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Resumen
En el presente trabajo se analizará metamateriales hiperbólicos empleando el método
diferencial. En primer lugar, se desarrolla la teorı́a detrás del método diferencial. Este
método sirve para describir los campos eléctricos y magnéticos difractados por una
estructura de cualquier geometrı́a y material. Para este trabajo se consideran únicamente
estructuras invariantes en una dirección espacial. Después, se explica el desarrollo de
un código en lenguaje C++ basado en el método diferencial para describir los campos
difractados a través de la matriz de scattering de la estructura considerada. Finalmente,
se emplea el código para analizar metamateriales hiperbólicos.

Key words: método diferencial, diffracción, metamaterial, metamaterial hiperbólico.
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Abstract
In this work hyperbolic metamaterials will be analyzed using the differential method.
The first part is dedicated to the theoretical development of the differential method.
This method is used to describe the electric and magnetic fields diffracted by a structure
of any geometry or material. This particular work will be limited to structures which
geometry is invariant along one spatial direction. Then, the development of a code
in C++ language based on the differential method is explained. The code is used to
describe the diffracted fields in terms of the scattering matrix of the structure. Finally,
this code is utilized to analyzed hyperbolic metamaterials.

Key words: differential method, diffraction, hyperbolic metamaterial.
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1 Introduction

1.1 Spectral methods for light diffraction analysis
When light interacts with an object two different phenomena can occur: scattering
and absorption of photons. Light keeps information of the object with which it inter-
acts. This information can be “read” through parameters like the intensity, polarization,
phase, etc.

Diffraction is a particular form of scattering. The difference between both terms
is pretty subtle and many times both are used as synonyms. Scattering is often associ-
ated with interactions between small randomly distributed particles and electromagnetic
waves. Meanwhile, diffraction is related to interactions that involved organized struc-
tures [38].

So, the study of light diffracted by a structure is important due to the fact that dif-
ferent properties of the structure can be known. There are several tools (theoretical
and computational) useful to analyze diffracted light. An especial set of these tools
are known as “spectral methods”. In general terms, a spectral method consists in a
formulation to solve differential equations through a spacial discretization. It gives an
approximate solution by a linear combination of suitable trial basis functions. Here the
use of test functions ensures that the differential equation and boundary conditions are
satisfied by the proposed solution [6]. When spectral methods are used for the analysis
of light diffraction, the functions used as basis for the solution of differential equations
are generally Fourier series. But, it is extremely important to highlight that Fourier
series are just an option among others. Sometimes, boundary conditions appears as Flo-
quet or quasi-periodic functions. Then, the solutions of the differential equations can
appear, for example, expressed as a Fourier series modulated by a single plane wave [1].

Some examples of spectral methods for the analysis of light diffraction are: the
Rigorous Wave Coupled Wave (RCW) method also known as Fourier modal theory, the
integral method, the coordinate transformation methods and the differential method [1].

1.1.1 Classic differential method

The first works involving the differential method appeared during the 1960s. In this
works, the method was used for modeling the diffusion of particles in nuclear potentials
and it was referred as the “optical method” due to the similarity of the Schrodinger and
Helmholtz equations. Later, in 1969 it was used for the description of diffraction grat-
ings. But, the results obtained using the differential method were inaccurate, especially
for TM polarization. The numerical problems were eliminated with the subsequent in-
clusion of the S-matrix propagation algorithm and L. Li factorization rules [1, 19, 26].
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1.2 Metamaterials
1.2.1 What is a metamaterial?

The interactions between electromagnetic waves and objects can produce a vastly di-
verse set of phenomena and allows the functioning of many devices. The response of an
object is strongly dependent on elements like its geometry and the materials of fabrica-
tion. Although, there are some constraints impossible to overcome, for example that any
medium permits a group velocity greater than the speed of light in vacuum, many elec-
tromagnetic phenomena and properties can be achieved and are only limited by these
two factors.

It is possible to fabricate materials with electromagnetic properties that are not
present in nature. These artificial structures engineered to posses some novel electro-
magnetic properties or to produce a specific phenomenon are called “metamaterials”
[7].

The prefix “meta” means “beyond”, thus the word “metamaterials” refers to ma-
terials beyond those present in nature. This term was used for the first time in 1999
by Walser, R., a physics professor at the University of Texas for referring to “Macro-
scopic composites having a synthetic, three dimensional, periodic cellular architecture
designed to produce an optimized combination, not available in nature, of two or more
responses” [37]. Later the term was used in 2000 by Smith et al. in a paper related to
materials with simultaneous negative permittivity and permeability. This type of mate-
rials are called double negative materials (DNG) or left-handed materials (LHM) [8].
Interestingly, LHM were previously described theoretically by Veselago in 1968 [8].
But, they did not attract the scientific community during 30 years due to lack of experi-
mental verification or the presence of such characteristic in nature [37].

Nowadays, the term “metamaterial” is not limited only to LHM. Usually a material
is characterized by its permittivity (ε) and permeability (µ). In Figure 1 are shown
all possible properties of isotropic and lossless materials depending on the values of ε
and µ. The first quadrant (ε > 0 and µ > 0) represents right-handed materials (RHM).
The second (ε < 0 and µ > 0), corresponds to electric plasma that supports evanescent
waves. The third quadrant (ε < 0 and µ < 0) are LHM. Finally, the fourth quadrant
(ε > 0 and µ < 0) represents magnetic plasma that supports evanescent waves.
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Figure 1: Possible properties of an isotropic and lossless material in the ε-µ domain [8].

In Figure 1 other metamaterials with different properties can be observed. For µ0 and
ε0 the permeability and permittivity of vacuum, respectively. There are metamaterials
that presents µ = −µ0 and ε = −ε0. It is a LHM that has “anti-air” properties producing
a perfect lens. The line ε = µ represents metamaterials that have perfect impedance
matching with air, resulting in no reflections. There are some materials with ε = 0
(ε-near zero -ENZ-) and µ = 0 (µ-near zero -MNZ-) with special properties. Finally,
in the first quadrant, only exist certain discrete points with µ = µ0 and ε ≥ ε0 which
represent most of the natural materials that exist. Thus, even for RHM some properties
are only obtained by metamaterials [8].

One approach to construct a metamaterial is to create a structure made of well-
arranged elements of subwavelength dimensions. Although this building blocks are
several orders beyond the atomic or molecular level, these are still considerably smaller
than wavelengths of interest and their electromagnetic responses can be expressed in
terms of homogenized “effective” parameters [7].

1.2.2 Hyperbolic metamaterials and its applications

Hyperbolic metamaterials (HMM) are a particular set of metamaterials first introduced
to overcome the diffraction limit of optical imaging. With time, many other applications
that involved these metamaterials were considered. For example: hyper lenses, perfect
nanolenses, invisibility cloaks, enhanced quantum-electrodynamics effects, thermal hy-
perconductivity and even gravitation theory analogues [5, 32].

A HMM is an uniaxial material that possesses dielectric properties in one direction
and metallic properties in an orthogonal direction. This kind of behavior, at optical
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frequencies is not present in nature. There are two main approaches to construct a
hyperbolic metamaterial. One approach consists in stacking alternating metal-dielectric
layers. Each layer has subwavelength dimensions (Figure 2 a)). The second approach
consists in metallic nanowires put inside a dielectric host (Figure 2 b)). The selection of
the metal-dielectric combination depends in the wavelengths considered. For example,
for the ultraviolet regime the combination of Au or Ag as metals and Al2O3 as dielectric
allows the creation of HMM. In the visible regime, the combination of Au or Ag with
TiO2 generates HMM [9].

Figure 2: a) HMM made of alternating layers of dielectric and metal. b) HMM made of
metallic nanowires inside a dielectric host.

1.3 Aim
The aim of this work is to explain the theoretical development of the differential method
for the particular case in which one spatial direction is invariant. Once all the relevant
theory behind the method is set, the creation and functioning of a computational tool
based on the method is explored. Finally, the analysis of HMMs using the computational
tool is considered.
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2 Classic differential method
The differential method is a technique used to analyze the diffraction of light due to its
interaction with an element of arbitrary shape and made of any periodic or aperiodic ar-
rangement of different materials. The method consists in projecting the electromagnetic
field on a set of basic functions in order to obtain a set of ordinary differential equations
starting from Maxwell equations [1, 18]. This method is specially suited to treat rough
surfaces with localized inhomogeneities (for example air bubbles) and inhomogeneities
that are described by changes in the permittivity or in the geometry of the material [12].
In this chapter, a theoretical frame for the method will be developed.

