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HOJA DE CALIFICACIÓN
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Código: 00117121

Cédula de identidad: 010550285-0

Lugar y fecha: Quito, 20 de diciembre de 2017



A mis padres y mi Cami.



Agradecimientos

Aquı́ agradezco a quienes han estado durante estos 4 años y que de una u otra forma
han sido parte de este trabajo. Lo hago en español o inglés para mejor entendimiento
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Resumen
Se realiza una caracterización por medio de resonancia ferromagnética (FMR) de banda
amplia (1-50 GHz), dentro y fuera del plano en una pelı́cula delgada de CoFeB, dos
pelı́culas de Y3Fe5O12 (YIG), una pelı́cula de referencia de Ni80Fe20(Py) y en una
bicapa de Py/YIG por medio de un analizador de redes vectorial (VNA). Usando esta
técnica de banda amplia, se miden tanto el modo fundamental de precesión uniforme de
la magnetización, como el primer modo estacionario de ondas de spin. Se lleva a cabo
un estudio teórico completo de los dos modos de precesión de la magnetización. Como
resultado se llega a una versión generalizada de la fórmula de Kittel para la relación
de dispersión del modo fundamental y para modos estacionario de ondas de spin, con
los cuales se obtienen constantes de anisotropı́a, constantes de intercambio y magneti-
zación de saturación. Se realiza una descripción detallada del equipo experimental junto
con las correcciones de microonda sobre las mediciones sin procesar con el objetivo de
encontrar la suceptibilidad magnética efectiva. Las mediciones permitieron obtener las
constantes de intercambio para la lámina de CoFeB, lo cual es de interés para investi-
gaciones futuras en bicapas de Py/CoFeB. En el caso de las láminas de YIG, se obtuvo
su caracterización parcial y se compararon sus parámetros de damping de Gilbert. Se
obtuvo la caracterización completa para la lámina de referencia de Py. Esto finalmente
fue contrastatdo con la bicapa de Py/YIG, donde se encontró que la interacción entre las
capas lleva a la inesperada anulación del modo fundamental de YIG en la configuración
en-el- plano, esto entre otras caracterı́sticas que también son analizadas.

Key words: resonancia ferromagnetica, modos de onda de spin, bicapa ferromag-
netica, YIG.
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Abstract

A broadband ferromagnetic resonance (FMR) characterization (1-50 GHz), is conducted
both in- and out-of-plane in a CoFeB film, two Y3Fe5O12 (YIG) films, a Ni80Fe20(Py)
reference film and in Py/YIG bilayer sample via vector network analyzer (VNA). With
this broadband technique, both the fundamental uniform precession mode (FMR) of the
magnetization and the first perpendicular standing spin wave mode (PSSW1) are mea-
sured. A complete theoretical study of the two precession modes of the magnetization
is developed. This leads to a generalized version of Kittel’s formula for the disper-
sion relation of the fundamental mode and for the perpendicular standing spin wave
modes which allows to obtain anisotropy constants, exchange constant and saturation
magnetization. A detailed description of the used setup is also given together with the
microwave corrections to the raw measurements in order to extract the effective mag-
netic susceptibility. The measurements allowed to extract the exchange constant for the
CoFeB film which is of interest for future investigations in Py/CoFeB bilayers. A partial
characterization was obtained for the YIG films and their Gilbert damping parameters
are compared. For the Py reference film a complete characterization was obtained. Fi-
nally this is contrasted with the Py/YIG bilayer where the interaction between the two
layers leads to a surprising suppression of the fundamental mode of YIG in the in-plane
configuration and other features that are discussed.

Key words: ferromagnetic resonance, spin wave modes, ferromagnetic bilayer,
YIG.



9

Index
1 Introduction 13

2 Basic magnetization dynamics: Uniform precession 17
2.1 Magnetic energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Zeeman energy . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Exchange energy . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Demagnetizing field energy . . . . . . . . . . . . . . . . . . . 18
2.1.4 Anisotropy energy . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Effective field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Equation of motion of the magnetization . . . . . . . . . . . . . . . . . 20
2.4 Dynamic susceptibility without losses . . . . . . . . . . . . . . . . . . 21
2.5 Shape effects on resonance frequency . . . . . . . . . . . . . . . . . . 24
2.6 Introduction of bulk uniaxial anisotropy term in the Landau Lifshitz

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Landau Lifshitz Gilbert equation and presence of losses . . . . . . . . . 27

3 Standing spin wave modes: Non-uniform precession 29
3.1 Geometry and systems of coordinates . . . . . . . . . . . . . . . . . . 29
3.2 Variable magnetic field equation . . . . . . . . . . . . . . . . . . . . . 29
3.3 Spin Wave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 General dispersion relation: Perturbation theory approach . . . . . . . . 35
3.5 Dispersion relations for uniform (FMR) and perpendicular standing spin

wave modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Vector network analyzer ferromagnetic resonance 41
4.1 Experimental set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Microwave network . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Magnet control . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Preliminary VNA notions . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Scattering parameters . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Actual device . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Two port data evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Sample’s position correction . . . . . . . . . . . . . . . . . . . 47
4.3.3 De embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.4 Calculation of Γ and γ . . . . . . . . . . . . . . . . . . . . . . 48
4.3.5 Field shielding . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.6 Obtaining ε̃r and µ̃r . . . . . . . . . . . . . . . . . . . . . . . 49



10

5 Results and discussion 51
5.1 CoFeB 40nm (5864) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Dispersion relations and magnetic parameters . . . . . . . . . . 54

5.2 Permalloy 40 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Dispersion relations and magnetic parameters . . . . . . . . . . 58

5.3 YIG 29nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Dispersion relations and magnetic parameters . . . . . . . . . . 64

5.4 YIG AL5007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Dispersion relations and magnetic parameters . . . . . . . . . . 66

5.5 YIG/Py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.2 Dispersion relations and magnetic parameters . . . . . . . . . . 70

5.6 Linewidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions 74

Appendices 77

7 References 88



11

Figure Index
1 Precession of the magnetization around an equilibrium position with

cone angle β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Linear approximation representation for LL equation . . . . . . . . . . 22
3 Field linear approximation configuration for a general ellipsoid . . . . . 24
4 Relaxation process of the magnetization due to Damping . . . . . . . . 27
5 Calculated Susceptibility for typical values of Permalloy . . . . . . . . 28
6 Systems of coodinates of the sample and the magnetization related by θ

and ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Spin wave modes sketched across the film thickness . . . . . . . . . . . 35
8 Setup’s components representation . . . . . . . . . . . . . . . . . . . . 41
9 Brass box with waveguide board and connectors . . . . . . . . . . . . . 42
10 Sample fixation: a) Using the podium (inserted in box), b) Fixating

directly on the board . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11 VNA connected to board for in-plane field configuration . . . . . . . . 43
12 2-port generic component . . . . . . . . . . . . . . . . . . . . . . . . . 44
13 Board’s division for microwave corrections . . . . . . . . . . . . . . . 46
14 CoFeB: Resonance profiles for different frequencies in the in-plane con-

figuration: a) FMR mode, b) PSSW1 . . . . . . . . . . . . . . . . . . 52
15 CoFeB: FMR mode resonance profiles for different frequencies in the

out-of-plane configuration . . . . . . . . . . . . . . . . . . . . . . . . 53
16 CoFeB: Fitted dispersion relations for FMR and PSSW1 modes in- and

out-of-plane configurations . . . . . . . . . . . . . . . . . . . . . . . . 54
17 Py: Resonance profiles for different frequencies in the in-plane config-

uration: a) FMR mode, b) PSSW1 mode . . . . . . . . . . . . . . . . . 56
18 Py: Resonance profiles for different frequencies in the out-of-plane con-

figuration: a) FMR mode, b) PSSW1 mode . . . . . . . . . . . . . . . 57
19 Py: Fitted dispersion relations for FMR and PSSW1 modes in in and

out-of-plane configurations . . . . . . . . . . . . . . . . . . . . . . . . 58
20 YIG 29 nm: Resonance profiles for different frequencies in the in-plane

configuration: a) FMR mode with sample oriented in a arbitrary direc-
tion (Orientation 1), b) FMR mode with sample rotated by 90o in the
plane (Orientation 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21 YIG 29 nm: Resonance profiles for different frequencies in the out-of-
plane configuration: a) FMR mode with sample oriented in a arbitrary
direction, b) FMR mode with sample rotated by 90o in the plane. . . . . 62

22 YIG 29 nm: Progression of additional wide resonance attributed to
GGG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

23 YIG 29 nm: Fitted dispersion relations for FMR mode in in and out-of-
plane configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



12

24 YIG AL5007: Progression of additional wide resonance attributed to
GGG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

25 YIG AL5007: Progression of additional wide resonance attributed to
GGG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

26 YIG AL5007: Fitted dispersion relations for FMR mode in in- and out-
of-plane configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 67

27 YIG/Py: Resonance profiles for the bilayer in the in-plane configura-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

28 YIG/Py: Resonance profiles for the bilayer in the out-of-plane configu-
ration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

29 YIG/Py: Fitted dispersion relations for FMR mode in in- and out-of-
plane configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

30 Linewidths for in-plane configuration . . . . . . . . . . . . . . . . . . 72
31 Linewidths for out-of-plane configuration . . . . . . . . . . . . . . . . 73



13

1 Introduction

State of the art
A ferromagnetic material is characterized by a spontaneous magnetization caused by the
alignment of the magnetic moments in the atomic lattice. The main reason for the or-
dering in ferromagnetic materials is the exchange interaction between neighboring spins

that at the quantum scale can be modeled by the Heisenberg Hamiltonian−
∑
ij

=ij ~̂Si· ~̂Sj .

This energy tends to align the spins parallel to each other since the exchange integral
=ij is positive. The magnetic moments align along preferred directions given by the
structure of the lattice itself. A ferrimagnet has unequal oppositely directed sub-lattices
which create an spontaneous magnetization.

Nowadays magnetic materials are of great importance in technological applications.
More specifically, the field of spintronics, which uses the spin dependent transport prop-
erties of ferromagnetic materials, have allowed to expand capacities and speed for in-
formation processing. This is contrasted with conventional electronics where it is the
charge of particles that is used. In parallel, the field of magnonics have made advances
on the generation and manipulation of spin waves as a potential alternative for informa-
tion technology. A spin wave is a collective excitation (quasi-particle of spin 1 called
magnon) of spins that can, as their name suggest, propagate and depend strongly on
the damping factor of the propagation media which is normally ferromagnetic mate-
rial. In order to study these excitations, the ferromagnetic transition elements (Fe, Co
and Ni) together with their alloys of low damping factor are of common use. Other
very commonly used material, in this case a ferrimagnet, is yttrium iron garnet (YIG)
which has the lowest known damping factor. Recently it has been shown that spin waves
propagating along edges of magnetic structures allow for a better manipulation of the
propagation direction and transmission of information at higher frequencies, which are
problematic found with previous technology [1]. Investigation in this fields of research
has generated a great number of applications where one of the most important is the
development of logic devices. Some work has been done implementing non-reciprocity
effects in this direction of research [2].

Overview of the materials to be studied

Three different materials have been studied: Y3Fe5O12 (YIG),Ni80Fe20(Py) and CoFeB.
YIG is a ferrimagnet insulator which has been used repeatedly in numerous spin-

tronics studies and applications due to its remarkable propagation properties result-
ing from a very low damping factor that has been found to be even in the 10−5 or-
der of magnitude [3]. It has a relatively low saturation magnetization which is 140
emu · cm−3(µoMs=176.0 mT) at 295 K [4]. It is very difficult to fabricate a good
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quality YIG thin film, since it would need to be epitaxially grown to have interesting
properties. Unfortunately, epitaxial techniques just allow to obtain bulk samples. Re-
cent progress in thin films growth have permitted the elaboration of films comparable to
the conventional liquid phase epitaxy µm thick samples [5].

Permalloy is magnetically very homogeneous and its easy deposition process by
magnetron sputtering makes it very used in different applications. The name Permalloy
refers to alloys of Ni and Fe with different concentrations, but the better magnetic be-
havior has been found for the Ni80Fe20 Permalloy [6]. It has a well known saturation
magnetization of approximately 725.8 emu · cm−3 (µoMs= 1 T) and damping factor of
0.006-0.009 has been reported [7].

CoFeB is an alloy for which an effective magnetization of approximately 1432 emu·
cm−3 (µoMeff= 1.8 T) has been measured [8]. Normally in this alloy a significant
uniaxial anisotropy is present which is included in the value of Meff . In particular
for thickness ≤ 2nm the anisotropy causes the magnetization to point out-of-plane [8].
Damping factors have been obtained in the range 0.004-0.006 [8, 9]. Thin films are
normally grown by ion-beam deposition or magnetron sputtering.

Frecuency non-reciporcity

The amplitudes and profile of counter-propagating spinwaves can differ importantly [2].
Namely, in the case of the so-called magnetostatic surface wave (MSSW), when ~M and
~k are perpendicular and both are in-plane, spinwave amplitude non-reciprocity effects
have been observed. More recently, frequency non-reciprocity for spinwaves, where
the frequencies of two counter-propagating waves differ, is also achievable when the
conditions on the top and bottom surfaces of the film are different. A way of braking
the symmetry between the two surfaces is by having different surface anisotropy at
the top and bottom of the film (surface anisotropy is related to the lack of symmetry
in the vicinity of a film surfaces) [10]. This inspires an interest in manipulating the
surface anisotropy of thin films in order to enhance the frequency non-reciprocity to
be implemented in the design of logic devices. One possible application would be a
”spinwave diode”, where the propagating spin waves in a ferromagnetic material are
forced to propagate in a specific direction by exploiting the non-reciprocity effects. This
would be the parallel to the electric diode where the electric current can flow just in one
direction.

