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RESUMEN 

 

Este trabajo tiene como objetivo el realizar un estudio de series de tiempo al flujo regulatorio 

del Ecuador en la última década. Para este objetivo se plantean modelos univariados de series 

de tiempo y la metodología ARIMA estacional para poder caracterizar correctamente el flujo 

mensual y trimestral de regulación del 2008 al 2017. Como contribución principal se busca 

sentar las bases para un posterior estudio multivariado de series de tiempo con el cual se 

establezca el efecto de la regulación sobre variables macroeconómicas. 

 

Palabras clave: Regulación, Teoría Macroeconómica, Crecimiento Económico, Análisis de 

series de tiempo, Modelos Univariados, ARIMA estacional. 
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ABSTRACT 

 

The main objective of this research project is to conduct a time series study of the Ecuadorian 

regulatory flow in the last decade. For this purpose, time series univariate models and seasonal 

ARIMA methodologies are proposed to correctly characterize the monthly and quarterly flow 

of regulation from 2008 to 2017. The main contribution is to lay the foundations for a 

subsequent multivariate time series study which establishes the effect of regulation on 

macroeconomic variables. 

 

Key words: Regulation, Macroeconomic Theory, Economic Growth, Time Series analysis, 

Univariate models, Seasonal ARIMA. 
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1 INTRODUCTION 

Ecuador has been suffering an increase in the flow of regulation over the past decade 

and the aggregate effects of this phenomenon has not been considered. Alcívar (2017) 

quantified the monthly flow of regulation for the period from 2008 to 2017 with the objective 

of creating a tool for further macroeconomic studies.  Macroeconomic theory does not establish 

a framework to study the effects of regulation; nevertheless, there have been several papers 

that have quantified the general effects of regulation. Dawson & Seater (2013) proposed a 

cointegrated time series process in order to quantify this effect; however, before conduct 

cointegrated methods, a characterization of observations must be done. The use of filters, 

univariate and multivariate models are appropriate techniques that could give us the same 

results as a cointegration approach, but with different time series variables. 

The Moving Average and the Hodrick & Prescott filters are commonly used in order to 

transform non-stationary data into a stationary data. Additionally, econometric theory uses 

univariate and multivariate techniques to model time series and obtain the best fit. Therefore, 

stationarity along with autocorrelation represent the major challenges for the analysis of any 

time series. Before conducting any multivariate process where causality relations could be 

obtained, the univariate models provide the first insights into the behavior of the flow of 

regulation for Ecuador.     

In this sense, the present paper presents the first time series study of the monthly and 

quarterly flow of regulation in Ecuador. The main model that will be conducted is a seasonal 

ARIMA model, that fits monthly data, but the quarterly data could not be fitted because of data 

scarcity. The structure of the present paper goes as follows: Section 2 establishes the literature 

review that will set the ground for Section 3 in which methodology is deployed. Section 4 

presents the main results and conducts the main tests and models into the data. Finally, Section 
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5 presents the economic discussion of the seasonal ARIMA models found and Section 6 discuss 

the main conclusion of this study.  

2 LITERATURE REVIEW 

 Economic growth rates vary between countries because of education, productivity, 

foreign aid, values, among other social indicators; moreover, there is a field in which scholars 

have agreed that causes and slowdowns economic activity: Government Regulation. Goff 

(1996) has been recognized as the pioneer of the macroeconomic studies about the effects of 

regulation. Furthermore, the study of regulation must not consider basic laws that could hinder 

research studies, that is the reason why Goff defined regulation as the more quarrelsome rules 

in a society (1996). His main paper, focused on cross-section and panels of countries, found 

that, “regulatory fluctuation was the primary determinant of the slow economic growth of the 

1970s and the return of growth during the 1980s [in the United States]” (Goff, 1996). 

 Regulation studies have been focused in microeconomic literature where causes and 

effects have been founded and they built the path to the macroeconomic analysis of regulation. 

Therefore, to study regulatory theory, one must review the main contributions and the history 

in micro and macroeconomic terms. Moreover, most of the studies conducted in 

macroeconomic terms do not consider the time series characteristics of aggregate variables; 

therefore, the stationarity properties of the data are not considered (Coffey, Mclaughlin, & 

Peretto, 2016). For this reason, a review of the main statistical analyses must be conducted 

before relating regulation with any macroeconomic variable. Finally, time series econometric 

techniques help us to characterized aggregate variables, that will set the ground for future 

macroeconomic studies.  