2.1 Definition of the problem
The goal of the method is to compute the electromagnetic field diffracted by a structure.
The method will be limited to the particular case in which the structure is invariant along
one spacial dimension. Establishing the coordinate axes as in Figure 3, the invariance
will be considered along ûy.

Figure 3: Cartesian coordinate system used to describe a structure invariant along one
dimension

The permittivity of the entire system is described as:
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ε(x, z) = ε1 if z > h
ε(x, z) = ε(x, z) if 0 < z < h
ε(x, z) = ε2 if z < 0

(1)

The region comprised between 0 < z < h is called “modulated region”. The zones
for z > h and z < 0 will be called respectively, superstrate and substrate.

Furthermore, it is going to be assumed that the incident field is a monochromatic
plane wave, with wave vector ~k contained in the xz plane and forming an angle θi (the
angle of incidence) with ûy [4]. Finally, the incident wave will be propagating only
through the superstrate, there will not be any illumination below the modulated zone
(through the substrate).

2.2 Maxwell equations for TE and TM polarizations
The Maxwell equations for a medium in which there is not any currents or charges are:

div ~D = 0

rot~E = −∂~B
∂t

divB̃ = 0

rot~H = ∂ ~D
∂t

(2)

Using a Fourier transform, it is possible to express the time dependence of a vector
field ~A(~r, t) in terms of the angular frequency [18]. Thus, the vector field ~A(~r, ω) is
such that:

~A(~r, t) =

∞�

−∞

~A(~r, ω)eiωtdω (3)

Using the Fourier transform as defined in (3) into the set of equations (2), we get:

div ~D = 0

rot ~E = iω ~B

div ~H = 0

rot ~H = −iω ~D

(4)

For a lineal, isotropic and non-magnetic medium we have the relations [13]:

~D(ω) = ε(ω) ~E(ω) (5)

~B(ω) = µ ~H(ω) (6)
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In relation (6) µ = µ0 is the magnetic permeability of vacuum.
From (4), by using the equations that involve the rotational operator and combining

them with the relations (5) and (6), two different sets of equations are obtained:

−∂Ey

∂z
= iωµHx

∂Ey

∂x
= iωµHz

∂Hx

∂z
− ∂Hz

∂x
= −iωεEy

(7)

−∂Hy

∂z
= −iωεEx

∂Hy

∂x
= −iωeEz

∂Ex

∂z
− ∂Ez

∂x
= iωµHy

(8)

These two groups of equations allow us to consider the problem from two different
perspectives. Equations (7) represent the transverse electric polarization (TE) or s polar-
ization (the electric field is parallel to the direction ûy). On the other hand, the equations
(8) describe the transverse magnetic polarization (TM) or p polarization (the magnetic
field is parallel to the direction ûy) [18].

2.3 Classic differential method for TE polarization
2.3.1 Field equations inside the modulated zone

By applying the rotational operator to the second equation of the set (4) and using the
identity rot

(
rot ~E

)
= −∇2 ~E + grad

(
div ~E

)
, the equation of Helmholtz is obtained:

∇2 ~E + k2 ~E = ~0 (9)

Here k = µεω2 = (2πν/λ)2 where ν =
√
εrµr is the index of refraction of the

medium and λ is the free space wavelength of the incident field.
For TE polarization only the component of the electric field parallel to ûy is con-

sidered. This component is parallel to the surface of the material, thus it is always
continuous. After this two considerations, Helmholtz equation becomes:

∂2

∂z2
Ey(x, z) = − ∂2

∂x2
Ey(x, z)− k2(x, z)Ey(x, z) (10)

Ey can be found solving this equation for x ∈ (−∞,∞) and z ∈ [0, h]. Obviously
a complete knowledge of the index of refraction ν(x, y) in all the modulated zone is
necessary.

Ã(σ) =
1

2π

∞�

−∞

A(x)e−iσxdx (11)
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Using the Fourier transform (11) in equation (10) the dependence on the spatial
parameter x is eliminated, obtaining the Helmholtz equation in Fourier space:

∂2Ẽy
∂z2

(σ, z) = σ2Ẽy(σ, z)−
∞�

−∞

k̃2(σ − σ′, z)Ẽy(σ′, z)dσ′ (12)

Where Ẽy and k̃2 are the Fourier transform of Ey and k2, respectively. The integral
is the result of the convolution ˜(k2 ∗ Ẽy)(σ, z).

In order to solve equation (12) using computational tools, it is necessary to discretize
it. This is achieved through the following relations: σ → σn = σ0 + n∆σ and σ′ →
σm = σ0 + m∆σ for n,m ∈ N and σ0 = ksin (θi), where θi is the incidence angle.
Also, it is necessary to truncate the equation obtained after the discretization. Thus, it
is going to be assumed that the terms of the electric field that corresponds to a spatial
frequency greater that certain value σN are negligible. The equation obtained after all
these considerations is:

∂2Ẽy
∂z2

(n, z) = σ2
nẼy(n, z)−

N∑
m=−N

k̃2(n−m, z)Ẽy(m, z)∆σ (13)

Where m and n are contained in the interval [−N,N ]. Using the Kronecker delta
and the notation En = ∆σẼy(n, z) y kn = ∆σk̃2(n, z) this equation can be simplified
as:

∂2En
∂z2

=
N∑

m=−N

[
σ2
nδn,m − k2n−m

]
Em (14)

This last expression represents a system formed by (2N + 1) differential equations
of second order. It can be rewritten as a system of (4N + 2)differential equations of
first order:

∂En

∂z
= E ′n

∂E′
n

∂z
=

∑N
m=−N

[
σ2
nδn,m − k2n−m

]
Em

(15)

By using the definitions Hn = ∆σH̃x (σn) and H ′n = ωµHn, the first equation of
(7) becomes E ′n = −iH ′n and the system (15) is:

∂En

∂z
= −iH ′n

∂H′
n

∂z
= i

∑N
m=−N

[
σ2
nδn,m − k2n−m

]
Em

(16)

Now, it is useful to introduce some vector notation to further simplify the system
(16). By defining vectors [E] y [H ′] as follows:
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[E] =


E-N

...
En
...
EN

 [H ′] =


H ′-N

...
H ′n

...
H ′N

 (17)

And defining the vector:

[F ] =

[
[E]
[H ′]

]
(18)

We can express (16) as:

∂

∂z
[F ] = M [F ] (19)

Where M is a matrix such that:

M = i

[
0 −Id
M21 0

]
(20)

Id corresponds to the identity matrix and M21 is a matrix with components Mn,m =
σ2
nδn,m − k2n−m.

2.3.2 Field equations outside the modulated zone

For this case, applying a Fourier transform to the Helmholtz equation (9) leads to the
equation:

∂2 ~̃E(σ, z)

∂z2
+ (k2 − σ2) ~̃E(σ, z) =

−→
0 (21)

This second order differential equation has a solution of the form:

~̃E(σ, z) = ~̃A−(σ)e−iβz + ~̃A+(σ)eiβz (22)

In (22) ~̃A+(σ) and ~̃A−(σ) correspond to the complex amplitudes of progressive and
retrograde waves, respectively (i.e. waves propagating along ûz and −ûz directions).
Also, the parameter β is such that β =

√
k2 − σ2.