Magnetic bilayers are a hot topic nowadays in the spintronics field. Although a the-
oretical background about the coupling of the two layers is not yet well-established and
the magnetization dynamics at the interface is still unexplored, they are of great inter-
est due to their potential to generate logic devices. Different combinations of materials
are under investigation because of their good magnetic properties; both Py/CoFeB and
YIG/Py are candidates. In the present study, a characterization of the magnetic proper-
ties of YIG/Py is performed and an approach to the conditions at the interface and the
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interaction between the layers is addressed.

Measurements techniques to probe the magnetization dynamics

The present interest on ferromagnetic materials materials and their technological appli-
cations requires a better understanding of their magnetic properties. There exist several
techniques that allow to study the magnetic properties of a specif material. Thin film
geometry is of special interest due to its applicability in electronic devices.

One of these techniques is the commonly known Ferromagnetic Resonance (FMR).
It is based on monitoring the power absorption of the ferromagnetic sample due to the
precession of the magnetization when a resonance condition is achieved. The sample
is subjected to an static external applied field, created by an electromagnet, and exited
at microwave frequencies (where the resonance dynamics of ~M occurs) by different
methods. Historically, the first methods of of excitation consist in the creation of stand-
ing microwave field inside a cavity where the sample is placed. The frequency of the
resonance is given by the cavity, and different cavities are needed to probe different
frequencies.

A more commonly used excitation technique is the inductive permeameter where a
microwave signal is conducted by a strip line or coplanar waveguide (CPW) over which
the sample is placed. This waveguide excites the sample, and the magnetic response can
be probed by a change of inductance on the waveguide. For this study, phase sensible
measurements are performed with a vector network analyzer (VNA). This allows to
measure the real an imaginary part of the reflection an transmission of power in the
microwave network. This technique allows to extract about all the magnetic information
of the sample by the use of the independent dispersion relations of the different modes
of oscillation of the magnetization.

Another technique is Propagating Spin Wave Spectroscopy where magnetostatic
wave modes are measured. The main difference with FMR is the excitation of modes
with non-zero propagating wave number k. To achieve this, a non-uniform excitation
field is created by an antenna that excites the wave that is measured by other receiving
antenna. The propagation typically reaches the mm length in bulk YIG and tens of µm
in Py due to the increased damping in conducting films [11].

Manuscript Organization and Objectives
The text has been organized in 5 Chapters whose contents is summarized now.

In Chapter 2, the main contributions to the magnetic energy in the ferromagnetic
films are introduced together with the effective magnetic field. Landau Lifshitz Gilbert
equation is introduced, from which the fundamental mode dispersion relation is obtained
in a linear response regime with simple uniaxial anisotropy.
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In Chapter 3 the main calculation for spin wave modes is performed. This chap-
ter tackles the case where exchange interaction becomes important. The dispersion
relations for perpendicular standing spinwave modes are obtained up to first order ap-
proximation following Kalinikos and Slavin’s approach [12]. This model is used since
the experimental frequency and field ranges allow to probe higher order modes. The
calculations, where the most general conditions of applied field and direction of prop-
agation were considered, are fully developed in the Appendices. This was done since
the only reference to the calculation is extremely summarized and skips many important
and instructive steps that are presented in this manuscript.

In Chapter 4 a full description of the experimental setup is given together with ex-
planations of the microwave corrections that are needed in order to extract the magnetic
response of the samples by eliminating any contribution due to the network itself. This
is done with the intention of presenting a summary of a correct measurement procedure
in the case of CPW-FMR.

In Chapter 5 the results for the five samples measured are presented with their
respective discussion about the peculiarities found. Spectra, dispersion relations and
linewidths are presented. In this chapter the objective is to compare the different re-
sponse of the samples and give an estimation of their magnetic properties.
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2 Basic magnetization dynamics: Uniform precession
In order to describe the magnetic properties of the systems presented in this manuscript,
the continuum model will be used. In other words, the macroscopic magnetization is
the quantity of interest

~M=
∑

V
~m

V
(1)

where
∑

V
~m is the magnetic moment of the small but still macroscopic volume V

of ferromagnet to be studied.
Now, the micromagnetic energies that will be considered in a ferromagnet are pre-

sented, and each term will contribute to the total internal magnetic effective field.

2.1 Magnetic energies
The total energy of a ferromagnet consist of various terms each accounting for different
types of interactions. In this particular case, four main terms are of interest and will be
modeled:

ET = Eze + Eex + Ede + Ek (2)

where Eze is the Zeeman Energy, Eex is the energy of exchange interaction, Ede
is the energy term due to the demagnetizing field and Ek contains all the energy terms
related to anisotropy.

2.1.1 Zeeman energy

This is the energy due to the interaction of the magnetization with the external magnetic
field. Its density is given by [13]:

εze = −µo
V

ˆ
V

~Hext · ~M dV (3)

It clearly minimizes when the magnetization is aligned with the external field.

2.1.2 Exchange energy

This interaction is the one responsible for the magnetic order of ferromagnets. The
exchange interaction has a quantum mechanical origin given by the Coulomb interaction
of electrons and Pauli’s exclusion principle. The Heisenberg Hamiltonian for a spin
system can be written as
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Ĥ = −
∑
ij

=ij ~̂Si · ~̂Sj (4)

where =ij is the exchange integral between the spins Si and Sj and quantifies their
interaction. Usually, in a discrete model, this interaction is just considered to first neigh-
bors.

In the continum model the exchange energy density,due to non-uniform magnetiza-
tion, can be expressed as

εEx=
A

V

ˆ
V

(
∇| ~M |

)2

dV (5)

which describes an energy penalty by any deviation of the magnetization from a
constant equilibrium direction. The exchange constant A with units J/m depends on the
material and can be related to =ij . This energy is isotropic, since it does not depend
on the direction of change relative to the direction of the magnetization [13]. There are
several types of exchange interaction and equation (5) accounts for the balance of most
of them.

2.1.3 Demagnetizing field energy

This is a contribution due to the magnetic field created by the solid itself. This is given
by the dipolar interactiton between magnetic moments in the material. This interaction
creates a field that opposes the magnetization, reason why it is called demagnetizing
field. In the case there is not other magnetic field, the demagnetizing field is obtained
from Maxwell’s equation∇ · ~B = µo∇ · ( ~Hde + ~M) as

∇ · ~Hde = −∇ · ~M (6)

From this, the expression for the energy density can be given by [13]:

εde = − µo
2V

ˆ
sample

~Hde · ~M dV (7)

It was found by Kittel [14] that the demagnetizing field depends on the samples
shape and in the case of an uniform magnetized ellipsoid the field is given by:

~Hde = −N̂de
~M (8)

where N is the demagnetizing tensor. When the system of reference is oriented
along the principal axis of the ellipsoid, the demagnetizing tensor takes the form [13]:

N̂de=

 Nxx
de 0 0
0 Nyy

de 0
0 0 N zz

de

 (9)
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where the trace satisfies Nxx
de +Nyy

de +N zz
de=1.

For the special case of a ferromagnet in the shape of a infinitely extended thin
film (limiting case of a disc shaped ellipsoid), it can be shown that the demagnetiz-
ing field and the energy density are given by (x-axis perpendidular to the film, Nxx

de =
1, Nyy,zz

de = 0) [13, 11]:

~Hde = −(x̂ · ~M)x̂ (10)

εde =
µo
2

(x̂ · ~M)2 (11)

2.1.4 Anisotropy energy

This contribution to the energy depends on the direction of the magnetization with re-
spect to the structural axis of the material. In the case of the cubic anisotropy its origin
is in the spin-orbit interactions which are dependent of the orientation with respect to
the solid lattice structure. The energy density for the cubic magnetic anisotropy is given
up to second order by [13]:

εKc = Kc1((mx)2 (my)2+(mx)2 (mz)2+(my)2 (mz)2)+Kc2 (mx)2 (my)2 (mz)2 (12)

where the mi are the components of the normalized magnetization ~m = ~M/Ms

along the cubic axes of the solid lattice. Kc1 and K2 are the anisotropy constants of first
and second order. Usually the later and other higher-order constants can be neglected.
Kc1 have units J/m3.

It can be the case that a bulk uniaxial anisotropy exist:

εKu = −K1(n̂ · ~m)2 (13)

where K1 is called the uniaxial anisotropy constant. If K1 > 0 the n-axis (perpen-
dicular to the film) is called the easy axis, and if K1 < 0 it is called the hard axis since
it requires more energy for the magnetization to be parallel to it. Then, it is clear that
the magnetization tends to align along the easy axis and perpendicular to the hard axis
[13]. This type of anisotropy is the one that will be attributed to the bulk in the analysis.

For thin films another type of anisotropy is important. The surface anisotropy den-
sity (to be integrated over the surface) is given by [13]:

εKs = Ks1(1− (mx)2 (nx)2 − (my)2 (ny)2 − (mz)2 (nz)2)

− 2Ks2 (mxmynxny +mxmznxnz +mymznynz) (14)
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where the ni are the components of the surface normal vector ~n projected along the
cubic axes of the solid lattice. Ks1 and Ks1 have units J/m2. In this case, it is called
surface anisotropy and is attributed to the loss of symmetry in the environment of atoms
near the surface of a sample. This is why this effect is not important for bulk samples,
since for such case the surface magnetization gets coupled with the magnetization from
the rest of the solid [13].

A phenomenological uniaxial surface anisotropy density will be considered for the
analysis:

εKs =

{
−KStop(Mx)2

M2
s

δ(x− l/2) x = l/2 (top surface)

−KSbot(M
x)2

M2
s

δ(x+ l/2) x = −l/2 (bottom surface)
(15)

where l is the film thickness (assuming x-axis is perpendicular to film sample) and
Ktop
s , Kbot

s are the phenomenological surface anisotropy constants at the top and bottom
of the film respectively [10]. The form of the energy density of surface anisotropy (delta
function) is justified by the fact that this contribution becomes important just at a very
thin boundary layer at the top and bottom surfaces of the ferromagnetic films.

2.2 Effective field
At a fixed temperature T, the local minima of the total energy ET (integral of the sum of
energy densities) correspond to the different equilibrium configurations of the system’s
magnetization. By deriving the total energy density with respect to the magnetization
components, the effective field can be obtained [15]:

µo ~Heff = −~∇ ~MεT (16)

Considering all the contributing terms presented in equation (2) (expanding the
anisotropy contribution), it is clear that:

~Heff = ~Hze + ~HEx + ~Hde + ~HKu + ~HKs (17)

2.3 Equation of motion of the magnetization
Landau and Lifshitz proposed the equation of motion for the magnetization (LL equa-
tion) which comes from the torque equation for a magnetic moment and the quantum
relation between the magnetic moment and the angular mometum [16]:

∂ ~M

∂t
= −γµo ~M × ~Heff (18)



21

LL equation describes the precession motion of the magnetization on a cone of constant
angle β around Heff as shown in Figure 1. Here the gyromagnetic ratio γ is a quantity
characteristic of the collective magnetic moments forming a particular sample. It is not
equal to the value of γ for the free ions or γe the electron and has to be determined by
experimentation [16]. From (18), it can be concluded that:

∂M2

∂t
= 0 (19)

Equation (19) implies that the norm of the magnetization is conserved in time, i.e.
the magnetization changes direction with constant magnitude at saturation Ms. This
will be considered throughout this manuscript.

Figure 1: Precession of the magnetization around an equilibrium position with cone
angle β

2.4 Dynamic susceptibility without losses

Consider a ferromagnet under the influence of a ac magnetic field ~h∼ and a static mag-
netic field ~Heff (which is the effective field). The field ~h∼ is perpendicular to the static
field. This cause the magnetization to have a variable component (~m∼ ) too:

~H = ~Heff + ~h∼ ~M = ~Ms + ~m∼ (20)
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where ~Ms is the equilibrium saturation magnetization.
The aim is to solve equation (18) using linear approximation where the oscillating

magnetic field ~h∼, and the oscillating part of the magnetization ~m∼ are small according
to: ~h∼ � ~Heff and ~m∼ � ~Ms.

Figure 2: Linear approximation representation for LL equation

Replacing equations (20) into (18) and taking all the terms to the first order (with
the condition of equilibrium ~Ms × ~Heff = ~0), the following differential equation is
obtained:

∂ ~m∼(t)

∂t
= −γµo

(
~m∼(t)× ~Heff + ~Ms × ~h∼(t)

)
(21)

The solutions of interest for the equation have the form: ~h∼(t) = ~heiωt and ~m∼(t) =
~meiωt. Inserting these fields, expressed in their cartesian components, into (21) leads to
the following system of equations:

iωmx=γµoMsh
y − γµoHeffm

y (22)

iωmy=γµoHeffm
x − γµoMsh

x (23)

iωmz = 0 (24)

the solutions for ~m [16] are:

mx = χhx + iχah
y (25)
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my = −iχahx + χhy (26)

mz = 0 (27)

where

χ =
ωMωH
ω2
H − ω2

χa =
ωMω

ω2
H − ω2

(28)

Clearly, equations (25-27) determine the linear relation between ~m and ~h first ob-
tained by Polder [17]. In the above relations:

ωH = γµoHeff (29)

ωM = γµoMs (30)

Equations (25-27) can also be written in tensor form:

~m = χ~h (31)

where χ is the high-frequency magnetic susceptibility tensor or also called Polder
tensor defined by [16]:

χ =

 χ iχa 0
−iχa χ 0

0 0 0

 (32)

It is clear from (28) that the tensor definition implies a resonance condition for ω =
ωH .

Other important observation is that such resonant behavior occurs only for ac fields
circular component with right-hand rotation with respect to Ms [16]. The circular com-
ponents are defined as:

h± = hx∼ ± ihy∼ m± = mx∼ ± imy∼ (33)

and from (31) it can be obtained that:

m± = χ±h± (34)

where χ± is defined by

χ± = χ± χa =
γµoMs

ωH ∓ ω
(35)
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Therefore, just χ+ present a resonance behavior. It is obvious too that this cannot
model a real ferromagnet. These equations would imply a divergence of the susceptibil-
ity at the resonance frequency. The experiments does not agree with such behavior and
the problem is solved by introducing a damping parameter into LL equation which will
be explained later.