 Before beginning with the analysis, it must be said that “the central tasks of the theory 

of economic regulation are to explain who will receive the benefits or burdens of 
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regulation…and the effects of regulation upon the allocation of resources” (Stigler, 1971). 

Taking a microeconomic perspective, as mentioned by Dawson & Seater the effects of 

regulation on economic activity are often not straightforward (2013) because there are specific 

regulations that could correct market failures in one part of the economy, but the aggregate 

effect is ambiguous. Furthermore, in terms of our interests, “microeconomic analysis will 

probably not be able to estimate the cumulative effects of regulatory complexity, but 

macroeconomists may have more success” (Broughel, 2017). 

 The origins of regulation are studied in the field of public choice, “Pigou’s (1938) 

public interest theory of regulation holds that unregulated markets exhibit frequent failures, 

ranging from monopoly power to externalities” (Djankov, LaPorta, Lopez-De-Silanes, & 

Shleifer, 2002). Hence, regulation is required to correct those undesirable effects and the role 

of the government is to protect their citizens from those market failures. Public choice theory, 

however, sees the government as less benign and regulation as a potentially socially inefficient 

mechanism (Djankov, LaPorta, Lopez-De-Silanes, & Shleifer, 2002). As mentioned by Stigler 

(1971) “[usually] regulated firms gain control of the regulatory agency and use it to their 

advantage”. Besides, neither Pigou’s nor Stigler’s theories suggest any clear connection 

between aggregate variables and the amount of regulation (Dawson & Seater, 2013). 

 Macroeconomic theory is usually centered on four fields-namely, spending, taxation, 

deficits, and monetary policy. Moreover, empirical studies suggest that regulation changes 

macroeconomic variables, but there is no theory that directly addresses the effects that 

regulation has on macroeconomic activity (Peretto, 2007). In order to clarify the link between 

microeconomic regulations into the macro economic environment, Goff detailed three main 

arguments:  

 “First…if supply/demand shifting or price/quantity manipulating 

regulations are imposed across many or most of the markets in an 
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economy, that would provide a seemingly straightforward basis for 

understanding the micro to macro link. Second, if the direct regulation of 

one market creates sizable spillovers on the supply and demand in other 

markets, regulation's effects have another avenue to move from the 

individual market level to the aggregate level. Third, if a current 

regulation in one market today creates future adjustments in that or other 

markets, regulation gains one more pathway toward economy-wide 

influence” (Goff, 1996). 

 Furthermore, it is essential to consider that “new regulations interact with 

existing ones, resulting in effects larger than the new regulations would create on their own” 

(Broughel, 2017).  Additionally, and following a cross-section study, Alesina et.al concludes 

that “deregulation leads to greater investment in the long-run” (2003). As is evident, this results 

contrast with the public interest theories of regulation but supports the public choice approach 

(Djankov et al., 2002) because the greatest benefits of regulations would be directed to the 

group in power, bringing rent extraction by self-interested politicians. Likewise, as mentioned 

by Jalialian, Kirkpatric & Parker, the impact of regulatory institutions on economic growth will 

depend on both: the efficiency of the regulatory policies and instruments that are used, and the 

quality of the governance processes that are practiced by the regulatory authorities (2007). In 

this sense, the debate about the effect of regulation is guided to the origin that is an institutional 

one. 

 To understand how individual or groups of regulations affect economic growth, a model 

is needed. Solow’s model (1956) has been the main framework for macroeconomic studies; 

based on the Cobb-Douglas production function, this model captures: 𝑌𝑡= Real Output 𝐷𝑡= 

total factor productivity (TFP), 𝐾𝑡

= capital services, and Nt

1−
 = labor services. Solow’s model 

is applied since regulation has effects on real aggregate output and presumably affects the 
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economy in complex ways (Dawson & Seater, 2013), i.e., affects the main determinants of the 

output. To study the macroeconomic effects of regulations, a Second-Generation endogenous 

growth model taken from Peretto (2007) is adapted by Dawson & Seater (2013).  

Also, macroeconomists have faced several problems while trying to establish a solid 

framework to study regulation. First, data obtained from government institutions faces four 

main complications: short time periods, comprehensiveness, the relation of the opinions of the 

creators of the index; and as mention by Coffey, McLaughlin & Peretto, “while informative… 

[these indexes] necessitate tradeoffs” (2016). The restriction to small subsets of regulations 

and the short-time dimension make our aggregate analysis almost impossible, because 

economic growth is always measured in the long-term. Second, in the Ecuadorian case, the 

main issue relies on the construction of the macroeconomic variables. Nevertheless, Córdova 

“quantifies the stock of capital (gross and net) for Ecuador, for the series 1965-2005, expressed 

in current and constant terms, by applying the methodology proposed by the OECD” (2005). 