In the real space, the solution (22) has the form:

~E(x, z) =

∞�

−∞

[
~̃A−(σ)e−i(σx−βz) + ~̃A+(σ)ei(σx+βz)

]
dσ (23)
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This integral can be discretized and truncated to obtain:

~E(x, z) =
+N∑

n=−N

[
~̃A−n e

−i(σnx−βnz) + ~̃A+
n (σ)ei(σnx+βnz)

]
∆σ (24)

Considering only the component along ûy of (24) we obtain:

Ey(x, z) =
+N∑

n=−N

[
A−n e

−i(σnx−βnz) + A+
n (σ)ei(σnx+βnz)

]
=

+N∑
n=−N

Ene
iσnx

(25)

Where En = E−n + E+
n , A−n e

−iβnz = E−n and A+
n e

+iβnz = E+
n (also A−n =

∆σÃ−(σn) and A+
n = ∆σÃ+(σn)) for the propagating waves with directions −ûz and

ûz, respectively. Considering the first equation of the set (7), H ′n is:

H ′n = i
∂En
∂z

= βnA
−
n e
−iβnz − βnA+

n e
iβnz = βnE

−
n − βnE+

n (26)

The electric field in the superstrate (z > h) is indicated by Eh
n and is given by the

sum of the incident field Ei
n and the reflected field Eh+

n :

Eh
n = Ei

n + Eh+
n = Aine

−iβh
nz + Ah+n eiβ

h
nz (27)

Ain and Ah+n are the complex amplitudes of the incident and reflected fields.
In the substrate (z < 0) the electric field is given only by the transmitted field. Thus:

E0
n = E0−

n = A0−
n e−iβ

0
nz (28)

A0−
n is the complex amplitude of the transmitted field.

Equations (25) and (26) describe downward and upward propagating fields. These
fields have a vectorial representation such that:

[E−] =


E−-N

...
E−n

...
E−N

 [E+] =


E+

-N
...
E+
n
...
E+
N

 [V ] =

[
[E−]
[E+]

]
(29)

A relation between vectors (17) and (29) can be established through a matrix Ψ such
that [F ] = Ψ [V ]. The form of this matrix comes from equations (25) and (26). The
matrix Ψ is:
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Ψ =

[
Id Id
Ψ21 Ψ22

]
(30)

Where Ψ21 and Ψ22 are:

Ψ21 =


. . . 0

βn

0
. . .

 Ψ22 =


. . . 0
−βn

0
. . .

 (31)

2.4 Classic differential method for TM polarization
2.4.1 Field equation

Applying the operator rot to the fourth equation of (4) and the relation (5) we obtain the
Helmholtz equation for the magnetic field ~H:

∇2 ~H + ω2µε ~H = iωgradε× ~E (32)

For TM polarization equation (32) turns into:

∇2Hy + ω2µεHy = iω
∂ε

∂z
Ex − iω

∂ε

∂x
Ez (33)

It is possible to use equations (8) to express Ex and Ez as function of ∂Hy/∂z and
∂Hy/∂x . The resultant equation is:

∂

∂z

(
1

ε

∂Hy

∂z

)
= − ∂

∂x

(
1

ε

∂Hy

∂x

)
− ω2µHy (34)

This differential equation can be transform in a system of two differential equation
of first order considering that Ex = (1/iωε) ∂Hy/∂z. The system obtained is:

1

iωµ

∂Ex
∂z

= Hy +
∂

∂x

(
1

k2
∂Hy

∂x

)
∂Hy

∂z
= − 1

iωµ
k2Ex

(35)

When applying the Fourier transform (defined by (11)) to this system, it is neces-
sary to transform the product k2Ex. The transformation of this product generates a
convolution. The problem with this operation is that k2 is proportional to ε(x) and this
value could present discontinuities inside the modulated zone. Furthermore, the discon-
tinuity of Ex(x) depends on the geometry of the analyzed surface. Consequently, to
obtain the correct representation in Fourier space of (35) we have to consider these two
elements[18].
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2.4.2 Definition of the normal and tangential components at the surface for the
electric field

In order to consider the effect of the geometry, it is necessary to define the components
normal (EN ) and tangential (ET ) to the surface of the electric field. These components
are:

EN =− sinθNEx + conθNEz

ET =cosθNEx + sinθNEz
(36)

The angle θN and the components EN and ET are illustrated in Figure 4.

Figure 4: Decomposition of the electric field in normal and tangential components

From equation (4), Ex and Ez an be expressed as functions of the normal and tan-
gential components.

Ex =cosθNET − sinθNEN
Ez =sinθNET + cosθNEN

(37)

For simplifying the notation we are going to established c = cosθN y s = sinθN .
Assuming that the limit of the modulated zone is described by a continuous function

f(x), such that z = f(x), c and s are [18]:

c(x, f(x)) =

√
1

1 + (∂f/∂x)2
(38)

s(x, f(x)) =

√
1

1 + (∂f/∂x)2
∂f

∂x
(39)

Using equations (37), (38) and (39) into (35) allows to avoid the description of the
system of equations in terms of Ex.
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2.4.3 L. Li factorization rules

As mentioned before, when representing the system (35) in the reciprocal space is nec-
essary to consider the continuity of the factors that are involved in a product that is
turned into a convolution [18]. A convolution in Fourier space, after a discretization has
the form:

hn =
∞∑
−∞

fn−mgm (40)

(40) is true regardless of the continuity of f(x) or g(x) as long as n ∈ [−∞,∞].
Although, when (40) is truncated, the correct expression will depend on the continuity
of f(x) y g(x) [22]. Three different cases are analyzed.

• If the functions do not present simultaneous discontinuities, the product can be
factorized as:

hn =
N∑
−N

fn−mgm (41)

The matrix form of this factorization is [h] = f [g]. [h] (or [g]) represents a vector
with 2N + 1 components that correspond to the Fourier transform of h (or g). Mean-
while, f is a Toeplitz matrix which elements fn,m are Fourier transforms of f at spatial
frequencies such that (σn − σm).

• If both functions have a discontinuity simultaneously, but the product f(x)g(x) is
continuous in this point. Then, the correct factorization is:

hn =
∞∑
−∞

[
1

f

]−1
n−m

gm (42)

The matrix representation of this factorization is [h] = 1/f −1 [g].

• If both functions are discontinuous simultaneously and the product is also discon-
tinuous. Then, it is not possible to factorize the product.

2.4.4 Field equations inside the modulated zone

When obtaining the representation of (35) in the reciprocal space, it is necessary to
transform the product k2Ex. Knowing that k2Ex ∝ εEx we must consider the continuity
of ε, Ex and the product εEx to apply the appropriate Li’s factorization rule. Using (37)
for Exwe have:

εEx = εcET − εsEN (43)
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When changing between interfaces, the function ET (x) is always continuous. On
the other hand, EN(x) and ε(x) are discontinuous, but the product ε(x)EN(x) is not (the
product corresponds to the electric displacement vector and it is always continuous). In
Fourier space, the representation of (43) is:

[εEx] = [εcET ]− [εsEN ] (44)

After the application of the correct Li’s factorization rules we obtain:

[εEx] = ε [cET ]− 1

ε

−1
[sEN ] (45)

We can replace (36) in (45) and considering c(x) and s(x) as always continuous
function:

[
k2Ex

]
=

(
k2 c2 +

1

k2

−1
s2
)

[Ex]−
(
k2 − 1

k2

−1)
cs [Ez] (46)

Defining the matrices:

Q1 =

(
k2 − 1

k2

−1)
c2 (47)

Q2 =

(
k2 − 1

k2

−1)
cs (48)

Rewriting (46) as:

[
k2Ex

]
=

(
Q1 +

1

k2

−1)
[Ex] +Q2 [Ez] (49)

In a similar way, it is possible to find an expression for [k2Ez]. This expression is
given by: [

k2Ez
]

= Q2 [Ex] +
(
k2 −Q1

)
[Ez] (50)

From this last equation, we can obtain that:

[Ez] =
(
k2 −Q1

)−1 ([
k2Ex

]
−Q2 [Ex]

)
(51)

Introducing the equality k2Ez = iωµ∂Hy/∂x, we get:

[Ez] =
(
k2 −Q1

)−1(
iωµ

[
∂Hy

∂x

]
−Q2 [Ex]

)
= −

(
k2 −Q1

)−1
(ωµσ [Hy] +Q2 [Ex])

(52)
Using (52) in (49) the vector [k2Ex] becomes:
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[
k2Ex

]
=

(
Q1 +

1

k2

−1
−Q2

(
k2 −Q1

)−1
Q2

)
[Ex]− ωµQ2

(
k2 −Q1

)−1
σ [Hy]

(53)
Considering the identity [(1/k2) ∂Hy/∂x] = (1/iωµ) [Ez], finally we can obtain the

correct representation in Fourier space of the system (35). This new system would be:

∂ [Ex]

∂z
=− iσ

(
k2 −Q1

)−1
Q2 [Ex] + iωµ

(
1− σ

(
k2 −Q1

)−1
σ
)

