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Resumen 
 

A medida que más áreas marinas protegidas (AMP) se implementan por todo el 
mundo, con la finalidad de asegurar el uso sostenible y la viabilidad de los recursos, se 
vuelve vital ampliar los conocimientos con respecto a la estructura poblacional y los 
patrones de dispersión de especies económicamente importantes, para una gestión 
eficaz. Existen limitaciones al momento de analizar el grado de dispersión de los 
individuos entre las poblaciones y subpoblaciones. La dispersión en poblaciones 
marinas ocurre durante su fase larvaria pelágica, que puede durar de entre varias horas 
hasta varios meses. 

Los marcadores microsatélites son un método eficiente y rentable para responder 
a preguntas ecológicas importantes para la toma de decisiones y manejo de reservas, ya 
que son altamente polimórficos, además presentan una alta flexibilidad, ya que se puede 
trabajar con tejidos degradados o con bajas concentraciones de ADN, además estos 
marcadores trabajan con ADN nuclear, lo que mejora los estudios de migración. Por 
esto esta metodología brinda una visión actual de la estructura y composición de la 
población, al igual que los patrones de migración. 

La langosta espinosa roja (Panulirus penicillatus) es una especie ampliamente 
distribuida en la región del Indo-Pacífico. En la Reserva Marina de Galápagos (RMG) 
se encuentra alrededor de todas las islas y desde 1960 adquirió un interés económico 
importante; lo que llevó a un uso insostenible de este recurso, por consiguiente se la 
incluyó en el calendario pesquero de la RMG, limitando así, sus actividades extractivas. 
Desde entonces, su gestión ha mejorado sustancialmente, sin embargo, pocos estudios 
se han realizado sobre la estructura genética y la conectividad de sus poblaciones dentro 
de la RMG. 

Chow et al. (2011) y Abdullah et al. (2014) por medio de ADNmt y marcadores 
moleculares, encontraron estructura poblacional entre las poblaciones del Pacífico 
Occidental y Oriental. Sin embargo, Martínez (2006) analizó la estructura genética de P. 
penicillatus dentro de la RMG, y no encontró diferencias significativas entre las 
distintas poblaciones estudiadas. 
 En este estudio, se analizó la composición genética de P. penicillatus en la RMG, 
utilizando marcadores microsatélites desarrollados por Mulvihill et al. (trabajo no 
publicado) usando las lecturas de secuenciaminto Illumina provisto en la plataforma 
Galaxy. Al igual que estudios previos, no se encontró estructura poblacional entre sitios 
e islas dentro de la RMG. Los valores de Fst se encontraron entre 0.000-0.046. Sin 
embargo, se encontró un bajo número de alelos (promedio por sitios: 3.667, promedio 
por islas: 4.131); de igual manera, se encontraron bajos índices de riqueza alélica (por 
sitios: 2.174; por islas: 2.223). Finalmente, los análisis de migración revelaron un flujo 
del oeste hacia el este, al parecer Isabela es la fuente de larvas que abastecen al resto de 
las islas. Sin embargo, se necesitan más estudios para comprobar esta hipótesis, en caso 
de ser así, estos resultados pueden tener implicaciones importantes en el esquema de 
zonificación de la RMG. 
 
Palabras clave: conectividad, alelo, riqueza alélica, pelágico, estructura poblacional, 
distancia genética, microsatélites. 
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Abstract 
 
 As more marine protected (MPAs) areas are implemented around the world, to 
ensure a sustainable use and viability of resources, it is vital to know about the 
population structure and dispersal patterns of important commercial species for 
effective management. Limitations are found when analyzing the degree of dispersal of 
individuals among populations and subpopulations. In marine populations, dispersal 
occurs during their pelagic larval phase and can last from several hours to several 
months. 
 Microsatellites markers appear to be an efficient and cost-effective method to answer 
important ecological questions, as they are nuclear DNA, highly polymorphic, and 
results can be obtained from degraded tissues or low concentration of DNA, providing a 
contemporary view of population structure and migration.   
 The Red Spiny Lobster (Panulirus penicillatus) is a widely distributed species, 
ranging throughout the Indo-Pacific region. It is found in all islands of the Galápagos 
Marine Reserve (GMR) and since 1960 it became of economic interest, however its 
intense harvest lead to an unsustainable use, so it was included in the fishing calendar of 
the GMR, limiting its extractive activities. Since then, its management has substantially 
improved, however little is known about the genetic structure and hence the 
connectivity of its distant populations within the GMR. 
  Chow et al. (2011) and Abdullah et al. (2014) using mtDNA and molecular markers, 
found genetic structure between populations of Western and Eastern Pacific regions. 
However Martinez (2006) analyzed P. penicillatus genetic structure inside the GMR, 
and found no significances differences among sites. 

In this study the genetic composition of P. penicillatus in GMR was analyzed 
using microsatellite markers developed by Mulvihill et al. (unpublished work) using 
Illumina pair-end sequencing with a Galaxy-based pipeline. Like previous studies, no 
population structure was found among different sites or islands within the GMR. Fst-
values ranged from 0.000-0.046. Nevertheless a low number of alleles (average sites: 
3.667; average islands: 4.131) was found, as well as low average allelic richness (sites:	
2.174;	islands: 2.223). Finally, migration analyzes revealed an eastwardly flow, as 
Isabela appears to be the source of larvae supplying the rest of the islands. More studies 
need to be done to test this hypothesis, but if proven, these results can have important 
implications in the design of the GMR zoning scheme.  
	
Keywords: connectivity, allele, allelic richness, pelagic, population structure, genetic 
distance, microsatellite.  
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Introduction 
 

Marine protected areas (MPAs) have been recognized to increase the biomass 

and density of heavily exploited species; therefore they are an optimal tool to protect 

marine environments, as well as endangered species (Botsford et al., 2009). MPAs are 

delimited locations under legal protection policies for conservation purposes, mainly to 

ensure the preservation of biodiversity, for which is common the application of a 

multiple use scheme. 

Typical zoning categories are no take zones, fishing/extractive zones, touristic 

zones, among others, depending on the activities of the different stakeholders involved 

with the protected area. Authorities of MPAs center their effort on providing a 

sustainable use of resources. For instance, it is vital to have comprehensive information 

about the connectivity among distant populations within an MPA, which is determined 

by the number of adult individuals dispersing among populations, as well as by the 

frequency of larval dispersal and recruitment from other populations. All these factors 

will determine the adaptability potential of a particular species and its capacity to 

respond to drastic environmental changes.  

Determining the connectivity of populations and subpopulations can be cost and 

time consuming with low chances of success, especially for benthic marine species, for 

which the majority of the dispersal occurs during their larval stages. Approximately 

85% of benthic marine species have a spore, an egg or a larval phase, which constitute 

their primary dispersal form. Their long larval stage (up to several months) and its 

pelagic capability, have lead to the misconception of all marine populations as being 

highly connected, as marine currents are constantly circulating around the globe. But 

understanding larval dispersal implies knowing physical and chemical features of the 

environment, the biological traits of the larva and the interaction among them (Palumbi, 
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2004). With the progress and accessibility of different techniques, namely genetic, 

geochemical markers or biophysical models, now it is possible to infer more accurately 

the pathways of larval dispersal. For example, using mtDNA, Saunders et al. (1985) 

found for the Horseshoe crab (Limulus polyphemus) a major genetic break with no 

physical barrier between the north and the south populations of northeastern Florida, 

even though the crab presents a two-week larval stage. The same pattern was found by 

Reeb and Avise (1990) on the American Oyster (Crassotrea virginica), along the east 

North American coast, resulting in two divergent populations. 

In addition, temporal variation in larval recruitment can also structure 

populations; this is the case of the Caribbean Spiny Lobster, Panulirus argus. Truelove 

et al. (2015) revealed that P. argus showed no genetic structure between two Mexican 

MPAs, the Sian Ka’an Biosphere Reserve and the Banco Chinchorro Biosphere 

Reserve, however individuals of different size classes showed genetic structure, 

suggesting seasonality in connectivity patterns (Truelove et al., 2015).  

The Red Spiny Lobster (Panulirus penicillatus) is a transpacific Crustacean, 

distributed from the Indo-Pacific to the Tropical Eastern Pacific, including some 

oceanic islands like Revillagigedo and Galápagos (Hickman and Zimmerman, 2000; 

Cockcroft et al., 2013). Like most marine species, P. penicillatus, has an extended 

pelagic larval phase of ~10 months and as an adult it occupies a benthic ecological 

niche. It inhabits shallow rocky subtidal zones of coastal areas, from 1-16 m depth. As a 

nocturnal predator, it feeds on small invertebrates, like crabs and sea urchins (Hickman 

and Zimmerman, 2000; Hearn and Murillo, 2008), while during the day it remains in 

cracks or crevices. In addition of being a key ecological species, as it is a top-down 

regulator for smaller invertebrates, it is also an important commercial species, as it is 

being fished in more than 90 countries (Debevec et al., 2014). The Food Agency 
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Organization (FAO) reported catches of P. penicillatus greater than 300 000 tons of 

spiny lobster worldwide for 2016 (Debevec et al., 2014). 

