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RESUMEN 

 

La siguiente investigación explora la detección de estrés mental por medio del movimiento 
del volante del carro. Se realiza un experimento controlado con 25 participantes a los cuales 
se les induce estrés por medio de ejercicios matemáticos y posteriormente se los hace 
conducir un simulador. Se prueba que la tensión muscular producida por el estrés mental es 
detectable analizando el movimiento del volante y modelando este movimiento como un 
sistema de resorte masa y amortiguación. El coeficiente de rigidez del resorte modelado 
durante el manejo bajo estrés prueba ser significativamente superior al coeficiente de 
rigidez del resorte modelado durante un manejo sin estrés.  

 

 



 

 

ABSTRACT 

Stress affects the lives of millions of people every day. In-situ sensing could enable just-in-
time stress management interventions. We present the first work to detect stress using the 
movements of a car’s existing steering wheel. We extend prior work on PC peripherals and 
demonstrate that stress, expressed through muscle tension in the limbs, can be measured 
through the way we drive a car. We collected data in a driving simulator under controlled 
circumstances to vary the levels of induced stress, within subjects. We analyze angular 
displacement data to estimate coefficients related to muscle tension using an inverse 
filtering technique. We prove that the damped frequency of a mass spring damper model 
representing the arm is significantly higher during stress. Stress can be detected with only a 
few turns during driving. We validate these measures against a known stressor and calibrate 
our sensor against known stress measurements. 
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ABSTRACT 

Stress affects the lives of millions of people every day. In-situ 
sensing could enable just-in-time stress management inter- 
ventions. We present the first work to detect stress using the 
movements of a car’s existing steering wheel. We extend prior 
work on PC peripherals and demonstrate that stress, expressed 
through muscle tension in the limbs, can be measured through 
the way we drive a car. We collected data in a driving simulator 
under controlled circumstances to vary the levels of induced 
stress, within subjects. We analyze angular displacement data 
to estimate coefficients related to muscle tension using an in- 
verse filtering technique. We prove that the damped frequency 
of a mass spring damper model representing the arm is signifi- 
cantly higher during stress. Stress can be detected with only a 
few turns during driving. We validate these measures against 
a known stressor and calibrate our sensor against known stress 
measurements. 
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INTRODUCTION 

Stress response is an evolutionary mechanism that mobilizes 
body resources to help cope with daily challenges and life- 
threatening situations.  While acute stress is the short-term 
response to a particular challenge (i.e., a stressor) [22], chronic 
stress is the longer-term response that may appear when ex- 
periencing extreme life experiences [34]. Both chronic stress 
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Figure 1. Experimental setup:  (left) Participant driving in the simulator; 
(upper  right)  street  view; (lower right)  steering wheel rotation angular 
signal: right turn  (>0°), left turn  (<0°). 
 

 
and repetitive daily acute stress have been associated with a 
variety of patho-physiological risks such as cardiovascular dis- 
ease and immune deficiencies, which can dramatically impair 
quality of life and shorten life expectancy [9]. 
 

This research explores the opportunistic sensing of daily stres- 
sors by detecting mental stress from the way we drive a car. 
We do not propose the use of traditional stress sensors, such as 
Electrocardiogram (ECG) or Electro-Dermal Activity (EDA), 
but we rather propose the development of a new opportunistic 
infrastructure-mediated sensor [30].  We design this in-situ 
sensor by re-purposing existing infrastructure embedded in 
modern cars. We extend the work by Sun et al. [39] to focus on 
signals that may already capture the changes in muscle tension 
in the limbs. We propose that the fight or flight response to 
stress, which affects the trapezius and other muscles activated 
with the motion of the upper limbs, can be extracted from the 
pattern of changes to the steering wheel angle. 
 

Stress affects driving performance in two ways. On the one 
hand, it is a source of traffic accidents and road rage [11]. 
On the other hand, it can increase performance [25]. Having 
an in-situ sensor of stress in a car can support the design of 
on-the-road interventions for stress regulation.  Monitoring 
stress continuously, without the need for the driver to wear 
any additional sensors can lead to more fine-grained models 
of stress, driving performance, and their interacting effects on

mailto:pparedes@stanford.edu
mailto:ordonez@estud.usfq.edu.ec
mailto:ordonez@estud.usfq.edu.ec
mailto:wgj23@cornell.edu
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each other, without introducing any user burden. Importantly, 
understanding on-the-road stress patterns can also be used to 
improve the quality of the commute itself, by informing the 
design of commute interventions [7] (e.g., to promote work- 
life balance, relaxation coping, and general psychological 
wellness) and, in turn, potentially even increasing perceived 
quality of life [27]. 

 

Certainly, there are other tools to measure stress, which could 
be use in conjunction with our technique. Nevertheless, the 
most commonly used tool to measure stress continues to be 
self-reports, with a recent increase in the use of wearables [10, 
2, 5]. Only highly motivated individuals answer survey ques- 
tions about stress, or remember to wear a stress device after a 
few weeks. Furthermore, self-reporting in the car context is 
a less desirable approach, considering how the distracting na- 
ture of the reporting activity could both produce an unreliable 
measurement (given one’s attention is not fully attending to it) 
and be a safety risk (taking focus off driving). An in-car stress 
sensor can guarantee, at a minimum, a couple of readings per 
day. 