Note that equation (25-27) can also be written in the inverse way

~h =

[ ωH
ωM

−i ω
ωM

i ω
ωM

ωH
ωM

]
~m (36)

2.5 Shape effects on resonance frequency
It has been shown by Kittel that the shape of the ferromagnet influence importantly the
resonance frequency via the demagnetizing factors that have already been introduced
[14].

Figure 3: Field linear approximation configuration for a general ellipsoid

For the case of an ellipsoid, whose principal axis are parallel to the x, y, z-axis as
shown in Figure 3, the demagnetizing field of equation (8) can be included into the total
magnetic field:



25

~H = ~Hext +−N ~M + ~h∼ (37)

to obtain:

Hx = hx∼ −Nxxmx∼ (38)

Hy = hy∼ −Nyymy∼ (39)

Hz = Hext −N zzMs (40)

Solving for ~h (similarly to equation (36)) leads to:

~h = χ−1
K ~m =

1

γµoMs

(
ωx −iω
iω ωy

)
~m (41)

where χ−1
K is the Kittel inverse susceptibility tensor [17] defined using:

ωx = γµo [Hext + (Nxx −N zz)Ms] (42)

ωy = γµo [Hext + (Nyy −N zz)Ms] (43)

Since the components of the susceptibility tensor χK diverge at resonance, then
det(χK) → ∞ and det

(
χ−1
K

)
→ 0. From equation (41) the resonance condition leads

to :

ω =
√
ωxωy = γµo ([Hext + (Nxx −N zz)Ms] [Hext + (Nyy −N zz)Ms])

1
2 (44)

recovering the famous Kittel formula for the resonance frequency [14]. Going back
to Figure 3 and recalling that an infinite film is a limiting case of an ellipsoid, it can be
calculated that for a film magnetized in the yz-plane Nyy = N zz = 0 and Nxx = 1,
then:

f =
γ

2π
µo (Hext [Hext +Ms])

1
2 (45)

and for a film magnetized out-of-plane (along the z-axis) Nxx = Nyy = 0 and
N zz = 1:

f =
γ

2π
µo [Hext −Ms] (46)

This are not the more general resonance frequency functions since it just accounts
for the demagnetizing field. The introduction of the bulk uniaxial anisotropy field is
treated simply in the next section, while a more general derivation of the oscillation
modes of the magnetization where all interactions are considered is performed in Chap-
ter 3.
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2.6 Introduction of bulk uniaxial anisotropy term in the Landau
Lifshitz equation

When the energy term of a uniaxial bulk anisotropy is taken into account for the total
energy density (equation (13)), there is a new field term to be considered resulting of
the application of (16) [20]:

~HKu=
2K1

µ0M2
s

Mnn̂ (47)

Now, if the external steady field ~Hext is applied in the z-axis and the ac field ~h∼ is
in the xy-plane, the magnetization takes the form: ~M = (mx∼, my∼, Ms).

For the case when the magnetization is parallel to the film (say the x-axis is perpen-
dicular to the film):

~HKu=−

 − 2K1

µ0M2
s

0 0

0 0 0
0 0 0

 mx∼
x

my∼
x

Ms

 (48)

On the other hand, when the magnetization is parallel to the film (say the z-axis is
perpendicular to the film):

~HKu=−

 0 0 0
0 0 0
0 0 − 2K1

µ0M2
s

 mx∼
x

my∼
x

Ms

 (49)

From this, a compact expression is obtained for a effective demagnetizing field ~H ′de
in the case of an ellipsoid (see Figure 3):

From these addition of anisotropy to the energy equation, the following replace-
ments have to be done to equation (44) to correctly describe the resonance frequency
dependence with the field:

Nxx → Nxx − 2K1

µ0M2
s

(magnetized in− plane)

N zz → N zz − 2K1

µ0M2
s

(magnetized out− of − plane) (50)

The two previous sections have shown how to easily include field terms that can be
expressed in a constant demagnetizing tensor form ~Hother=− N̂other

~M . For this, N̂other

needs to be defined in the whole film and has to be constant on it. This approach is useful
when simple terms like a uniaxial anisotropy are considered, but when other interactions
like exchange or surface anisotropy enter the field equation a more complete theory is
needed. Chapter 3 develops a theory around this problem.
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2.7 Landau Lifshitz Gilbert equation and presence of losses
In a real ferromagnet, the magnetization tends to align with the direction of minimal
energy after some time through a relaxation process. This presents a exponential decay
in amplitude while describing a spiral as shown in Figure 4.

Figure 4: Relaxation process of the magnetization due to Damping

Such process was modeled by the introduction of a phenomenological dissipation
term by Gilbert [18], leading to the well known Landau Lifshitz Gilbert equation (LLG):

∂ ~M

∂t
= −γµo ~M × ~Heff +

α

| ~M |
~M × ∂ ~M

∂t
(51)

Here α is the dimensionless damping parameter to be obtained experimentally. It
should be clear that equation (51) stills agree with the conservation of the magnetiza-
tion’s magnitude (equation (19)).

To solve LLG equation, a similar linearization approach to the one used in LL equa-
tion can be performed. The linearised form of (51) is:

iω~m+ γµo ~m× ~Heff −
iαω

Ms

~m× ~Ms=− γµo ~Ms × ~h (52)

Nevertheless, expressions for the susceptibility χ+ can be obtained just by the re-
placement of
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ωH → ωH + iαω (53)

into equation (35) [16]. This leads to the new complex susceptibilityχc = χ
′
c− iχ

′′
c ,

in presence of damping, given by the components:

χ
′

c = Re (χ+) =
γµoMs (γµoHeff − ω)

(γµoHeff − ω)2 + (αω)2
(54)

χ
′′

c = Im (χ+) =
−αγµoMsω

(γµoHeff − ω)2 + (αω)2
(55)

The imaginary part of the complex susceptibility corresponds to the energy absorp-
tion of the system. The complex susceptibility components, for values of µoMs = 1
[T], γ/2π = 29.31[GHzT−1], α = 0.03 and ω/2π = 20 [GHz], are plotted in Figure 5.

Figure 5: Calculated Susceptibility for typical values of Permalloy

Experimentally the damping parameter α is determined by sweeping the field at
some fixed frequency and measuring the linewidth of the resonance ∆H at half-maximum.
The relation between these two quantities is given by [16]:

∆H =
2αω

γµo
+ ∆Ho (56)

Here ∆Ho is the linewidth at zero frecuency.
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3 Standing spin wave modes: Non-uniform precession
The non-uniform modes of precession of the magnetization receive the name of spin
waves. In these modes the spins oscillate with the same frequency but with different
phases. The term spin wave is used to refer to two types of waves: magneto-static
waves and dipole-exchange spin waves. The former present an overcome of the dipolar
interaction over the exchange interaction since the wavelength λ is much larger than the
exchange length Λ. In the case of dipolar-exchange spin waves the exchange interaction
becomes important and should be taken into account.

The objective of this section is to obtain a general form for the dispersion relation
of non-uniform precession modes where the dipole and exchange interaction are both
important in thin films. The spin wave modes approach developed by Kalinikos and
Slavin [12] is followed and modified to include surface anisotropy (equation (15)) in the
dispersion relation for the perpendicular standing spin wave (PSSW) modes [20].

3.1 Geometry and systems of coordinates
Consider a infinite ferromagnetic film of thickness l magnetized to saturation by an
external field H . The system of coordinates ξηζ is such that ξ=0 is located at half
thickness and the η and ζ-axis are in the plane of the film. Now consider the system
of coordinates xyz such that the saturation magnetization Ms is along the z-axis as
well as the internal magnetic field Hi. The internal field in this case contains all the
static contributions to the magnetic field, i.e. external field, dipolar static field, and
anisotropy static field. The two systems are related by the angles θ (angle between the
ξ and z-axis) and ϕ (angle between the xz-plane cut on the ηζ-plane and the ζ-axis).
This treatment, in comparison with the previous chapter, allows to obtain more general
angle dependent dispersion relations than the one obtained in equation (44) and consider
non-uniformities of the dynamics.

3.2 Variable magnetic field equation
Without loss of generality, consider the spin wave propagating in the ζ direction given
by equation (6)[12]

~m∼ = ~m∼(ξ, ζ, t)=~m(ξ)ei(ωt−kζζ) (57)

where the magnetization vector ~m(ξ) can be decomposed in two components

~m(ξ) = mx(ξ)x̂+my(ξ)ŷ (58)

The variable magnetic field inside the film is given by:
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Figure 6: Systems of coodinates of the sample and the magnetization related by θ and ϕ

~h∼=~hd + ~hK + ~hEx (59)

Where the field contributions are the dipolar field ~hd, the anisotropy field ~h and the
exchange field ~hEx[12, 21].

• Dipolar Field

The dipolar field is expected to have a plane wave behavior too

~hd=~h(ξ)ei(ωt−kζζ) (60)

where the field~h(ξ) inside the film can be expressed in terms of the tensorial Green’s
function Ĝ(ξ, ξ′) as [22]:

~h(ξ) =

l/2ˆ

−l/2

Ĝ(ξ, ξ′)~m(ξ′)dξ′ (61)

where the Green’s function Ĝ(ξ, ξ′) is the xy part of the Ĝxyz(ξ, ξ
′) function ob-

tained from a change of coordinates applied to the Green’s function defined in the ξηζ
coordinate system as [12, 22]:

Ĝξηζ(ξ, ξ
′) =

 GP − δ(ξ − ξ′) 0 iGQ

0 0 0
iGQ 0 −GP

 (62)
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and

GP =
kζ
2
e−kζ |ξ−ξ

′| (63)

GQ = GP sing(ξ − ξ′) (64)

To obtain Ĝxyz(ξ, ξ
′), the rotation matrices easily obtained from Figure 6 are used:

Ĉ =

 Sinθ −CosθSinϕ −CosθCosϕ
0 Cosϕ −Sinϕ

Cosθ SinθSinϕ SinθCosϕ

 (65)

Ĉ−1 =

 Sinθ 0 Cosθ
−CosθSinϕ Cosϕ SinθSinϕ
−CosθCosϕ −Sinϕ SinθCosϕ

 (66)

Therefore

Ĝxyz(ξ, ξ
′) = ĈĜ(ξ, ξ′)Ĉ−1 (67)

Once the transformation is performed, the following 2 by 2 matrix can be obtained

Ĝ(ξ, ξ′) =


(Sin2θ − Cos2θCos2ϕ)GP −CosθSinϕCosϕGP

−2iSin2θCosϕGQ − δ(ξ − ξ′)Sin2θ −iSinθSinϕGQ

−CosθSinϕCosϕGP − iSinθSinϕGQ −Sin2GP


(68)

• Anisotropy field

The anisotropy field is calculated as

~hK = −N̂xy
A ~m∼=-

[
Nxx Nxy

Nyx Nyy

]
~m(ξ)ei(ωt−kζζ) (69)

where N̂xy
A is the xy-part of the anisotropy tensor defined by

N̂xyz
A = −

 Nxx Nxy Nxz

Nyx Nyy Nyz

N zx N zy N zz

 (70)

Of course, the anisotropy tensor will be easily defined first in the ξηζ coordinate
system as N̂ ξηζ

A , and then transformed to the xyz system to obtain N̂xyz
A . This transfor-

mation is performed in the same way as was already done for the dipolar field.
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• Exchange field

The exchange field, easily calculated from equation (5), is

~hEx = Λ2∇2
ξηζ ~m

∼ = Λ2(
∂2

∂ξ2
− k2

ζ )~m(ξ)ei(ωt−kζζ) (71)

where the exchange length Λ =
(

2A
µoM2

s

)1/2

is defined as the length to which the
exchange interaction is comparable with the dipolar interaction [20].

• LL equation

Replacing the fields ~m∼ + ~Ms and ~h∼ + ~Hi in the LL equation (18) leads to:

iω~m∼ = −γµo
[
−Hiẑ × ~m∼ +Msẑ × (~hd + ~hK + ~hEx)

]
(72)

Equation (72) can be written as1

iω

(
0 −1
1 0

)(
0 1
−1 0

)
~m(ξ)=γµoHi

(
0 −1
1 0

)
~m(ξ)

−γµoMs

(
0 −1
1 0

)[
~h(ξ) + Λ2(

∂2

∂ξ2
− k2

ζ )~m(ξ)−
[
Nxx Nxy

Nyx Nyy

]
~m(ξ)

]
(73)

Isolating ~h(ξ) in equation (73) and considering that ωH = γµoHi and ωM = γµoMs

the following expression is obtained for ~h(ξ)

~h(ξ) = F̂ ~m(ξ) =

[
ωH
ωM
− Λ2( ∂2

∂ξ2
− k2

ζ ) +Nxx −i ω
ωM

+Nxy

i ω
ωM

+Nyx ωH
ωM
− Λ2( ∂2

∂ξ2
− k2

ζ ) +Nyy

]
~m(ξ)

(74)
Following Kalinikos et al. idea [12, 21], the operator F̂ (equation (74)) is separated

in the part R̂ that contains the exchange and diagonal dipole part, and the part T̂ with
anisotropy and non-diagonal dipole part. After equating expressions (74) and (61)

R̂~m(ξ) = −T̂ ~m(ξ) +

l/2ˆ

−l/2

Ĝ(ξ, ξ′)~m(ξ′)dξ′ (75)

1Note that the cross product can be expressed like ẑ×
(

vx
vy

)
=

(
−vy
vx

)
=

(
0 −1
1 0

)(
vx
vy

)
,

and the identity as I=
(

0 −1
1 0

)(
0 1
−1 0

)
.
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where the above operators are given by:

R̂ =

[
ωH
ωM
− Λ2( ∂2

∂ξ2
− k2

ζ ) 0

0 ωH
ωM
− Λ2( ∂2

∂ξ2
− k2

ζ )

]
(76)

T̂ =

[
Nxx −i ω

ωM
+Nxy

i ω
ωM

+Nyx Nyy

]
(77)

This last equation is the variable magnetic field equation which is made from vari-
ous transformation applied to the variable magnetization. This equation therefore deter-
mines the variable magnetization amplitude ~m(ξ). This is no longer a linear problem,
like in Chapter 2, due to the differential operators in R̂. A second order differential equa-
tion problem has to be solved, which implies some boundary conditions are needed. The
following section tackles this problematic.