[Hy]

∂ [Hy]

∂z
=

i

ωµ

(
Q1 +

1

k2

−1
−Q2

(
k2 −Q1

)−1
Q2

)
[Ex]− iQ2

(
k2 −Q1

)−1
σ [Hy]

(54)
It is important to highlight that the system (54) represents a system of the form:

∂

∂z
[F ] = M [F ] (55)

When conserving the notation established in (17) and (18) for TE polarization. But,
in contrast with TE polarization, matrix M for TM polarization is more complex. For
this cases, the M matrix will be:

M = i

[
M11 M12

M21 M22

]
(56)

Where:

M11 = −σ
(
k2 −Q1

)−1
Q2

M12 = ωµ
(

1− σ
(
k2 −Q1

)−1
σ
)

M21 =
1

ωµ

(
Q1 +

1

k2

−1
−Q2

(
k2 −Q1

)−1
Q2

)
M22 = −Q2

(
k2 −Q1

)−1
σ

(57)

2.4.5 Field equations outside the modulated zone

Similar to equation (25) found for TE polarization, for TM polarization, the fieldH ′y(x, z)
outside the modulated zone has the form:

H ′y(x, z) =
N∑

n=−N

[
B−n e

−iβnz +B+
n e

iβnz
]
eiσnx

=
N∑

n=−N

H ′ne
iσnx

(58)
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In (58) we have H ′n = H ′n
− + H ′n

+ and we have used the notation B−n e
−iβnz =

H ′n
− and B+

n e
+iβnz = H ′n

+ (we also have considered B−n = ∆σB̃−(σn) and B+
n =

∆σB̃+(σn)).
We can express the component Ex (x, z) as a function of H ′y(x, z) (through (8)),

thus:

Ex (x, z) = −iωµ
k2

∂Hy

∂z
(x, z) = − i

k2
∂H ′y
∂z

(x, z) (59)

Thanks to this last relation and remembering that En = ∆σẼx (σn) and H ′n =
∆σH̃ ′y (σn), it is easy to establish:

En = −βn
k2
B−n e

−iβnz +
βn
k2
B+
n e

iβnz

= −βn
k2
H ′n
− +

βn
k2
H ′n

+

(60)

For z > h (superstrate) the magnetic field is formed by the incident and reflected
fields. We are going to represent the magnetic field in the superstrate as H ′n

h. The
incident field will be note as H ′n

i and the reflected as H ′n
h+. Then:

H ′n
h = H ′n

i +H ′n
h+ = Bi

ne
−iβh

nz +Bh+
n eiβ

h
nz (61)

Bi
n and Bh+

n are the complex amplitudes of the incident and reflected fields.
For z < 0 (substrate) the magnetic field is only formed by the transmitted field.

Thus, we are going to note this field as:

H ′n
0 = H ′n

0− = B0−
n e−iβ

0
nz (62)

B0−
n is the complex amplitude of the transmitted field. It is important to emphasize

that there is not any extra incident field below the surface.
As was done in (29), we can define:

[H ′−] =


H ′-N

−

...
H ′n
−

...
H ′N

−

 [H ′+] =


H ′-N

+

...
H ′n

+

...
H ′N

+

 [V ] =

[
[H ′−]
[H ′+]

]
(63)

After definition (63) we can find a matrix Ψ such that:

[F ] = Ψ [V ] (64)

From (60) the matrix is:
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Ψ =

[
Id Id
Ψ21 Ψ22

]
(65)

Where Ψ21 and Ψ22 are:

Ψ21 =


. . . 0

−βn
k2

0
. . .

 Ψ22 =


. . . 0

βn
k2

0
. . .

 (66)

2.5 Resolution of the systems of equations for TE and TM polariza-
tions

The systems (19) and (55) (systems of first order differential equations for TE and TM
polarizations) can be solved using different numeric methods for differential equations
of first order. But, there is some details that have to be considered. Equations (27), (28),
(61) and (62) describe the electric and magnetic fields for TE and TM polarizations
at the borders of the modulated zone. The problem is that the coefficients Ah+n , A0−

n ,
Bh+
n and B0−

n are unknown, thus the initial conditions necessary to solve the systems of
equations are also unknown. It is possible to cope with this lack of information thanks
to the following consideration.

The form of the systems (19) and (55) suggests the existence of a relation between
[F (0)] and [F (0 + dz)]. This relations is:

[F (0 + dz)] = [F (0)] +M(0) [F (0)] dz

= M ′ (0) [F (0)]
(67)

Where M ′ (0) = Id + M (0) dz. The repeated application of (67) allows to find a
matrix P such that:

[F (h)] = P [F (0)] (68)

Thanks to matrix (30) or (65) we can find a matrix T :

[V (h)] = T [V (0)] (69)

The matrix T = Ψ−1PΨ is called transmission matrix. This matrix establishes a
relation between the incident and transmitted and reflected fields. For TE polarization,
for example, we have that [E0+] = 0 (the field propagating in the ûz direction evaluated
at z = 0). Then, the submatrices of T generates the relations:[

Ei
]

= T11
[
E0−] (70)
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[
Eh+

]
= T12

[
E0−] (71)

Therefore, we can define matrices t = T−111 and r = T12T
−1
11 that permit find the

reflected and transmitted fields only in terms of the incident field, in other words:[
Eh+

]
= r

[
Ei
]

(72)

[
E0−] = t

[
Ei
]

(73)

So, it is necessary to find matrix T , even though the shortage of initial conditions.
The way to solve this problem is to chose as initial arbitrary condition a vector [F (0)]n,
where the n-esime component of the vector is 1 and the others are zero. After to sub-
ject this vector to a repeated application of (67) we can find the n-esime column of P .
Finally, having matrix P we can find T . The same process can be followed for TM
polarization [18].
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3 Development of a computational tool for the imple-
mentation of the differential method and validation
of the code

In this chapter will be discussed some details worth of examination that emerged during
the development of a program for implementing the differential method. The two most
important elements to be considered when creating the code were: the implementation
of the S-matrix propagation algorithm and the Runge-Kutta method for the solution of
a systems of equations. A third element related to Fast Fourier Transforms (FFT) is
addressed in Appendix A (this topic is left as an appendix due to its focus in a com-
putational point of view). Moreover, different validation steps and their results for the
code created will be analyzed. The results provided by the code were verified to obey
the energy conservation principle and compared with the results from Fresnel equations
and the transmission matrix method. The code developed and used during this particular
work was written in C++ language.

3.1 S-matrix propagation algorithm
In equation (69) the relation between the vector V (vector that contains the Fourier
components of the electric and magnetic fields propagating in the directions ûz or −ûz,
defined by equations (29) or (63)) at both sides of the modulated zone is established
through a transmission matrix T . Although, the use of this kind of matrix generates
several numerical problems. Labeling two different interfaces as q + 1 and q, also
two vectors Aq+1 and Aq, which represent the electromagnetic field amplitudes at the
interfaces; the propagation between both, through a transmission matrix is:

Aq+1 = Tq+1Aq (74)

The source of the numerical instabilities is that the “propagation” between interfaces
involves growing and decreasing terms, due to absorption losses and the presence of
evanescent waves. When a real field propagates from q to q+1, it does not grown unless
the propagation medium supplies optical gains. The same reasoning applies for the
propagation from q+ 1 to q. However, (74) is asymmetrical. This equation can describe
the propagation of a natural decreasing field from q to q + 1, but when describing the
propagation of the exact same field in the opposite direction, the transmission matrix
would present artificially growing terms. When the propagation length is sufficiently
large this terms overweight the effect of any other term [1]. The path to circumvent
these problems consists in introducing the S-matrix algorithm. This tool permits to give
a clearer physical interpretation to the matrix that represents the propagation and also to
improve the efficiency in computational cost [20].
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In order to introduce the S-matrix algorithm in the execution of the designed pro-
gram, the structure inside the modulated zone is divided in layers. Between each layer
an infinitesimal layer of air is put. This idea is represented schematically in Figure 5.

