades [rad]
general_ncount = general_ncount+1;
C = textscan(General_datastring(general_ncount,:),'%f');
Pitch = C{1,1};
% Nb_blades = number of blades
general_ncount = general_ncount+1;
C = textscan(General_datastring(general_ncount,:),'%f');
Nb_blades = C{1,1};
% rotational_speed = rotational speed of the blades [rpm]
general_ncount = general_ncount+1;
C = textscan(General_datastring(general_ncount,:),'%f');
rotational_speed = C{1,1};
% cutin_wind_speed = the cut in wind speed of the turbine [m/s]
general_ncount = general_ncount+1;
C = textscan(General_datastring(general_ncount,:),'%f');
cutin_wind_speed = C{1,1};

145

% cutout_wind_speed = the cut in wind speed of the turbine [m/s]
general_ncount = general_ncount+1;
C = textscan(General_datastring(general_ncount,:),'%f');
cutout_wind_speed = C{1,1};
%% --
% This section converts and saves the wind turbine general data to proper

format
blade_ncount = 1;
%
% Blade_length = length of the blade [m]
blade_ncount = blade_ncount+1;
C = textscan(Blade_datastring(blade_ncount,:),'%f');
blade_length = C{1,1};
% distribution_span = the axial span distances for the chord and twist

distributions [m]
blade_ncount = blade_ncount+1;
C = textscan(Blade_datastring(blade_ncount,:), '%f %f %f %f %f %f %f %f %f

%f %f %f %f %f %f %f %f');
distribution_span = [C{1,:}];
% chord_distribution = chord distribution [m]
blade_ncount = blade_ncount+1;
C = textscan(Blade_datastring(blade_ncount,:), '%f %f %f %f %f %f %f %f %f

%f %f %f %f %f %f %f %f');
chord_distribution = [C{1,:}];
% twist_distribution = pitch of the blades [deg]
blade_ncount = blade_ncount+1;
C = textscan(Blade_datastring(blade_ncount,:), '%f %f %f %f %f %f %f %f %f

%f %f %f %f %f %f %f %f');
twist_distribution = [C{1,:}];
% Nb_span_locations = number of axial span locations
blade_ncount = blade_ncount+1;
C = textscan(Blade_datastring(blade_ncount,:),'%f');
Nb_span_locations = C{1,1};
%--
% End of WTNOISE_input.m
%--

146

%% WTNOISE_default_parameters.m
% This script file defines default parameters
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
% OUTPUTS:
% CAIR = speed of sound
% DENSITYAIR = air density
% pres_ref = reference pressure in air
% W_ref = reference power in air
%
% Nb_3rd_octave_band = number of 1/3rd octave bands (30);
% Oct_Freq_Band_3rd = center frequencies of the
% 1/3rd octave bands 12.5Hz through 10kHz
% Oct_Band_Limits_3rd(Nb_3rd_octave_band,2) =
% lower and upper frequency limits of octave bands
%
% ROUTINE USED:
%
%--
tstart = tic; % start clock to measure execution time
disp(' ==> WTNOISE_default_parameters.m')
%--
% Speed of sound [m/s] and air density [kg/m^3] are obtained as the

avergage of those given for each height
CAIR =

20.04*((sum(temperature_velocity)/(length(temperature_velocity))))^0.5; %

Speed of sound in [m/s]
DENSITYAIR = (sum(air_density)/(length(air_density))) ; % Air density in

[kg/m^3]
%---
% Reference pressure p_ref = 20x10^-6 Pa
% power W_ref = 10^-12 watts
%
pres_ref = 0.000020; % Pa
W_ref = 10^-12; % watts
%--
% The 1/3rd octave frequency band center
%
Oct_Freq_Band_3rd = [

10.0 ...
 12.5 16.0 20.0 25.0 31.5 40.0 50.0

63.0 80.0 100.0 ...
 125.0 160.0 200.0 250.0 315.0 400.0 500.0

630.0 800.0 1000.0 ...
 1250.0 1600.0 2000.0 2500.0 3150.0 4000.0 5000.0

6300.0 8000.0 10000.0 12500.0, 16000.0, 20000.0];