In the Galápagos, the fishery of P. penicillatus originally begun as of 

subsistence, but it became commercially important in the early 60’s. The poorly 

controlled fishery intensified, and by 2005 and along the sea cucumber collapse, the 

lowest Catch Per Unit effort (CPUe) was recorded (4 kg per diver per day-1; Hearn and 

Murillo, 2008), which was even lower than that recorded for any El Niño event (≈ 6 kg 

per diver per day-1during El Niño of 1998; Hearn and Murillo, 2008). After this severe 

El Niño, additional events every 4-5 years, and a constant fishing pressure, CPUe for 

the Galápagos Red Spiny Lobster has been oscillating around its lowest values, 

however with a continuous trend of reduction (Hearn and Murillo, 2008; Reyes et al., 

2013 and Buglass et al., 2018). 

For these reasons, the Galápagos Marine Reserve (GMR) authorities decided to 

monitor the species and included it in the fishing calendar, which is a management tool 

that regulates all fishing activities within the GMR (Heylings et al., 2002). For P. 

penicillatus the following regulations are in place: an annual fishing of 4 to 5 months, 

landings of individuals with a minimum size (26 cm, total carapace length or 15 cm tail 

length), and the prohibition of landing of egged females (Toral, et al. 2002). In addition, 

fishing techniques are limited to the use of Hawaiian slings or by hand. Since these 

regulations were put in placed, CPUes have been increasing since 2008, with a peak of 

8.7 kg per diver per day-1 in 2011 (Reyes et al., 2013). Despite of being a good sign of 

population recovery, intense fishery is still being applied to the lobsters in the GMR: 

196 and 165 tons of lobster were captured for the years 2016 and 2017, respectively 

(Parque Nacional Galápagos, 2017; El Telégrafo, 2018). It is also important to note that 

fishing effort in the GMR can increase, since currently there is a 61% of inactive 
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fisherman that, given the favorable fisheries conditions, could come back and influence 

the recovery of the lobster population, making it susceptible to overexploitation (Hearn 

and Murillo, 2008; Reyes et al., 2013). 

It is thus important to understand if the combined effects of El Niño event and 

the fishing pressure are impacting the populations of P. penicillatus, for example with a 

loss of genetic diversity, due to population decimation. In addition, understanding the 

degree of connectivity of distant P. penicillatus populations is key, because if highly 

connected, the transfer of genetic material can recover the loss of genetic variability due 

to harvesting (Botsford et al., 2009; Cowen and Sponaugle, 2009). Given that P. 

penicillatus larval stages are long lasting, their dispersal potential is high, and as a 

consequence, distant populations could remain connected. There have been various 

genetic studies done with P. penicillatus, both locally and regionally. Martinez (2006) 

in collaboration with the Galápagos National Park, carried out a study using mtDNA 

and RFLP, in which they included individuals from four main islands: Santa Cruz, 

Isabela, San Cristóbal and Floreana. Main results indicated a lack of genetic 

differentiation among islands, but with a slight differentiation from San Cristóbal’s 

samples. Chow et al. (2011) and Abdullah et al. (2014) studied genetic diversity and 

connectivity of P. penicillatus, using mtDNA and found two distinct populations, one in 

the Western/Central Pacific and another one in the Eastern Pacific.  

Despite the progress and accessibility of genetic methods like microsatellites, 

little effort has been done to understand the connectivity of the Galápagos Red Spiny 

Lobster among different islands of the Archipelago. The use of other genetic markers, 

such as microsatellites, has helped addressing important ecological questions, like the 

occurrence of cryptic species, gene flow, and population structure, among others. This 

technique is a much better method than mtDNA or RFLP, since microsatellites are 
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highly polymorphic, species-specific, cost-effective and are located in small segments 

of the genome that are inherited bipaternally (Selkoe and Toonen, 2006; Arif et al., 

2011); therefore results have a better spatial and temporal resolution. 

For this reason, the main objective of this study is to investigate population 

connectivity of the Galápagos Red Spiny Lobster using microsatellites that where 

designed for this species with the overarching goal of helping evaluate its genetic 

composition for future decision-making in the Galápagos Marine Reserve.  
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Objectives  
 

Main objective: 
 
• Characterize the genetic composition of P. penicillatus in the GMR, using 

next generation sequencing microsatellite markers 

 
 
Specific objectives: 

 
• Determine if there is a genetic structure among different sites or islands  

• Determine migration patterns of individuals among different sites or islands  
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Methods 
	

Study Area and Sample Collection 
 

The GMR, is a multiuse reserve that encloses an area of 138 000 km2 from 

which industrial fishing has been forbidden since 1998, but artisanal fishing is allowed 

in particular zones (Danulat and Edgar, 2002). The GMR is managed by the Galápagos 

National Park (GNP), which allows local fishermen to harvest protected marine species, 

such as the Galápagos Red Spiny Lobster (P. penicillatus). 

The Archipelago is located on the equator were three major currents confluence 

and show a marked seasonality in terms of intensity and direction; these are: a) the 

Humbolt Current, with several months of duration (8-9 months), which brings cold and 

nutrient-rich waters from the Antarctic carried out by the south-east trading winds along 

the west coast of South America, then it turns with a westward direction and converges 

into the South Equatorial Current; b) the less nutrient-rich and warmer waters of the 

Panama Current with southward direction, which then turns west at the southwest from 

Central America; and c) the Cromwell undercurrent, with an eastward flow from the 

Central Pacific, that generates nutrient-rich upwelling in the west side of Galápagos 

(Fernandina and Isabela; Banks, 2002; Palacios, 2004).     

In this study a total of 134 lobster samples were collected in 2015 from nine 

sites and six different islands (Table 1). The sites were:  La Unión and San Pedro from 

Isabela Island; Rosa Blanca and Los Chorros from San Cristóbal Island; Punta 

Rocafuerte and Garrapatero from Santa Cruz Island; Punta del Miedo from Santa Fé 

Island; Bucanero form Santiago Island; and, Piedras Amarillas from Floreana Island 

(Table 1). 

Samples were collected from fishermen landings at the three main fishing docks 

of Santa Cruz, San Cristóbal and Isabela Islands, thus the number of samples per site 
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was variable (9-20) and depended completely on the availability of fishermen catches. 

Samples consisted of fresh muscle tissue from the periopods of adult individuals. 

Tissues were preserved in 1.5 ml microtubes with 96% ethanol. Genomic DNA was 

obtained following the manufactures protocol from Qiagen® DNA Blood and Tissue 

Kit. Quality and quantity of the extracted DNA was determined using Nanodrop 

spectrophotometry (Nanodrop 2000 Thermo scientific). 

Genotyping 
	
 Mulvihill et al. (unpublished work) developed 23 primers for P. penicillatus, 

using next-generation sequencing (NGS) and a bioinformatics pipeline in the Illumina 

paired-end sequencing package, available in the open source tool Galaxy (Griffiths et 

al., 2016). The process consisted of a series of filters that enhance optimal microsatellite 

reading outputs for primer designing. With Illumina and Trimmomatic v. 0.32, low 

quality reads were discarded. In addition, FastQC v0.11.4 generated reports with 

important information, like GC content, which identifies guanine-cytosine regions that 

indicates the primer melting temperature (Tm) and quality scores, among other things. 

Then, filtered information was analyzed using Pal_finder v.0.02.04 to identify repeat 

motifs and flanking regions. Lastly, with Pal_filter, microsatellites loci and primers 

were analyzed; loci with interrupted motifs, primers that appeared in the same read, and 

loci and primers that could not be designed by Prime3 were discarded. Then, 

PANDAseq filter was used to increase the chance of a successful PCR (Griffiths et al., 

2016).  After the 23 primers were developed, the Culley et al. (2013) 3-primer system 

was used. It consisted on a forward primer with a tail sequence attached to the 5’ end, a 

labeled tail with a fluorescent dye attached to the 5’ end, and, an unaltered reverse 

primer. This is an improved system to identify microsatellite sequences that during PCR 

phase’s traceable amplifications are generated, therefore reducing time and costs.        
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 After testing primers’ PCR success, a total of 18 primers were selected to add 

the tail sequence (Mulvihill et al., unpublished work; Table 2). Selected primers were 

tested and attached with the universal primer M13(-21). For multiplexing procedures, 

two fluorescent dyes (6FAM® and HEX®) were added to the tail primer. Eleven 

forward primers (PEN: 4, 10, 13, 15, 16, 17, 20, 22, 27, 28 and 34) were labeled with 6-

FAM® dye and the remaining seven forward primers were labeled with HEX® (PEN: 

3, 18, 19, 21, 23, 24 and 33). With the Multiplex Manager Software (Hollele and 

Geerts, 2009), eight different multiplex PCRs were determined. Six mixes were duplex: 

PEN34 and PEN15, PEN17 and PEN27, PEN18 and PEN23, PEN21 and PEN3, PEN19 

and PEN33, and lastly PEN16 and PEN24; while two other were triplex and had the 

following combinations: PEN22, PEN28 and PEN4; PEN13 PEN20 and PEN10. 