Figure 5: Representation of the division in layers of the modulated zone and definitions
of transmission and scattering matrices

As represented in Figure 5 the goal of the program is to establish a matrix S that
relates the fields going downward and upward between two interfaces. This matrix is
called “scattering” matrix and it generates the relation:[

A+
q

A−0

]
= Sq

[
A+

0

A−q

]
(75)

Where A could represent a vector such as E or H ′ from equations (29) and (63).
The matrix can be decomposed in four submatrices:

Sq =

[
S
(q)
11 S

(q)
12

S
(q)
21 S

(q)
22

]
(76)

The idea behind the division in layers is to analyze layers short enough such that
the transmission matrix does not present numerical instabilities. With this transmis-
sion matrix is possible to find the scattering matrix of the layer. Then, the next layer
is considered and a transmission matrix is calculated. Finally, a scattering matrix for
both layers is obtained in terms of the new transmission matrix and the old scattering
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matrix. This process is recursively applied until all the layers were considered. The
equations that allow to find a new scattering matrix in terms of previous transmission
and scattering matrix (for the submatrices in (76)) are [1]:

S
(q+1)
11 =

(
T

(q+1)
11 − S(q+1)

12 T
(q+1)
21

)
S
(q)
11

S
(q+1)
12 =

(
T

(q+1)
12 + T

(q+1)
11 S

(q)
12

)
Zq+1

S
(q+1)
21 = S

(q)
21 − S

(q+1)
22 T

(q+1)
21 S

(q)
11

S
(q+1)
22 = S

(q)
22 Zq+1

(77)

Where:

Zq+1 =
(
T

(q+1)
21 S

(q)
12 + T

(q+1)
22

)−1
(78)

These submatrices permit to form a matrix such that:[
A+
q+1

A−0

]
= Sq+1

[
A+

0

A−q+1

]
(79)

Thus, from (79), a scattering matrix that describes the transmitted (through A−0 )
and reflected (through A+

q+1) fields only in terms of the incident field (the vector A+
0 )

can be calculated. Moreover, looking at (75) and (76) a physical interpretation of the
submatrices of the scattering matrix can be provided. Considering that for the structure
analyzed there is not illumination from below, A+

0 is a null vector. The submatrices S12

and S22 are the ones that handle reflection and transmission, respectively. Furthermore,
this consideration also permit to avoid the calculation of the complete scattering matrix,
reducing the computational cost of this process [18].

3.2 Runge-Kutta method for the solution of a systems of equations
To solve a system of the form:

∂

∂z
[F (z)] = M (z) [F (z)] (80)

It is necessary to find a matrix P (z) that relates the vector F at z and z+h, in other
words:

[F (z + h)] = P (z) [F (z)] (81)

The matrix P (z) can be find applying a fourth order Runge-Kutta method where
the parameter h is the discretization step for the mentioned method. Thus, the matrix is
[18]:
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P (z) = Id+
h

6
M1 (z) +

h

3
M2 (z) +

h

3
M3 (z) +

h

6
M4 (z) (82)

Where:

M1 (z) = M (z)

M2 (z) = M

(
z +

h

2

)(
Id+

1

2
M1 (z)

)
M3 (z) = M

(
z +

h

2

)(
Id+

1

2
M2 (z)

)
M4 (z) = M (z + h) (Id+M1 (z))

(83)

The matrix M1(z) corresponds to either the matrices (20) or (56), depending on the
polarization.

For obtaining the scattering matrix for the entire structure, this modified Runge-
Kunta method is applied for each layer in which the structure was divided during the
S-matrix algorithm. For only one step h of the Runge-Kutta algorithm the end result is
the P (z) matrix that allow to fulfill relation (81). A second application of the method
will allow to find a matrix P that fulfilled the relation:

[F (z + 2h)] = P (z + h) [F (z + h)] (84)

The appropriate selection of the step h permits to find a unique matrix P that relates
the vector [F (z)] and [F (z + 2h)]. This new matrix is simply the product of P (z) and
P (z + h) and the only requirement that need to be satisfied is that h is sufficiently small
in order to make both matrix stable [18].

The repeated application of this method until the edge of the considered layer pro-
vides a P matrix for all the layer. Once this matrix is obtained, a transmission matrix
for the layer can be found as T = Ψ−1PΨ, where Ψ can be either the matrix in (30) or
(65).

Finally, once a transmission matrix is obtained for a layer, the S-matrix algorithm
can be applied to calculate the scattering matrix of the set of layers considered previ-
ously.

The advantages of the application of the Runge-Kutta method as proposed here, not
only consist in the fact that it allows to calculate P (z), but also the method reduces the
computational resources needed. It allows to avoid the calculation of Ψ, transmission
or scattering matrices during the discretization of the structure along the coordinate z.
The mayor drawback of this method lays in its dependence on the value of the step h
and the necessity to determine it through a process of trial and error. Such problem can
be overcome using an adaptative method [17] but the present work does not cover this
possibility.
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3.3 Code validation
3.3.1 Energy conservation

The first step to validate a code is to verify if it satisfies basic physical principles. One
of those principles is the conservation of energy. The reflected and transmitted fields
determined by the program must obey the mentioned principle. The first test at which
the code was subjected was the calculation of the transmittance and reflectance coeffi-
cients for a slab of air and a slab of dielectric material. The two mentioned coefficients
were selected to characterize the structure because they are extremely easy to calculate
from the scattering matrix [18] and their physical meaning is well known. Calling the
reflectance and transmittance coefficients as R and T , respectively; the program must
show that R + T = 1 for dielectric materials.

Figure 6: a) Behavior of the reflectance and transmittance coefficients of a slab of air
(index of refraction ν = 1) of height 100 [nm], divided in 10 layers and for which
10 Runge-Kunta steps were considered. Angle of incidence θi = 0. b) Behavior of
the reflectance and transmittance coefficients of a slab of dielectric (index of refraction
ν = 4) of height 100 [nm], divided in 10 layers and for which 10 Runge-Kunta steps
were considered. Angle of incidence θi = 0.

In Figure 6 are shown the behavior of the coefficients as function of the wavelength
for a slab of air and a slab of dielectric. Each discrete point correspond to a wavelength
between 300 and 1000 [nm] and are separated in steps of 10 [nm]. In both cases the
difference between the sum and one is at worst of the order of 1.5 × 10−6. Thus, there
is a very good agreement with the notion of energy conservation. Moreover, for Fig-
ure 6, graph a), the mean values of the reflectance is R = 0.104 × 10−30 and of the
transmittance is T = 1.000. This means that all the energy is transmitted and no energy
is reflected, what was expected from a wave propagating in vacuum. In the graph b),
the mean values are R = 0.448 and T = 0.552, the presence of the dielectric material
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reduces the transmission of energy and increases the reflection. Finally, in both cases,
the polarization TE and TM generates the same results, as spectated from the angle of
incidence θi = 0.

3.3.2 Comparison with Fresnel equations

In order to figure out if the program can describe correctly the behavior of a metal
slab, the results generated by the program are compared with the transmittance and
reflectance coefficients obtained from Fresnel equations [28]. The coefficients for a
slab of gold (Au) were found using both methods and then compared.

Figure 7: Reflectance and transmittance coefficients of a gold slab of height 100 [nm]
divided in 10 layers and for 10 Runge-Kutta steps and an angle of incidence of 0◦. a)
Reflectance. b) Transmittance.

The coefficients for normal incidence are shown in Figure 7. Once again, the co-
efficients calculated by the differential method were calculated in an interval of wave-
lengths from 300 to 1000 [nm], in steps of 10 [nm]. The index of refraction of the metal
is wavelength dependent and this information was retrieved from [14]. When compar-
ing the results of both methods, in average, there is a percentage error of 0.151% for the
reflectance and 1.974% for the transmittance. Moreover, due to the angle of incidence
the TE and TM polarizations are the same.
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Figure 8: Reflectance and transmittance coefficients of a gold slab of height 100 [nm]
divided in 10 layers and 10 Runge-Kunta steps and an angle of incidence of 30◦. a)
Reflectance for TE polarization. b) Transmittance for TE polarization. c) Reflectance
for TM polarization. d) Transmittance for TM polarization.

In Figure 8 are shown the coefficients for the same conditions of Figure 7, but now
with a 30◦ angle of incidence. For this case the two different polarizations generate
different results. When comparing the differential method and the Fresnel equations,
the average percentage error are presented in Table 1. The value of the errors reflects
the good agreement between the two methods.