 

This paper extends the work from Sun, et al. [39] to demon- 
strate that the damped frequency of a second order mass spring 
damper (MSD) model can be effectively linked to muscle 
stiffness derived from mental stress. We performed a within- 
subjects study (N=25) counterbalancing calm and stress con- 
ditions. We carefully selected a driving circuit and stressors to 
avoid any alteration in driving that may not be due to mental 
stress only. Subjective measurements, ECG, and EDA infor- 
mation was obtained to validate the efficacy of the stressors. 
We used the data from the already existing angular sensors 
from the steering wheel of the driving simulator (Figure 1). 
Our results confirm a significantly higher damped frequency, 
i.e. an increase in muscle stiffness, for the stress condition. 
We also prove that the results hold even for a decimated signal, 
indicating the feasibility of our approach in real-world setups, 
where it would be viable to leverage the low resolution sensors 
found in most modern vehicles. 

 
BACKGROUND AND PRIOR WORK 

In this section we introduce fundamental work that explains the 
effects of stress on muscle tension, the ways one can measure 
these effects, and traditional stress measurements required to 
calibrate our new sensor. 

 
Stress Measurement 

Stress can be measured in two ways, via self reports or through 
physiological signals. Stress self-report (SSR) is usually mea- 
sured through some variation of the widely used Perceived 
Stress Scale (PSS) [6, 35]. Usually, a simplified version with 
a single 10-item scale of stress is used in repeated measure 
studies. 

 

The most accepted and traditional way to measure stress is by 
capturing a signal correlated with arousal, i.e., an activation 
of the Autonomic Nervous System (ANS). The most common 
metrics are heart rate variability (HRV) and electrodermal 
activity (EDA). HRV is a second-order metric derived from 
the reading of an electrocardiogram (ECG) wave and is a proxy 
for the variability of HR due to the respiratory sinus arrhythmia 

(RSA). RSA stimulates the valgus nerve, which is the main 
driver of the Autonomous Nervous System (ANS). The ANS 
has two main branches:  the Sympathetic Nervous System 
(SNS) and the Parasympathetic Nervous System (PNS). While 
SNS activation is associated with the “fight or flight” stress 
response, where many organs are activated to overcome a 
particular challenge or threat, the PNS works antagonistically 
to maintain a stable functioning condition. 
 

In general, higher HRV indicates a prevalence of the PNS over 
the SNS (i.e., a balanced/calmer state).  HRV is commonly 
evaluated in the time-domain with the Root Mean Square of 
Subsequent Samples (RMSSD) or in the frequency-domain 
with the Low Frequency (LF) and High Frequency (HF) com- 
ponents.   RMSSD represents short term variability and is 
inversely correlated with arousal.  EDA, previously known 
as Galvanic Skin Response (GSR), is a measurement of skin 
conductance due to the activation of the eccrine sweat glands, 
which are purely innervated by the SNS. High average levels 
and increased number of EDA peaks have been associated 
with stress [3]. 
 
 
Detecting   Stress    through   its    Musculoskeletal   and 

Movement-Based Expressions 

Mental stress has a direct effect in musculoskeletal activity. 
Muscle tension increases due to mental stress even at rest [4, 
8]. Tension in the forehead, the neck, and arms increases with 
stress and anxiety [38, 18]. Traditional lab stressors, such as 
mental arithmetic, have shown clear effects on the shoulder’s 
trapezius muscle [23], as well as the biceps and triceps [41]. 
Driving experiments with on-road stressors have also revealed 
an increased level of muscle tension in the trapezius muscle 
captured by burdensome instruments infeasible for eveyday 
use[13, 25]. 
 

To our understanding, there is no prior work on using the 
signal from the steering wheel to detect stress.  Our work, 
however, extends prior work on stress detection and emotion 
through the use of computer peripherals.  Sun, et al.  were 
the first to show a direct effect of stress on the way a PC 
mouse is handled [39]. Their approach uses an inverse filtering 
technique, which directly correlates features from a second 
order oscillatory system back to the muscle tension.  Other 
approaches have shown signals of stress in the way people hold 
a mouse and their typing pressure [16] or the way people swipe 
on touch devices [12]. As explained earlier, due to the lack 
of understanding of the effects of induced stress in drivers, 
this is the first study focused on obtaining lab data from a 
driving simulator. We captured data from a gaming steering 
wheel connected to a driving simulator running a commercial 
driving school training software – see the Apparatus section 
for additional details. 
 
 
MODELING THE HUMAN ARM WHILE DRIVING 

In this work, we extend prior work on human arm model- 
ing from PC peripherals to car driving tasks.  We focus on 
modeling the human arm as it operates a simulator steering 
wheel.



 

 
 

 
 

Figure 2. MSD model of the human arm while driving 

 
 

Neuromuscular Dynamics 

Prior work has successfully shown the use of a Mass Spring 
Damper (MSD) system to model a human arm while handling 
a steering wheel.  Systems with a single degree of freedom 
[32] or two degrees of freedom [31] have been tested.  The 
MSD is regularly used in modeling arm motion [17] in diverse 
tasks ranging from handwriting [19] to robotics [26] to assis- 
tive technology [36]. More recently Sun, et al. successfully 
modeled the arm as a single degree of freedom applied to 
interactions with computer peripherals [39]. In this work, they 
describe a MSD system applied to each direction of movement 
of a PC mouse. 