3.3 Spin Wave Modes
To solve equation (75), ~m(ξ) is expanded in a infinite series of complete orthonormal
functions [12]:

~m(ξ) = Ms

∞∑
n=0

[
mx
n
~Sxn(ξ) + my

n
~Syn(ξ)

]
(78)

Here, the functions ~Sxn(ξ), ~Syn(ξ) are called spin wave modes (SWM). They are
given by

~Sxn(ξ) = (Φxn(ξ), 0) ~Syn(ξ) = (0, Φyn(ξ)) (79)

Then, refering to the field equation (75), the following eigen value problem is con-
sidered [12, 21]:

R̂~Sn(ξ) = R~Sn(ξ) (80)

B̂1
~Sn(ξ) = 0 ξ =

l

2
(81)

B̂2
~Sn(ξ) = 0 ξ = − l

2
(82)

where B̂j (j=1,2) are the boundary condition matrices for top (j=1) and bottom sur-
faces of the film (j=2). These are obtained from integrating the LL equation, considering
the external, the exchange and surface anisotropy fields, in a thin boundary layer at the
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top and bottom of the film where the surface anisotropy takes effect [16]. They are given
by:

B̂j =

[
(−1)j+1 ∂

∂ξ
+ dxj 0

0 (−1)j+1 ∂
∂ξ

+ dyj

]
(83)

dxj=djCos2θ, d
y
j=djCos

2θ (84)

Here the dj are the pinning parameters which quantifies how pinned or unpinned
are the magnetic moments at the surface. When the moments are perfectly pinned at
the surface (∂m

p

∂ξ
= ∞), the variable magnetization is zero, while unpinned moments

(∂m
p

∂ξ
= 0) means that they are free to move. Note that the effective pinning dpj (p =

x, y) depends also on the direction of the saturation magnetization. Namely, when
θ = π/2 the component my is always free, but for θ = 0 the two variable components
can be pinned.

The solutions for the problem of equation (80) are the functions Φpn(ξ) of the form:

Φpn(ξ) = Apn (Cos(κpnξ) +Bp
nSin(κpnξ)) (85)

Where the constants Apn and Bp
n have to be determined by the boundary conditions.

The application of boundary conditions leads to the following equation defining the
standing wave number κpn (See Appendix A):

(κpn − d
p
1d
p
2)Tan(κpnl) = κpn(dp1 + dp2) (86)

Equation (86) determines κpn depending on the effective pinning parameters dpj . It is
possible to have multiple solutions for κpn. The κpn are the standing wave numbers for the
standing spin waves modes (85). Note that in general, each function Φxn(ξ) and Φyn(ξ)
can have different κxn, κyn since they depend on the dxj and dyj parameters respectively.

For the present analysis, a simplified model of unpinned spins will be considered,
then dj = dpj = 0. Note this is always true, even if d2 6= 0, when the film is magnetized
in-plane (θ = 0) for the y direction. Considering this unpinned simplification, the
condition for κpn is

Sin(κpnl) = 0 ⇒ κpn = n
π

l
(87)

Replacing this result in equation (152, see Appendix A) determines thatBp
n=Tan(κpnl/2).

Therefore the solution for (85) is

Φpn(ξ) =
√

2Cos (κpn(ξ − l/2)) (88)

For this final expression apn =
√

2 can be obtained from the orthonormality condition
[12]:
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l/2ˆ

−l/2

Φpn(ξ)Φqn′(ξ)dξ=lδnn′ (89)

The first 3 modes of oscillation are presented bellow:

Φp0(ξ) = 1 (90)

Φp1(ξ) =
√

2Cos
(π
l

(ξ − l/2)
)

(91)

Φp2(ξ) =
√

2Cos

(
2π

l
(ξ − l/2)

)
(92)

The uniform mode n = 0 will be referred as the ferromagnetic resonance mode
(FMR), while the modes n = 1, 2, ... will be referred as the perpendicular standing
wave modes n (PSSWn). Their profiles are sketched in Figure 7.

Figure 7: Spin wave modes sketched across the film thickness

3.4 General dispersion relation: Perturbation theory approach
To determine the dispersion relation for the spin wave in equation (57), the infinite series
expression (78) for the variable magnetization is replaced in equation (75).

∞∑
n=0


[
R̂ + T̂

] [
mx
n
~Sxn(ξ) +my

n
~Syn(ξ)

]
−

l/2ˆ

−l/2

Ĝxy(ξ, ξ
′)
[
mx
n
~Sxn(ξ′) +my

n
~Syn(ξ′)

]
dξ′

 = 0

(93)
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After applying the matrix operators to the series expansion, they are projected over
the SWM to obtain the operators in this base [12]. After this projection, the field equa-
tion (75) can be written in the base of the SWM, and therefore one obtain a more com-
pact form:

∞∑
n=0

[
¯̂
R +

¯̂
T +

¯̂
G
]
~mn = 0 (94)

This projection reflects the effect that each operator has on the different modes due to
their non-uniformity, and as will be seen, leads to interaction between different modes.
The development of the projection is presented in Appendix C. The bar over the opera-
tors denote that they are expressed in the SMW base, and the amplitude vector for the
mode n in the SWM base is:

~mn = (mx
n,m

y
n) (95)

After grouping the corresponding terms in (94), because of the orthogonality of the
SMW, for each mode n it can be written as (see Appendix C for a explicit form):

D̂nn ~mn +
∞∑

n′ 6=n

Ĵnn′ ~mn′ = 0 (96)

To obtain a diagonal matrix for equation (96), the transformation
(
detD̂nn

)
D̂−1
nn is

applied, leading to:

Ĥnn ~mn +
∞∑

n′ 6=n

Ŵnn′ ~mn′ = 0 (97)

With the matrices defined by

Ĥnn =
(
detD̂nn

)
D̂−1
nnD̂nn (98)

Ŵnn′ =
(
detD̂nn

)
D̂−1
nn Ĵnn′ (99)

Now an infinite system is constructed with all the n systems in (97).

L̂~m∞ = 0 (100)

The operator L̂ acts on the infinite vector of amplitudes ~m∞. Their respective ex-
pressions are:
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L =



H00

H11 0
·
·
·

0 Hnn

·


+



0
0 W nn′

·
·
·

W n′n 0
·


(101)

~m∞ = (~m0, ~m1, ..., ~mn, ...) (102)

From (101), finding the dispersion relations for the spin wave modes implies finding
the ”eigenvalues” matrices blocks λn , i.e. diagonalizing L̂

L̂ =



λ0

λ1 0
·
·
·

0 λn
·


(103)

which implies that the dispersion equation for the spin wave mode n is found by
solving:

det
(
λn
)

= 0 (104)

Now, sinceL is separated as a sum of a diagonal and a non-diagonal blocks, the di-
agonal part can be considered as an unperturbed operator while the non-diagonal one
is considered as a perturbation [12]. As it will be seen, the diagonal part gives the
approximate dispersion relations (without interaction), while the non-diagonal part con-
tains corrections to the dispersion relations which are given by interactions between the
different modes [12].

Following perturbation theory approach, the eigenvalue matrices of L can be ex-
pressed as a sum of different order corrections

λn=(0)λn +(1) λn + (2)λn + ... (105)

From perturbation theory formalism, the first order approximation gives the same
result than the zero order one because of the form of the perturbation operator in equa-
tion (101), i.e. (1)λn=0. For the present analysis corrections up to first order will be
considered (no interactions), implying the dispersion relation for the mode n can be
calculated as:
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(0)λn = det
(
Hnn

)
= det(Dnn) = 0 (106)

Expanding this equation with the calculation performed in Appendix B, one obtains:

0 =
[
Rxx
nn + T̄ xxnn + AP xx

nn + Sin2θ
] [
Ryy
nn + T̄ yynn + EP yy

nn

]

−
[
i

(
ω

ωM
T̄ yx∗nn +DQyx

nn

)
+ T̄ yxnn + CP yx

nn

] [
−i
(
ω

ωM
T̄ xy∗nn −DQxy

nn

)
+ T̄ xynn + CP xy

nn

]
(107)

From the definition ofHnn, it is also clear that the amplitude vector, up to zero order,
is

(0) ~mn = (1, 1) (108)

Therefore, recalling equation (78), the the variable magnetization up to zero order
is:

~m(ξ) = Ms

∞∑
n=0

(Φxn(ξ), Φyn(ξ)) (109)

3.5 Dispersion relations for uniform (FMR) and perpendicular stand-
ing spin wave modes

The derivation of (107) was performed as an instructive procedure and as a future refer-
ence for other applications. Now, the very general expression for the SWM dispersion
relation (107) has to be adapted for the experimental measurements to be performed. For
the particular experimentation, that is described later in this manuscript, the following
is considered:

• No propagation of spin waves is produced, therefore kζ = 0.

• The magnetic moments are unpinned at the surfaces of the film.

• There are no interaction between different modes of oscillation.

• There are two types of anisotropies: bulk uniaxial anisotropy and uniaxial surface
anisotropy.

The fact that kζ = 0 automatically implies that the Green’s tensor components become
zero GP = GQ = 0, and therefore P pq

nn = P pq
nn′ = Qpq

nn = Qpq
nn′ = 0 (see Appendix

B). The unpinned condition for the moments was already applied in equation (86), it
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allowed to determine the standing spin wave numbers κpn = nπ
l
. Note the form of the

dispersion relation (107) is independent of the pinning conditions, and therefore is the
same for different κpn. The condition for no interaction between two different modes
was also already considered when the dispersion relation was obtained up to first order
in equation (106). This simplifications leads to a more simplified expression for (107):

fn =
ωM
2π

[(
Rxx
nn + Sin2θ + T̄ xxnn

) (
Ryy
nn + T̄ yynn

)]1/2 (110)

The last condition implies that the general form of the anisotropy tensor (70) needs
to be replaced by a specific form accounting just these two types of anisotropies. From
Appendix C, the only surviving component of matrix ¯̂

T is T̄ xxnn . The coefficients Rpp
nn

are explicitly calculated in Appendix C for each mode..
The following fields are defined to simplify the notation in Appendix D:

H
′

Ex =
2Aπ2

µoMsl2
, H

′

Ku =
2Ku

µoMs

, H
′

S =
2KS

µoMsl
(111)

Now, the measurements were performed with the external static field in- and out-
of-plane of the film. The configurations of interest are then: θ=π

2
for the in-plane Ms

(denoted by the symbol ‖) and θ=0 for the out-of-plane Ms (denoted by the symbol ⊥).

• When θ = ϕ=π
2

:

Ms is in the plane, because of equation (10) there is no demagnetizing field, and from
equations (197-198) (see Appendix C) there is no static anisotropy field either. The only
static field is the externally applied field (see Appendix D):

Hi = Hext (112)

For the uniform n = 0 (FMR) mode (see Appendix C for T̄ xx00 ):

f0‖ =
γµo
2π

[
(Hext)

(
Hext +Ms −H

′

Ku −H
′

S

)]1/2

(113)

For the non-uniform n = 1 (PSSW1) mode:

f1‖ =
γµo
2π

[(
Hext +H

′

Ex

)(
Hext +H

′

Ex +Ms −H
′

Ku − 2H
′

S

)]1/2

(114)

• When θ=0:

Ms is out of the plane, because of equation (10) the demagnetizing field is ~Hde=− ~Ms,
and from equations (197-198) (see Appendix C) there is a static anisotropy field too.
The internal static field is



40

Hi = Hext −Ms +H
′

Ku +H
′

S (115)

In equation (115) the surface anisotropy term is included after an average of the ~HS

field along the thickness of the film.
For the uniform n = 0 (FMR) mode (see Appendix C for T̄ xx00 ):

f0⊥ =
γµo
2π

(
Hext −Ms +H

′

Ku +H
′

S

)
(116)

For the non-uniform n = 1 (PSSW1) mode (see Appendix C for T̄ xx11 ):

f1⊥ =
γµo
2π

(
Hext −Ms +H

′

Ex +H
′

Ku + 2H
′

S

)
(117)

Equations (113,114,116,117) are the dispersion relations for the modes of oscillation
that will be measured via network analyzer FMR which will be explained in the next
chapter.

Higher modes, e.g. n=2, cannot be measured because they are out of the working
frequency and field ranges of the experimental set up. Nevertheless, note that for higher
modes the only change needs to be done in the exchange contribution. The dispersion
relations for any n 6= 0 are:

fn‖ =
γµo
2π

[(
Hext + n2H

′

Ex

)(
Hext + n2H

′

Ex +Ms −H
′

Ku − 2H
′

S

)]1/2

(118)

fn⊥ =
γµo
2π

(
Hext −Ms + n2H

′

Ex +H
′

Ku + 2H
′

S

)
(119)

One thing to be remarked from Appendix D is that the internal static field has a dif-
ferent effect on the different modes of oscillation since it has a non-uniform component
(surface anisotropy) across the thickness.
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4 Vector network analyzer ferromagnetic resonance
In order to probe the magnetization dynamics of different ferromagnetic samples, the
technique of Vector Network Analyzer Ferromagnetic Resonance was used. In this
technique, the sample is subjected to a high frequency field, created by a microwave
source in a Vector Network Analyzer, while an electromagnet sweeps a external mag-
netic field. During this process, the magnitude and phase of the power reflected and
transmitted in the circuit (waveguide with ferromagnetic sample on top) are measured.
From this power absorption, information on the magnetic properties of the sample can
be derived by the model presented in the previous section. The complete system is set
to a usual characteristic impedance of 50 Ω.