Nb_3rd_octave_band = length(Oct_Freq_Band_3rd);
% 1/3rd oct. band number
Oct_Band_num_3rd = round(10*log10(Oct_Freq_Band_3rd));
%%--
% End of WTNOISE_default_parameters.m
%%---

147

%% WTNOISE_rotational_positions.m

% This routine computes all the possible span and azymuth angular positions
% of the blade.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUTS:
%
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_rotational_positions.m')
%--

% The length of each segment is calculated, for a defined value of ten

span
% segments
%
Nb_span_segments = 20;
segment_length = (blade_length-distribution_span(1))/Nb_span_segments;
%
%--
% The number of azymuth angular positions is defined
%
Nb_azymuth_angles = 45; % This number must be a multiple of 3
%--
% Loop over the number of span segments and azymuth angles
rotation_count =0;
for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 rotation_count = rotation_count +1;

% The axial span positions and azymuth angles are computed.

 blade_azymuth_angle(rotation_count) = (2*pi/Nb_azymuth_angles)*(n-1);
 span_axial_position(rotation_count) = ((2*k)-1)*(segment_length/2)+

distribution_span(1);

% The rotational velocity for each span and azymuth angle is computed.

 rotational_velocity(rotation_count) =

(rotational_speed*2*pi/60)*span_axial_position(rotation_count); %[rad/s]

% The initial segment location for each span axial position is

determined. It
% always for a position parallel to the wind turbine tower (x,y,z).

 initial_segment_location = [0 0 span_axial_position(rotation_count)];

148

 % The roatation matrix that determines the new location of the span
 % axial position when rotated an azymuth angle
 Blade_rot_mat = zeros(3,3);
 Blade_rot_mat(1,1) = 1;
 Blade_rot_mat(1,2) = 0;
 Blade_rot_mat(1,3) = 0;
 Blade_rot_mat(2,1) = 0;
 Blade_rot_mat(2,2) = cos(blade_azymuth_angle(rotation_count));
 Blade_rot_mat(2,3) = sin(blade_azymuth_angle(rotation_count));
 Blade_rot_mat(3,1) = 0;
 Blade_rot_mat(3,2) = -sin(blade_azymuth_angle(rotation_count));
 Blade_rot_mat(3,3) = cos(blade_azymuth_angle(rotation_count));

 % Source location in terms of a coordinate system at the center of the
 % hub
 local_position(rotation_count,:) = (Blade_rot_mat *

initial_segment_location');

 source(k).azymuth(n).local_position = local_position(rotation_count,:);
 source(k).azymuth(n).span_location =

span_axial_position(rotation_count);
 source(k).azymuth(n).azymuth_angle =

blade_azymuth_angle(rotation_count);
 source(k).azymuth(n).height =

local_position(rotation_count,3)+hub_height;
 source(k).azymuth(n).rotation_velocity =

rotational_velocity(rotation_count);

 end
end

% The span and azymuth locations for each position are saved in an array.

rotation_positions = [reshape(blade_azymuth_angle,[],1)

reshape(span_axial_position,[],1)];

% The heights of each span and azymuth locations are saved in an array.

rotation_heights = reshape(local_position(:,3),[],1)+hub_height;

% The rotation velocities of each span and azymuth location are saved in an

array.

rotation_velocities = reshape(rotational_velocity,[],1);

%--
% End of routine WTNOISE_rotational_positions.m
%--

149

%% WTNOISE_wind_interpolation.m
% This routine computes values of the wind velocity according to the

heights given by the blade's
% rotation are interpolated with the wind input data.
%
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_wind_interpolation.m')
%--
% The values of the wind velocity according to the heights given by the

blade's
% rotation are interpolated with the wind input data.