 

In the single order MSD system, the mass component rep- 
resents an aggregate sum of the arm, hand, and wheel. The 
spring components represent the muscle tension in the arm, 
while the damper represent also muscular interaction in the 
arm and the damping effect of force feedback of the simulator 
steering wheel (see Figure 2).  The input force F(t) of the 
arm produces an output movement X(t) in the steering wheel, 
measured in radians.  An MSD responds with a oscillation 
frequency driven by the spring component (k) and a character- 
istic decay function determined by the friction of the damper 
component (c). This damped oscillatory behavior can be fully 
characterized by the damped frequency (ω ) and the damped ra- 
tio (ζ ). For a system with constant mass, the spring coefficient 
is directly proportional to the damped frequency: ω ≈

√
k and 

the damping ratio is indirectly proportional to the square-root 
c 

of k while being directly proportional to c: ζ ≈ √
k 

. These re-
 

lationships show a direct relationship between muscle tension, 
caused by stress, and the MSD model. 

 

 
Inverse Filtering 

Since the steering wheel angle is the output signal of the MSD 
system, we have to apply an inverse filtering technique to infer 
the system’s fundamental parameters. A successful technique 
used to model a single degree of freedom model is linear 
predictive coding (LPC). It is well-documented that an ideal 

 

if we model a second order LPC we should be able to recover 
the characteristic MSD parameters. 
 
MSD Computation 

We use a logger that samples the steering wheel with a sam- 
pling period of about (M = 1.1, SD = 0.34) seconds.  The 
wheel has a resolution of 0.0056° and a maximum range of 
450° on each direction. Positive angle rotations are recorded 
when the wheel turns clockwise, i.e., when the car turns right, 
and negative angle rotations are recorded when the wheel 
turn counterclockwise, i.e., when the car turns left. The sig- 
nal are interpolated with a shape preserving function, and 
resampled to obtain a uniformly sampled signal.  The LPC 
model is calculated using an interpolation order of (p=4) to 
obtain a sequence of coefficients that can effectively model 
the underdamped MSD system. The complex roots (r) of this 
polynomial characterize the MSD’s damping behavior. The 
absolute value of the imaginary part represents the damping 
frequency (ω = |ℑ(r)|), while the ratio of the real part to its 

absolute value represents the damping ratio (ζ = 
 |ℜ(r)| 

). 
||r|| 

 

METHOD 

In this section, we outline our hypothesis, describe the experi- 
mental design, and detail our data collection methods. 
 
Hypothesis 

Based on the preliminary discussion we propose a single hy- 
pothesis: 
 

(H): The damped frequency ω should be higher due to higher 
stress compared to a calm baseline. 
 

In contrast to prior reports by Sun et al., we do not see merit 
in formulating a hypothesis around the damping ratio ζ , as we 
have no way to directly measure the damping effects of the 
steering wheel. Furthermore, a careful examination of their 
paper does not reveal a reduction in the damping ratio. This 
could be due to the effect of the damping coefficient of the 
arm muscles. We also do not evaluate turn completion time 
as a variable correlated with stress for two reasons: first, it 
is hard to truly evaluate the complete duration of a turn, and 
second, mental stress usually affects task completion, which 
in this case would be measured by lap completion, which is 
affected by changes in acceleration or speed, as opposed to 
the speed of turning. 
 
Participants 

We recruited 25 participants, 13 females and 12 males, with 
ages ranging from 18 to 67 (M = 34.43, SD = 15.05). Prior 
to participating in the experiment, we asked their preferred 
genre of music. We used their selection to find a playlist from 
Spotify1 . No participant reported liking heavy metal music, 
which we used in the stressor portion of our study. 
 
Experiment Design 

In this section, we describe the procedure, the driving task and 
the stressors for our experiment.

second order system, such as the MSD, can be inferred via            
LPC using only two samples from the past [28]. Conversely, 1 http://spotify.com

http://spotify.com/


 

 
 

Figure 3. Experiment Procedure. Counterbalanced conditions:  a) Calm 
–> Stress; b) Stress –> Calm 

 

 
 

Testing  Procedure 

The experiment consisted of five stages: (1) Arrival, (2) Base- 
line: Soothing Video + Training Drive, (3) Stimulus 1, (4) 
Drive Task 1, (5) Stimulus 2, and (5) Drive Task 2. The first 
three stages lasted on average 3 minutes each, while the driv- 
ing stages lasted were expected to last 10 minutes on average. 
The Arrival stage was used to gather pre-test information. Dur- 
ing the Stimulus stages, participants either received an acute 
stressor or a soothing intervention, as described in the Stimu- 
lus section. During the Driving task users received a relaxing 
stimulus to maintain a low level of stress or an exacerbating 
stressor to maintain the level of stress during the whole dura- 
tion of the experiment. Calming and Stress stimulus + driving 
tasks were counterbalanced across participants (see Figure 
3). We called each of the four different stages: stress, calm, 
wheel_stress, and wheel_calm. 

