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Código: 00114619

Cédula de Identidad: 172295889-7

Lugar y Fecha: Quito, mayo de 2018



4

Resumen

Presentamos una versión mejorada de un algoritmo computacional que “clona”/genera un número

arbtrario de nuevos granos digitales de una muestra real digitalizada de material granular. Nuestro

algoritmo mejorado produce granos “clonados” que aproximan con más precisión las caracteŕısticas

morfológicas mostradas por sus padres. Ahora, los granos “clonados” también fueron incluidas en

una simulación del método de elementos discretos de una prueba tri-axial y mostraron un com-

portamiento mecánico similar comparado con el mostrado por la muestra original (padres). Aśı,

el presente trabajo esta dividido en cuatro partes. Primero, nosotros calculamos las funciones de

densidad de probabilidad multivariables de las parámetros morfológicos de los padres (ADN mor-

fológico), es decir, relación de aspecto, redondez, relación volumen-supercie y diámetro del grano.

Segundo, una mejorada, ahora paralelizada y anada versión del algoritmo estocástico geométrico

de clonación [13], el cual está basado en las distribuciones multivariables antes mencionadas, y que,

de la misma manera, introduce un proceso de muestro mejorado de radios, aśı como también una

prueba de control de calidad nuevo basado en la relación volumen-radio es discutido. Tercero, el

ADN morfológico de los granos (es decir, relación de aspecto, redondez, relación volumen-supercie y

diámetro del grano) es también extráıdo de los nuevos granos clonados y comparado al obtenido de

la muestra padre. Cuarto, los clones y padres son sometidos a una prueba de compresión tri-axial

usando el esquema de Elementos Discretos (3DLS-DEM) con Level Sets (LS), y luego, compara-

dos en términos de su respuesta mecánica. Finalmente, el error de los “clones” en morfoloǵıa y

comportamiento mecánico es analizado y discutido para mejoras futuras.

Palabras clave: material granular ; parámetros morfológicos ; level sets ; Monte-Carlo multivariable

; método de elementos discretos ; clones
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Abstract

We introduce an improved version of a computational algorithm that “clones”/generates an arbi-

trary number of new digital grains from a real sample of real digitalized granular material. Our

improved algorithm produces “cloned” grains that more accurately approach the morphological

features displayed by their parents. Now, the “cloned” grains were also included in a Discrete

Element Method simulation of a tri-axial test and showed similar mechanical behavior compared

to the displayed by the original (parent) sample. Thus, the present work is divided in four parts.

First, we compute multivariable probability density functions (PDF) from the parents’ morpho-

logical parameters (morphological DNA), i.e., aspect ratio, roundness, volume-surface ratio, and

particle diameter. Second, an improved, now parallelized and better tuned version of the Geomet-

ric Stochastic Cloning (GSC) algorithm [13], which is based on the aforementioned multivariable

distributions, and that, in the same way, introduces an enhanced radii sampling process, as well

as a new quality control test based on the volume-surface ratio is discussed. Third, morphological

DNA of the grains (i.e., aspect ratio, roundness, volume-surface ratio and particle diameter) is

also extracted from the new “cloned” grains and compared to the one obtained from the parent

sample. Fourth, clones and parents are subjected to a tri-axial compression tests using a Level Set

(LS) in Discrete Element scheme (3DLS-DEM), and then, compared in terms of their mechanical

response. Finally, the error of the “clones” in the morphology and mechanical behavior is analyzed

and discussed for future improvements.