4.1 Experimental set up
The experimental setup consist of a microwave network that allows to measure the re-
sponse of the samples under study via VNA and a electromagnet with a Hall probe
connected to a gaussmeter to produce the desired external magnetic field and measure
it. All the parts of the setup are connected to a computer that controls them via virtual
interface. An air conditioning system controls the temperature of the room which was
set to 25 °C. The setup is represented on Figure 8.

Figure 8: Setup’s components representation
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4.1.1 Microwave network

The VNA is connected to a brass box with 2.9 mm connectors through flexible and semi
rigid cables specified to high frequency (air as dielectric). The cables allow to reach the
box that is fixed to a pole which hangs from a tunable angle support. The waveguide is
inserted in this box so that the signal track is in contact with the microwave probes of
the connectors and the rest of the board in contact to the grounded box (see Figure 9).
Once the waveguide is in position inside the box, it is closed by two brass pieces and
non-magnetic bolts. The box has a conduct to reach the central part of the track from
the exterior. The central track consist of a 200 µm width constriction.

Figure 9: Brass box with waveguide board and connectors

A brass podium with a 3×3 mm head is inserted in this conduct with the sample
on top so it can reaches the excitation track. The samples are normally cut in 2×2 mm
squares and attached to the podium with adhesive. In special cases the samples could
be fastened directly to the board before closing the box (see Figure 10).

Figure 10: Sample fixation: a) Using the podium (inserted in box), b) Fixating directly
on the board
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4.1.2 Magnet control

The electromagnet used to create the external field, that was considered in Chapters
2 and 3, has a resistance around 3 Ω. The gap between the two poles of the magnet
is variable with a maximum of 42 mm. It is connected to a power supply which can
produce a field of 2.3 T with the 42 mm gap (used for in-plane measurements) and a
field of 2.7 T with a gap of 22 mm (used for out-of-plane measurements). The magnet
is on a bearing support with 360o rotation that allows to perform in- and out-of-plane
measurements around the pole and fixed box. A Hall probe measures the magnetic field
and is connected to a gaussmeter and power source for control. The Hall probe has
also two possible positions depending on the type of measurement being done. This
change of position is accounted in the final measured value of the field. For temperature
control the electromagnet receives a constant flow of water driven by a pump located in
a separate room.

4.2 Preliminary VNA notions
The power absorption of the ferromagnetic resonance is obtained by measuring the S-
parameters of the waveguide board with the ferromagnetic samples. A sketch of the
network (VNA, waveguide, connectors and cables) is shown in Figure 11.

Figure 11: VNA connected to board for in-plane field configuration
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4.2.1 Scattering parameters

These quantities, also called S-parameters, relate the incident and reflected electromag-
netic waves in linear electrical networks. In general, it is possible to determine the
scattering matrix for a n-port device, but the network components that are used in this
case just have two terminals, therefore the 2-port treatment will be implemented. A
sketch of a 2 port component is presented in Figure 12.

Figure 12: 2-port generic component

The complex normalized waves for i=1, 2 are given by:

ai =
Vi + ZciIi

2
√
Zci

bi =
Vi − ZciIi

2
√
Zci

(120)

where ai is the incident wave, bi is the outgoing wave and Zci is the characteristic
impedance on the port i. This is clear after replacing the following solutions for the
telegrapher’s equations [11]:

V (x) = Ae−γx +Beγx (121)

I(x) = Ce−γx +Deγx (122)

into (120). Here A, B, C, D are constants and γ is called the propagation constant
(different from the γ introduced in Chapters 2 and 3). By doing this, the following
expressions can be obtained for the incident and outgoing waves:

ai =
A

Zci
e−γx bi =

B

Zci
eγx (123)

The scattering matrix S is defined by the following equation relating the outgoing
waves to the incident ones(

b1

b2

)
=Ŝ
(
a1

a2

)
=

[
S11 S12

S21 S22

](
a1

a2

)
(124)

where each scattering parameter Sij is the ratio between the outgoing wave at port i
and the incident wave at port j when no other port receives signal. A device is reciprocal
if S12 = S21 and is symmetric if S11 = S22.
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In a real network multiple devices need to be connected after each other. This can
be accounted by the multiplication of their transmission matrices T̂ [11]:

T̂ =

[
T11 T12

T21 T22

]
=

 S12S21−S11S22

S21

S11

S21

−S22

S21

1
S21

 (125)

Obviously the matrix Ŝ can be also be obtained from T̂ :

Ŝ =

 T12
T22

T11T22−T12T21
T22

1
T22

−T12
T22

 (126)

4.2.2 Actual device

The used VNA was an Agilent PNA N5225A-201 with a working frequency range of
10 MHz-50 GHz. Its internal microwave source can provide a signal fixed at some
frequency f between the mentioned range. This type of device is different to spectrum
analyzer in the sense that it is able to produce phase sensible measurements. It allows
to obtain the real and imaginary part of the S-parameters, and as it will be shown, the
complex magnetic susceptibility.

To obtain sensible and precise results, the VNA must go through a calibration pro-
cess. On one hand, any contribution from cables, connectors and probes that connect
the VNA to the actual waveguide (device being measured) have to be eliminated. Also
errors on the device itself need to be accounted in order to have a cleaner signal from the
waveguide. All these errors, called systematic, are assumed to be invariant with time
and therefore can be corrected by a calibration process [19]. Other errors that occur
during the operation time, manly because of instrument noise, are called random and
cannot be corrected by calibration.

In this particular case, a customized TRL (Thru, Reflect, Line) calibration kit with
five standard circuits was used: a thru, a short or reflect, and 3 lines with different
lengths. Normally the thru standard is the shortest of the lines, but in this case it was not.
Each circuit is connected to the VNA and measured in both directions. The calibration
data is saved to be used before each measurement. It is important to perform usual
calibrations since the state of the set up can change appreciably with time. Fortunately,
the used set up temperature was controlled by air conditioning system which prevents
the introduction of important drift errors (errors after calibration).

4.3 Two port data evaluation
The VNA provides raw data of the already explained microwave network (S-parameters).
This data has to be treated in order to obtain the necessary information about the sample
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under study that allows one to use the theory on Chapter 3 to get access to its magnetic
properties. This subsection is based on Bilzer’s data evaluation method [11].

4.3.1 Raw data

After calibration, the VNA measures the matrix SN for the network between the two
microwave probes (Figure 9) where several parts of it need to be taken into account sep-
arately. The parts to be considered are (see Figure 13): length d1 from microwave probe
to constriction (200 µm), change of impedance fromZo toZ1 at plane P1, length d2 from
constriction to sample, change of impedance at plane P2 from to Z1 to Z (impedance
under sample), sample’s length d3, change of impedance at plane P3 back to Z1, length
d4 from sample to end of constriction, change of impedance at plane P4 back to Zo, and
length d5 from end of constriction to probe.

Figure 13: Board’s division for microwave corrections

To get the matrix Ŝ for the network, the transmission matrices for each part in Figure
13 are multiplied (from left to right) and the total matrix T̂ is obtained [11]:

T̂ =

[
e−γod1 0

0 eγod1

] 1√
1−Γ 2

1

Γ1√
1−Γ 2

1
Γ1√
1−Γ 2

1

1√
1−Γ 2

1

[ e−γ1d2 0
0 eγ1d2

]

×

[
1√

1−Γ 2

Γ√
1−Γ 2

Γ√
1−Γ 2

1√
1−Γ 2

] [
e−γd3 0

0 eγd3

][ 1√
1−Γ 2

−Γ√
1−Γ 2

−Γ√
1−Γ 2

1√
1−Γ 2

][
e−γ1d4 0

0 eγ1d4

]

×
[
e−γ1d4 0

0 eγ1d4

] 1√
1−Γ 2

1

−Γ1√
1−Γ 2

1
−Γ1√
1−Γ 2

1

1√
1−Γ 2

1

[ e−γod5 0
0 eγod5

]
(127)

where
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Γ1 =
Z1 − Zo
Z1 + Zo

, Γ =
Z − Z1

Z + Z1

(128)

are the complex reflection coefficients for the planes P1 and P2 respectively.
γo is the propagation constant on the waveguide in the unconstricted part, γ1is the

propagating constant in the free constricted part, and γ is the propagation constant on
the portion covered by the sample.

From (127), it is clear that the transmission matrix for the constricted part between
planes P1and P4 is

T̂ 1̄4 =

[
e−γ1d2 0

0 eγ1d2

][ 1√
1−Γ 2

Γ√
1−Γ 2

Γ√
1−Γ 2

1√
1−Γ 2

][
e−γd3 0

0 eγd3

]

×

[
1√

1−Γ 2

−Γ√
1−Γ 2

−Γ√
1−Γ 2

1√
1−Γ 2

][
e−γ1d4 0

0 eγ1d4

]
(129)

Then, this transmision matrix can be transformed into Ŝ14 by equation (126) obtain-
ing [11]:

Ŝ14 =

[
e−γ12d2 Γ(1−P 2)

1−P 2Γ2 e−γ1(d2+d4) P (1−Γ2)
1−P 2Γ2

e−γ1(d2+d4) P (1−Γ2)
1−P 2Γ2 e−γ12d4 Γ(1−P 2)

1−P 2Γ2

]
(130)

where the P coefficient is defined as

P = e−γd3 (131)

The following subsections explain corrections to be performed to the matrix Ŝ14

to isolate the real response from the ferromagnetic material. Note that this requires
the S-parameters to be known at the planes P1 and P2, but the VNA measure them at
both ends of the unconstricted track (Figure 11). These measured S-parameters can be
obtained by transforming T̂ , of equation (127), into Ŝ. This is a intricate calculation
that is performed in the program that controls the virtual interface and isn’t shown in
this manuscript.

4.3.2 Sample’s position correction

From equation (130), it is clear that S14
12 = S14

21 (reciprocal device) are both independent
of the sample’s position, but S14

11 and S14
22 are not. Since the sample cannot be placed

exactly in the middle of the track and d2 and d4 are not easy to measure, a mathematical
correction is introduced in order to solve the problem. A geometric mean of the two
problematic parameters is used instead:
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S14∗
11 = S14∗

22 =

√
S14

11S
14
22 = e−γ1(d2+d4) Γ(1− P 2)

1− P 2Γ2
(132)

In this way the scattering matrix becomes symmetrical and d2 + d4 = dt− d3 is just
the constricted track length minus the sample length, a well known quantity.

4.3.3 De embedding

Now, the data needs to be corrected so the portion of waveguide without sample does
not contribute to the measurements and the spectra represents just the sample alone.
To do this, S14

12 = S14
21 and S14∗

11 = S14∗
22 needs to be multiplied by the inverse of the

factor e−γ1(d2+d4) [11]. Here, γ1 is still unknown but can be obtained by measuring S14
21o

(without sample). This is just a line of length dt and impedance Z1. Since S14
21o = e−γ1dt

all the quantities are known, and the needed factor can be calculated by:(
e−γ1(d2+d4)

)−1
= e

− d2+d4
dt

ln(S14
21o) (133)

After the multiplication of the S-parameters by the previous factor, one has access
to the quantities:

S14∗B
11 = S14∗B

22 =
Γ(1− P 2)

1− P 2Γ2
(134)

S14B
12 = S14B

21 =
P (1− Γ2)

1− P 2Γ2
(135)

4.3.4 Calculation of Γ and γ

Analytically, the following expression can be obtained for Γ [11]:

Γ = D ±
√
D2 − 1 (136)

The sign for equation (127) is chosen in order to have |Γ| < 1. D can be calculated
like:

D =
1 +

(
S14∗B

11

)2

−
(
S14B

21

)2

2S14∗B
11

(137)

P, from equation (131), is also equal to:

P =
S14∗B

11 + S14B
21 − Γ

1− (S14∗B
11 + S14B

21 )Γ
(138)

which allows to calculate the propagation constant γ by:
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Re(γ) = − ln(|P |)
d3

Im(γ) = −arg(P )

d3

(139)

Here caution is recommended in order to evaluate P because, being a complex num-
ber, its logarithm can be multivalued.

4.3.5 Field shielding

Normally the films to be characterized by CPW-FMR are made of conducting material.
The interaction of the microwave field with the conductor film can induce some electro-
magnetic field on it that would modify the total field near the sample. The concentration
of the electromagnetic field between the CPW track and the film itself is called shield-
ing. This is produced by the conducting film trying to cancel the field on top of it by
creating an opposite field to the one in the CPW. This is the phenomena responsible for
the creation of eddy currents on the conducting ferromagnetic film which lead to non-
uniform oscillation of the magnetization. In this way the standing spin wave modes,
obtained in Chapter 3, are exited.

It has been shown that less resistive films (closer to a perfect grounded conductor)
are better at shielding the electromagnetic field between the CPW track and the film
itself [23]. The more resistive a film is, the less important its effect is, and the less
shielded the electromagnetic field. This implies that the shielding effect allows to excite
PSSW modes instead of just the uniform mode (see Chapter 3)[23].

The shielding modifies also the measured FMR signal by a change of inductance
δL which is inversely proportional to the width w of the CPW’s track [23]. Therefore,
this can be corrected by contracting the portion of the track under the film in order to
reduce δL. This is the reason why the experimental CPW has a 200 µm constriction.
These type of CPW engineering and de embedding procedures has to be used in order
to extract via inductive VNA-FMR the actual magnetic response of conductive films.