 
Driving Task 

The selection of the driving task is of crucial importance to 
isolate the effects of mental stress. Neither the task, nor the 
stressor, should alter the cognitive, attentive or performance 
responses. For this reason, the driving circuit had no traffic, 
pedestrian distractions, traffic symbols, or bumps. We chose 
a driving training circuit with 28 turns, 12 turns to the right 
and 16 to the left (see Figure 4).  To record a minimum of 
turns, participants were asked to complete four laps around 
the circuit, for a total of 108 turns, and a minimum of at 
least 48 turns in each direction. Due to procedural errors, one 
participant completed only three laps while five participants 
completed five laps each. Participants were requested to drive 
as the would normally drive a vehicle in the city. Turns were 
mostly 90° turns with a radius of about 12 feet. There were 
no interruptions between turns. All drivers circulated around 
the lap in a counterclockwise direction.  It is important to 
note that most participants made an effort to drive as they 
would normally drive a vehicle during the first half of the laps. 
However, some participants, perhaps due to boredom, adopted 
more playful behavior towards the end, making more mistakes 
and being less precise in taking the turns. 

 
Apparatus 

The experiment was performed in a laboratory setting, using 
a half-car (buck) Skyline simulator setup [1] with a Logitech 

Figure 4. Driving circuit with 28 (16 left and 12 right) turns per lap. The 
circuit  was traversed counterclockwise.   The bright  green dot indicates 
the starting  point. 

 
 
G29 gaming steering wheel and pedals2 ) (see Figure 1). The 
car seat was positioned to a comfortable position, and sound 
effects were held constant. For the driving simulation environ- 
ment, we used a commonly used driving school simulator, City 
Car Driving3 ). The data from the steering wheel was sampled 
at 916HZ with an angular resolution of 0.056°. This raw data 
was captured with a lossless computer logger that recorded the 
information directly from Logitech’s steering wheel drivers. 
 

Stimulus 

The calming and stress conditions were each composed of two 
parts: An acute pre-driving stressor or soothing intervention 
coupled with arousing or soothing music while driving (see 
Figure 3). 
 

a.  Pre-driving Stimulus. For the calming pre-driving stim- 
ulus, we had participants view a soothing video; this is rec- 
ommended by other researchers as opposed to doing nothing 
to engender calm[33]. For the pre-driving acute stressor, we 
implemented a math stressor from the Trier Social Stress Test 
(TSST) [20]. The task involved participants performing a se- 
ries of subtractions out loud (13 from 2017, 13 from 2014 and 
so forth).  If the participant made a mistake, the researcher 
asked the participant to start again. To add more stress, we 
created penalties associated with long response times – if users 
took more than four seconds to respond, they had to start over. 
We refer to this stressor as Math. 
 

b. Sustaining Stimulus. To capture enough data from driving, 
we had to ensure that the effect of the acute stressor would 
last during the four driving laps.  During the driving tasks, 
participants heard either their self-selected music genre or 
heavy metal music.  The latter is associated with increased 
levels of arousal. [21] We used a medley of songs from the 
album “At the Heart of Winter” by Immortal4 . 
 
Stress Data Acquisition & Processing 

During the experiment, stress was measured through self- 
reports and physiological measurements.  Self-report stress 
(SRS) measurements were obtained after using a simplified 
version of the Perceived Stress Scale (PSS) [35], a 10-point 
 

2 http://gaming.logitech.com/en-us/product/g29-driving-force 
3 http://citycardriving.com 
4 https://www.youtube.com/watch?v=VeOlPQqJR-o

http://gaming.logitech.com/en-us/product/g29-driving-force
http://citycardriving.com/
http://www.youtube.com/watch


 

 
 

scale question: “What is your current level of stress?” with 
end points “Low” and “High” immediately after completion 
of each stage (see Figure 3). SRS was normalized and cor- 
rected against its baseline per participant to minimize potential 
individual differences. As ancillary self-reported metrics we 
asked the level of Tension from 0-“Low” to 10-“High”, the 
level of Concentration, also with the same range, and the dual 
affective components: Arousal and Valence, based on Russel’s 
affect circumplex [37]. As will be explained later in the stress 
evaluation section, these metrics, together with task perfor- 
mance analysis, were used to verify that our stressor did not 
induce changes that could not be attributed solely to mental 
stress. 

 

An Electrocardiogram (ECG) signal (250Hz) was measured 
with the Zephyr BioModule Device 3.05 .   The strap was 
wrapped around the participant’s torso just under the chest 
area, so that the sensor unit was aligned with their left lateral 
side.  HRV is a second-order metric derived from the ECG 
signal. HRV is evaluated by detecting the maximum peaks (R 
peaks) of the ECG signal. In the time-domain, HRV is com- 
monly measured using the Root Mean Square of Subsequent 
Samples (RMSSD), which represents short term variability 
and is inversely correlated with arousal. R-peak detection of 
the ECG signal was manually examined following the rec- 
ommendations of the HRV task force [40] using the Kubios 
software6 . RMSSD was normalized and baseline-corrected 
per individual. 