wind_interp_velocities =

interp1(velocity_height,xwind_velocity,rotation_heights);

for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 source(k).azymuth(n).wind_interp_velocities =

interp1(velocity_height,xwind_velocity,source(k).azymuth(n).height);

 end
 end

%--
% End of routine WTNOISE_wind_interpolation.m
%--

150

%% WTNOISE_twist_interpolation.m
% This routine computes values of the twist distribution according to the
% span locations, interpolated with the twist distribution input data.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_twist_interpolation.m')
%--
% The values of the twist distribution according to the
% span locations, interpolated with the twist distribution input data.
twist_interpolated_values =

interp1(distribution_span,twist_distribution,span_axial_position);

for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 source(k).azymuth(n).twist_interpolated_values =

interp1(distribution_span,twist_distribution,span_axial_position(k)) ;

 end
end
%---
% End of routine WTNOISE_twist_interpolation.m
%---

151

%% WTNOISE_AOA.m
% This routine computed the angle of attack for every azymuth angular and
% span position of the blade
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
% INPUTS:
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_AOA.m')
%--
% For each span position, the sum of the pitch and the twist is obtained.
% All angles for these computations are in radians.

Beta = (twist_interpolated_values*pi/180)+ Pitch;

for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

source(k).azymuth(n).Beta =

(source(k).azymuth(n).twist_interpolated_values*pi/180)+ Pitch;

 end
end

%The calculation of the angle of attack.
%FOR PLOT
for m=1:length(wind_interp_velocities)
Gamma(m) = atan(wind_interp_velocities(m)/rotation_velocities(m));
AOA (m)= (Gamma(m)-Beta(m));
end

% FOR OTHER CALCULATIONS
for n = 1:Nb_azymuth_angles+1
 for k = 1:Nb_span_segments

source(k).azymuth(n).Gamma =

atan(source(k).azymuth(n).wind_interp_velocities/source(k).azymuth(n).rotat

ion_velocity);
source(k).azymuth(n).AOA = source(k).azymuth(n).Gamma-

source(k).azymuth(n).Beta;
 end
end

%--
% End of WTNOISE_AOA.m
%--

152

%% WTNSRC_AOA_plot.m
% This routine plots the angle of attack for every span and azymuth angular
% position
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_AOA_plot.m')
%--

mkdir('AERO Graphics')
% The circular grid is created
[angle_wind, radius_wind] =

meshgrid(0:360,distribution_span(1):blade_length);
% The AOA data is interpolated along a surface at the query points
% specified by the variables: angle and radial positions along the turbine
% rotation.
C_wind =

griddata(rotation_positions(:,1)*180/pi,rotation_positions(:,2),AOA*180/pi,

angle_wind,radius_wind);
% The querry points are changed from a polar coordinates to cartesian

coordinates system
[x_wind, y_wind] = pol2cart(angle_wind*pi/180,radius_wind);
% The surface is plotted
p_wind = surf(x_wind,y_wind,C_wind);
view([90,90])
set(p_wind, 'edgecolor','none')
colormap(jet(32))
colorbar;
title('AOA for every span and azymuth positions');
xlabel('z[m]');
ylabel('y[m]');
saveas(gcf,'AERO Graphics/AOA.fig');
close all
%--
% End of WTNOISE_AOA_plot.m
%--

153

%% WTNOISE_relative_velocities.m
% This routine computed the relative wind velocities for each azymuth

angular and span position of the blade.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_relative_velocities.m')
%--

%The calculation of the wind relative velocities.
% FOR PLOT
for m=1:length(wind_interp_velocities)

relative_velocity(m) =

(((wind_interp_velocities(m))^2+(rotation_velocities(m))^2)^0.5);

end

% FOR COMPUTATIONS
for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 source(k).azymuth(n).relative_velocity =

((((source(k).azymuth(n).wind_interp_velocities)^2)+((source(k).azymuth(n).