 Following Culley et al. (2013), primers were amplified with high annealing 

temperatures and only ¼ of the recommended concentration of the forward primer was 

used. Twenty-five µl PCR reactions were made according to InvitrogenTM PlatinumTM 

Taq Polymerase protocol and PCR conditions were as follows: 94◦C for 2 min initial 

denaturation, followed by two set of cycles. The first was of 30 cycles at 94◦C for 30s, 

60◦C for 30s, and 72◦C for 30s. The second was of 10 cycles at 94◦C for 30s, 53◦C for 

42s and 72◦C for 1 min, with a final extension at 72◦C for 10 min. Amplified products 

were sent to the Laboratory of Analytical Biology of the Smithsonian National Museum 

of Natural History in Washington DC, in order to be automatically genotyped by ABI 

PRISM 310. With the program GeneMapper® V. 3.0 (Applied Biosystems) scoring and 

binning of alleles were checked, from which a matrix was developed at the Laboratorio 

de Biotecnología Vegetal of San Francisco de Quito University.  
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Data Analysis 
	

Data was analyzed with two different approaches: per population coming from 

nine different sites (“by Sites”) and per island coming from six different islands (“by 

islands”). Basic population parameters among and within populations, such as allele 

richness, expected and observed heterozigocity, as well as Hardy-Weinberg equilibrium 

were calculated using Genodive v2.0b27 (Meirmans and van Tienderen, 2004). 

Likewise, for population differentiation analyses, a hierarchical AMOVA was 

performed using Weir and Cockerham’s infinite allele model in Genodive with 50 000 

permutations (Michalakis and Excoffier, 1994). Linkage disequilibrium was run in 

GENEPOP on the Web v4.2 (Raymond and Rousset, 1995). FreeNA at 5 000 replicates 

was run to check null alleles frequencies (Chapuis and Estoup, 2007). False Discovery 

Rate type of correction was applied in order to reduce type I error, when multiple 

analysis were done (Verhoeven et al., 2005).  

Genetic Distances and Population Structure  
	

Genetic distances were estimated in Genodive v2.0b27. Weir & Cockerham 

(1984) estimator was used to calculate genetic variability among populations. Fixation 

index ranged from 0-1, where values close to 0 indicate a freely interbred population, 

whereas values close to 1 could be explained by population structure. Bruvos’ distance 

(Bruvo et al., 2004) was calculated among individuals; for this test values varied from 

0-1, 0 meaning identical genetic composition and 1 different genotypes.  

Principal Component Analysis (PCoA) was performed using the “hierfstat” R 

package to visualize relatedness or differences among populations (Goudet and Jombart, 

2015). The genetic makeup among sites was determined in Structure V2.3.4, with a 

bayesian based-model with a clustering program (K), according to their multi-locus 

genotypes composition (Falush et al., 2003).  
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Inbreeding 
	

With the R package “Adegenet”, the inbreeding coefficient (F) was calculated 

for each individual by computing its likelihood ratio. F represents the probability of an 

individual to inherit identical alleles from related ancestors; F values lower than 0.5 

indicate lower chances of inbreeding events (Jombart and Ahmed, 2011). 

Bottleneck Events 
	

 Bottleneck 1.2.02 (Cornuet and Luikart, 1997) was used to detect if the 

population has faced any drastic population reduction in the past generations; this 

program analyzes the mutation/drift equilibrium based on the number of alleles in a loci 

and its heterozygosity. 

Migration 
	

Finally and to understand more about the dynamics of the population, a 

migration network was created using information from genetic differentiation methods, 

with the package “diveRsity”(Keenan et al., 2013) in R. These analyses represent the 

probability of flow among populations using a distance matrix. 
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Results 
	
 Eighteen microsatellite were tested in 134 individuals. From the scoring process 

PEN10 and PEN22 were discarded, as they appeared monomorphic, therefore less 

informative. The rest of the analyses were done with the 16 remaining markers, 

however two pairs of loci were linked with the analyses done by Sites: PEN17 & 

PEN18 and PEN20 & PEN21 (Table 3a), whereas analyses done by Islands showed 

four linked loci: PEN17 & PEN18, PEN18 & PEN20, PEN18 & PEN21 and PEN20 & 

PEN21 (Table 3b). On the other hand, the frequency of null alleles ranged from 0.000-

0.256 and from 0.000-0.240, when grouping the data by Site and by Island, respectively 

(Tables 4a & 4b). Given that PEN18 and PEN20 showed higher linkage frequencies and 

also relatively high null allele frequencies (Table 4), they were discarded. This resulted 

ending up with a total of 14 microsatellite markers for the rest of the analyses. 

The 14 microsatellites presented a 4.96% of missing data.  In addition, eight loci 

were out of H-W equilibrium, when analyses were done by Site (Table 5a) and seven 

when they were done by Island (Table 5b).  PEN16 & PEN23 presented higher 

disequilibrium frequencies for both approaches (Table 5a & 5b). 

Genetic Diversity 
	

One hundred and three alleles were found in 14 loci. But on average a low 

number of alleles were found, being 3.667 and 4.131 alleles per loci by Sites and 

Islands, respectively (Tables 6a & 6b). On the other hand, the average number of alleles 

per locus was higher, with 7.429, and with PEN17 being the most polymorphic (Table 

7). 

Heterozygosity analyses presented mid-low values (Tables 6 & 7). Four Sites 

and three Islands had higher observed than expected heterozygosity, respectively (Table 

6a & 6b), meanwhile average heterozygosity per Locus was equal between observed 
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and expected (Table 7). In addition, relatively low counts of private alleles were 

present: on average five private alleles when analyses were done by Site and eight 

alleles by Island. Garrapatero, Piedras Amarillas and La Unión were the Sites with 

higher counts, whereas Santa Cruz and Isabela had higher number of private alleles 

(Tables 6a & 6b). Lastly, a low allelic richness was encountered, both when analyses 

were done by Site or by Island (Tables 6a & 6b).    

Genetic Distances and Population Structure 
 
 In general, genetic distances were very small (Tables 8a & 8b). Fst values 

ranged from 0.000-0.046. The greatest difference was between Rosa Blanca and 

Garrapatero (Table 8a), and between San Cristóbal and Santa Cruz (Table 8b). No 

significant differences were seen among Sites or among Islands; the majority of 

variability occurred within individuals and among individuals nested in Sites and in 

Islands (Table 9). 

PCoA analyses were consistent for population structure: there was a lack of 

differentiation among Sites and among Islands, with very small genetic distances: 

visualization of individuals was all over the low dimensional space (Figures 1a & b). 

Nevertheless, genetic composition in Structure presented a K= 2, assuming that two 

populations explain better the variability of data, both by Site and by Island (Figures 2 a 

& b).   

Inbreeding  
	

Figure 3 plots the density of probability of F (the inbreeding coefficient), and 

reflects that less than the 5% of all samples could have high probabilities of suffering 

inbreeding events (hig F-values from 0.6-0.7, Figure 3), while the majority of data were 

located among a coefficient of 0.1-0.25, which represents low chances of inbreeding 

events. 
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Approximately 1-2 individuals presented a high inbreeding coefficient, for 

analyses arranged by Site and by Island, respectively (Figure 3). Either by Site or by 

Island, most of the individuals were located between 0.100-0.450, indicating less than a 

50% chance of an inbreeding event (Figure 3a & 3b).   

  

Bottleneck Events 
	
 Significance deviations from mutation/drift equilibrium were not consistent 

between the two-phase model (TPM) and the stepwise mutation model (SMM) in data 

arranged either by Site or by Island (Table 10a & 10b). Only one Site (La Unión) 

presented an excess of heterozygosity in both models (Tables 10a). As for the analyses 

performed by Island, the SMM model suggested a drastic population reduction in San 

Cristóbal, Floreana and Isabela islands (Table 10b).  

Migration 
	

Migration network analyses among Sites indicated that there is moderate 

migration among all Sites. However, San Pedro from Isabela is noticeable, as it shows 

higher probabilities of flow to other Sites like to Punta Rocafuerte in Santa Cruz, to 

Piedras Amarillas in Floreana and to La Unión in Isabela (Figure 4a). Rosa Blanca in 

San Cristóbal and Garrapatero in Santa Cruz, showed lower migration rates (less than 

the cutoff of 0.4) and appeared isolated form the network (figure 4a). Migration along 

the GMR is more asymmetrical when data is analyzed by Island, where a prominent 

flow results from Isabela towards the eastern islands of San Cristóbal, Santa Cruz, and 

Floreana (figure 4b).	 	
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Discussion 
	

As more information has been published, a growing concern towards the genetic 

diversity and connectivity of marine populations has developed, especially for exploited 

species. Therefore the main purpose of this study was to improve our understanding and 

knowledge of the connectivity and gene flow of the Galápagos Red Spiny Lobster 

(Panulirus penicillatus) among different populations in the GMR with species-specific 

microsatellites markers. 

In this study, a total of 23 primers were selected as candidates for amplifications, 

from which only 18 did amplified, and from those, four were discarded: PEN10 & 

PEN22, as they were monomorphic for all 134 individuals, therefore they did not 

contain much information. Likewise, primers PEN18 & PEN20 were discarded, as they 

presented a higher frequency of linked loci (Tables 3a & 3b) and relatively higher null 

allele values (Tables 4a & 4b). Loci in linkage disequilibrium were not included since 

all the programs used for the analyses assumed independent hereditability and high null 

allele values are known to reduce genetic distances among populations (Chaupuis and 

Estoup, 2007). 