 

EDA, previously known as Galvanic Skin Response (GSR), 
is a measurement of skin conductance due to the activation 
of the eccrine sweat glands which are purely innervated by 
the SNS. High average levels and increased number of EDA 
peaks have been associated with stress [3]. EDA (4Hz) was 
measured with the Empatica E4 sensor 7 . The Empatica E4 
band was wrapped around the participant’s non-dominant arm 
wrist. The device was mounted to allow proper skin contact 
without restricting blood flow.  The Event Marking feature 
of the Empatica device was used to record time stamps for 
both devices.  Several processing steps were applied.  First, 
exponential smoothing (α = 0.08) was applied to reduce high- 
frequency artifacts due to motion. Second, each of the sessions 
was normalized between 0 and 1 [24] to amplify EDA changes 
and minimize daily differences due to sensor placement. Third, 
phasic EDA components were automatically extracted with the 
Ledalab library 8 . Finally, we extracted the average number of 
phasic peaks for each part of the experiment (see the Results 
section).  The peaks were extracted with the FINDPEAKS 
function of MATLAB and were normalized for each session 
to be between 0 and 1 to further minimize session differences. 

 

 
Steering Wheel Data Acquisition & Processing 

Data acquisition and preprocessing were performed to create 
a signal viable for analysis with a linear predictive coding 
technique. 

 
5 https://www.zephyranywhere.com/ 
6 http://www.kubios.com/ 
7 https://www.empatica.com/ 
8 http://www.ledalab.de/ 

 

 
Figure 5. Turns.  a) Excerpt  of the original signal; b) Absolute value of 
the signal with peaks and valleys. 

 
 

Preprocessing 

Several steps were followed to process the steering wheel 
signal. First, the signal was filtered to eliminate high frequency 
components. We used a 20 pole Butterworth low-pass filter 
with a cutoff frequency of ω = 0.2 ∗ π  rad/sample.   After 
this, we eliminated repeated timestamps, which accounted for 
about 9.69% of the samples. We then interpolated the signal 
to correct the original sampling period τ = (M = 1.0918, SD = 
0.5179)ms to have a uniformly sampled signal τ = (M = 1, SD 
= 0)ms. 

 
Segmentation 

To extract valuable data segments, several assumptions were 
made based on exploratory analysis of the signal. First, the 
data was transformed from a +/- 450° signal into its absolute 
value (0 to 450°). This way, all positive “peaks” represented 
either right or left turns. (see Figure 5). 

 

We decided to use only monotonically increasing segments, 
since they represent direct activation of the muscles. Although 
the monotonically decreasing segments could carry some sig- 
nal from the muscle, it can also carry some of the effect of the 
steering wheel’s force-feedback mechanism. Furthermore, in 
real-life settings the steering wheel return path is also many 
times strongly guided by the force of the wheels returning to 
their initial position. To discover these segments we used the 
FINDPEAKS function from Matlab to find the signal’s peaks 
and valleys. We extracted all segments between a valley and a 
peak (in that order). 

 

To capture the activation of the arm and shoulder, rather than 
small movements from the forearm only, we decided to elimi- 
nate segments that are smaller than 40°. As observed in Figure 
5, most of the turns are larger than this value. On the other end 
of the range, most turns were at most 280 to 320°. We did not 
include turns larger than that, as they could have been done 
in a hurry, perhaps trying to take a rapid turn to correct for

http://www.zephyranywhere.com/
http://www.kubios.com/
http://www.empatica.com/
http://www.ledalab.de/


 

 
 

Figure 6. Detail of a couple of steering wheel turns.  Extracted segments 
marked in red. 

 
 

some mistake. One final observation of the data showed that 
for larger turns, around 90° there seemed to be a secondary 
“impulse.”  We decided to truncate these turns to keep only 
the “first” muscle impulse, to avoid readings that may be con- 
founded by the existing inertia of the turn. In summary, we 
decided to pick turns that were larger than 40°, but smaller 
than 320°, and we truncated turns larger than 90 degrees (see 
Figure 6). 

 

We acknowledge that these meta parameters could be further 
validated with a more detailed study of the activation of the 
arm muscles with either EMG sensors or motion capture cam- 
eras.  We did a quick observational run with a male and a 
female drivers to see if our parameters were minimally accept- 
able. We asked the drivers to drive around the city and report 
when they felt that the whole arm was activated. They reported 
that the arm was active when taking turns that were about 45 
to 70 degrees. Smaller turns seemed to be performed by using 
the arm’s weight or just wrist or forearm activation only. The 
users reported feeling that their arm was fully engaged for up 
to 90 to 180 degrees, which was close to our observation of a 
secondary “impulse” happening around 90 to 120 degrees. 

 

We felt that our meta parameters were conservative and realis- 
tic enough to capture the desired movement activation. During 
wheel_calm, we obtained (M = 22.92, SD = 10.12) segments 
per participant per lap with a duration of (M = 748.75 SD 
= 152.98)ms and for wheel_stress we obtained (M = 23.48, 
SD = 7.12) segments with a duration of (M = 658.70, SD = 
163.30)ms for the wheel_stress condition.  On average, we 
obtained 23.2 turns, which represent roughly 83% of the 28 
actual turns of our driving circuit. Figure 7 shows a few turn 
segment samples from the calm condition for participant P2. 
Most of the samples show an exponentially accelerating curve, 
characteristic of an under-damped oscillatory system. 

 
Pole Selection 

Finally, the selected segments were processed with a fourth 
order linear predictor coding (LPC) algorithm. This configura- 
tion generates a representation of a second order MSD system. 