4.3.6 Obtaining ε̃r and µ̃r

The waveguide will be considered to be in a effective material with effective relative
permittivity ε̃r and effective relative permeability µ̃r. This is considered since there
are several different media that contribute to these parameters: air, sample, waveguide
itself, etc.. The two can be extracted from the following equations:

γ

γfs

=
γ

i2πf
√
µoεo

(140)

1 + Γ

1− Γ
=

Z

Zo
= G

√
µ̃r
ε̃r

(141)
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where γfs is the propagation constant of free space and G is a constant that depends
on the air space between the sample and the waveguide. Since G is difficult to estimate,
just proportional quantities are calculated:

µ̃r ∝
γ

γfs

1 + Γ

1− Γ
(142)

ε̃r ∝
γ

γfs

1− Γ

1 + Γ
(143)

Now, ε̃r is considered a constant since it does not change importantly over the fre-
quency range. Then the permeability is accessible by considering equation (143) with
ε̃r as a constant, i.e. γ

γfs
∝ 1+Γ

1−Γ
. With this the permeability can be calculated in two

independent ways:

µ̃r ∝
(

1 + Γ

1− Γ

)2

µ̃r ∝
(
γ

γfs

)2

(144)

Now considering that the magnetic susceptibility for the sample is:

χ = µr − 1 (145)

where µr is the relative permeability for the sample alone, a proportional quantity
to χ can be extracted by subtracting a reference from µ̃r. To do this, in the reference
measurement the sample must not be exited. Such data can be obtained by applying
the external field parallel to the excitation one. Finally a quantity proportional to the
permeability of the sample alone, and therefore to its susceptibility, is obtained:

χ ∝ µ̃r − µ̃rRef (146)
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5 Results and discussion
FMR measurements were conducted on 5 different samples. The peculiarities of each
measurements are presented with their corresponding results and discussion. After the
treatment given to the raw data, that is explained in Chapter 3, the susceptibility is
fitted by a complex Lorentzian (see equations (54-55) ) from which one can obtain the
resonance field, bandwidth and phase for each frequency. These spectra measurements
are presented for each sample showing their FMR response. All the resonance frequency
versus magnetic field measurements were fitted with equations (113,114,116,117) and
then the magnetic quantities calculated. With measurements in- and out-of-plane, one
cannot access directly the saturation magnetization, instead an effective magnetization
can be measured:

Meff = Ms −H
′

Ku (147)

Recalling the dispersion relations, this also implies that only estimations can be
made for the calculations of the exchange and surface anisotropy constants. This quan-
tities will be denoted by a (∗). The constant Ku cannot be directly determined since it
cannot be independently extracted from the dispersion relations.

For the line widths, a linear fit were performed and equation (56) used to obtain α.

5.1 CoFeB 40nm (5864)
A cobalt iron boron 40 nm thickness, 2mm×1.9mm surface area sample was measured
to obtain a FMR characterization with special interest in its exchange constant. The
constant value is to be used on simulations to test its viability as Permalloy’s second
constituent on a bilayer system aiming to exploit non reciprocity effects. The sample
consist of a trilayer Ta(3)/CoFeB(40)/Au(3) grown by magnetron sputtering on a Si
substrate (resistivity > 20000 Ωcm). It was provided by Michel Hehn (Institut Jean
Lamour, Nancy, France).
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5.1.1 Spectra

Figure 14: CoFeB: Resonance profiles for different frequencies in the in-plane configu-
ration: a) FMR mode, b) PSSW1

Figure 14 presents resonance spectra for the in-plane configuration of the CoFeB sam-
ple. For the in-plane configuration the sample present normal resonance spectra for the
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FMR mode (n = 0) on the complete frequency range. A progressive widening of the
resonance peak is visible together with a reduction of the amplitude of the peak which
is common in these types of measurements.

On the other hand, the PSSW1 mode shows an amplitude much smaller than the
FMR mode, which is expected since the PSSW are higher order excitations that, for a
given field, occur at higher frequency. There is also a phase mixing of π/2 between the
real and imaginary part of the signal. This is produced because, as was explained in
Chapter 4, the generation of the PSSW modes is given by eddy currents in the material.
These currents have a different sign than the ones in the CPW in order to cancel the
field (they have also a phase shift of π/2). Because of this, the excitation caused by this
currents produce a phase shift in the signal measured by the VNA. The resonance field
still contains the information of the sample resonance since all this inductive process
happens when the resonance condition is achieved.

Figure 15: CoFeB: FMR mode resonance profiles for different frequencies in the out-
of-plane configuration

In the out-of-plane configuration, the FMR mode has a similar profile to the in-plane
one, of course at higher field. To estimate the resonance fields for the out-plane PSSW1
the raw data (S-parameters) had to be checked since the susceptibility did not shown
any identifiable resonance profile. This leads to some error introduction since there are
not corrections applied to the raw data directly obtained from the VNA.
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5.1.2 Dispersion relations and magnetic parameters

Figure 16: CoFeB: Fitted dispersion relations for FMR and PSSW1 modes in- and out-
of-plane configurations

Despite the difficulties found to estimate the resonance fields, the data fits the model
with good accuracy and comparing the calculated γ′s for the PSSW1 modes, both in
and out-of-plane, shows that they do not differ significantly from the FMR modes.

From Figure 16 it is more evident that the PSSW1 modes (n=1) occur at higher fre-
quency for a given field, therefore, they start to be measurable also at higher frequency.
Other feature that is common, as will be seen, for all the samples is a larger γ measured
out-of-plane than in-plane. The ratio between the two is γ||

γ⊥
= 0.9. This consistent

increment could be related to the loss of symmetry for the oscillating component of the
magnetization in the in-plane configuration. While for a film magnetized out-of-plane,
the variables components of the magnetization are both in the plane, for the case of a
film magnetized in the plane the x component oscillates out of it (see Figure 3). Recall-
ing LL equation (18), γ is the proportionality constant between the actual rate of change
of the magnetization and the torque produced by the magnetic field. The measurements
indicate that more torque µo ~M × ~Heff is needed in the in-plane configuration than in
the out-of-plane to achieve the same ∂ ~M

∂t
rate of change of the magnetization.

From the fitted dispersion relations in Figure 16 the following parameters were ob-
tained.
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µoMeff [T] 1.814 ±0.002
γ||[GHzT−1] 28.5 ±0.4 γ⊥[GHzT−1] 29.9±0.1
µoH

′
ex [mT] 232 ± 3 A∗ [ pJ m−1] 22.0±0.3

µoH
′
S [T] 0.2±0.1 K∗s [mJ m−2] 8± 3

Table 1: CoFeB: Magnetic parameters (* Estimation)

The value for µoMeff is in agreement with the values found in a thickness depen-
dence study where uniaxial anisotropy is also considered, while it is known that the
saturation magnetization for CoFeB is around µoMs= 1.7 T [8]. Comparing these two
values, the uniaxial bulk anisotropy could be estimated to be around 114 mT. Now, since
it is found that Ms < Meff , therefore K1 < 0 which implies that the hard axis is the
perpendicular to the film. The fact that the effective magnetization is larger than the
saturation magnetization implies that the real values for A and Ks must be smaller than
the obtained ones. The same mentioned study provides reference values forKs between
1.03-1.8 mJ m−2 [8].

5.2 Permalloy 40 nm
A Ni80Fe20 (Py) 40 nm thickness, 2mm×2.2mm surface area sample was character-
ized prior to a bilayer system consisting of YIG(80)/Py(40). The sample was grown by
magnetron sputtering on an unknown substrate, it was provided by Philipp Pirro (Uni-
versity of Kaiserslautern, Germany). Measurements on the sample were conducted in
order to obtain a reference for a better understanding of the behavior of the bilayer that
is presented later.
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5.2.1 Spectra

Figure 17: Py: Resonance profiles for different frequencies in the in-plane configura-
tion: a) FMR mode, b) PSSW1 mode
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Figure 18: Py: Resonance profiles for different frequencies in the out-of-plane configu-
ration: a) FMR mode, b) PSSW1 mode

From Figure 17 a) it is clear that the in-plane FMR mode presents a normal resonance
spectra, and this happens for all the frequency range. Again, a widening of the peaks
with field and a reduction of amplitude with frequency is visible. The PSSW1 mode
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presents some important noise, but the resonance peaks are well defined and their widths
do not change much. Some frequencies (e.g. 25 Ghz) present non-symmetrical PSSW1
peaks which is the influence of the FMR mode signal. Once again there is a phase shift
for the PSSW1 mode (see discussion for CoFeB).

From the out-of-plane resonance profile of Figure 18, it is clear that the FMR mode
presents a peculiarity at low frequencies. For 5 and 10 GHz there are two clear peaks that
appear to merge at 15 GHz and become one at 20 GHz. This extra peaks do not belong
to PSSW1 modes, since those are higher in frequency (not visible until 15 GHz, see
Figure 18 a) ). The fact that Hext is larger than Ms ensures that the film’s magnetization
is saturated. Therefore the extra peaks cannot be a result of a not fully saturated state.
These peaks must be created by grains where Ms have a different value than the rest
of the material. In the spectra analysis, the higher field is considered as the resonance
field, since it appears to be the predominant FMR response (see Figure 18). Higher
frequencies follows usual FMR behavior where there is a single peak. The PSSW1
modes present similar profiles to the ones shown for in-plane configuration except that
the baseline of the signal is variable. The reason for this varying baseline is unknown,
but the resonance conditions can still be obtained.

5.2.2 Dispersion relations and magnetic parameters

Figure 19: Py: Fitted dispersion relations for FMR and PSSW1 modes in in and out-of-
plane configurations

In the case of Py the ratio between the the in and out-of-plane γ′s is γ||
γ⊥

= 0.98. This
ratio is larger than the case of the CoFeB film.



59

µoMeff [T] 1.03 ±0.01
γ||[GHzT−1] 29.29 ±0.02 γ⊥[GHzT−1] 29.82±0.09
µoH

′
ex [mT] 250 ± 7 A∗ [ pJ m−1] 16.5±0.3

µoH
′
S [mT] 21±0.02 K∗s [mJ m−2] 0± 20

Table 2: Py: Magnetic parameters (* Estimation)

The calculated value for Meff is around the expected value for Ms in Permalloy
(typically 1 T depending on the composition) [6]. This implies that the uniaxial bulk
anisotropy is very small if not negligible. Something similar happens for the surface
anisotropy, where the estimated constant should be between ±20 mJ m−2. Then there
is not important anisotropy in this particular Py film as usual for this material. The
estimated exchange constant is appreciably larger than values found in the literature for
Py (typically 10.5±10% pJ m−1 ) [24]. Since Meff is not too different in comparison
with the expected saturation magnetization, the estimation of A should be close to the
actual value for the film which, as was already mentioned, is uncommon for Permalloy.

5.3 YIG 29nm
A 3×3 mm Y3Fe5O12 sample with a thickness of 29 nm is measured in order to obtain
its magnetic parameters with special interest in a estimation of Ms. The sample was
used as a propagating medium for spin wave beam measurements. This estimation of
the saturation magnetization is to be compared with a value obtained by spin wave spec-
troscopy. The sample was grown by magnetron sputtering on aGd3Ga5O12 Gadolinium
Gallium garnet (GGG). It was provided by Benjamin Jungfleisch (Argonne Laboratory,
USA). In this case the sample could not be cut to fit the podium so it was fastened to the
board as can be seen in Figure 10.
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5.3.1 Spectra

Figure 20: YIG 29 nm: Resonance profiles for different frequencies in the in-plane
configuration: a) FMR mode with sample oriented in a arbitrary direction (Orientation
1), b) FMR mode with sample rotated by 90o in the plane (Orientation 2).
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The the most important feature for the 29 nm YIG is that it does not present a PSSW1
mode. From in and out-of-plane measurements just the uniform mode can be identified.
Recalling section 4.3.5, this is expected since YIG is not a conductor, then the shielding
effect does not take place. There are not eddy currents in the film which could excite
the non-uniform mode.

The sample was measured, as was done for the all other samples, first in a arbitrary
orientation and later rotating it by 90° in the plane. Only this sample presents important
differences in the FMR spectra between the two orientations. Figures 20 a) and 21 a)
presents the spectra for orientation 1 in and out-of-plane respectively, while Figures 20
b) and 21 b) present the spectra for orientation 2. From comparing the two orientations,
it is obvious the sample present some inhomogeneity. This imply there are macroscopic
grains of material for which the magnetic response change appreciably by modifying
the position of the CPW with respect to the sample. Since the change is sensitive to a
90° rotation of the complete sample, this grains should not be uniformly distributed in
the material.
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Figure 21: YIG 29 nm: Resonance profiles for different frequencies in the out-of-plane
configuration: a) FMR mode with sample oriented in a arbitrary direction, b) FMR
mode with sample rotated by 90o in the plane.

The sample present other magnetic response which appears to be given by the sub-
strate. As can be seen in Figure 22, there is a very wide resonance profile along most
of the field range. It starts to be visible at 15 GHz, where the YIG thin peak is clearly
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identifiable. This wide resonance is magnetic, since it evolves with field and frequency.
It does not affect importantly the YIG resonance, then it can be characterized indepen-
dently as presented before. This resonance can be seen for the in- and out-of-plane
configurations with similar profiles. It appears to follows YIG resonance just with a
field shift, and if fitted with a linear model it presents basically the same γ′s that YIG.
Measurements were performed with the YIG side of the sample on top and the substrate
on the board. This provides the same profiles that can be seen in Figure 22 without
YIG’s excitation. This allows to attribute this resonance to the substrate alone, although
its nature is not understood. Since GGG has not been reported to be magnetic or to have
this type of response, a possible explanation is that it can be contaminated with mag-
netic particles that create a very inhomogeneous media which can be exited in a very
large range of field.

Figure 22: YIG 29 nm: Progression of additional wide resonance attributed to GGG.
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5.3.2 Dispersion relations and magnetic parameters

Figure 23: YIG 29 nm: Fitted dispersion relations for FMR mode in in and out-of-plane
configurations

Since there is no measurable PSSW1 mode. In this case, the value of the effective
magnetization does include the bulk and surface anisotropy.