For Hardy-Weinberg (H-W) equilibrium analysis, eight primers were in 

disequilibrium when data was analyzed by Sites (Table 5a), while seven additional 

when analyzed by Islands (Table 5b). For Garrapatero in Santa Cruz, Punta del Miedo 

in Santa Fé, Piedras Amarillas in Floreana and Bucanero in Santiago, disequilibrium 

from H-W could be due to small sample sizes, which were the lowest with 9, 11, 15 and 

13 individuals, respectively. For the rest of loci in disequilibrium with bigger sample 

sizes, deviations from H-W equilibrium implies that there are selective forces acting on 

the microsatellites regions or due to null alleles frequencies, as Delanghi et al. (2016) 
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and Perez-Enriquez et al. (2002) found for Panulirus homarus and Panulirus 

interruptus, respectively. 

Genetic diversity indices by Site and by Island for P. penicillatus indicated low 

number of alleles as well as low allelic richness, and, a moderate heterozygosity (Tables 

6a & 6b) when compared with similar species. Dao et al. (2013) found on average 5.3 

alleles in P. homarus in the northern islands of Australia. Using the same markers, Dao 

et al. (2013) found in Panulirus versicolor and Panulirus argus 2.5 and 1 alleles on 

average, respectively. Years after, Dao et al. (2015) reported 14.3 alleles for Panulirus 

ornatus along the northern islands of Australia. Likewise, allelic richness found by 

Palero et al. (2010) for Panulirus elephas in the western Mediterranean, for Panulirus 

mauritanus in Morocco, Atlantic, for Panulirus gilchristi and Panulirus delagoae in 

South Africa, and for Panulirus barbarae in the Madagascar ridge, were higher than 

allelic richness found for P. penicillatus (highest average was 2.223, Tables 6a & 6b), 

with values of 9.87, 7.75, 8.87, 7.66 and 7.31, respectively. It is important to point out, 

however that the number and method of marker development varied among the 

mentioned studies, most of them had unspecific microsatellite markers for each species, 

while in this investigation we used specific P. penicillatus microsatellite markers.  

Nevertheless it would be interesting to use our microsatellite markers with P. 

penicillatus in populations found on the western Pacific Ocean, and thus to compare 

migration and diversity indices between the two populations found by Chow et al. 

(2011) and Abdullah et al. (2014). Such a comparison was not possible in this study due 

to the differences between methodologies. This would help evaluate, however in real 

time, differences produced by their distinct evolutionary histories. Since Abdulla et al. 

(2014) suggested that the expansion time of P. penicillatus in the Western Pacific 

Ocean occurred earlier than in the Eastern population, and as migration happens among 
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these populations, this would suggest that the western populations are acting as a source 

population maintaining the diversity of the Eastern populations.   

Allele richness was moderate (Tables 6a & 6b). Expected heterozygocity (0.405) 

was slightly higher than observed heterozygocity (0.410) when analyzed by Site, while 

by Island, the frequencies were equal (0.411). This indicates the existence of external 

forces, like overfishing or climate events, that are deleting low frequencies alleles 

(Masatoshi et al., 1975; Caballero and García-Dorado, 2013).  It is important to mention 

that diversity indices, such as allelic richness or number of alleles are important aspects 

on the population dynamics, as they are the raw material for evolution and determine 

the adaptability potential of a population, therefore they are key elements for 

conservation and management (Leberg, 2002; Foulley and Ollivier, 2006; Greenbaum et 

al., 2014).  

Panulirus penicillatus in the GMR did not present any population structure, as 

distance among individuals ranged from 0.0269-0.714, and Fst values were near 0, 

indicating a highly connected population. The same was true for the PCoA, Structure 

and AMOVA analyses, where there was a lack of genetic structure among Sites and 

Islands (Figs. 1 & 2, Table 9), and the majority of variance was explained by the 

differences within individuals (Table 9), which indicates complete panximia. These 

results are similar to those obtained by Chow et al. (2011) and Abdullah et al. (2014) 

using mtDNA, where no structure was found within each of the Western and Eastern 

Pacific populations. Similar results have been reported using mtDNA in the blue spiny 

lobster (Panulirus inflatus) along the Pacific Mexican coast, as well as reported by 

García-Rodríguez and Perez-Enriquez (2008), for P. ornatus along the Southern Asian 

archipelago, using mtDNA and microsatellites (Dao et al., 2015). The high connectivity 

of these populations can be due to their long lasting larval stages, as ocean currents drag 
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larvae all over the place. Biophysical factors also play an important role in the 

connectivity among populations, and the interaction of pelagic initial stages of marine 

species and its biophysical factors are still fields that need to be investigated (Matsuda 

et al., 2006; Sponaugle, 2009; Dao et al., 2015). For example a study carried out by 

Truelove et al. (2017) in the Greater Caribbean and Bermuda, found population 

structure for the Caribbean Spiny Lobster (P. argus) between neighboring basins and 

within basins, but not between most geographically distant basins, implying a close 

relationship between larval biology and a complex oceanographic circulation, which 

resulted in isolated populations.   

In this study inbreeding events seemed very improbable, as only less than 1-2 

individuals presented a higher probability of inheriting identical alleles from related 

ancestors (Figure 3). This suggests that Galapagos Red Spiny Lobsters has or is close to 

an optimal population size. As for bottleneck analyses only La Unión in Isabela 

appeared to have gone under a drastic reduction of its population size, as both 

mutational models yielded significant results (Table 10a). Los Chorros in San Cristóbal, 

Piedras Amarillas in Floreana and San Pedro in Isabela also presented significant 

results, however only with the SMM mutational model (Table 10a). Interestingly, these 

same islands also showed significant results when analyses were done by Island. 

 Although not all parameters of the Bottleneck program were met, these results 

coincide with Masatoshi et al. (1975) analysis, where he stated that a drastic reduction 

in the population size has greater impact on the number of alleles than the 

heterozygosity, since genetic drift deletes low frequency alleles, thus affecting the 

number of alleles found, while heterozyosity, instead, is also affected by the growth rate 

of the population, as the remaining alleles can maintain a moderate frequency, and with 

a high growth rate, mutation can act and allele frequencies can be recovered. As shown 
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by Palero et al. (2010) with P. elephas and P. grilchristi that despite of having gone 

through a bottleneck event, they present high allelic frequencies. Nevertheless it is 

important to mention that results can vary depending on the biology of each species, as 

Brooker et al. (2000) found three different genetic stocks among northern, western and 

eastern populations of the Giant Tiger Prawn (Penaeus monodon) but in western 

populations a low genetic diversity indices were evidenced due to previous bottleneck 

events. However, mutational models rarely mimic real life mutation dynamics.   

Larval dispersal patterns of P. penicillatus within the GMR appears to be 

partially asymmetrical; flow from San Pedro and La Unión in Isabela to the rest of the 

Sites presented higher probabilities, but flow is still occurring among the different Sites 

at lower rates (Figure 4a). This observation is clearer when data is arranged by Island, in 

which a prominent migration of lobsters from the west to the rest of the archipelago 

appears (Figure 4b). This suggests that the main stock of lobster populations is supplied 

from the west side of the reserve. Buglass et al. (2018) evaluated the effectiveness of the 

GMR, by comparing the abundance and mean sizes of the Galápagos Red Spiny Lobster 

among No take zones and Fishing zones, and results did not show any significance 

difference among zones, thus implying a lack of effectiveness in the protection of the 

no-take zones. An important observation was the lack of information about larval 

supply, dispersal and recruitment patterns. Thus, this study can provide insights in order 

to reevaluate the GMR monitoring program and zoning scheme. 
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Conclusion  
 

Previous studies done with Red Spiny Lobster (P. pencillatus) using mtDNA 

and molecular markers suggested a lack of population structure within the GMR, 

nevertheless they all concluded that more polymorphic markers were needed, therefore 

in this investigation, we analyzed the genetic composition of P. penicillatus using 

microsatellite markers developed by Mulvihill et al. (unpublished work) and designed 

specifically for this species. In spite of this, this study found similar results as previous 

investigations, where a lack of population structure and a highly connected network of 

populations was found. Nevertheless, results also showed a low number of alleles and 

allelic richness, representing a loss of genetic diversity that could eventually affect their 

capacity to respond against environmental changes. Results shown from bottleneck 

analyses are consistent with this, as some of the sites/islands seem to have passed 

through a drastic population reduction, and despite these results should be taken with 

caution, they are worth noting, as it is important to take precautions for the recovery of 

the P. penicillatus populations in the GMR, as they are subject to intense harvesting and 

to extreme oceanographic events, such as El Niño.  

 Gene flow among the selected populations of P. penicillatus of this study seems 

to be asymmetrical, with a major flow from Isabela to the east of the Archipelago. This 

suggests that the main stock of larvae is located in the West. This is consistent with 

findings by Buglass et al. (2018), who found bigger lobsters in Fernandina (west of 

Archipelago), and it is known that bigger females can produce up to 700 000 eggs, 

while medium-sized lobster produce up to 40 000 (Toral et al., 2002), thus there is a 

higher chance of larvae produced in the West to be dispersed to other regions of the 

Archipelago. If this hypothesis is verified by additional studies, these results may help 
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restructure the zoning scheme of the GMR, by closing more sites to fishing in the west 

of the Archipielago.	