Keywords: granular materials ; morphological parameters ; level sets ; multivariable Monte-Carlo

; discrete element method ; clones
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1 Introduction

The development of the discrete element method (DEM) in computational geo-physics and civil

engineering played a fundamental role when it comes to understand the macroscopic behavior of

granular materials [1, 2] in terms of micro and meso- scale mechanisms [4–7]. Since DEM was first

introduced, particle interactions have been modeled using planes [8], non-uniform rational B-splines

(NURBS) and now, Level Sets (LS) to make faster calculations due it’s lower computational cost

[16, 28]. Level sets are functions which are easy to use for the representation of surfaces, allowing

for the simplification of calculations and therefore, minimizing computational cost. In the same

way, the inclusion of arbitrary shapes in DEM simulations has been of key importance to accurately

reproduce the physics involved in the bulk behavior of granular materials [3, 8–11]. With this aim,

several DEM schemes have been used to improve shape effects capture. Thus, polygonal shapes,

spheres and dumping are among the most popular nowadays [9–11]. In the last twenty years, 3D

X-ray Computed Tomography scanning (3DXRCT) has made possible to recover real shapes of

granular materials [26, 27] such as Hostun sand [21] with very high detail and include them into

DEM simulations [15, 20]. However, costly equipment and specialized personal is needed to perform

this 3D X-ray CT scans. In addition, the size of the scanned samples is small (a few thousand grains)

compared to the amount and the size of the material required to reproduce macroscopic/engineering

behavior.

The ultimate goal of this study is to generate new “cloned” grains, that accurately capture

and reproduced the morphological features of any given sample of real granular materials, with

the aim of using them as part of DEM based engineering-scale simulations overcoming sample size

constrains inherent to 3DXRCT scanning processes. This, together with recent works [21] that

have shown the importance of shape when not only qualitatively, but quantitatively matching the

mechanical behavior of real granular materials, promise to become a powerful tool to simulate

engineering scale processes involving granular materials.

Thus, to ameliorate the high cost, time consuming and size constraints of 3DXRCT scanning, a

first computational algorithm was developed to obtain morphological features from a sample of real

grains, (i.e., aspect ratio, principal geometric directions, roundness and spherical radius)[13]. This

first algorithm successfully reached its goal of generating new grains (clones) similar to ones from a



11

parent sample. First, it was assumed that the morphological variables were uncorrelated. However,

this first version of the cloning algorithm shower some limitations and problems which are overcome

by the algorithm’s version now introduced by this work. Here, we show that these variables are,

in fact, correlated, and therefore, the former single variable sampling scheme was substituted by

a multivariable sampling method. Similarly, the radii sampling method in the generation of the

cloned grain’s embryo assumed that there were no correlation between the values of radius of

neighboring points on the grains surface. This has been enhanced by including the aforementioned

correlation. Once these improvements were implemented, a new variable was taken into account

for the cloning process, namely volume-surface ratio. Finally, the algorithm was optimized with the

aim of optimizing its run time and parallelize it [29–32]. Furthermore, the algorithm’s parameters

were calibrated for better results [13].

Figure 1: Cloning’s process and mechanical test: a small sample of real soil is extracted and then
3DXRCT scanning is performed on it to obtain level set representations of each grain of the real
sample. Then, the grains morphological features are extracted (morphological DNA). This DNA is
used to generate multivariable probability density distributions from where data is sampled using a
multivariable Monte Carlo scheme. Thus, an embryo (equivalent ellipsoid) is generated by sampling
from the parents sample morphological DNA and radii distributions. Finally, a quality control is
performed and the embryo is included in a pool new cloned grains that is used for simulation by
means of a discrete element scheme (3D LS-DEM).

In this work, a soil sample of regolith simulant was scanned using 3D X-ray CT scanning

to obtain the level set representation of each grain in the sample. This work was carried on
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has been performed in the stages, as shown by Figure 1. First, the morphological DNA from

the sample grains (parents) is extracted [13]. Second, a clone’s embryo (equivalent ellipsoid) is

generated by sampling values from the multivariable aspect ratio and minimum principal direction’s

distribution. Third, the embryo is developed by means of an enhanced radii sampling scheme that

uses a weighted average methodology based on correlations with neighboring surface points. Every

embryo is generated based on a spherical mesh and, a radius value sampled from the parents radii

distributions is assigned to each mesh point. Then, roundness is matched by sampling a roundness

value from thee parents distribution and polishing the embryo by means of a laplacian smoother

until it reaches the roundness equal to the one sampled fro the parents distribution [13]. Finally, a

quality control is performed by using the multivariable volume-surface ratio and minimum principal

direction distribution obtained from the parents.