Figure  7.  Some sample  segments  from  participant P2’s calm driving 
condition. 
 
 
We focused on extracting only the under-damped poles, i.e. 
those with an imaginary part larger than 0.  By picking the 
under-damped poles we retained 88.34% of the total segments 
per user in the wheel_calm condition and 89.94% of the total 
segments per user in the wheel_stress condition. As explained 
in the modeling section, under-damped poles have a direct re- 
lationship with the k coefficient of a MSD system representing 
the human arm. 
 
RESULTS 

In this section, we present the validation of both the stressor 
with self-reported and physiological measurements, and the 
model, which is derived from steering wheel measurements. 
 
Stress Evaluation 

First, we validate that our stressor only elicits mental stress 
by discarding the effect of concentration or task performance 
artifacts.  Then, we present self-reported and physiological 
measurements that prove the efficacy of our stressor. 
 

Mental stress validation 

To validate that our mental stressor does not elicit task-related 
performance or concentration effects, we analyze two metrics: 
perceived concentration and lap duration. First we averaged 
concentration levels before and after the driving conditions. 
No difference was found between wheel_calm (M = -0.344, 
SD = 0.324) and wheel_stress (M = -0.323.519, SD = 0.371) 
(t(48) = 0.223, p = 0.824). Lap duration, defined as the time 
to complete a complete lap around the driving circuit, which 
could be affected by an intrinsic or extrinsic motivation, also 
did not show a difference between wheel_calm (M = 2.33, 
SD = 0.45) and wheel_stress (M = 2.34, SD = 0.33) states 
(t(48) = -0.0466, p = 0.963). Furthermore, no differences were 
observed in pairwise lap duration comparisons (see Figure 
8). Finally, we tested the difference in time duration across 
the turn segments. Again, we found no significant difference 
between wheel_stress and wheel_calm states. These results 
ensure us that our math+heavy metal music stressor produced 
mainly changes in mental stress rather than in task-related



 

 
 

Figure 8. Lap duration in mm:ss. Error bars represent standard errors. 

 
 

concentration  or performance, which in turn should affect 
muscle tension in the upper limbs. 

 

Self-reported Stress (SRS) 

We normalized and baseline-corrected SRS per user. We then 
averaged the readings before and after the driving tasks. We 
found a significant difference between wheel_calm (M = - 
0.192, SD = 0.397) and wheel_stress (M = 0.172, SD = 0.396) 
(t = 2.123, p < 0.01).  As expected, SRS was higher in the 
presence of stress (see Figure 9 - Self-Report).   It is also 
important to note a significant difference between the relative 
scores reported before (M = 0.188, SD = 0.276) and after (M 
= 0.380, SD = 0.369) wheel_calm (t(48) = -2.094, p < 0.05). 
This difference is potentially relevant, as it may indicate that 
stress builds due to simply driving. This suggests a need to 
have a more detailed analysis of stress differences per lap. It 
is important to state that these temporal effects are not due to 
ordering effects, as the stress conditions were counterbalanced. 

 

In addition to SRS we found that (normalized/baseline- 
corrected) Tension was significantly higher for wheel_stress 
(M=-0.323, SD=0.433) than for wheel_calm (M=0.129, 
SD=0.437) (t(48)=3.744, p < 0.001) and highly correlated 
with SRS (r = 0.59, p < 0.001). This indicates that people per- 
ceived the stressor also as affecting their muscle tension. We 
did not find a significant difference for Arousal/Energy, how- 
ever, (normalized/baseline-corrected) Valence/Feelings was 
significantly lower for wheel_stress (M=-0.045, SD=0.435) 
than for wheel_calm (M=-0.346, SD=0.415) (t(48)=-2.554, p 
< 0.05). The latter result indicates that people perceived our 
stressor as “distressing” rather than simply arousing. These 
ancillary metrics support the notion that we were successful 
in inducing stress (distress) during our experiment. 

 

Physiological Stress 

As stated in the stress measurement background subsection, 
we focused our attention on the Root Mean Squared of Suc- 
cessive Differences (RMSSD) metric. This is a time-domain 
measurement of heart rate variability (HRV), known to be 
inversely correlated with acute stressors. We normalized and 
baseline-corrected RMSSD and observed a significant differ- 
ence between wheel_calm (M = 0.517, SD = 0.194) ms and 
wheel_stress (M = 0.368, SD = 0.292) ms (t = 2.123, p < 0.05). 

Figure  9.   Stress  levels (normalized  and  baseline-corrected) for  Self- 
Reported  Stress  (SRS) and  Root  Mean  Squared of Successive Differ- 
ences (RMSS) heart  rate  variability (HRV). Error bars  represent stan- 
dard  errors. 
 

 
As expected, RMSSD was lower in the presence of stress (see 
Figure 9 - right). We did not find significant differences in any 
of the Electro-dermal Activity (EDA) metrics. This could be 
due to motion artifacts of the wrist-worn EDA sensor during 
driving [42]. We found however a difference in EDA peaks 
between the first (M = 0.1312, SD = 0.198) and second (M = 
0.037, SD = 0.067) laps (t = 2.244, p < 0.05). As in SRS, this 
again indicates a potential increase in arousal due to driving. 
 