	 	



	 31	

Work cited 

Abdullah, M. F., Chow, S., Sakai, M., Cheng, J.-H., & Imai, H. 2014. Genetic Diversity 
and Population Structure of Pronghorn Spiny Lobster Panulirus penicillatus in the 
Pacific Region 1. Pacific Science, 68(2), 197–211. http://doi.org/10.2984/68.2.3 

Arif, I. a., Khan, H. a., Bahkali, A. H., Al Homaidan, A. a., Al Farhan, A. H., Al 
Sadoon, M., & Shobrak, M. 2011. DNA marker technology for wildlife 
conservation. Saudi Journal of Biological Sciences, 18(3), 219–225. 
http://doi.org/10.1016/j.sjbs.2011.03.002 

Banks, S. 2002. Ambiente Físico. En: Reserva Marina de Galápagos. Línea Base de la 
Biodiversidad (Danulat E & GJ Edgar, eds.). pp 22-37. Fundación Charles 
Darwin/Servicio Parque Nacional Galápagos, Santa Cruz, Galápagos, Ecuador 

Botsford, L. W., Brumbaugh, D. R., Grimes, C., Kellner, J. B., Largier, J., O’Farrell, M. 
R., Wespestad, V. 2009. Connectivity, sustainability, and yield: Bridging the gap 
between conventional fisheries management and marine protected areas. Reviews 
in Fish Biology and Fisheries, 19(1), 69–95. http://doi.org/10.1007/s11160-008-
9092-z 

Bruvo, R, N.K. Michiels, T.G. D'Souza, and H. Schulenburg. 2004. A simple method    
for the calculation of microsatellite genotype distances irrespective of ploidy 
level. Molecular Ecology 13:2101-2106  

Buglass, S., Reyes, H., Ramirez-González, J., Eddy, T. D., Salinas-de-León, P., & 
Jarrin, J. M. 2018. Evaluating the effectiveness of coastal no-take zones of the 
Galapagos Marine Reserve for the red spiny lobster, Panulirus penicillatus. Marine 
Policy, 88 (November 2017), 204–212. 
http://doi.org/10.1016/j.marpol.2017.11.028 

Caballero, A., and García-Dorado, A. 2013. Allelic diversity and its implications for the 
rate of adaptation. Genetics, 195(4), 1373–1384. 
http://doi.org/10.1534/genetics.113.158410 

Chapuis, M. P., and Estoup, A. 2007. Microsatellite null alleles and estimation of 
population differentiation. Molecular Biology and Evolution, 24(3), 621–631. 
http://doi.org/10.1093/molbev/msl191 

Cockcroft, A., MacDiarmid, A. & Butler, M. 2013. Panulirus penicillatus. The IUCN 
Red List of Threatened Species 2013: e.T169951A6691002. 
http://dx.doi.org/10.2305/IUCN.UK.2011- 1.RLTS.T169951A6691002.en 

Cornuet, J.M., and Luikart G. 1997. Description and power analysis of two tests for  
detecting recent population bottlenecks from allele frequency data. Genetics, 
144, 2001-2014. 

Cowen, R. K., and Sponaugle, S. 2009. Larval Dispersal and Marine Population 
Connectivity. Annual Review of Marine Science, 1(1), 443–466. 
http://doi.org/10.1146/annurev.marine.010908.163757 



	 32	

Danulat, E. and GJ Edgar (eds.). 2002. Reserva Marina de Galápagos. Línea Base de la  
Biodiversidad. Fundación Charles Darwin/Servicio Parque Nacional Galápagos, 
Sanga Cruz, Galápagos, Ecuador. 484 pp.  

Dao, H. T., Todd, E. V., & Jerry, D. R. 2013. Characterization of polymorphic 
microsatellite loci for the spiny lobster Panulirus spp. and their utility to be applied 
to other Panulirus lobsters. Conservation Genetics Resources, 5(1), 43–46. 
http://doi.org/10.1007/s12686-012-9728-0 

Dao, H. T., Smith-keune, C., Wolanski, E., & Jones, C. M. 2015. Oceanographic 
Currents and Local Ecological Knowledge Indicate, and Genetics Does Not 
Refute, a Contemporary Pattern of Larval Dispersal for The Ornate Spiny Lobster, 
Panulirus ornatus in the South-East Asian Archipelago, PLoS ONE 1–19. 
http://doi.org/10.5061/dryad.sp418 

Debevec, T., Eddy, N., Johnson, L., Sim, J., & Westfall, K. 2014. Galápagos Lobster: 
Exploring innovative management for the red spiny lobster fishery in the 
Galapagos Islands. Bren School Website, 205. 

Delghandi, M., Afzal, H., Al Hinai, M. S. N., Al-Breiki, R. D. G., Jerry, D. R., & Dao, 
H. T. 2016. Novel Polymorphic Microsatellite Markers for Panulirus ornatus and 
their Cross-species Primer Amplification in Panulirus homarus. Animal 
Biotechnology, 27(4), 310–314. http://doi.org/10.1080/10495398.2016.1190372 

El Telégrafo.(11 de enero de 2018). 165 toneladas de langosta fueron capturadas en 
Galápagos durante 2017  Recuperado de: 
https://www.eltelegrafo.com.ec/noticias/sociedad/6/165-toneladas-de-langosta-
fueron-capturadas-durante-la-pesqueria-2017 

Falush, D., Stephens, M., Pritchard, J. K. 2003. Inference of population structure using  
multilocus genetype data: linked loci and correlated allele frequencies. Genetics, 
164: 1567-1587 

 
FAO - Fisheries and Aquaculture Information and Statistics Branch - 27/03/2018 

Foulley, J. L., and Ollivier, L. 2006. Estimating allelic richness and its diversity. 
Livestock Science, 101(1-3), 150–158. 
http://doi.org/10.1016/j.livprodsci.2005.10.021 

García-Rodríguez, F. J., and Perez-Enriquez, R. 2008. Lack of genetic differentiation of 
blue spiny lobster Panulirus inflatus along the Pacific coast of Mexico inferred 
from mtDNA sequences. Marine Ecology Progress Series, 361(Skillman 1989), 
203–212. http://doi.org/10.3354/meps07381 

Goudet, J. and Jombart, T.2015. hierfstat: Estimation and Tests of Hierarchical F- 
Statistics. R package version 0.04-22. https://CRAN.R-
project.org/package=hierfstat 

Greenbaum, G., Templeton, A. R., Zarmi, Y., & Bar-David, S. (2014). Allelic richness 
following population founding events - A stochastic modeling framework 



	 33	

incorporating gene flow and genetic drift. PLoS ONE, 9(12), 1–23. 
http://doi.org/10.1371/journal.pone.0115203 

Griffiths, S. M., Fox, G., Briggs, P. J., Donaldson, I. J., Hood, S., Richardson, P., 
Preziosi, R. F. 2016. A Galaxy-based bioinformatics pipeline for optimised, 
streamlined microsatellite development from Illumina next-generation sequencing 
data. Conservation Genetics Resources, 8(4), 481–486. 
http://doi.org/10.1007/s12686-016-0570-7 

Hearn, A., and Murillo, J. C. 2008. Life History of the Red Spiny Lobster, Panulirus 
penicillatus (Decapoda: Palinuridae), in the Galápagos Marine Reserve, Ecuador. 
Pacific Science, 62(2), 191–204. http://doi.org/10.2984/1534-
6188(2008)62[191:LHOTRS]2.0.CO;2 

Heylings, P., Bensted-Smith, R., and Altamirano, M.2002. Título del capítulo. En: 
Reserva Marina de Galápagos. Línea Base de la Biodiversidad (Danulat E & GJ 
Edgar, eds.). pp 10-21. Fundación Charles Darwin/Servicio Parque Nacional 
Galápagos, Santa Cruz, Galápagos, Ecuador 

Hickman, C. P., and T. L. Zimmerman. 2000. A field guide to crustaceans of  
Galápagos. An illustrated guidebook to the common barnacles, shrimps, lobsters 
and crabs of the Gala ́pagos Islands. Sugar Spring Press, Lexington, Virginia.  

 
Jombart T. and Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of 
  genome-wide SNP data. Bioinformatics. doi: 10.1093/bioinformatics/btr521 
 
Keenan, K., McGinnity, P., Cross, T.F. and Crozier, W.W. 2013. 

diveRsity: An R package for the estimation of population genetics parameters 
and their associated errors, Methods in Ecology and Evolution, doi: 

   10.1111/2041-210X.12067  

Leberg, P. L. 2002. Estimating allelic richnes: Effects of sample size and bottlenecks. 
Molecular Ecology, 11, 2445–2449. http://doi.org/10.1046/j.1365-
294X.2002.01612.x 

Martinez, L. 2006. Análisis de la variabilidad de secuencias de genes mitocondriales en  
diferentes poblaciones de Panulirus penicillatus (Olivier, 1791) (Decápoda: 
Palinuridae) de las Islas Galápagos. Memoria de Master 2 investigación en 
“Biología Marina y Ecología". UNIVERSIDAD D’AIX-MARSEILLE II.  
 