µoMeff [mT] 141.5 ±0.7
γ||[GHzT−1] 27.928 ±0.009 γ⊥[GHzT−1] 28.24±0.01

Table 3: YIG 29 nm: Magnetic parameters

The ratio between the γ′s is γ||
γ⊥

= 0.99 which shows not important difference be-
tween the in- and out-of-plane configurations.The estimated value for the effective mag-
netization is lower than the tabulated value of µoMs=176.0 mT [4]. Larger values have
been reported for Meff due to strong uniaxial anisotropy, with hard axis out-of-plane
[4]. The lower value could be explained by weak uniaxial bulk and surface anisotropies
summing up to a approximate value of 34 mT.

5.4 YIG AL5007
A 2×2 mm Y3Fe5O12 sample with 18.2 nm thickness is measured in order to compare
its magnetic properties with the previously presented 29 nm YIG sample. In this case,
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the YIG was grown by pulsed laser deposition on a GGG substrate and was provided
by Abdelmadjid Anane (UMPhys CNRS-Thales, Palaiseau, France). There is special
interest in comparing Gilbert’s damping parameters between this sample and the 29
nm one which can allow to compare the effectiveness of the two growth techniques in
lowering α.

5.4.1 Spectra

Figure 24: YIG AL5007: Progression of additional wide resonance attributed to GGG.

Again the PSSW1 mode could not be measured since it is not really exited due to the
lack of eddy currents. Just the FMR mode is observed and present similar resonance
fields to the 29 nm YIG. This YIG sample did not present differences in its spectra by
rotating it in the plane. The resonance peaks are clearly defined for all the frequencies
and do not show inhomogeneities. The wide resonance, attributed to the GGG substrate,
is also present with a very similar behavior to the 29 nm YIG. Also the phase change of
approximately 90° happens consistently at 35 GHz for both in- and out-of-plane with
a reduction in the amplitude. The fact that two samples with very different fabrication
processes present so similar behavior indicates that these are characteristic fro the com-
bination of GGG/YIG. An influence in the FMR response given by the GGG substrate
has been observed just for low temperatures (T<10 K) [25]. This therefore indicates
that the common process of fabrication of the presented samples introduces some mag-
netic impurities in the material which affects drastically the magnetic response. The
only clear difference between the two YIG samples is the lack of inhomogeneities in
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the YIG AL5007, which appear to be corrected by the pulsed laser deposition tech-
nique. This would imply that the sputtering deposition process facilitates the creation
of large grains of material with different magnetic properties. The Permalloy sample,
which was grown by magnetron sputtering too, confirms this supposition.

Figure 25: YIG AL5007: Progression of additional wide resonance attributed to GGG.

5.4.2 Dispersion relations and magnetic parameters

As in the case of the 29 nm YIG, the lack of the PSSW1 mode, just estimations can be
calculated for the magnetic properties that are presented in Table ??.



67

Figure 26: YIG AL5007: Fitted dispersion relations for FMR mode in in- and out-of-
plane configurations

In this case the ratio between the γ′s is γ||
γ⊥

= 0.99, which again shows almost no
difference between the two configurations. In this case µoMeff has been found to be
larger than the tabulated value for Ms. This imply that there are negligible surface
or bulk anisotropies in the sample and that the found estimation is very close to the
saturation magnetization.

µoMeff [mT] 176.1 ±0.9
γ||[GHzT−1] 27.91 ±0.01 γ⊥[GHzT−1] 28.234±0.004

Table 4: YIG AL5007: Magnetic parameters

5.5 YIG/Py
The sample consist of a YIG 80nm/Py 40nm bilayer. The YIG was grown by liquid
phase epitaxy on a GGG substrate, and the Py was grown by magnetron sputtering on
the YIG. The was no special treatment between the two layers. The sample was provided
by Philipp Pirro (University of Kaiserslautern, Germany). This sample is studied as a
possible candidate for bilayer systems where non-reciprocity effects are exploited. The
magnetic response is to be studied in order to be able to understand how the dynamics
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of each of the components is affected by the presence of the other. A estimation on the
magnetic properties is also performed.

5.5.1 Spectra

Figure 27: YIG/Py: Resonance profiles for the bilayer in the in-plane configuration.

In Figure 27 three main resonances can be identified: the Py’s fundamental mode, Py’s
PSSW1 (not visible yet at 10 GHz) and another very wide and large amplitude reso-
nance. The resonance peaks for Permalloy are relatively well defined which allows to
track their resonance up to high frequencies. The PSSW1 mode starts to be measurable
around 15 GHz similarly to the Py single layer. The third resonance profile, which is
always at higher field than Py’s FMR mode, appears to show an important phase change.
This would suggest it is given by eddy currents created at Py, but such behavior was not
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observed for the single layer. It could be a result of Py response to the magnetic inter-
action with YIG, more specifically eddy currents created by the magnetic flux that the
YIG layer induce in Py. This could give some explanation on the fact that YIG’s FMR
is not visible. Possibly, YIG’s resonace is canceled by Permalloy in order to create an
opposite flux which could explain the phase shift of the third resonance. This still would
not be able to explain why this resonance peak is so wide and occurs at larger fields than
Py. YIG’s resonance should be lower in field (see Figure 24). Note all the peaks are
affected by the resonance from the substrate, which is very wide. This could change
slightly the resonance profiles, but cannot explain the width of the third resonance (see
Figure 22).

Figure 28: YIG/Py: Resonance profiles for the bilayer in the out-of-plane configuration.

In the case of the out-of-plane configuration there are other peculiarities. YIG’s res-
onance is clearly visible at least in lower frequencies. Two main peaks can be observed
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in Figure 28, which correspond to Py and YIG respectively. As was expected, YIG’s
resonance is lower in field than Permalloy’s. No PSSW1 mode for Py is measurable,
which could be attributed to superposition with YIG’s larger resonance profile (PSSW1
has a very small amplitude, see Figure 18). YIG’s peak is easily identifiable in the
lower resonance spectra, but becomes distorted at higher frequencies where the GGG
resonance becomes important. It is unexpected for YIG peak to change so drastically
since as was observed for the single layers, GGG’s resonance does no affect the pro-
files of YIG (see Figures 22, 24 and 25). This interaction between the two resonances
could explain the lack of YIG FMR mode in-plane and the shape of the wide resonance
measured. The in-plane and out-of-plane wide resonances show similar profiles.

A possible coupling between the modes of the two layers is suspected. In the case of
the in-plane magnetization the Permalloy’s, peaks seem to be slightly modified in com-
parison to the single layer, and YIG resonance is not identifiable. In the case of out-of-
plane magnetization the resonance peaks of Py and YIG seems to be more independent.
The fact that there are different pinning conditions for the in-plane and out-of-plane
configurations could explain the difference between the two spectra. From equation
(84), in the in-plane configuration, the out-of-plane dynamic component of ~M could be
pinned , while the in-plane component is free. For the out-of-plane configuration both
components are pinned. This would allow different interaction between the layers in
the two configurations. The material conditions at the interface could also modify the
resonance profiles. Since there is no special treatment between the two layers, some
oxidation at the interface could be affecting the measurements.

5.5.2 Dispersion relations and magnetic parameters

In the case of the bilayer, although there exists a lack of peaks, the estimation of the
magnetic parameters can still be done.
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Figure 29: YIG/Py: Fitted dispersion relations for FMR mode in in- and out-of-plane
configurations

In this case the Permalloy layer presents a ratio of γ||
γ⊥

= 0.97. Once again, no
mayor evidence of anisotropy exist in Py; the effective magnetization is very close to the
saturation value. A possibly lower surface anisotropy could be present at the top layer
of Py. Although, from the estimation, it is not possible to be sure of such reduction.

µoMeff [mT] 989 ±3
γ||[GHzT−1] 29.1 ±0.4 γ⊥[GHzT−1] 29.79±0.07
µoH

′
ex [mT] 230 ± 10 A∗ [ pJ m−1] 15±0.6

µoH
′
S [mT] 0±50 K∗s [mJ m−2] 0.0± 0.8

Table 5: Py layer in YIG/PY: Magnetic parameters (* Estimation)

In the case of the YIG layer the effective magnetization is slightly lower than the sat-
uration magnetization (µoMs=176.0 mT [4]), which would suggest negligible anisotropy.
The value found for γ⊥ is lower than the values obtained for the single layers. This could
be caused by the presence of Py at the bottom surface.

µoMeff [mT] 161 ±5
γ⊥[GHzT−1] 27.8 ±0.1

Table 6: YIG layer in YIG/Py: Magnetic parameters
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5.6 Linewidths
The linewidths (see equation (56)) for in- and out-of-plane configurations are presented
in Figures 30 and 31 respectively.

Figure 30: Linewidths for in-plane configuration

No linear fit could be performed for the YIG/Py sample in the in-plane configuration
due to a important increase of the linewidth around 15 GHz.
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Figure 31: Linewidths for out-of-plane configuration

The obtained damping parameters for in- and out-of-plane are presented in Table ??.

CoFeB Py 40nm YIG 29nm YIG 18.2nm Py (YIG/Py)
α|| · 10−4 43.1±0.3 63±1 17.4±0.7 2.0± 0.3 -
µoHo||[mT] 1.4±0.3 1.9±0.2 0.2±0.1 0.57 ±0.07 -
α⊥ · 10−4 77±6 74±7 9.3±0.3 2.2±0.2 59±6
µoHo⊥[mT] -2±1 5±1 1.9±0.1 0.9±0.1 8±1

Table 7: Damping parameters and for in- and out-of-plane measurements

From the calculations, there is an increase in α for most of the samples, except for
the YIG 29 nm. Comparing the two YIGs, it is clear that YIG AL5007 has a lower
damping factor. This can be related to the fact that the second is fabricated by pulsed
laser deposition which seems to create a sample with less damping than the magnetron
sputtering technique. The increase in α could be directly related to the grain formation
in the sputtered sample. The Py in the bilayer has a smaller damping factor than the
single layer (Py 40nm), although a comparison between these two should be done care-
fully due to the large uncertainty. No damping factor for the YIG layer is given since
there is not enough well defined peaks to have an accurate estimation.
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6 Conclusions
It has been shown that in the case of a simplified study of the uniform dynamics of the
magnetization (fundamental mode) a single straightforward theory can be developed to
obtain good estimation of both the effective magnetization and eventually anisotropy in
the ferromagnetic films. This is enough in many FMR studies where there are limita-
tions in frequency and field range as well as in the detection of the magnetic response.

A more detailed description of the dynamics is necessary given by the spin wave
modes theory, which gives an exact dispersion relation for the fundamental as wells as
for the non-uniform modes. This, both in the case of non-propagating waves (perpendic-
ular standing spinwaves), and for propagating waves in thin films. Although the theory
and derivation of these dispersion relations is tedious, a complete demonstration of the
calculation in the most general conditions has been presented in this manuscript which
can help the reader to access Kalinikos and Slavin seminal work. The justification of
this explicit derivation lies in the fact that each step provides an important insight of the
nature of spinwaves in thin films. Something to point out from this derivation is the fact
that the internal static field action is not independent of the mode of oscillation of the
magnetization. Non-uniform modes have a different effect of the internal field, some-
thing that is not consider in the static field approximation for the fundamental mode. The
potential of this theory encourage its further development to probe additional features,
as it was done here by including an uniaxial surface anisotropy term to the original anal-
ysis of Kalinikos and Salvin. This also inspires development of microwave technology
to expand the frequency range to probe higher order modes.

The importance of microwave correction analysis has been explained in VNA-FMR
technique. This, since the network used for the transmission of the microwave can in-
troduce many alterations to the signal measured by a VNA due to impedance mismatch
at different parts of the line. The calibration of the device is not enough to take all of this
factors into account. Therefore a series of corrections need to be performed in order to
isolate the magnetic response of the material under study which allows a more accurate
estimation of the absorbed power by the magnetic resonance.

The results provide precise estimations of the magnetic properties of interest for
each studied sample. In the case of CoFeB, the exchange constant was estimated, a
uniaxial anisotropy was found to have a contribution to the effective magnetization whit
a hard axis perpendicular to the plane. An important difference was found between the
damping factors in- and out-of-plane.

The single layer Permalloy was found to have a usual behavior with probable grains
in the composition with different properties just visible in the out-of-plane configura-
tion. A good estimation of the saturation magnetization was found together with neg-
ligible anisotropy as is common for Py. The difference between the damping factors is
small and both values are in agreement with literature.

In the case of the two YIG samples very similar properties were found despite their



75

different fabrication process. As was expected from the lack of shielding due to the
insulating nature of YIG, no PSSW1 mode could be measured. This did not allow to
estimate the surface anisotropy which is included on the effective magnetization. From
this estimation, the 29 nm YIG appears to have a total anisotropy around the value of 34
mT. This film also present measurable inhomogeneities in its structure which suggests
some grains of different properties which appear to be non-uniformly distributed. On
the other hand, the 18.2 nm thickness YIG does not present important anisotropy since
its effective magnetization is in agreement with the tabulated value for Ms. Also, the
obtained spectra do not present any visible inhomogeneity which allows to confirm the
tendency of grain formation in the magnetron sputtering technique. This grains could
be the responsible for larger damping factor in the case of the 29 nm YIG (α=0.0017)
in comparison with the 18.2 nm thickness YIG (α=2×10−4). For these two samples a
very wide and large amplitude resonance was measured in addition to the YIG peaks, it
was attributed to magnetic impurities in the GGG substrate.