To test the first the algorithm, first a pool of 2400 cloned grains is generated and morphological

parameters are extracted. Then, a morphological comparison between the clone’s morphological

parameters and their counterparts obtained from a similar randomly picked pool of parents is

conducted. Thus, a second pool of 1000 cloned grains and parents are used to perform a tri-axial

test LS-DEM simulation with each pool. These simulations consist of two namely, a hydrostatic

phase, and a tri-axial compression from where friction angle mobilization, and axial stress, σ1,

evolution are used as measures of strength and to compare the mechanical response of the clones

with respect to the one displayed by the parents. Conclusions are presented as well as observations

and directions for further improvements in quality and optimization of the cloning algorithm.

Moreover, note that in this work we use terminology borrowed either from biology or schochastic

optimization techniques such genetic algorithm schemes. However, this is not a genetic algorithm

where an objective function is optimized by finding either a global maximum or minimum [17]. On

the other hand, this algorithm is based on geometric parameters distributions that are Monte Carlo

sampled and then combined [13]. Here these morphological parameters are not included as part of

any fitness/objective function or set of solutions nor any other parameters used in the process.
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2 GSC algorithm improvements

In this section we describe a series of improvements that have been implemented to the first al-

gorithm as well as an optimization and parallelization of the original code. First, we address

the processing of turning multivariable histograms into multivariable density probability functions,

where a Monte Carlo scheme is used to sample from. Then, radii sampling process based on the

aforementioned embryo’s spherical mesh. In this regard, an enhanced process is introduced. One

of the improvements related to this process has to do with taking into account, for a given mesh

point, the radii values of neighboring mesh points. Moreover, an extra final step is added, where a

quality control based on volume-surface ratio matching is performed as well as the optimization of

some read/write operations are described.

2.1 Multivariable distributions

In the first version of this algorithm (GSC 1.0) [13], simple variable distributions of the morpholog-

ical parameters where considered assuming them to be uncorrelated random variables. Now, in this

new version of GSC, correlations among the morphological distributions used in the first version

in the embryo’s conception [13], parameters from where multivariable distributions are obtained.

The results of these calculations are shown in Table 2.1.

aspect ratio roundness vol.-surf. ratio min. p. dir.
aspect ratio 1.00 -0.13 0.22 0.51
roundness -0.13 1.00 0.88 -0.36
volume-surface ratio 0.22 0.88 1.00 -0.34
min. principal direction 0.51 -0.36 -0.34 1.00

Table 1: Morphological parameter’s correlation matrix.

When high enough correlation values in table 2.1 are found, a two-variable parameter histogram

is then obtained for those parameters, and by means of (cubic) interpolation, turned into a two-

parameter PDF. Thus, from table 2.1, note that there exists a high positive linear correlation of

0.88 between the minimum principal direction and the volume-surface ratio, as expected, and a

correlation of 0.51 between the aspect ratio and the minimum principal direction. The value of

-0.13 shows that there is no correlation between aspect ratio (a measure of sphericity) (length scale

related to order of the grain’s diameter), and the roundness (scale related to the order of the grain’s
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diameter divided by 10). This was expected as well, since these two parameters are not related in

length scale (“orthogonal”) so a correlation value close to zero (-0.13) gives us confidence about

the morphological parameters calculation process. On the other hand, a negative correlation of

-0.36 is found between minimum principal direction and roundness. This is also expected since the

minimum principal directions are closer in length scale to roundness that the grain’s diameter.

Figure 2: The obtention of multivariable distributions from the morphological DNA. For instance,
with two variables (minimum principal direction and volume-surface ratio or aspect ratio) it is
possible to generate a two-variable histogram that then, by mens of cubic interpolation, is turned
into a two-variable probability density function.