TE polarization TM polarization
Reflectance 0.022% 2.058%

Transmittance 0.160% 1.831%

Table 1: Average percentage error when comparing the differential method and Fresnel
equations for a slab of Au of height 100 [nm] divided in 10 layers and 10 Runge-Kutta
steps and an angle of incidence of 30◦.

It is interesting to mention that both methods for the slab of Au present an increase
in reflectance and a peak in transmittance around 500 [nm]. This behavior of the co-
efficients has an origin of considerable complexity. This effect is a combination of the
presence of a surface plasmon resonance and an interband transition where d-electrons
are promoted to the s-p conduction band [24].

One major problem with the code developed was found during this stage of the the
work. Until this point, the substrate and superstrate were considered as air (index of
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refraction ν = 1). When the substrate or the superstrate was changed by a different
material (for example, glass or water) the results from the differential method and Fres-
nel equations were considerably different. The problem arose due to the fact that the
program puts an infinitesimal layer of air between each layer in which the structure is
divided. Also, one of this infinitesimal layers of air is put between the structure and the
substrate or the superstrate. Thus, the program is unable to “see” the substrate or su-
perstrate. The way in which was possible to eliminate this effect was to take advantage
of one of the strong points of the differential method, the ease with which more layers
can be added to the structure. To simulate the effect of the substrate or superstrate, slabs
of finite height are placed above and below the modulated zone. The program consid-
ered as its “modulated zone” the combination of the modulated zone and the layers that
correspond to the substrate and superstrate. To verify this approach the results were
compared with the transmission matrix method.

3.3.3 Comparison with transmission matrix method

This method is a less powerful version of the differential method since it can only de-
scribe structures made of different slabs grouped together. The theoretical development
of the method is explored in [30]. While, the code used to generate the results of the
transmission matrix method is a heavily modified version of [29]. Two different cases
were considered. The first one corresponds to a slab of gold surrounded by water (su-
perstrate ν = 1.3 [16]) and glass (substrate ν = 1.5 [16]). The second case consists in a
slab surrounded by air (superstrate) and glass (substrate). In both cases, the effect of the
substrate and the superstrate is represented by the layers of material above and below
the slab of Au. The comparison between both methods is presented in Figure 9.

When comparing the differential method and the transmission matrix method, the
average percentage error are presented in Table 2. The value of the errors reflects the
good agreement between the two methods. Thus, the option considered is a valid ap-
proach to simulate substrates or superstrates made of different materials.
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Figure 9: Reflectance and transmittance coefficients of a gold slab of height 100 [nm]
divided in 10 layers and for 10 Runge-Kunta steps and an angle of incidence of 0◦. a)
and b) Reflectance and transmittance when the substrate is made of glass (ν = 1.5, layer
of 50 [nm]). c) and d) Reflectance and transmittance when the substrate is made of glass
(ν = 1.5, layer of 50 [nm]) and the superstrate is made of water (ν = 1.5, layer of 50
[nm]).

Substrate Glass Glass
Superstrate Air Water
Reflectance 0.009% 0.031%

Transmittance 4.455% 4.455%

Table 2: Average percentage error when comparing the differential method and trans-
mission matrix method for a slab of Au of height 100 [nm] divided in 10 layers and
for 10 Runge-Kunta steps and an angle of incidence of 0◦, surrounded by layers that
simulate the substrate and superstrate.
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4 Applications of the differential method, results and
discussion

4.1 Propagation of waves in anisotropic media and hyperbolic meta-
materials

4.1.1 Wave propagation

For an anisotropic media, in general, the induced polarization and the electric field are
not parallel vectors. The polarization will depend on the magnitude and direction of the
electric field:

Px =ε0 (χ11Ex + χ12Ey + χ13Ez)

Py =ε0 (χ21Ex + χ22Ey + χ23Ez)

Pz =ε0 (χ31Ex + χ32Ey + χ33Ez)

(85)

The 3× 3 matrix of elements χij is called susceptibility tensor. Having into account
the relation:

~D = ε0 ~E + ~P (86)

It is possible to establish:

Dx =ε0 (ε11Ex + ε12Ey + ε13Ez)

Dy =ε0 (ε21Ex + ε22Ey + ε23Ez)

Dz =ε0 (ε31Ex + ε32Ey + ε33Ez)

(87)

Where the elements εij are:

εij = (1 + χij) (88)

εij corresponds to the elements of the dielectric tensor. It is possible to select the
system of reference such that the dielectric tensor would have the form of a diagonal
matrix [39].

ε =

 εx 0 0
0 εy 0
0 0 εz

 (89)

For a monochromatic plane wave described by an electric field ~Eexp
[
i
(
ωt− ~k · ~r

)]
and a magnetic field ~Hexp

[
i
(
ωt− ~k · ~r

)]
(where ~k = ων

c
ŝ, ŝ is an unitary vector par-

allel to the direction of propagation of the wave and ν the index of refraction). Using
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Maxwell equations ~k × ~E = ωµ ~H and ~k × ~H = −ωε ~E the following equation can be
derived:

~k ×
(
~k × ~E

)
+ ω2µε ~E = 0 (90)

Using tensor (89) in equation (90) the following system is obtained:

 ω2µε0εx − k2y − k2z kxky kxkz
kykx ω2µε0εy − k2x − k2z kykz
kzkx kzky ω2µε0εz − k2x − k2y

 Ex
Ey
Ez

 = 0 (91)

To avoid having a zero electric field, the matrix determinant must be zero. This
determinant is [39]:

k2x
ν2 − εx

+
k2y

ν2 − εy
+

k2z
ν2 − εz

=
(ω
c

)2
(92)

Equation (92) is known as Fresnel equation. It represents a surface in the three
dimensional k−space. This surface is known as normal surface and generally is formed
by two shells which have four points in common. The two lines that join these points
and go through the origin are known as optic axes. Given a direction of propagation, in
most of the cases this direction intersects in two points the normal surface. These two k
values correspond to two different phase velocities and polarizations [11, 39].

4.1.2 Propagation in an uniaxial media

In many materials there is only one optical axis. This effect occurs when two of the three
components of the tensor (89) are equal. For this case, the elements of the tensor will
be noted εx = εy = ε⊥and εz = ε‖. Also, for this case, the Fresnel equation obtained
from the system (91) is [39]:(

k2x + k2y
ε‖

+
k2z
ε⊥
− ω2

c2

)(
k2

ε⊥
− ω2

c2

)
= 0 (93)

From Fresnel equation, there is two different values for the wave vector, these values
are:

k2I = k20ε⊥ (94)

k2II =
k20ε⊥ε‖

ε‖cos2θi + ε⊥sin2θi
(95)

The parameter θi is the angle of incidence and k0 = ω2µ0ε0. The value kI corre-
sponds to an ordinary wave; meanwhile, kII represents an extraordinary wave [11].
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4.1.3 Hyperbolic metamaterials

Figure 10: a) Normal surface for an extraordinary wave for a hyperbolic metamate-
rial. b) Example of a hyporbolic metamaterial made of layers of metal and dielectric
materials [25].

It is possible to fabricate materials such that the real parts of ε⊥ and ε‖ have opposite
sign. This material is called a hyperbolic metamaterial (HMM). For HMMs, the normal
surface for extraordinary waves (95) takes the form represented in Figure 10 a). The
case in which ε⊥ < 0 and ε‖ > 0 is denominated type I anisotropy. The material
behaves as a dielectric in the x− y plane and as a metal in the z direction. For the case
ε⊥ > 0 and ε‖ < 0, the behavior is the opposite and it is called type II anisotropy [5].

The HMMs have different physical properties but one of the most interesting comes
from the form of the normal surface in Figure 10 a). The normal surface allows the
norm of the k-vector to not be restricted to a finite value. Thus, it is, for example,
possible to break the Abbé diffraction limit that establishes that an imaging instrument
can not resolve two objects closer than λ/A, where λ is the wavelength of light and A
the aperture of the imaging lens [3, 33]. These states which have a non restricted wave
vector are called “high k” states of a hyperbolic metamaterial [9].