In the case of the bilayer, similar results are found between the Py layer and the
40 nm Py reference, although the PSSW1 mode was not observed in the out-of-plane
configuration in YIG/Py. This is attributed to a superposition of signals between Py’s
PSSW1 and YIG’s FMR modes (in out-of-plane configuration), since the second has
a much higher amplitude. Other surprising feature is the lack of YIG’s FMR mode
in the in-plane configuration. A complete shielding of the microwave signals is dis-
carded because of the out-of-plane excitation of YIG and the visible wide resonance
attributed to the GGG substrate. A possible coupling between the layers could explain
the unusual behavior observed in-plane. This is contrasted with the out-of-plane mea-
surements where the peaks of each layer appear well defined. It could be related to the
pinning condition on the interface which in the case of in-plane magnetization leads
to an elliptical oscillation of the dynamical components of ~M , because the in-plane
component is free to oscillate, whereas the out-of-plane magnetization have the two dy-
namical components pined. A estimation of the damping factor for the Py layer could
not be obtained because of a unusual broadening of the signal around 15 GHz. The
out-of-plane damping factor is reduced in comparison with the Py 40nm. There was not
enough data to estimate the damping factor for the YIG layer.

To obtain more confident conclusions about the bilayer system a more detailed study
is needed. To have a better understanding of the conditions at the interface, other sam-
ples could be prepared by treating the layers in order to reduce any possible oxidation.
Also different samples, with varying thickness of the two layers, could be measured in
order to probe a possible FMR YIG mode for in-plane magnetization. Since obtain-
ing the pining conditions at the interface is very complicated, a varying angle study
(angle between the normal to the film and the magnetization) could shed some light
on the effective pining. The spectra is expected to follow some kind of transition be-
tween the possibly coupled layers (measured in the in-plane) and the independent reso-
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nances (measured out-of-plane). The development of a theory which tackles the surface
anisotropy conditions at the interface could be an important addition to Kalinikos and
Slavin theory together with a second order treatment where interaction between modes
is considered. Since GGG response appears to be a constant, some way of shielding this
resonance should be investigated to have better results in CPW-FMR specially in bilay-
ers where its influence becomes more important. More experimental data, in different
thickness samples, should be obtained to better understand the difference in γ for in-
and out-of-plane measurements.
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Appendices
Appendix A: Application of boundary conditions on SWM

Applying boundary conditions on the top surface:

∂Φpn(ξ)

∂ξ
|ξ=l/2 + dp1Φ

p
n(l/2) = 0 (148)

− κpnSin(κpn
l

2
) + dx1Cos(κ

p
n

l

2
) +Bp

n

[
κpnCos(κ

p
n

l

2
) + dx1Sin(κpn

l

2
)

]
= 0 (149)

And applying the condition for the lower surface (sings taken into account already):

∂Φpn(ξ)

∂ξ
|ξ=−l/2 + dp1Φ

p
n(−l/2) = 0 (150)

− κpnSin(κpn
l

2
) + dx2Cos(κ

p
n

l

2
)−Bp

n

[
κpnCos(κ

p
n

l

2
) + dx2Sin(κpn

l

2
)

]
= 0 (151)

Solving for Bp
n in both equations and equating the found expressions leads to:

Bp
n =

κpnSin(κpn
l
2
)− dx1Cos(κpn l2)

κpnCos(κ
p
n
l
2
) + dx1Sin(κpn l2)

=
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2
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p
n
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2
)
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p
n
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2
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(152)

Multiplying the denominators on both sides
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(153)

[
(κpn)2 − dp1d

p
2

]
2Sin(κpn

l

2
)Cos(κpn

l

2
) = (dp1 + dp2)κpn

[
Cos2(κpn

l

2
)− Sin2(κpn

l

2
)

]
(154)

(κpn − d
p
1d
p
2)Tan(κpnl) = κpn(dp1 + dp2) (155)
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Appendix B: Field equation projected in the SMW base
The coefficients for each operator, given by the projection, are now explicitly calcu-

lated. For simplicity ~Sn′(ξ) = ~Sxn′(ξ) + ~Syn′(ξ).
1. R̂
Applying the operator R̂ (equation 76) to the sum of SWM

∞∑
n′=0

R̂~Sn′(ξ)=
∞∑
n′=0

[
ωH
ωM
− Λ2( ∂2

∂ξ2
− k2

ζ ) 0

0 ωH
ωM
− Λ2( ∂2

∂ξ2
− k2

ζ )

](
Φxn′(ξ)
Φyn′(ξ)

)
(156)

∞∑
n′=0

R̂~Sn′(ξ)=
∞∑
n′=0

 [
ωH
ωM
Φxn′(ξ)− Λ2

(
∂2Φx

n′ (ξ)

∂ξ2
− k2

ζΦ
x
n′(ξ)

)][
ωH
ωM
Φyn′(ξ)− Λ2

(
∂2Φy

n′ (ξ)

∂ξ2
− k2

ζΦ
y
n′(ξ)

)]  (157)

∞∑
n′=0

R̂~Sn′(ξ)=
∞∑
n′=0

 [
ωH
ωM

+ Λ2
(

(κpn′)
2 + k2

ζ

)]
Φxn′(ξ)[

ωH
ωM

+ Λ2
(

(κpn′)
2 + k2

ζ

)]
Φyn′(ξ)

 (158)

∞∑
n′=0

R̂~Sn′(ξ)=
∞∑
n′=0

R

(
Φxn′(ξ)
Φyn′(ξ)

)
(159)

It is important to point out here that the eigen values for the operator R̂ are the values
R given by:

R=
ωH
ωM

+ Λ2 (kpn′)
2 (160)

(kpn′)
2 = (κpn′)

2 + k2
ζ (161)

Where ~kpn′ is defined as the total wave vector which have contributions of the stand-
ing wave vector ~κpn′ and the propagation wave vector ~kζ .

Projecting equation (159) on the SWM leads to:

• R
xx

R
xx

=
1

l

l/2ˆ

−l/2

∞∑
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~Sxn(ξ) ·

[
∞∑
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=
∞∑
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∞∑
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1

l
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−l/2
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• R
xy

R
xy

=
1

l
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∞∑
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∞∑
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• R
yx

R
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=
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∞∑
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∞∑
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• R
yy

R
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∞∑
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∞∑
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]
dξ

=
∞∑
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Then R̂ can be written as

R̂ =
∞∑
n=0

∞∑
n′=0

[
Rxx
nn′ 0
0 Ryy

nn′

]
(166)

where the coefficients are given by:

Rpp
nn′ =

1

l

l/2ˆ

−l/2

RΦpn(ξ)Φpn′(ξ)dξ (167)

2. T̂
Applying the operator T̂ (equation (77)) to the SWM

∞∑
n′=0

T̂ ~Sxn′(ξ)=
∞∑
n′=0

(
NxxΦxn′(ξ){

i ω
ωM

+Nyx
}
Φxn′(ξ)

)
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∞∑
n′=0

T̂ ~Sn′(ξ)=
∞∑
n′=0

( {
−i ω

ωM
+Nxy

}
Φyn′(ξ)

NyyΦyn′(ξ)

)
(169)

The projection over the SWM leads to:
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∞∑
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T
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=
1

l

l/2ˆ

−l/2

∞∑
n=0

~Syn(ξ) ·
∞∑
n′=0

( {
−i ω

ωM
+Nxy

}
Φyn′(ξ)

NyyΦyn′(ξ)

)
dξ=

∞∑
n=0

∞∑
n′=0

1

l

l/2ˆ

−l/2

[NyyΦyn(ξ)Φyn′(ξ)] dξ (173)

Then T̂ can be written as

¯̂
T=

∞∑
n=0

∞∑
n′=0
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i ω
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n′

)
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Where the coefficients T̄ pq∗nn′ and T̄ pqnn′ are given by

T̄ pq∗nn′ =
1
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−l/2

Φpn(ξ)Φqn′(ξ)dξ (175)
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l
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3. Ĝ(ξ, ξ′)
Applying the operator Ĝ (equation (68)) to the SWM

∞∑
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∞∑
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−EGPΦ
y
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)
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Where the angular dependence is given by

A = Cos2θCos2ϕ− Sin2θ (179)

B = Sin2θCosϕ (180)
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C = CosθSinϕCosϕ (181)

D = SinθSinϕ (182)

E = Sin2ϕ (183)

The projection over the SWM leads to:
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Then Ĝ can be written as

Ĝ =
∞∑
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∞∑
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[
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Where the coefficients P pq
nn′ and Qpq

nn′ are given by

P pq
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nn′ = −Qqp

n′n

1

l

l/2ˆ

−l/2

l/2ˆ

−l/2

GQΦ
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Note that Qxx
nn = 0.

Now summing the operators in equation (94) one can obtain

∞∑
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∞∑
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Where
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Appendix C: Anisotropy tensor with bulk and surface uniaxial anisotropies
From the anisotropy energy density equations (64, 67), the following expressions

can be calculated for their corresponding fields in the ξηζ coordinate system.

~Hk=
2K1M

ξ

µoM2
s

ξ̂ (193)

~HS=

{
2Ktop

S Mξ(ξ)

µoM2
s

δ(ξ − l/2)ξ̂ ε=l/2
2Kbot

S Mξ(ξ)

µoM2
s

δ(ξ + l/2))ξ̂ ε=− l/2
(194)

Therefore, in the ξηζ coordinate system, the bulk uniaxial anisotropy tensor can be
written as

N̂ ξηζ
u =

 − 2K1

µoM2
s

0 0

0 0 0
0 0 0

 (195)

Since the surface anisotropy tensor is just defined at the top and bottom surfaces of
the film

N̂ ξηζ
s =

2

µoM2
s

 −Ktop
S δ(ξ − l/2)−Kbot

S δ(ξ + l/2) 0 0
0 0 0
0 0 0

 (196)

Now, the C and C−1 matrices are used to calculate the anisotropy tensors in the xyz
system,

N̂xyz
u =CN̂ ξηζ

u C−1=-
2K1

µoM2
s

 Sin2θ 0 SinθCosθ
0 0 0

SinθCosθ 0 Cos2θ

 (197)

N̂xyz
s =CN̂ ξηζ

s C−1=− 2

µoM2
s

(
Ktop
S δ(ξ − l/2) +Kbot

S δ(ξ + l/2)
) Sin2θ 0 SinθCosθ

0 0 0
SinθCosθ 0 Cos2θ


(198)

Then, it is clear that the total two dimensional anisotropy tensor have the form

N̂A,xy=
[
Nxx 0

0 0

]
(199)

Nxx=− Sin2θ
2

µoM2
s

[
K1 +Ktop

S δ(ξ − l/2)δ(ξ′ − l/2) +Kbot
S δ(ξ + l/2)δ(ξ′ + l/2)

]
(200)
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Recalling equation (176) (see Appendix C), it is clear that the only non-zero com-
ponent is T̄ xxnn :

T̄ xxnn =
1

l

l/2ˆ

−l/2

NxxΦpn(ξ)Φqn(ξ)dξ (201)

T̄ xx00 = −1

l
Sin2θ

2
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s
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l/2ˆ

−l/2
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l/2ˆ
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
(202)

T̄ xx00 = −Sin2θ
2

µoM2
s

[
Ku +

KS

l

]
(203)

where the sum of the top and bottom anisotropy constants is denoted by

Ktop
S +Kbot

S =KS (204)

If n 6= 0
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l
Sin2θ

2
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s
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]2
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
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l
Sin2θ
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
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[√
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T̄ xxnn = −Sin2θ
2

µoM2
s

[
Ku + 2

KS

l

]
(206)
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Appendix D: The internal static field and calculation of the Rpp
nn coefficients

The internal static field is the static field along the ẑ direction in Figure 5 and will
be given by equation (17):

~Hi = ~Hze + ~HEx + ~Hde + ~HKu + ~HKs (207)

The Zeeman term is given just by the external applied field ~Hze = ~Hext.
There is no exchange static field because of the differential character of the interac-

tion (equation (5)).
The demagnetizing field is just proportional to the component of ~Ms along the per-

pendicular direction to the film ~Hde = −Cosθ ~Ms (equation (10)).
The static uniaxial bulk anisotropy ~HKu = 2K1Cos2θ

µoMs
ẑ field can be obtained from

applying (197) as an anisotropy tensor.
Finally the static uniaxial surface anisotropy field ~HKs = 2Cos2θ

µoMs

(
Ktop
S δ(ξ − l/2) +Kbot

S δ(ξ + l/2)
)
ẑ

can be obtained from applying(198) as another anisotropy tensor. Note this is the only
field that depends on ξ.

Now the static internal field and ωH are both well defined for equations (160, 167).
From equation (167) the coefficients for the modes n = 0 and n = 1 are given by:

Rpp
nn′ =

1

l

l/2ˆ

−l/2

[
ωH
ωM

+ Λ2 (kpn′)
2

]
dξ (208)

Rpp
00 =

1

l

l/2ˆ

−l/2

ωH
ωM

dξ =
1

Ms

[
Hext − CosθMs +

2K1Cos
2θ

µoMs

+
2KSCos

2θ

µoMs

]
(209)

Rpp
11 =

1

l

l/2ˆ

−l/2

ωH
ωM

dξ =
1

Ms

[
Hext − CosθMs +

2K1Cos
2θ

µoMs

+
4KSCos

2θ

µoMsl

]
+

2Aπ2n2

µoM2
s l

2

(210)
Therefore for the in-plane configuration θ = π

2
:

Rpp
00 =

1

l

l/2ˆ

−l/2

ωH
ωM

dξ =
Hext

Ms

(211)

Rpp
11 =

1

l

l/2ˆ

−l/2

ωH
ωM

dξ =
1

Ms

[
Hext +

2Aπ2n2

µoM2
s l

2

]
(212)
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And for the out-of-plane configuration θ = 0:

Rpp
00 =

1

l

l/2ˆ

−l/2

ωH
ωM

dξ =
1

Ms

[
Hext −Ms +

2K1

µoMs

+
2KS

µoMs

]
(213)

Rpp
11 =

1

l

l/2ˆ

−l/2

ωH
ωM

dξ =
1

Ms

[
Hext −Ms +

2K1

µoMs

+
4KS

µoMsl

]
+

2Aπ2n2

µoM2
s l

2
(214)
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