As mentioned before, from the correlations in Table 2.1, we generate two-variable histograms

for those parameters in which correlation values are “high-enough”. Then, probability density

functions are obtained by means of interpolation. For this work, linear, cubic, biharmonic and

thin-plate spline interpolation [39] schemes were applied and compared. The best fitting was

obtained by using cubic interpolation, which showed a better representation of the histograms.

This is illustrated in Figure 2.

2.2 Multivariable Monte Carlo method

Once the two-variable probability density functions are obtained from the values of the parents

morphological parameters and their corresponding linear correlations, a sampling Monte Carlo

(acceptance-rejection) process is used.
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2.3 Radii sampling

Figure 3: a) For a given mesh point (i,j) of the embryo’ spherical mesh with corresponding radii
distribution (figure b) color cyan) obtained from the parent’s radii values at the same coordinates
than those of the mesh point (i,j), and neighboring points on the embryo’ spherical. b) Green
histogram displays the distribution of radii of regolith simulant for the mesh point (i+1,j), blue
histogram for the point (i,j), purple for (i,j+1), orange the point (i,j-1), yellow for (i-1,j) which is
on the back.

First, for the spherical radius distributions, all the grains that belong to the sample of parents

are aligned with their corresponding principal directions by using a spherical mesh, where the

maximum principal direction and minimum principal direction correspond to (Φ = 0, Θ = π/2 )

and Θ = 0 respectively. [13]. Then, for all the grains, we obtain the radii values of the spherical

mesh applied on the parents, so we get a distribution of radii values for each point of this mesh.

Radii’s distributions corresponding to each mesh point of the spherical mesh applied to each parent

were checked for correlation with the distributions of neighbouring mesh points. Figure 3 part

b) suggests there is a relation between the points defined in Figure 3 part a). In particular, we

analyzed linear correlation between a fixed radius in the mesh and its neighbors and calculated their

coefficients. To illustrate it, coefficients for a fixed point are shown in Table 2.3, similar results are

obtained for the rest of the mesh points.

Node (i,j)
(i,j) 1.00
(i,j-1) 0.92
(i-1,j) 0.97
(i,j+1) 0.86
(i+1,j) 0.99

Table 2: Node’s correlation for a sampled point in the mesh.
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From Figure 3 part b), note that there is a strong linear correlation between a fixed point and

its neighbors, so t tests were performed in order to confirm the significance of each correlation

coefficient. Results from these tests determined that the correlation coefficients were significant for

each point in the mesh 2.3. Therefore, a better method for sampling radius was used (a weighted

average) to assign the radii values for each node (i,j) in the ellipsoid’s mesh, taking correlation

coefficients as weights. Figure 4 illustrates how the continuity of the radii is improved with this

enhanced radii sampling method.

Figure 4: From left to right: an embryo resulting from the radii sampling method of version 1.0,
and an embryo resulting from the improved radii sampling, both generated from a pool of 2769
parents.

2.4 Quality control

We improved algorithm 1.0 by adding a strict quality control, which uses volume-surface ratio

(excluded in the cloning process [13]), and minimum principal direction distribution. After the

radii sampling was enhanced, the grain has a minimum principal direction already assigned and

a volume-surface ratio is calculated. Then, we use the assigned min. principal direction and

randomly sample a value for the volume-surface ratio (by using the Monte Carlo scheme) from the

two-variable distribution (see Fig. 2 b) right side) and compare both values of the volume-surface

ratio. If the error between the calculated and sampled volume-surface ratio is within 1%, the grain

is accepted and saved in a level set function, otherwise, the grain is discarded. This error tolerance

is fixed by the user, Figure 5 shows the grain’s acceptance rate as a function of error tolerance

using sets of 50 grains.
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Figure 5: Grain’s acceptance rate with respect to error tolerance using sets of 50 grains.

2.5 Parallelization and optimization

After the strict quality control is performed most grains are rejected, and in order to replace

these missing grains the code was restructured and dynamic vectors were created. These dynamic

vectors are used in the cloning process to store information of each clone such as their grain number,

aspect ratio, minimum principal direction, roundness, volume-surface ratio and diameter, which are

proxies of saved LS files (of the cloned grains) in the hard disk drive (HDD). Moreover, with the

two implementations previously mentioned, data access is about 33 times faster since it is stored

in the random access memory (RAM) memory instead of the HDD.