rotation_velocity)^2))^0.5);

 end
end

%--
% End of WTNOISE_relative_velocities.m
%--

154

%% WTNOISE_relative_velocities_plot.m
% This routineplots the relative velocities for every span and azymuth

angular
% position
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_relative_velocities_plot.m')
%---
% The circular grid is created
[angle_wind, radius_wind] =

meshgrid(0:360,distribution_span(1):blade_length);
% The relaative velocities data is interpolated along a surface at the

query points
% specified by the variables: angle and radial positions along the turbine
% rotation.
C_relative_vel =

griddata(rotation_positions(:,1)*180/pi,rotation_positions(:,2),relative_ve

locity,angle_wind,radius_wind);
% The querry points are changed from a polar coordinates to cartesian

coordinates system
[x_wind, y_wind] = pol2cart(angle_wind*pi/180,radius_wind);
% The surface is plotted
p_relative_vel = surf(x_wind,y_wind,C_relative_vel);
view([90,90])
set(p_relative_vel, 'edgecolor','none')
colormap(jet(32))
colorbar;
title('Relative velocities for every span and azymuth positions');
xlabel('z[m]');
ylabel('y[m]');
saveas(gcf,'AERO Graphics/Relative_velocity.fig');
close all
%--
% End of WTNOISE_relative_velocities_plot.m
%--

155

%% WTNOISE_distance_source_grid.m
% This routine computed:
% a) the distance between source and grid
% b) the unit vector from source to each grid point
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
% source_location = coordinates of the sources
%
% Nb_grid_points = number of grid points
%
% OUTPUT:
% distance_source_observer(Nb_grid_points,1) = distance from source to
% grid point
% unit_vec_src_grid(Nb_grid_points,3) = unit vector from source to
% grid point
%
% ROUTINES USED: none
%
%--

disp(' ==> WTNOISE_distance_source_grid.m')
%--

% Compute 1) distance from the dipole to each point of the grid
% 2) unit vector from source-grid
%
for m = 1:Nb_azymuth_angles+1
 for k = 1:Nb_span_segments
 grid_count = 0;

 for n = 1:Nb_sphere_points
 grid_count = grid_count+1;
 % for the nth grid, compute distance source-grid
 distance_source_observer(grid_count) = ((sphere_coordinates(n,1) -

source(k).azymuth(m).local_position(1))^2 + ...
 (sphere_coordinates(n,2) -

source(k).azymuth(m).local_position(2))^2 + ...
 (sphere_coordinates(n,3) -

source(k).azymuth(m).local_position(3))^2)^0.5;
 % for the nth grid, compute unit vector from source-grid
 unit_vector_grid (grid_count,:) = (sphere_coordinates(n,:) -

source(k).azymuth(m).local_position) / ...
 distance_source_observer(grid_count);

 end
 source(k).azymuth(m).distance_source_observer =

distance_source_observer;
 source(k).azymuth(m).unit_vector_grid = unit_vector_grid;
 end
end

%--
% End of routine WTNOISE_distance_source_grid.m
%--

156

%% WTNOISE_experimental_SPL.m
% This routine compute:
% a) The source strength as the spatial average sound pressure
% at a distance of 1 m, using experimental wind tunnel test data.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%
%--
disp(' ==> WTNOISE_experimental_SPL.m')
%--
% Compute the source strength as the spatial average sound pressure
% at a distance of 1 m
exp_chord = 0.9; % the airfoil chord from the wind tunnel experiment is

defined

% The coefficients required for the experimental expression obtained with
% wind tunnel data, are loaded
load('coefficient1.mat')
load('coefficient2.mat')
load('coefficient3.mat')

p_counter = 0;

for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 p_counter = p_counter + 1;

 for n = 1:Nb_3rd_octave_band

 % For each band & local position, the strouhal number is obtained

 st(p_counter,n) =

(Oct_Freq_Band_3rd(n)*exp_chord)/(source(k).azymuth(m).relative_velocity);

 % The sound pressure levels are obtained, using the experimental
 % expression

157

 SPL(p_counter,n) =

(((coefficient1(1)*(source(k).azymuth(m).AOA*180/pi)^coefficient1(2))+(coef

ficient1(3)))...