  



	 34	

Masatoshi, N., Maruyama, T., & Chakraborty, R. 1975. The Bottleneck Effect and   
Genetic Variability in Populations. Society for the Study of Evolution, 29(1), 1– 
10. Retrieved from http://www.jstor.org/stable/2407137 

Matsuda, Hirokazu. Takenouhci, Taisuke. Goldstein, J. S. 2006. The Complete Larval 
Development of the Pronghorn Spiny Lobster Panulirus Penicillatus ( Decapoda : 
Palinuridae ) in culture. Journal of Crustacean Biology, 26(4), 579–600. 

Meirmans, P.G., and van Tienderen, P.H., 2004. Genotype and genodive: two programs 
for  

the analysis of genetic diversity of asexual organisms. Molecular Ecology, 4: 
792–794, 792–794, http://dx.doi.org/10.1111/j.1471-8286.2004.00770.x 

 
Michalakis, Y., and  Excoffier, L., 1996. A generic estimation of population subdivision  

using distances between alleles with special reference for microsatellite loci.  
Genetics 142, 1061–1064 

 
Mulvill, C. unpublished work. Isolating a set of microsatellite markers for red spiny     

lobster (Panulirus penicillatus) from the Galápagos Islands. University of  
Manchester. 

Palacios, D. M. 2004. Seasonal patterns of sea-surface temperature and ocean color 
around the Galápagos: Regional and local influences. Deep-Sea Research Part II: 
Topical Studies in Oceanography, 51(1-3), 43–57. 
http://doi.org/10.1016/j.dsr2.2003.08.001 

Palero, F., Abelló, P., Matthee, C. a., Macpherson, E., & Pascual, M. 2010. Genetic 
Diversity Levels in Fishery-Exploited Spiny Lobsters of the Genus Palinurus 
(Decapoda: Achelata). Journal of Crustacean Biology, 30(4), 658–663. 
http://doi.org/10.1651/09-3192.1 

Palumbi, S. R. 2004. Marine Reserves And Ocean Neighborhoods: The Spatial Scale of 
Marine Populations and Their Management. Annual Review of Environment and 
Resources, 29(1), 31–68. http://doi.org/10.1146/annurev.energy.29.062403.102254 

Parque Nacional Galápagos. 2017. Pesquería de langosta en Galápagos superó las 190  
toneladas. Recuperado de: www.parquegalapagos.gob.ec 

 
Perez-Enriquez, R., Vega, A., Avila, S. and Sandoval, J. L., 2002. Population genetics  

of Red Spiny Lobster (Panulirus interruptus) along the Baja California  
peninsula, Mexico. Marine and Freshwater Research. 52(8), 1541-1549.  
https://doi.org/10.1071/MF01104 

 
Raymond M. and Rousset F. 1995. GENEPOP (version 1.2): population genetics 
software  

for exact tests and ecumenisms. Heredity, 86, 248-249. 
 
  



	 35	

Reeb, C. A., and J. C. Avise. 1990. A genetic discontinuity in a continuously  
distributed species: mitochondrial DNA in the American oyster, Crassotrea   
virginica. Genetics 124: 397-406. 

Reyes, H., Ramirez, J., & Schuhbauer, A. 2013. Evaluación de la pesquería de langosta 
espinosa en la Reserva Marina de Galápagos. Informe Galapagos 2011-2012, 150–
156. 

Saunders, N. C., L. G. Kessler, and J. C. Avise. 1986. Genetic variation and geographic  
differentiation in mtDNA of the horseshoe crab Limulus polyphemus. Genetics   
112:613-627. 

Selkoe, K. a., and Toonen, R. J. 2006. Microsatellites for ecologists: A practical guide 
to using and evaluating microsatellite markers. Ecology Letters, 9(5), 615–629. 
http://doi.org/10.1111/j.1461-0248.2006.00889.x 

Toral, M. V., Espinosa, E., Hearn, A., and Martinez, C.2002. Langostas Espinosas. En: 
Reserva Marina de Galápagos. Línea Base de la Biodiversidad (Danulat E & GJ 
Edgar, eds.). pp 199-221. Fundación Charles Darwin/Servicio Parque Nacional 
Galápagos, Santa Cruz, Galápagos, Ecuador 

Truelove, N. K., Ley-Cooper, K., Segura-García, I., Briones-Fourzán, P., Lozano-
Álvarez, E., Phillips, B. F., … Preziosi, R. F. 2015. Genetic analysis reveals 
temporal population structure in Caribbean spiny lobster (Panulirus argus) within 
marine protected areas in Mexico. Fisheries Research, 172(July), 44–49. 
http://doi.org/10.1016/j.fishres.2015.05.029 

Truelove, N. K., Kough, A. S., Behringer, D. C., Paris, C. B., Box, S. J., Preziosi, R. F., 
& Butler, M. J. 2017. Biophysical connectivity explains population genetic 
structure in a highly dispersive marine species. Coral Reefs, 36(1), 233–244. 
http://doi.org/10.1007/s00338-016-1 

Verhoeven, K. J., Simonsen, K. L., and McIntyre, L. M. 2005. Implementing false 
discovery rate control: increasing your power. Oikos, 108(September 2004), 643–647. 
http://doi.org/10.1111/j.0030-1299.2005.13727.x	



	 36	

TABLES 
 
Table 1. Number of individuals collected per site and per island and coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Island Site 
Number of 
Individuals Coordinates 

Santiago Bucanero 13 
Lat.:  0° 9'40.76" S 
Lon.: 90°49'53.15" W 

San Cristóbal 
Chorros 17 

Lat.:  0°57'7.76" S 
Lon.: 89°28'36.23" W 

Rosa 
Blanca 16 

Lat.:   0°49'50.67"S 
Lon.:89°20'15.63"W 

Santa Cruz 
Garrapatero 9 

Lat:    0°39'22.46"S 
Lon:   90°10'36.47"W 

Punta 
Rocafuerte 13 

Lat:    0°40'20.87"S 
Lon:   90° 8'46.23"W 

Floreana Piedras 
Amarillas 15 

Lat:    1°14'12.78"S 
Lon:   90°27'4.26"W 

Santa Fé Punta 
Miedo 11 

Lat.:   0°50'15.67"S 
Lon.:  90° 1'42.35"W 

Isabela 
San Pedro 20 

Lat:    1° 2'29.32"S 
Lon:   91°17'14.40"W 

La Unión 20 
Lat:    1° 1'20.51"S 
Lon:   91° 6'6.47"W 
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Table 2. Primer sequences for the successfully amplified microsatellite loci. Source: 
Mulvihil et al. unpublished work.  

	
	
	

Number 
of 

Primer 

Primer 
(Fluorescent 

Dye) 
Sequences(5’-3’) Motif Size # alleles per 

locus 
Annealing 

temperature 

 
PEN3 (HEX) 

F: GGGCACGAGGACAGAAGTCAAAACG  
TCTG 332 1 64 

1 R: TAGGCGCTGACTTCTCGACCACTCTGG  
 PEN4 (6-FAM) F: GCGTACACAGAGGGATTGCTTCG  TCCG 387-413 3 64 2 R: AGTTTCCGCGAGTGAAACAAAAGCC  
 PEN10 (6-FAM) F: GATGTTGACACTGTTGCTGTTTCTGC  TCTG 356 1 64 3 R: ACAAGAGATGTTGTGACAGCGTTGC  
 PEN13 (6-FAM) F: CTGATTCCTTGGACTCGCACAAGC  TTC 208-222 3 64 4 R: GGAAGGCATTTCCTACACCCTTTCC  
 PEN15 (6-FAM) 

F: CATCTCCAGCCCAAGTATAGTGACC  
ATT 332-338 2 60 

5 R: CTTCCACTGCTTACTGCACATGACG  
 PEN16 (6-FAM) F: GCCACACTCTAGTATGAGGTTTATGAGG  ATT 269-291 3 60 6 R: GTGATGACGATTCATGATCTGTTGC  
 PEN17 (6-FAM) F: TACCGCGAAACACGATACATTCTCC  ATT 240-298 6 60 7 R: GCTCATTGTTATAAGGTGCTTCTGACG  
 PEN18 (HEX) 

F: ACGACCACCATGGCAGGAAAACC  
TTC 230-255 6 60 

8 R: CTAGGATCGTGAAAGGAGCGAGAGG  
 PEN19 (HEX) F: TCTCACTCTCTCTCACCACCAACTCC  TCC 222 1 60 9 R: GGAAGCCAAGCTCGAGATGAATGG  
 

PEN20 (6-FAM) 
F: GTTGGGTAGGTGCTGGAGAAGC  

TCC 282-285 2 60 
10 R: TTCTCAGTCCTTCAGATTAACATAGCC  

 PEN21 (HEX) F: ACTAAAGCCGGGATCGCTTACACG  AGT 231-254 5 60 11 R: CGAGTGAGGAGGATGCTGAAAACG  
 PEN22 (6-FAM) F: CAAAAGATATTGTGAAGTCCTCTGC  TTC 228-235 2 60 12 R: TCATGAGACTGACACATTTCAGAGC  
 PEN23 (HEX) 

F: AAGGTGGTCTGAGTGGGGATGAGG  
TCC 318 1 60 

13 R: TTGGACACAAGCAACGCTCATTAGG  
 PEN24 (HEX) F: CCCAAAGAGCGAAGAGGAACAAGG  TCC 318-327 3 60 14 R: CACACTCGGTTGAGAAATGGTCTCG  
 PEN27 (6-FAM) F: GGTCTCACCCGTTGTGTTTTAAGGG  TCC 363-369 3 60 15 R: GTTCGAAGTCGTGCTCAGGGAAGG  
 PEN28 (6-FAM) 

F: CTTACTCTCCCTCCACGACGACACC  
TCC 316-331 4 60 

16 R: CATTACCGCCTGGACATCACAACC  
 PEN33 (HEX) F: CTCTGAGGGCATGTGTTGTGAAGG  ACC 292 1 64 17 R: AGTCTGTACATCAGCAGCCCCTACC  
 PEN34 (6-FAM) F: TCCATATGGGATCATGGTCTTGAAGG  ATT 239 1 64 

18 R: GAACAAGTTGTGCCAGTCTTTGCC      
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Table 3a. P-values from Linkage disequilibrium analysis by Site. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Critical value = 0.0091. Numbers in bold represent loci in disequilibrium. 
	 	