All these changes resulted in an average time increment from 45 seconds to 15 minutes in the

cloning of one grain. Therefore, a parallelization and optimization of the algorithm was performed,

which led to a 75% saving of computational cost. First, we look for the existence of a bottleneck

in the three parts of the cloning process [13]. We found that in the last part of the process, the

function that assembles the grain could to be calibrated so, we adjusted it’s parameters and reduced

the total runtime by 25% approximately. Then, other modifications to the algorithm were carried

out to parallelize it and reduced the generation time of the clones by 50%.
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3 Algorithm calibration

Here we describe the parameters of the algorithm that are calibrated, spherical’s mesh and morpho-

logical DNA (i.e., aspect ratio, roundness, volume-surface ratio and particle diameter) histogram’s

number of bins, mentioned in the knobs section of the first algorithm [13]. In addition, the level set

resolution of the clones was increased. Finally, various trials containing different sets of values for

these parameters are presented and compared, and the best set is selected using the lowest average

error of the morphological DNA as criterion.

In version 1.0, the resolution for the embryo’s spherical mesh was set to 16 azimuthal zones

and 8 polar zones. According to the best set of parameters, in this version, we use 28 azimuthal

zones and 18 polar zones, which yield a higher resolution (see Fig. 6), hence a lower error in the

generation of the grains [33]. Furthermore, for a better representation of grains’ irregular shapes,

the resolution of the level set was increased from to 30 × 30 × 30 [13] (see Fig. 7 part a)) to a

resolution of 45 × 45 × 45 (see Fig. 7 part b)).

Figure 6: Embryo’s higher spherical mesh resolution. Left: spherical mesh of 16 × (8 + poles).
Right: spherical mesh of 28 × (18 + poles).
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Figure 7: Left: grain’s level set grid made of 30×30×30 points. Right: same grain with a level set
grid of 45×45×45.

We set trial configurations using embryos’ spherical mesh resolution and histogram’s number of

bins, which are going to be compared under the criteria of lowest average error with respect to the

morphological DNA (see subsection 4.1). First, the mesh’s resolution values range from 28×(14+2)

to 34×(24+2). Note that, the number two in the addition operation of this mesh’s resolution,

corresponds to the number of poles of the spherical mesh. Second, the number of bins used for the

morphological DNA sampling are 50 and 60. Finally, fixed values of the parameters for this version

(2.0) are highlighted in red in Table 3.

Table 3: Parameters of the different versions of the algorithm used in the calibration

4 Morphological matching

We evaluate the main morphological DNA, i.e, aspect ratio, roundness, principal geometric direc-

tions, and spherical radius, of the cloned grains with respect to the ones obtained from their original

counterparts, for this matter, the samples of parents and clones used contain 2400 grains each.

First, we compare the aspect ratio distribution of parents and clones, and from Figure 8 we

conclude that both have very similar distributions with slight greater values of aspect ratio for the

clones. However, note that the mean of the clones distribution is off with respect to the mean of the

parents distribution with an error of 5.64%, while the standard deviation of the clones distribution
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has an error of 10.17% with respect to its counterpart.

Second, the roundness distributions have a mean error of 5.16%, and the standard deviation

of the clone’s distribution has an error of 13.35% with respect to the parents. Clones still display

lower roundness values (see Fig. 9), which were discussed in the first version of the algorithm [13].

Even, if its standard deviation is affected by the reduced roundness, it is similar to the parents

deviation.