Stress Steering Wheel Sensor Test 

As previously described, we want to verify if the angular 
movement of a steering wheel can be used to model an ap- 
proximation of a mass-spring damper model (MSD) of the 
human arm. We expect that the spring coefficient k represent- 
ing muscle stiffness increases with stress. We use an inverse 
coding technique, linear predictive coding (LPC) to estimate 
the damped frequency of the MSD, which is proportional to 
the spring constant ω ≈

√
k. 

 

We define ω c and ω s as the damped frequency for all users’ 
turn segments in the wheel_calm and wheel_stress conditions 
respectively. ω values will always be measured in rad/s. We 
tested the entire dataset: 4 laps, (M=10:07, SD=3.05) minutes 
which includes (M = 96.12, SD = 27.12) turn segments per 
participant.  ω s (M = 0.1, SD = 0.012) was found to be sig- 
nificantly higher than ω c (M = 0.093, SD = 0.01) (t = (48) = 
2.047, p = <0.05) (see Figure 10). This result rejects the null 
hypothesis for H and implies that ω was able to represent ef- 
fectively the muscle stiffness of the arm. We have successfully 
shown, for the first time, that it is possible to use the angular 
displacement of the steering wheel as an effective instrument 
to detect mental stress. 
 
Sensitivity evaluation 

With encouraging results, we proceeded to do explore the sen- 
sitivity of our sensor. We explored the sensitivity of the sensor 
with less data to determine the minimum amount of data for it 
to still effectively sense mental stress. First, we reduced the 
number sample size and then we decimated the sampling rate 
to ensure these techniques would work in existing vehicles.



 

 
 

Figure  10.  Damped  natural frequency  (rad/s) for wheel_calm ω c and 
wheel_stress ω s. Error bars represent standard errors. 

 

 
Lap analysis 

First we looked at the first half of the data, two laps (M = 5:20, 
SD = 1.45) minutes, accounting for 52.15% of the data and (M 
= 47.2, SD = 14.9) turn segments per participant. We found ω s 
(M = 0.099, SD = 0.013) to be significantly higher than ω c (M 
= 0.091, SD = 0.01) (t(48) = 2.265, p < 0.05). This difference, 
apparently higher than the difference with 100% of the data 
could be due to a higher effect of the math stressor during the 
earlier part of the drive. With just a single lap (M = 2:50, SD 
= 0:59) minutes, representing 28% of the data and only (M 
= 23.2, SD = 8.66) turn segments per participant, ω s (M = 
0.097, SD = 0.013) was still significantly higher than ω c (M = 
0.084, SD = 0.012) (t(48) = 2.378, p < 0.05). Finally, to our 
surprise, with only 10% or of the signal (1 minute on average) 
and just (M = 7.54, SD = 3.52) turn segments per participant, 
ω s (M = 0.096, SD = 0.015) remained significantly higher 
than ω c (M = 0.087, SD = 0.014) (t(48) = 2.048, p < 0.05) 
(see Figure 11).  We did not find a viable signal with only 
5% of the signal. Our exploratory sensitivity analysis reveals 
an encouraging possibility to potentially detect mental stress 
with just a few maneuvers of a steering wheel during an urban 
drive (see Table 1). As it can be observed in Figure 11, the 
effect of stress is more noticeably changing in wheel_calm 
than in wheel_stress.  This means that, as discussed earlier, 
there was a sheer effect of stress on driving, which makes is 
less probable to detect a difference in ω as time passes by and 
the effect of the initial stressor diminishes. Despite producing 
a significant differene, the lower sensitivity observed in the 
1-minute condition reflects an optimal data-size closer to 1-lap 
(i.e., 23 samples). Additional data and more extensive testing 
would be needed to further characterize the lower limits of our 
sensor. 

 
Sample  Size                                 Difference Stress-Calm 

# of laps time(mm:ss) # of turn segments Mean, SD (rad/s) 

2 laps 5:20 47 0.007, 0.008* 

1 lap 2:50 23 0.009, 0.013* 

<1 lap 1:01 8 0.008, 0.018* 

Table 1. Effect of the reduction on the number of laps on the difference 
ω s - ω c. *p<0.05 

 

 
Figure  11.  Reduction  in sample  size.  Error bars  represent standard 
errors. 

 
Sample Size                                                 Decimation Factor 

   1 lap/2:50 min/19 segments                       10                     20                       50   
 

   ω  Mean,SD (rad/s)                   0.015, 0.028*     0.016, 0.03*     0.016, 0.025*   

Table   2.     Effect  of  decimation   on  the  difference   on  ω   between 
wheel_stress and wheel_calm. *p<0.05, **p<0.01 
 
 
 