st(p_counter,n)^((coefficient2(1)(source(k).azymuth(m).AOA*180/pi)^coeffi

cient2(2))+(coefficient2(3))))...
 +

((coefficient3(1)*(source(k).azymuth(m).AOA*180/pi)^coefficient3(2))+(coeff

icient3(3))) ;

% The data is re-scaled for the used turbine airfoil span & relative
% velocity

 SPL_velocity_corrected(p_counter,n) =

SPL(p_counter,n)+50*log10(source(k).azymuth(m).relative_velocity/1);

 SPL_span_corrected(p_counter,n) =

SPL_velocity_corrected(p_counter,n)+10*log10(segment_length/1);

 end
 source(k).azymuth(m).st = st(p_counter,:);
 source(k).azymuth(m).SPL_span_corrected =

SPL_span_corrected(p_counter,:);
end
end

% The data is re-scaled according to the distance between the source and
% the observer. This means that for each local position (source position),
% there are distances towards each point on the sphere grid (observer

position)
for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

grid_count1 = 0;
 for n = 1:Nb_sphere_points
grid_count1 = grid_count1 + 1;

 SPL_distance_corrected(grid_count1,:) =

source(k).azymuth(m).SPL_span_corrected + 20*log10(1/1);

 end
 source(k).azymuth(m).SPL_distance_corrected = SPL_distance_corrected;

 end

end
%--
% End of routine WTNOISE_experimental_SPL.m
%--

158

%% WTNOISE_source_directivity.m
% This routine computes the directivity of the source for each point on the
% grid, for each of the sources.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
% Compute the directivity factor for each source
%--
disp(' ==> WTNOISE_source_directivity.m')
%--
% the unit vector corresponding to each source at each position
unit_vec_src = [1 0 0]; % a unit vector on the x direction is determined

% the unit vector corresponding to each vector is rotated accordingly with
% each blade segment rotation
for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 source_rot_angle = (pi)-source(k).azymuth(n).Beta;
 source(k).azymuth(n).source_rot_angle = source_rot_angle;

 % Rotation matrix
 Rot_mat = zeros(3,3);
 Rot_mat(1,1) = cos(-source_rot_angle);
 Rot_mat(1,2) = sin(-source_rot_angle);
 Rot_mat(1,3) = 0;
 Rot_mat(2,1) = -sin(-source_rot_angle);
 Rot_mat(2,2) = cos(-source_rot_angle);
 Rot_mat(2,3) = 0;
 Rot_mat(3,1) = 0;
 Rot_mat(3,2) = 0;
 Rot_mat(3,3) = 1;

 unit_vec_src_rot1 = Rot_mat*unit_vec_src';
 %unit_vec_src_rot_array1 =

repmat(unit_vec_src_rot1',Nb_sphere_points,1);
 source(k).azymuth(n).unit_vec_src_rot1 = unit_vec_src_rot1;
 end
end

unit_vec_rot_count=0;
for n = 1:Nb_azymuth_angles+1

159

 for k = 1:Nb_span_segments

 unit_vec_rot_count = unit_vec_rot_count + 1;

 blade_azymuth_angle(unit_vec_rot_count) =

(2*pi/Nb_azymuth_angles)*(n-1);

 Src_rot_mat = zeros(3,3);
 Src_rot_mat(1,1) = 1;
 Src_rot_mat(1,2) = 0;
 Src_rot_mat(1,3) = 0;
 Src_rot_mat(2,1) = 0;
 Src_rot_mat(2,2) = cos(blade_azymuth_angle(unit_vec_rot_count));
 Src_rot_mat(2,3) = sin(blade_azymuth_angle(unit_vec_rot_count));
 Src_rot_mat(3,1) = 0;
 Src_rot_mat(3,2) = -sin(blade_azymuth_angle(unit_vec_rot_count));
 Src_rot_mat(3,3) = cos(blade_azymuth_angle(unit_vec_rot_count));

 source(k).azymuth(n).unit_vec_src_rot2 =

Src_rot_mat*source(k).azymuth(n).unit_vec_src_rot1;
 unit_vec_src_rot_array2 =

repmat(source(k).azymuth(n).unit_vec_src_rot2',Nb_sphere_points,1);
 source(k).azymuth(n).unit_vec_src_rot = unit_vec_src_rot_array2;
 end
end
% The directivity is obtained as the square of the dot product between the
% unit vector of each source and the unit vector corresponding to the
% direction from each source towards each grid point.
for n = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 d_count = 0;

 for m = 1:Nb_sphere_points
 d_count = d_count + 1;