  PEN4 PEN13 PEN15 PEN16 PEN17 PEN18 PEN19 PEN20 PEN21 PEN23 PEN24 PEN27 PEN28 PEN33 PEN34 
PEN3 0.800 0.727 0.531 0.999 1.000 0.853 0.905 0.659 0.974 0.981 0.641 0.691 0.604 0.913 0.673 
PEN4   0.312 0.957 0.846 0.991 0.997 0.998 0.514 0.638 1.000 0.764 0.984 0.891 0.818 0.643 
PEN13     0.245 0.520 0.930 0.726 0.597 0.411 0.073 0.929 0.709 0.321 0.595 0.191 0.880 
PEN15       0.605 0.687 0.470 0.770 0.695 0.374 0.819 0.062 0.291 0.595 0.782 0.256 
PEN16         0.884 0.923 0.431 1.000 0.614 0.382 0.480 0.281 0.158 0.628 1.000 
PEN17           0.002 0.998 0.285 0.449 0.819 0.807 0.300 0.636 0.784 0.958 
PEN18             0.985 0.020 0.014 0.871 0.601 0.511 0.094 0.987 0.804 
PEN19               0.901 0.568 0.301 0.784 0.077 0.982 0.238 0.998 
PEN20                 0.004 0.452 0.959 0.882 0.814 0.868 0.190 
PEN21                   0.738 0.397 0.877 0.103 0.700 0.768 
PEN23                     0.853 0.992 0.977 1.000 1.000 
PEN24                       0.981 0.522 0.893 0.772 
PEN27                         0.988 0.362 0.618 
PEN28                           0.777 0.665 
PEN33                             0.562 
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Table 3b. P-values from Linkage disequilibrium by Island. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Critical value = 0.0091. Numbers in bold represent loci in disequilibrium. 
	 	

 
PEN4 PEN13 PEN15 PEN16 PEN17 PEN18 PEN19 PEN20 PEN21 PEN23 PEN24 PEN27 PEN28 PEN33 PEN34 

PEN3 0.957 0.592 0.389 0.999 0.998 0.647 0.739 0.180 0.912 1.000 0.641 0.207 0.758 0.574 0.821 
PEN4 

 
0.322 0.864 0.876 0.979 0.950 0.951 0.439 0.080 1.000 0.819 0.996 0.964 0.370 0.519 

PEN13 
  

0.115 0.453 0.540 0.580 0.672 0.518 0.202 0.569 0.538 0.221 0.455 0.306 0.760 
PEN15 

   
0.557 0.091 0.658 0.328 0.596 0.117 0.688 0.391 0.101 0.061 0.473 0.023 

PEN16 
    

0.903 0.877 0.310 0.996 0.822 0.190 0.571 0.300 0.950 0.289 1.000 
PEN17 

     
0.001 0.990 0.146 0.075 0.640 0.863 0.243 0.091 0.126 0.687 

PEN18 
      

0.980 0.003 0.009 0.581 0.431 0.319 0.030 0.994 0.901 
PEN19 

       
0.817 0.994 0.293 0.580 0.123 0.743 0.215 0.977 

PEN20 
        

0.001 0.351 0.680 0.784 0.781 0.927 0.069 
PEN21 

         
0.795 0.290 0.775 0.023 0.794 0.459 

PEN23 
          

0.448 0.940 0.650 1.000 1.000 
PEN24 

           
0.982 0.375 0.593 0.624 

PEN27 
            

0.875 0.010 0.440 
PEN28 

             
0.861 0.382 

PEN33 
              

0.402 
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Table 4a. Null allele frequencies by Site per Locus. 

	
 
 
Table 4b. Null allele frequencies by Island per Locus. 
	

	 	

Site PEN3 PEN4 PEN13 PEN15 PEN16 PEN17 PEN18 PEN19 PEN20 PEN21 PEN23 PEN24 PEN27 PEN28 PEN33 PEN34 
Bucanero 0.119 0.000 0.000 0.000 0.000 0.004 0.032 0.000 0.052 0.067 0.001 0.000 0.000 0.000 0.001 0.001 
Chorros 0.055 0.000 0.000 0.000 0.000 0.035 0.087 0.000 0.005 0.000 0.256 0.000 0.000 0.057 0.001 0.000 
Garrapatero 0.001 0.000 0.098 0.000 0.001 0.000 0.034 0.107 0.000 0.000 0.001 0.000 0.079 0.178 0.145 0.224 
Piedras Amarillas 0.000 0.000 0.116 0.000 0.000 0.000 0.000 0.000 0.070 0.077 0.000 0.001 0.000 0.012 0.240 0.001 
Punta Miedo 0.000 0.001 0.000 0.165 0.001 0.000 0.156 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.196 0.000 
Rosa Blanca 0.091 0.000 0.000 0.096 0.001 0.093 0.000 0.000 0.000 0.000 0.170 0.000 0.000 0.078 0.001 0.000 
Punta Rocafuerte 0.108 0.124 0.000 0.000 0.001 0.000 0.000 0.000 0.156 0.080 0.001 0.000 0.021 0.000 0.099 0.000 
San Pedro 0.001 0.000 0.000 0.047 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 
La Unión 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.080 0.000 0.128 0.066 0.000 0.073 0.135 0.000 

Island  PEN3 PEN4 PEN13 PEN15 PEN16 PEN17 PEN18 PEN19 PEN20 PEN21 PEN23 PEN24 PEN27 PEN28 PEN33 PEN34 
Santiago 0.119 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.052 0.067 0.001 0.000 0.000 0.000 0.001 0.001 
San Cristóbal 0.106 0.000 0.000 0.035 0.000 0.066 0.020 0.000 0.000 0.000 0.217 0.000 0.000 0.071 0.001 0.000 
Santa Cruz 0.001 0.000 0.098 0.000 0.001 0.000 0.034 0.107 0.000 0.000 0.001 0.000 0.079 0.178 0.145 0.223 
Floreana 0.000 0.000 0.116 0.000 0.000 0.000 0.000 0.000 0.070 0.077 0.000 0.001 0.000 0.012 0.240 0.001 
Santa Fé 0.000 0.001 0.000 0.165 0.001 0.000 0.156 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.195 0.000 
Isabela 0.080 0.024 0.000 0.002 0.000 0.000 0.000 0.000 0.043 0.015 0.088 0.000 0.000 0.000 0.099 0.000 
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Table 5a. Hardy-Weinberg analysis by Site per Locus.  
 
Site PEN3 PEN4 PEN13 PEN15 PEN16 PEN17 PEN19 PEN21 PEN23 PEN24 PEN27 PEN28 PEN33 PEN34 
Bucanero 0.187 1.000 0.209 0.299 0.882 0.368 0.200 0.199 0.000 0.249 0.562 0.18 0.000 0.000 
Chorros 0.387 0.966 0.610 0.633 0.970 0.279 0.053 0.440 0.002 0.463 0.233 0.477 0.031 1.000 
Garrapatero 0.000 1.000 0.160 0.927 0.000 0.471 0.076 0.389 0.000 0.596 0.439 0.021 0.122 0.067 
Piedras Amarillas 0.625 0.780 0.122 0.704 1.000 0.580 0.055 0.102 1.000 0.423 0.411 0.278 0.001 0.000 
Punta Miedo 0.945 0.000 0.694 0.072 0.000 0.348 0.018 0.416 0.000 0.007 0.240 0.134 0.045 0.947 
Rosa Blanca 0.219 0.967 0.411 0.076 0.000 0.017 0.275 0.597 0.033 0.357 0.191 0.236 0.000 1.000 
Punta Rocafuerte 0.346 0.121 0.419 0.653 0.000 0.307 0.056 0.180 0.000 0.07 0.272 0.048 0.204 1.000 
San Pedro 0.000 0.653 0.508 0.140 1.000 0.583 0.052 0.413 0.000 0.37 0.307 0.348 0.977 0.976 
La Unión 1.000 0.922 0.486 0.700 0.851 0.44 0.002 0.267 0.081 0.161 0.480 0.098 0.024 1.000 

 
Critical value = 0.0091. Numbers in bold represent loci out of H-W equilibrium. 
 