One of the possible ways to create a hyperbolic metamaterial is a stack of alternat-
ing layers of metal and dielectric materials, as shown in Figure 10 b). The behavior
of the components of the dielectric tensor can be studied using effective medium the-
ory provided that the constitutive unitary cell (a single dielectric/metal bilayer) is sub-
wavelength [5, 36]. When the losses in the constituent layers can not be neglected the
coefficients ε‖ and ε⊥ are [5]:

ε‖ =
ε
′

dtd + ε
′
mtm + i

(
ε
′′

dtd + ε
′′
mtm

)
td + tm

(96)

ε⊥ =
ε
′
mtmD + ε

′

dtdM + i
(
ε
′′
mtmD + ε

′′

dtdM
)(

ε
′
dtm + ε′mtd

)2
+
(
ε
′′
dtm + ε′′mtd

)2 (td + tm) (97)
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In equations (96) and (97) ε′d and ε′′d correspond to the real and imaginary parts of
the permittivity of the dielectric. Meanwhile, ε′m and ε′′m are the real and imaginary parts
of the permittivity of the metal. td and tm are the thickness of the layers of dielectric
and metal, respectively. Finally, D =

(
ε
′

d

)2
+
(
ε
′′

d

)2
and M =

(
ε
′
m

)2
+
(
ε
′′
m

)2
.

Using EMT different combinations of metals and dielectrics were studied in order to
verify if they present HMM-like properties and how the thickness of the layers affects
them. For the arrangement in Figure 10 b), the combination of Au or Ag as metals and
TiO2 or Al2O3 causes anisotropies in the spectrum between 300 [nm] and 1000 [nm]
[9, 36].

The first system considered was the structure designed and studied in [36]. The
metamaterial is made by 8 bilayers of Au (16 [nm] of thickness) and Al2O3 (30 [nm] of
thickness). The effective permittivities calculated using equations (96) and (97) for this
system are shown in Figure 11 (the index of refraction for the Al2O3 was obtained from
[15]). From the graph, the real parts of ε‖ and ε⊥ are both positives for λ < 550 [nm],
but for wavelengths λ > 550 [nm] ε⊥ > 0 and ε‖ < 0 (anisotropy type II).

Figure 11: Effective permittivities of a multilayered system made of bilayers of Au (16
[nm] of thickness) and Al2O3 (30 [nm] of thickness).

The second system differs from the first one only for the dielectric, that is TiO2

instead of Al2O3. For this case there is also anisotropy type II for λ > 643 [nm]. The
effective permittivities are shown in Figure 12.
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Figure 12: Effective permittivities of a multilayered system mad of bilayers of Au (16
[nm] of thickness) and TiO2 (30 [nm] of thickness).

For the third system, the metal is changed by Ag and the dielectric is kept as TiO2

(the information required for the permittivity of the material was retrieved from [10]).
Although, for this combination of materials two different thicknesses of bilayers were
considered. The first possibility explored was a bilayer of 20 [nm] (with layers of Ag
and dielectric of thickness of 10 [nm]). This multilayered system presents two types of
anisotropies. For wavelengths > 360 [nm] and < 463 [nm], ε⊥ < 0 and ε‖ > 0 (type
I anisotropy). For wavelengths> 463 [nm], ε⊥ < 0 and ε‖ > 0 (type II anisotropy).
The second case explored was a system of 16 [nm] for Ag and 30 [nm] for TiO2. Type I
anisotropy is presented for wavelengths> 360 [nm] and< 405 [nm]. Type II anisotropy
in presented for wavelengths > 553 [nm].
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Figure 13: a) and b) effective permittivities of a multilayered system made of bilayers
of silver (10 [nm] of thickness) and TiO2 (10 [nm] of thickness). c) and d) effective
permittivities of a multilayered system made of bilayers of silver (16 [nm] of thickness)
and TiO2 (30 [nm] of thickness).

An analysis of the effect of the thicknesses of the metal and the dielectric layers
can be derived from the system made of Ag and TiO2. Depending on the relation of
thicknesses between the metal and the dielectric, the HMM will behave as a pure metal,
pure dielectric or will present anisotropies [9]. The behavior of the HMM is represented
in Figure 14 and it depends on the filling fraction of metal (the percentage of metal in
the HMM). When the metal and dielectric layers have the same thickness (as in Figure
13 a)) the HMM only presents anisotropies. On the other hand, when the dielectric is
thicker than the metal (as in Figure 13 c)), there is a regime where the HMM behaves
as an effective dielectric (for Figure 13 c) it happens for wavelengths 405 [nm] < λ <
550 [nm]) and also presents anisotropies outside this regime.
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Figure 14: Behavior of a HMM made of Ag and TiO2 depending on the filling factor of
the metal layer

Finally, when comparing Figures 11, 12 and 13 the presence of Au as metal causes
that the HMM presents only anisotropies of type II. The effect of changing the dielectric
when Au is the metal is analyzed in the next section.

4.2 Analysis of metamaterial using the differential method
In a multilayered system made of several interfaces metal/dielectric surface plasmons
polaritons (SPPs) play a fundamental role in the optic response of the metamaterial. But,
before the analysis of the metamaterial, it is important to highlight a fundamental fact.
SPPs only exist for TM polarization [21]. Thus, from this point, only this polarization
will be considered.

However, SPPs are not only resonances that the system shows. The existence of
high-k modes allows the system to support volume plasmon polaritons (VPPs) or bulk
Bloch plasmon polaritons (BPPs), that are propagating waves inside the material but
they decay exponentially outside [34].

In this section the HMMs with metal layers of 16 [nm] and dielectric layers of 30
[nm] will be considered.

For the system of 8 bilayers of Au (16 [nm] of thickness) and Al2O3 (30 [nm] of
thickness) the reflectance and transmittance spectra are shown in Figure 15. For the
case in which the dielectric is replaced by TiO2, the reflectance and transmittance are
shown in Figure 16.
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Figure 15: Reflectance and transmittance for a multilayered system of 8 bilayers made
of Au (16 [nm]) and Al2O3 (30 [nm]), angle of incidence 0◦.

Figure 16: Reflectance and transmittance for a multilayered system of 8 bilayers made
of Au (16 [nm]) and TiO2 (30 [nm]), angle of incidence 0◦.

When comparing the spectra in Figure 15with the one of a slab of metal (for exam-
ple, the spectra at Figure 7 for a slab of gold of thickness 100 [nm]), the reflectance and
transmittance behaves similarly, but the multilayered system presents some interesting
details. First, the reflectance in Figure 15 presents a minimum. This minimum appears
before the wavelength λ = 550 [nm]. Thus, it is not due to VPPs (because the mini-
mum appear for wavelengths for which there is not anisotropy) but it is due to SSPs that
appears in the interfaces metal/dielectric [35, 34]. Second, the transmittance presents a
maximum. The peak in the transmittance also occurs before λ = 550, then it is not a
direct consequence of the anisotropy. However, the fact that the transmittance decays
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rapidly after λ = 550 is due to the anisotropy of type II. Under this regime, the metama-
terial behaves as a metal in the z direction and for high wavelengths the transmittance
(and also the reflectance) behaves as in Figure 7. The spectra reveal one of the down-
sides of the metamaterial. The metamaterials presents significant losses, especially for
high wavelengths. This losses are mitigated when the peak in transmittance is reached
[31]. Finally, it is relevant to mention that the minimum and maximum do not occur
for the same wavelength, thus the mode in which the effect of SPPs is relevant does not
present the minimum possible losses, at least not for the angle of incidence considered.

On the other hand, Figure 16 also presents minima in the reflectance spectrum
caused by SPPs (all the minima happen before λ=643 [mn] when the metamaterial does
not host any anisotropy) and for λ > 643 [nm] the transmittance decays rapidly. For
this case, there are three minima caused by SPPs, this effect is due to the use of TiO2 as
the dielectric. So, it is easier to excite SPPs when using TiO2 instead of Al2O3 .

In Figure 17 are shown the spectra of 8 bilayers of Ag (16 [nm] of thickness) and
Al2O3 (30 [nm] of thickness).

Figure 17: Reflectance and transmittance for a multilayered system of 8 bilayers made
of Ag (16 [nm]) and TiO2 (30 [nm]), angle of incidence 0◦.

When changing the metal by Ag, the system does not only present type II anisotropy,
but also type I anisotropy. From Figure 17, there are several minima when type I
anisotropy appears, meaning that these minima are due to VPPs [36].