Decimation 

To see if our findings could still work with a smaller sampling 
frequency (fs) and lower angular resolution (ar), similar to 
those found in consumer electronics On-Board-Diagnostics 
(OBD) devices9 , we lowered our sampling frequency.  We 
performed this analysis using the single lap results, which 
showed a higher difference between ω s and ω c (see Table 2). 
With a decimation factor of 10 (fs = 100Hz and ar = 0.56°), we 
observe that ω s (M = 0.186, SD = 0.024) is significantly higher 
than ω c (M = 0.171, SD = 0.024) (t(48) = 2.152, p < 0.05). 
With a decimation factor of 20 (fs = 50Hz and ar = 1.12°), ω s 
(M = 0.217, SD = 0.025) was still significantly higher than ω c 
(M = 0.202, SD = 0.025) (t(48) = 2.323, p < 0.05). Surprisingly, 
with a decimation factor of 50, (fs = 20Hz and ar = 2.8°), we 
still found that ω s (M = 0.24, SD = 0.021) was significantly 
higher than ω c (M = 0.223, SD = 0.02) (t(48) = 3.01, p < 0.01). 
A decimation factor of 100 did not render significant results. 
These results indicate that it is still possible to detect stress 
with a lower sampling frequency and lower resolution. This 
is quite relevant, as it open the possibility to use commercial 
devices commonly used to extract information such as the 
angular variation of the steering wheel at low frequency rates. 
 

Overall these encouraging lower sensitivity findings suggest 
that our sensor could potentially be used to monitor acute 
stress fluctuations during almost any common driving task 
within a city. A fine grained analysis with larger amounts of 
data and different driving scenarios should be performed to 
further evolve the understanding of the steering wheel stress 
sensor. 
 
DISCUSSION 

This work represents the first successful use of a steering 
wheel as a stress sensor. We were able to successfully induce 
9 https://en.wikipedia.org/wiki/On-board_diagnostics



 

 
 

 
Figure 12. Individual differences for damped  natural frequency  (rad/s) 
observed after 2 laps (5:20 minutes). 

 
 

stress during a driving task using math and without altering 
performance or driving mechanics. Furthermore, we were able 
to sustain the effects of stress and calmness with music, despite 
a natural tendency by drivers to get stressed while driving 
[14, 25].  We were successful at detecting the difference of 
our mental stressor through the muscle tension in the arm 
only using the angular displacement of the steering wheel. 
Furthermore we showed significant results with as low as eight 
segments and with a decimated sampling frequency equivalent 
to 20Hz. 

 
Applications 

Because the sensor we have developed requires no new invest- 
ment of hardware, only signal processing of existing steering 
wheel angle signals already collected by the vehicle, we be- 
lieve it would be easy to integrate our sensor into commercial 
passenger vehicles, converting modern cars into effective sen- 
sors for chronic and acute stress episodes. 

 

This work can also be used directly in car simulators, both 
for educational and gaming purposes.  For example, the ex- 
act setup of our experiment, a Logitech G29 steering wheel 
coupled with the City Car Driving application, is a common 
driving simulation setup for people learning to drive. Gamers 
at different levels of proficiency could benefit from a steering 
wheel that reads stress or simply arousal levels. As a matter of 
fact, a range of games, from simple fun games such as Mario 
Kart, all the way to complex racing games such as Forza or 
Grand Theft Auto, could benefit from controls or challenges 
associated to the stress level of the user. 

 

Looking at individual differences (see Figure 12), we observe 
that the majority of the participants showed an increase in 
damped frequency with stress, while only 3 of 25 experienced 
a decrease. Longitudinal evaluations of commuters or other 
drivers using cars on a daily basis would enable a deeper 
understanding of these individual differences. 

 
Next steps 

The stressor applied in this experiment, designed to elicit only 
mental stress as opposed to other cognitive alterations, was 
effective.  However, it was also useful to learn that, despite 

 

increased stress levels, people did not have serious incidents 
while driving in the simulator. Therefore, we believe it is safe 
to advance this research to testing stress with real vehicles. 
We propose first controlled studies in closed circuits without 
actual traffic; in essence, a real-life version of our experiment. 
Real-driving scenarios should provide additional information 
of the effects of road-vibration and wheel mass inertia on the 
steering wheel stress sensor. 
 

We are confident our technology could be adapted in commer- 
cial vehicles and further integrated with other stress sensors 
such as cameras or capacitive sensors in car seats. However, 
a key question remains: what to do when stress is detected? 
The fact that stress can be sampled at a relatively high rate 
means that this sensor could be used as input to interventions 
for commuters, who may be stressed out from work, to help 
people manage road rage, or to simply make driving more 
enjoyable. If the goal is for these unobtrusive sensors to pro- 
vide effective feedback about stress, complementary work 
on just-in-time interventions should be developed. Recently, 
Paredes et.  al [29] have suggested that when stress occurs 
during a drive, some plausible options could be to stretch or 
conduct breathing exercises. Others have suggested the use of 
wearables such as Moodwings [25], or light or sound displays 
such as Autoemotive [15] as ambient and peripheral feedback 
interventions. 
 
CONCLUSION 

In this paper, we have introduced a simple yet effective way 
to measure mental stress using only the steering wheel of an 
automobile.  We have shown the efficacy of using a simple 
mass spring damper (MSD) model to detect the stress affecting 
the muscles of the arm. We calibrated our sensing algorithm 
against well known stress measurements such as self-reports, 
heart rate variability (RMSSD), and electrodermal activity 
(EDA). To validate our model, we have contrasted the damping 
frequency of the MSD system with well known math and 
music stressors.  Using this model, we have found that it is 
possible to detect viable signals of stress with only a few 
turns.  This is the first work of this type, opening up new 
opportunities to use devices already embedded in a car as 
in-situ non-obtrusive stress sensors. 
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