Third, we obtained the distributions for the grain diameter and obtained an error of 10.41% in

the mean, and 38.69% in the standard deviation between the clone’s and their parents. The bias

shown in Figure 10 with smaller grain diameters could be due to the selection of a minimum principal

direction to generate the embryo. To overcome this problem a quality control could be implemented

using the grain’s diameter and volume-surface ratio. This is not included in this version but, it is

mentioned in section 8. In addition, parents exhibit a coefficient of uniformity Cu = D60/D10 = 1.26

and a coefficient of curvature Cc = D30/(D60 × D10) = 0.76, similar coefficients are given by the

clones Cu = 1.15 and Cc = 0.79, where D10, D30, D60 are grain’s diameters with 10% , 30% and

60% passing, respectively. The Cu coefficient gives an error of 8.29% and the error of Cc is 4.28%

(see Figure 12) where D10 and D30 are similar but, D60 has a bigger difference.

Finally, the volume-surface ratio distributions have a mean error of 2.42%, and a standard

deviation of 30.12% when comparing parents and clones. There is less standard deviation, and

thus, variance in the values of aspect ratio of the clones than their parents but, their means are

very similar (see Figure 11). Note that, the addition of the quality control of 1% is directly reflected

in lower errors of the mean and standard deviation of volume-surface ratio with respect to the first

version. [13].
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Figure 8: Aspect ratio distributions calculated for the clones and parents

Figure 9: Roundness distributions obtained from parents and clones

Figure 10: Grain’s diameter distribution calculated for the clones and parents
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Figure 11: Volume to surface ratio computed for parents and clones
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Figure 12: percentage of grains passing versus log of grain’s diameter corresponding to last figure

4.1 Errors

In this subsection we compare the errors in the mean and standard deviation for the clones of the

first algorithm and trial configurations of clones in this version of the algorithm with respect to

their parents. For this matter, we generated 2400 clones from the pool of 2769 regolith simulant

(parent grains), and sampled a pool of 2400 parents. We calculated errors (in percentage) from the

algorithm 1.0 and the trials in section 3 to compare their mean and standard deviation displayed

in tables 4 and 5 respectively.
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Table 4: Mean error in percentage for each version of the algorithm and each morphological
property

Table 5: Standard deviation error in percentage for each version of the algorithm and each
morphological property.

The error in the means show that for aspect ratio and volume-surface ratio errors were reduced

while the grain’s diameter and roundness increased (see Table 4). On the other hand, error in

standard deviations for volume-to surface ratio decreased but, aspect ratio, grains diameter and

roundness errors increased. In sum, we have that the algorithm version with less average error is

2.0 using trial 4 with an embryo’s mesh of 28 × (18 + 2) and a level set resolution of 45×45×45

using 50 histogram bins. Comparing both versions we obtain about 6% less error in the means and

0.40% less error in the standard deviation than the first version of the algorithm.

4.2 Results

We ran the algorithm in Matlab 2017a with parallel pool [29] using 18 computers, with specific

characteristics (see Table 6), in a laboratory of Universidad San Francisco de Quito. As a result

3554 clones were generated from a pool of 2769 parents and the average time taken to generate

each cloned grain was 5 minutes. From these grains, we take 5 regolith simulant parents and cloned

grains obtained from version 2.0 shown in Figure 13,
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Operative System Windows 10 Pro x 64

Processor i5-3570 @3.40 GHz

RAM 8 GB

ROM 500 GB

Table 6: Technical characteristics of the computers used to generate a clones sample of 3554.

The code takes advantage of all the physical cores of the processor, in our case, the job is divided

into the 4 available cores in the laboratory computers. This job scheduling is synchronous [30–32],

in other words, if a batch of four grains or less are assigned to the four available cores, the batch’s

generation ends after each core clone their respective grain, then, another batch is processed until

all the job is done.

Figure 13: Five random sampled regolith simulant parents and clones for visual inspection and
comparison.
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5 Mechanical matching

In this section, we compare the soil’s mechanical behavior of regolith simulant parents and clones.

The clones produced by the geometry-based stochastic algorithm were included in simulations

using level set (LS) discrete element method scheme (3D LS-DEM) of a tri-axial test [20], which

have shown to reproduce qualitatively and quantitatively macroscopic behavior of grains. These

simulations consist of two namely, a hydrostatic phase, and a tri-axial compression from where

friction angle mobilization, and axial stress σ1, evolution are used as measures of strength and to

compare the mechanical response of the clones with respect to the parents.