From Figures 15, 16 and 17, there is not any minimum when type II anisotropy is
present, meaning that there are not VPPs. It is possible to excite VPPs for this regime
by using a grating [35]. The combination of the HMM and a grating can be analyzed
with the program developed within this work. The HMM that was considered was a
multilayered system of 8 bilayers made of Ag (16 [nm]) and TiO2 (30 [nm]) and the
grating is represented in Figure 18. The grating is made of PMMA (the indexes of
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refraction as a function of wavelengths were retrieved from [2]) covered by a 20 [nm]
layer of Ag. The grating period is 500 [nm].

Figure 18: HMM and grating. The HMM is made of 8 bilayers made of Ag (16 [nm])
and TiO2 (30 [nm]). The HMM and the grating are separated by a layer of 10 [nm]
of TiO2. The grating is made of PMMA (height of 100 [nm] and length of 160 [nm])
covered by 20 [nm] of Ag. The grating period corresponds to 500 [nm] .

The effect of the grating combined with the HMM is shown in Figure 19. As shown
by the Figure 19 c), the structure presents a new minimum (that is not present in neither
19 a) nor 19 b)) at λ = 584 [nm]. This minimum is due to a VPP and occurs when there
is type II anisotropy [35, 34].

Figure 19: Effect of a grating in a HMM. a) Reflectance of the HMM (8 bilayers of
Ag of 16 [nm] and TiO2 of 30 [nm]). b) Reflectance of the grating of PMMA an Ag.
c) Reflecta of the HMM combined with the grating. For all the spectra the angle of
incidence was 50◦.
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5 Conclusions
In this work a code for describing the reflected and transmitted fields based on the dif-
ferential method was developed. Historically, the biggest problem with the differential
method was its inaccuracy to describe the field diffracted by structures for TM polariza-
tion. The code created implements elements that eliminate these numerical problems. In
this work, it is shown that the use of L. Li factorization rules and S-matrix allow the cor-
rect description of the mentioned polarization. The results generated by the code were
validated by using the Fresnel equations and the transmission matrix method. When
comparing the results obtained by the code and by the other methods, there was a per-
fect agreement.

After the code validation, it was used to describe HMMs made of alternating layers
of metal and dielectric. The study of these structures using the differential method was
motivated by the fact that they have been the subject of an intense research activity in the
recent years because of their interesting optical properties. The main characteristic of
HMMs is that in certain spectral ranges they show permittivities ε‖ and ε⊥ with real parts
of opposite sign; this causes that the HMMs present anisotropies and support “high-k”
modes.

This particular work was focused on the analysis of HMMs made of alternating lay-
ers of metal (Au or Ag) and dielectric (Al2O3 or TiO2). In order to verify if this kind
of structure presented HMMs-like properties, EMT was used. Once it was confirmed
that the structures behaves as HMMs, they were analyzed using the differential method.
The reflectance and transmittance spectra of different combinations of materials gener-
ated with the code developed confirmed the findings of different research papers used as
sources of information for this work. For example, according to the results generated by
the code the reflectance spectra of the combination of Au (16 [nm]) and Al2O3 (30 [nm])
or Au (16 [nm]) and TiO2 (30 [nm]) only presented SPPs. While, for the combination
of Ag (16 [nm]) and TiO2 (30 [nm]) VPPs appeared when type I anisotropy occurs and
by adding a grating, VPPs occurs also for type II anisotropy. All these behaviors have
been studied before and the code developed could reproduce them correctly. Thus the
code could be used to simulated novel geometries or combinations of materials in order
to kick-start new investigations.
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Appendices
Appendix A: Fast Fourier Transform (FFT)

A fundamental element of the differential method is the Fourier transform. Hence,
a discussion of how this operation is applied, from a computational point of view, is
relevant. Usually, when a numerical procedure for a Fourier transform is considered, a
large volume of data is also involved. So, an efficient algorithm is very important.

A Fourier transform of a set of N discrete points is known as discrete Fourier trans-
form (DFT). A straightforward computational algorithm for a DFT only based in the
definition of a Fourier transform can result (in the best case scenario) in a computing
time proportional to N2 [23]. But, it is possible to realize this process using a algo-
rithm with a computational time proportional to N log2N . This algorithm is called Fast
Fourier Transform (FFT). The importance of considering the use of FFTs reside in the
enormous difference between the computational times. For example, for N = 106,
choosing the correct algorithm could represent the difference between 30 seconds and
two weeks of CPU time on a microsecond cycle time computer [27].

For a function f (x) such that is nonzero for x ∈ [0, L] and is repeated periodically
outside this region, if N discrete points are taken evenly spaced (meaning that the dis-
tance between each point is ∆x = L/ (N − 1)), then the points of the Fourier transform
are separated by intervals of 2π/L. From this information, it is possible to establish that
the parameter ∆σ defined in the second chapter is ∆σ = 2π/L, where L is the length
(along ûx) of a period of the structure considered [23] [18].

The parameter N fixes the number of discrete points in real and reciprocal spaces,
thus the convergence of the method will be strongly dependent on this parameter. But,
beyond the suitable magnitude of N necessary to make the method works in different
cases, it is possible to establish some general properties of this parameter. First the
FFTs are more efficient when the number of discrete points is an even number [27].
Second, the quantity of information that needs to be extracted from the vectors that
represent variables in the reciprocal space creates some constraints in the number of
discrete points necessary. Considering a particular example allows to illustrate the men-
tioned constraints. After choosing the discretization parameter N in real space, the
value is multiplied by two, to produce an even number. Then, vectors of size 2N in
Fourier space are produced. But, when looking the size of vectors such that (29), it has
size 2N + 1. Moreover, for a Toeplitz matrix, for example k2 (appearing in 57), which
elements k2n,m are Fourier transforms of k2 at spatial frequencies such that (σn − σm),
of size 2N + 1 × 2N + 1, the corners of such a matrix will be equivalent to a Fourier
transform at 2N∆σ or−2N∆σ from the origin. Meaning that the vector that represents
the Fourier transform of k2 would need to have a minimum size of 4N + 1. There is
an obvious lack of information when the discretization in real space is considered for
N points, because it generates vectors of size 2N , when it is necessary vectors of size
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2N + 1 or 4N + 1. But, there is some options to overcome this problem.

Figure 20: Effect of aliasing in a Fourier transform. a) Function h (t) defined for an
interval T (the period of the function) and discretize through intervals of length ∆. b)
Fourier transform H (f) of the the function h (t). c) Comparison of the real Fourier
transform and the aliased transform inside the region defined by the Nyquist critical
frequency fc = 1/2∆.

One of the options available is to use a N points Fourier transform (from a N -
component vector in real space) and assume that outside the interval defined by these
N points, the function in reciprocal spaced behave periodically (as long as it is not to
far away from the origin). This possible solution comes from the fact that the Fourier
transform of a periodic function is a function well defined inside an interval and zero
outside. The inverse is also true. Thus, even though the function in real space is peri-
odical, considering that the function in Fourier space has some degree of periodicity (in
order to retrieve the necessary information) is a viable option, but clearly this approach
introduces an error. In addition to this error, this option also exacerbates the effect of
aliasing. Given a sampling interval in real space as ∆ allows to define what is called
the Nyquist critical frequency as fc = 1/2∆. This parameter is important because it is
related to the sampling theorem. The theorem states that if a continuous function h (t)
with interval sampling ∆ is bandwidth limited to frequency smaller than fc (meaning
that H (f) = 0 for all |f | ≥ fc), then the function h (t) is completely determined by
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hn = h (n∆) for n an integer. But, when the function is not bandwidth limited aliasing
occurs. All the power spectral density outside |f | ≤ fc is spuriously moved into the
range. Aliasing means that the components outside the interval (−fc, fc) are falsely
transformed [27]. The effect is illustrated in Figure 20. Considering all this observa-
tions, this solution is not ideal.

The solution adopted for the code created was, arguably, one of the easiest (effort-
less to implement in the code) and safest (in the sense that it allows a more precise
description in reciprocal space). Instead of sampling the parameters in real space using
N points, the discretization is done for 4N points (the extra value to obtained vectors
of size 4N + 1 is obtained from the 4N points in reciprocal space). The use of a major
quantity of points diminishes the negative consequences of the previous solution con-
sidered. The biggest problem of this option is the requirement of more computational
resources.
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