 
 Table 5b. Hardy-Weinberg analysis by Island per Locus. 

 
 Critical value = 0.0091. Numbers in bold represent loci out of H-W equilibrium. 
	

Island  PEN3 PEN4 PEN13 PEN15 PEN16 PEN17 PEN19 PEN21 PEN23 PEN24 PEN27 PEN28 PEN33 PEN34 
Santiago 0.182 1.000 0.217 0.316 0.888 0.381 0.217 0.207 0.000 0.270 0.564 0.182 0.000 0.000 
San Cristóbal 0.102 0.902 0.406 0.139 0.984 0.022 0.013 0.450 0.000 0.509 0.058 0.260 0.017 0.981 
Santa Cruz 0.170 0.078 0.346 0.657 0.000 0.610 0.549 0.411 0.000 0.091 0.121 0.542 0.025 0.028 
Floreana 0.628 0.782 0.123 0.708 1.000 0.583 0.059 0.111 1.000 0.402 0.417 0.276 0.001 0.000 
Santa Fé 0.949 0.000 0.692 0.066 0.000 0.367 0.018 0.402 0.000 0.004 0.249 0.137 0.045 0.952 
Isabela 1.000 0.602 0.533 0.226 0.870 0.407 0.000 0.469 0.042 0.413 0.446 0.344 0.026 0.958 
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Table 6a. Genetic Diversity Indices by Site 
 
Sites Num Ho Hs AR PA 
Bucanero 3.500 0.429 0.401 2.180 3 
Chorros 3.786 0.403 0.416 2.148 4 
Garrapatero 2.857 0.334 0.417 2.157 8 
Piedras Amarillas 4.214 0.399 0.426 2.276 6 
Punta de Miedo 3.143 0.446 0.399 2.233 2 
Rosa Blanca 3.571 0.380 0.403 2.152 4 
Punta Rocafuerte 3.786 0.456 0.445 2.316 6 
San Pedro 3.643 0.404 0.376 1.982 5 
La Unión 4.500 0.399 0.410 2.121 7 
Overall Mean 3.667 0.405 0.410 2.174 5 
 
Num: number of alleles, Ho: observed heterozygosity, Hs: expected heterozygosity, AR: 
allelic richness and PA: private alleles. Numbers in bold represent situations when observed 
heterozygosity resulted greater than expected heterozygosity.  
 
 
Table 6b. Genetic Diversity Indices by Island 
 
Island Num Ho Hs AR PA 
Santiago 3.500 0.429 0.401 2.180 3 
San Cristóbal 4.571 0.390 0.412 2.244 8 
Santa Cruz 4.429 0.403 0.437 2.342 14 
Floreana 4.214 0.399 0.426 2.276 6 
Santa Fé 3.143 0.446 0.399 2.233 2 
Isabela 4.929 0.399 0.391 2.065 16 
Overall Mean 4.131 0.411 0.411 2.223 8.167 
 
Num: number of alleles, Ho: observed heterozygosity, Hs: expected heterozygosity, AR: 
allelic richness and PA: private alleles. Numbers in bold represent situations when observed 
heterozygosity resulted greater than expected heterozygosity. 
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Table 7. Genetic Diversity Indices per Locus  
 
Locus Num Ho Hs 
PEN3 3 0.261 0.309 
PEN4 5 0.143 0.150 
PEN13 6 0.499 0.506 
PEN15 10 0.427 0.473 
PEN16 3 0.083 0.079 
PEN17 19 0.878 0.886 
PEN19 8 0.712 0.514 
PEN21 10 0.594 0.671 
PEN23 3 0.016 0.060 
PEN24 5 0.712 0.642 
PEN27 11 0.559 0.525 
PEN28 7 0.712 0.690 
PEN33 8 0.063 0.170 
PEN34 5 0.067 0.083 
Overall Mean 7.429 0.411 0.411 
 
Num: number of alleles, Ho: observed heterozygosity, Hs: expected heterozygosity.  
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Table 8a. Matrix of genetic distances among Sites. 
 

 Bucanero Chorros  
Garrapat
ero 

Piedras 
Amarillas 

Punta de 
Miedo 

Rosa 
Blanca 

Punta 
Rocafuerte San Pedro  

La 
Unión 

Bucanero 0.000 -0.006 0.025 0.002 -0.001 -0.001 -0.010 0.030 0.001 
Chorros  -0.006 0.000 0.042 -0.008 0.017 0.012 -0.002 0.035 0.010 
Garrapatero 0.025 0.042 0.000 0.021 0.026 0.046 0.017 0.044 0.013 
Piedras 
Amarillas 0.002 -0.008 0.021 0.000 -0.003 0.023 -0.016 0.003 -0.004 
Punta de 
Miedo -0.001 0.017 0.026 -0.003 0.000 0.011 -0.016 0.002 -0.010 
Rosa Blanca -0.001 0.012 0.046 0.023 0.011 0.000 0.004 0.030 0.010 
 Punta 
Rocafuerte -0.010 -0.002 0.017 -0.016 -0.016 0.004 0.000 0.004 -0.010 
San Pedro  0.030 0.035 0.044 0.003 0.002 0.030 0.004 0.000 -0.004 
La Unión 0.001 0.010 0.013 -0.004 -0.010 0.010 -0.010 -0.004 0.000 

 
Numbers in bold represent bigger differences among Sites, explained by population 
structure. 
 
 
Table 8b. Matrix of genetic distances among Islands. 
 

 Santiago San Cristóbal Santa Cruz Floreana Santa Fé Isabela 
Santiago 0.000 -0.008 -0.001 0.002 -0.001 0.018 

San Cristóbal -0.008 0.000 0.012 0.004 0.009 0.020 
Santa Cruz -0.001 0.042 0.000 -0.005 -0.006 0.005 

Floreana 0.002 0.004 -0.005 0.000 -0.003 0.002 
Santa Fé -0.001 0.009 -0.006 -0.003 0.000 -0.003 

Isabela 0.018 0.020 0.005 0.002 -0.003 0.000 
 
Numbers in bold represent big difference among Islands, explained by population 
structure. 
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Table 9. Analysis of molecular variance (AMOVA) among sites and among individuals 
nested in Sites and Islands 
 
 

Source of Variation 
% 
variance 

Variance 
Component Fstat (Value) P-value 

Within Individuals 98.161 2.842 F_it (0.018) 0.455 
Among Individuals 
nested in Sites 

0.950 0.028 F_is (0.010) 0.091 

Among Sites nested 
in Islands 

0.834 0.024 F_sc (0.008) 0.300 

Among Islands 0.055 0.002 F_ct (0.001) 0.156 
C.v. = 0.005 
 
 
 
Table 10. Bottleneck analyses using different mutation models a) by Site b) by Island.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
TPM: two phase mutation model. SMM: stepwise mutation model. P-values lower than 
0.050 mutation/drift disequilibrium, intense population reduction. Numbers in bold 
represent p-values lower than 0.050 mutation/drift disequilibrium, which suggest 
intense population reduction.  
   
  

SITE TPM SMM 
Bucanero 0.357 0.314 
Chorros  0.239 0.006 
Garrapatero 0.527 0.567 
Piedras Amarillas 0.310 0.002 
Punta de Miedo 0.569 0.509 
Rosa Blanca 0.231 0.083 
Punta Rocafuerte 0.426 0.078 
San Pedro  0.214 0.022 
La Unión 0.008 0.000 

ISLAND TPM SMM 
Santiago 0.361 0.319 
San Cristóbal 0.092 0.001 
Santa Cruz 0.475 0.584 
Floreana 0.326 0.002 
Santa Fé 0.566 0.508 
Isabela 0.032 0.000 

a)	 b)	
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FIGURES 
	

	
	
	
	
Figure 1. A) PCoA of data by Site, RB (Rosa Blanca in San Cristóbal), U (La Unión in 
Isabela), B (Bucanero in Santiago), RF (Punta Rocafuerte in Santa Cruz), SP (San Pedro 
in Isabela), C (Chorros in San Cristóbal), G (Garrapatero in Santa Cruz), PA (Piedras 
Amarillas in Floreana) and PM (Punta de Miedo in Santa Fé). B) PCoA of data by 
Islands: SB (San Cristóbal island), Stg (Santiago island), Fl (Floreana island), SC (Santa 
Cruz island), IS (Isabela island) and SF (Santa Fé island). 
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Figure 2. Plot chart with K=2 from the Structure analysis, a) shown per Site and b) per 
Island. 
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Figure 3a. Distribution of the mean inbreeding coefficient F, across all individuals by 
Sites 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 
  
 
 
 
 
 
Figure 3b. Distribution of the mean inbreeding coefficient F, across all individuals by 
Islands 
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Figure 4a. Migration Network organized by Sites, with a threshold of 0.4. Dark blue 
represents higher migration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4b. Migration Network organized by Islands, with a threshold of 0.4.Dark blue 
represents higher migration. 