Membrane Parameter Value Units

Sphere radius 0.15 mm

Diameter 10 mm

Normal bond stiffness 100 N/m

Shear bond stiffness 100 N/m

Normal stiffness 3.0 ×104 N/m

Shear stiffness 0 N/m

Table 7: Values of parameters used in simulation of membrane used in the tri-axial tests for the
parents and clones

The simulations were performed on Mode Mat’s cluster Quinde using 32 cores, the samples of

cloned and real grains for each simulation contained 1000 grains, 567 membrane particles for the

parents and 522 membrane particles for the clones, the parameters of the membrane are displayed

in Table 8. Then, differences in percentage for each parameter of the samples are calculated and

displayed in table 9. The hydrostatic compression took 18 hours for the parents and 141 hours for

the clones, and the result of this compression is shown in Figure 14. In addition, the tri-axial test

with 20% deformation was done in 17 hours for both, the parents and clones, and the resultant

configuration is shown in Figure 16.

Initial Conditions Parents Clones
Prescribed hydostratic pressure 5.1 5.1
Actual hydrostatic pressure 4.11 4.03
Height 454.22 464.74
Height-diameter ratio 2.11 2.01
Porosity 32.7 33.4

Table 8: Parents and clones tri-axial test initial conditions after isotropic compression.
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Initial Conditions Error [%]

Actual hydostratic pressure 1.95

Height 2.32

Height-diameter ratio 4.98

Porosity 2.14

Table 9: Error in the tri-axial test initial conditions of clones with respect to parents after isotropic
compression.

The sample of digitalized parents are packed and ready to be hydro-statically compressed but,

the the clones presented a challenge because they needed to be packed first. In order to solve

this problem, we generated positions for the cloned grains in the packing by using spheres with

the maximum value of radius of the grains in the pool and a minimum distance between them.

Additionally, more than a thousand simulations failed because the grains were too far from each

other or superposed, which led to the tearing of the membrane.

As can be seen from Table 8, for the LS-DEM simulations we prescribe an hydrostatic con-

finement pressure of 5.1 [F/L2]. Moreover, a stress tensor σ can be decomposed into the sum of

its volumetric p1 and deviatoric s parts [34]. σ = p1 + s, where p = tr(σ)/3 is the mean normal

stress, and 1 is the 3×3 identity. The second invariant J2 is defined as J2 = (s : s)/2. Thus, for

the parents we have

σ =


3.39 0 0

0 3.46 0

0 0 5.49

 p1 = 4.11 · 1 s =


−0.72 0 0

0 −0.65 0

0 0 1.37


with J2 = 1.41. On the other hand, for the clones

σ =


4.78 0 0

0 3.74 0

0 0 3.56

 p1 = 4.03 · 1 s =


0.76 0 0

0 −0.29 0

0 0 −0.47


so clones corresponding second invariant is J2 = 0.44.

The results of the second invariant, J2, show that packing of parents have a bigger deviator

strain than the packing of clones. This is due to the small size of the samples (1000 grains each),

but as the size increases the actual pressure will converge to the applied pressure.
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Figure 14: Samples of 1000 grains after hydrostatic compression of a) parents b) clones.
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Figure 15: Friction angle mobilization versus axial strain from the samples of parents and clones
made of 1000 grains each, and undergoing tri-axial compression. Here, red line corresponds to
parents and blue line to clones.



28

friction angle [ ◦ ] strain [%] σ1[F/L
2]

parents 35.36 2.90 13.28
clones 31.05 6.45 14.81
error 12.11% 122.41% 11.52%

Table 10: Tri-axial test results for parents and clones with samples of 1000 grains each. In this
table, the error has been computed for each parameter and with respect to the parents results.