 Directivity_factor(d_count) =

((dot(source(k).azymuth(n).unit_vec_src_rot(m,:),source(k).azymuth(n).unit_

vector_grid(m,:))) ^2);
 Directivity_angle(d_count) =

acos(dot(source(k).azymuth(n).unit_vec_src_rot(m,:),source(k).azymuth(n).un

it_vector_grid(m,:)))*180/pi;

 end
 source(k).azymuth(n).Directivity_factor = Directivity_factor;
 source(k).azymuth(n).Directivity_angle= Directivity_angle;
 end
end

%--

% End of routine WTNOISE_source_directivity.m
%--

160

%% WTNOISE_predicted_SPL.m
% This routine computes the predicted sound pressure levels on all the
% grid points, from each source in the blade and all 1/3rd frequency bands.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
% OUTPUT:
%
% ROUTINES USED: none
%--
% Compute the predicted sound pressure levels
%--
disp(' ==> WTNOISE_predicted_SPL.m')
%--

for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 spl_count = 0;

 for n = 1:Nb_sphere_points
 spl_count = spl_count+1;

 SPL_predicted(spl_count,:)=

source(k).azymuth(m).SPL_distance_corrected(n,:)+...

(10*log10((source(k).azymuth(m).Directivity_factor(n))/((source(k).azymuth(

m).distance_source_observer(n))^2)));

 end
 source(k).azymuth(m).SPL_predicted = SPL_predicted;

 end
end
%--
% End of routine WTNOISE_predicted_SPL.m
%--

161

%% WTNOISE_OASPL.m
% This routine computes the overall A-weighted sound pressure levels from
% each source, for all the grid points.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_OASPL.m')
%--
% The A-weighted correction is determined for each frequency band
for n = 1:Nb_3rd_octave_band

 ra(n) = (12200^2*Oct_Freq_Band_3rd(n)^4) /

...
 ((Oct_Freq_Band_3rd(n)^2 + 20.6^2) *

...
 ((Oct_Freq_Band_3rd(n)^2 + 107.7^2) *

(Oct_Freq_Band_3rd(n)^2+737.9^2))^0.5 * ...
 (Oct_Freq_Band_3rd(n)^2 + 12200^2)

);
 dba(n) = 2 + 20*log10(ra(n));

end

% The A-weighted correction is applied to all the sound pressure levels
% (all sources, grid points & frequency bands)

for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 spl1_count = 0;

 for n = 1:Nb_3rd_octave_band
 spl1_count = spl1_count + 1;

 SPL_A_weighted(:,spl1_count) =

source(k).azymuth(m).SPL_predicted(:,n)+dba(n);

 end

 source(k).azymuth(m).SPL_A_weighted = SPL_A_weighted;

162

 end
end

% The value of 10^(Lp/10), for all the sound pressure levels is obtained.

for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 for n = 1:Nb_3rd_octave_band
 for l = 1:Nb_sphere_points

 power(l,n) = 10.^(source(k).azymuth(m).SPL_A_weighted(l,n)/10);

 end
 end
 source(k).azymuth(m).power = power;
 end
end

% The OASPL is obtained for al soruces & all grid points.
for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 for n = 1:Nb_sphere_points