From the results obtained after performing the tri-axial simulations using 3D LS-DEM scheme,

we see that parents and clones have similar mechanical behavior (see Fig. Figure 15). To compare

these results, we use Table 5, which show that the peak friction angle for the clones is similar

to their parents and the axial pressure values corresponding to the maximum strain are identical

although the strain is not the same. The final configuration of the packings of parents and clones

are shown in Figure 16. Recall that, this mechanical comparison included 1000 grains parents and

clones each, we expect the clones’ behavior to be very similar to its parents as the size of the

samples increases.

Figure 16: Final configuration after the tri-axial compression tests have finished with a total axial
deformation of 20% a) parents and b) clones.
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6 Further improvements

One of the main novelties of GSC is that it can be coded under the objects oriented paradigm

which makes it reusable, more simple and efficient than procedural programming [35–38]. More

importantly, it can be generalized to “clone” not only grains but any three-dimensional object.

The code can be restructured to reduce algorithm’s execution time. The algorithm reads and

writes repeatedly data stored in the hard disk drive, which results into a slowdown of the process.

This data can be read once and loaded in the RAM memory, and then saved only when the algorithm

finishes the cloning process. This will also reduce errors in the generation of the clones since the

roundness matching process (described in [13]) is performed after each batch of clones comply the

quality control.

The generation of grains can be parallelized to reduce algorithm’s execution time, specially when

the number of grains approximate 10000 or more grains. The program can be fully parallelized so

one core generates one grain, thus taking advantage of all the cores and threads. This might reduce

the execution time dramatically if for instance CUDA is used.

Moreover, the calibration of the embryo’s mesh can be automated to reduce algorithm’s execu-

tion time and minimize error. In this version, the calibration is manual but, this task can be coded

so the user doesn’t need to calibrate it.

In the present version of the algorithm, there is a bias in the grains’ diameter where the values

obtained from the clones are lower than the parents. Therefore, an additional quality control

can be included using volume-surface ratio and grain’s diameter to improve the matching for the

distributions of this last feature.

Furthermore, the number of points sampled can be optimized to reduce algorithm’s execution

time. The algorithm samples a set of points that form a neighborhood for each radius instead, we

can sample a set of points for all the mesh and then use them in the development of the embryo to

reduce the number of calculations.

All functions and operations can be checked if they can be performed in other ways to reduce al-

gorithm’s execution time. For instance the change of coordinates system could have other functions

which could reduce time.
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7 Conclusions

We developed a computational algorithm that was used to “clone” an arbitrary number of grains

using grain morphologies of a real sample of digitalized grains. These grains not only satisfied their

parents morphological features, but they also showed a similar mechanical behavior after clones

and their parents were included into a numerical DEM simulation.

This version of the algorithm is based on the geometry or morphological DNA of the parent

grains and relies on its multivariable statistical distributions (aspect ratio, minimum principal di-

rection, roundness and volume-surface ratio). After all the morphological DNA is extracted from

the real sample that has been digitalized, the algorithm generates a clone’s embryo (equivallent

ellipsoid), by sampling values of aspect ratio and minimum principal direction from its two-variable

distribution by using a multivariable Monte Carlo scheme. Then, the embryo is developed by

sampling radius in an enhanced radii sampling process. Next, the developed embryos’s roundness

is matched with their parents sampled value by polishing them with a laplacian smoother. Fi-

nally, a quality control is carried out using volume-surface ratio and minimum principal direction

multivariable distribution.

After that, the algorithm was used to generate a pool of 2400 clones and calculations were

performed to obtain the morphological DNA. The distributions of morphological DNA these clones

were compared with respect to the ones acquired from a pool of the same size of random picked

parents (see Figures 8, 9, 11, 10 and 12), from where we infer that the clones morphologically match

much more accurately their parents in this second version.

Additionally, A packing of 1000 parents was included in a tri-axial LS-DEM simulation and a

similar packing of clones was generated with the same number of grains, both had with an initial

deviator strain different from zero. The results from the simulation show a similar behavior in terms

of friction angle, σ1 and peak strain. Finally, the algorithm future improvements are analyzed and

described in section 8.
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