 OASPL(n) = 10*log10(sum(source(k).azymuth(m).power(n,:)));

 end
 source(k).azymuth(m).OASPL = OASPL;
 end

 end

%--
% End of WTNOISE_OASPL.m
%--

163

%% WTNOISE_OASPL_per_blade.m
% This routine computes the overall A-weighted sound pressure levels from
% each blade position, for all the grid points.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_OASPL_per_blade.m')
%--
% The value of 10^(Lp/10), for all the sound pressure levels is obtained.

for m = 1:Nb_azymuth_angles+1

 for k = 1:Nb_span_segments

 source(k).azymuth(m).OASPL_power =

10.^(source(k).azymuth(m).OASPL/10);

 end
end

% The OASPL for each blade position is obtained
 for m = 1:Nb_azymuth_angles+1

 blade_addition = zeros(1,Nb_sphere_points);

 for k = 1:Nb_span_segments

 blade_addition = source(k).azymuth(m).OASPL_power + blade_addition;

 end

 OASPL_blade(m).blade_position = 10*log10(blade_addition);

 end

%--
% End of WTNOISE_OASPL_per_blade.m
%--

164

%% WTNOISE_OASPL_per_position.m
% This routine computes the overall A-weighted sound pressure levels from
% each position of the three blades of the turbine, for all grid points.
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
% INPUTS:
%
%
% OUTPUT:
%
%
% ROUTINES USED: none
%--
disp(' ==> WTNOISE_OASPL_per_position.m')
%--

% The sound pressure levels from each blade, for all grid points, are
% determined by the value of 10^(Lp/10).

for m = 1:Nb_azymuth_angles+1

power_blade_OASPL = 10.^(OASPL_blade(m).blade_position/10);
OASPL_blade(m).power_blade_OASPL = power_blade_OASPL;

end

% The number of positions of the three blades for 1/3rd of a revolution is
% determined, as well as the corresponding predicted OASPL for each
% position of the 3 blades.

turbine_positions = Nb_azymuth_angles/3;

for m = 1:turbine_positions

 total_position_power = OASPL_blade(m).power_blade_OASPL +

OASPL_blade(m+turbine_positions).power_blade_OASPL+...
 OASPL_blade(m+(2*turbine_positions)).power_blade_OASPL;

 OASPL_turbine(m).OASPL_position = 10*log10(total_position_power);
end

%--
% End of WTNOISE_OASPL_per_position.m
%--

165

%% WTNOISE_plot.m
% This routine plots and saves the OASPL for every position of the blades
%
% AUTHORS: Sterling McBride Granda
% Ricardo A. Burdisso, Professor
%
% DATE:NOVEMBER 2014
%
%
% ROUTINES USED: none
%
%--

% Create a new folder on the directory
mkdir('OASPL Graphics')
% Loop over each position of the blades
for l = 1:turbine_positions

 %Define the color distribution
 color = OASPL_turbine(l).OASPL_position;

 % develop a uniform grid
 [Az, El] = meshgrid(0:360,-90:90);
 % interpolate nonuniformly spaced points
 C =

griddata(sphere_angles(:,1)*(180/pi),sphere_angles(:,2)*(180/pi),color,Az,E

l);
 % convert to cartesian coordinates
 [x, y, z] = sph2cart(Az*pi/180,El*pi/180,r);
 % plot
 h = surf(x,y,z,C);
 %axis equal off vis3d
 lighting phong
 %camlight('right')
 set(h, 'edgecolor','none')
 colorbar;
 caxis([0 35]);
 xlabel('x coordinates (Rotation Plane)')
 ylabel('y coordinates')
 zlabel('z coordinates')
 title('Overall A-weigthed Sound Pressure Levels on Sphere')
 F(l) = getframe(gcf);
 saveas(h,sprintf('OASPL Graphics/FIG%d.fig',l))
 close all
end
% There are any number of turbine positions per 1/3rd of revolution,

therefore the fps
% is obtained, for a real OSPL-time video.
frames_per_second = 3*rotational_speed*turbine_positions/60;

movie2avi(F, 'OASPL.avi','fps',frames_per_second,'compression','None');
%--

% End of WTNOISE_plot.m
%--