Besides, the flow of regulation and how is it obtained represents a major issue for 

macroeconomic analysis. Dawson & Seater (2013) describe the difficult of this process because 

there is no theory that tells us what and how we can measure the “marginal regulation rate” as 

in the theory of taxation. The number of pages in the Code of Federal Regulations of the United 

States is the measure that Dawson & Seater (2013) use to quantify regulation. In Ecuador, 

Alcívar (2017) collected legal data between 2008 and 2017 in order to construct a measure of 

regulation. The Ecuadorian Official Records were stored, and by applying the QuantGov 

methodology, the regulatory words were counted on a monthly basis from October 20th, 2008 

to May 24th ,2017, giving us the basis of the regulation measure used in Ecuador (Alcívar, 

2017).  

 Now that the macroeconomic theory has been studied, statistical time series concepts 

are described, in order to set the ground for the characterization that is conducted in the next 
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section. Time series analysis are meant to be done “to understand the past and to predict the 

future, enabling managers or policy makers to make properly informed decisions” 

(Cowpertwail & Mercalfe, 2009). In the field of macroeconomic data, statistical corrections 

and cross-sectional econometric studies have been conducted in order to correct auto-

correlation problems, simplifying the construction of any time series econometric model. For 

instance, in (Jalialian, Kirkpatrick, & Parker, 2007) a logging process helped to solve problems 

of serial correlation and heteroscedasticity. In this way, what a statistical transformation or an 

econometric model necessity, depends on the observed data and the study that the researcher 

wants to conduct.   

On one hand, statistical transformations emerge as filters that seek the stabilization of 

the data to get stationary environments. Hodrick & Prescott (1997) developed a widely adopted 

method that decomposes the observed variables into trends and cycles; the trend being the 

optimal output of the variable. Therefore, the business cycle of the economy could be 

“simulated”, i.e., the optimal amount of regulation could be obtained. Moreover, this method 

“introduces spurious dynamic relations that have no basis in the underlying data-generating 

process” (Hamilton, 2017). On the other hand, econometricians have developed a well-

structured framework in which time series variables could be adapted. For forecasting 

purposes, researches may either describe the behavior of a variable (Univariate time series) or 

build a more or less structural model describing the relationship between the variable of interest 

with other economic quantities (Multivariate time series) (Schafgans, 2017). In both cases, it 

is important to determine whether the time series are stationary and present ergodicity, i.e., the 

inherent time dependence is not too strong.  

As mentioned by Johnston & Dinardo, univariate time series models provide a priori 

information about the possible relationships between series, and an approximation of 

theoretical speculations (1997). Also, and following econometric concepts, the observations of 
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macro-economic variables are “considered as realizations of random variables that can be 

described by some stochastic process” (Verbeek, 2017). In order to describe this stochastic 

process, stationarity and autocorrelation must be considered. Many economic variables do 

exhibit strong trends and are clearly not stationary, i.e., the process generating the output does 

not change. Stationarity is checked by applying the Augmented Dickey-Fuller test (Schafgans, 

2017); in the presence of non-stationarity, univariate models transform the time series into a 

stationary one. Furthermore, autocorrelations of the time series are referred as the 

autocorrelation function (ACF) or the correlogram. From this function we can infer the 

correlation of one time among the past and hence, the length and strength of the memory of the 

process (Verbeek, 2017).  

Two models derive from the univariate time series method: Autoregressive (AR) and 

Moving Average (MA) models. “The series {𝑌𝑡} is an autoregressive process of order 𝑝, 

abbreviated to AR(𝑝) if 

                                            𝑌𝑡 =  𝛿 + 𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2+. . . + 𝜃𝑝𝑌𝑡−𝑝 + 𝜖𝑡                  ( 1 ) 

where 𝜖𝑡 is white noise” (Cowpertwail & Mercalfe, 2009). Johnston & Dinardo defined 

the pure MA (𝑞) process as a variable that is expressed solely in terms of the current and 

previous white noise disturbances (𝑞), 

                                                      𝑥𝑡 =∈𝑡+ 𝛼 ∈𝑡−1+ 𝛼2 ∈𝑡−2+ ⋯                                      ( 2 ) 

therefore, the order of a moving average model can be determined from an inspection 

of the sample ACF (1997). 

Multivariate time series models emerge as a response to the problem that univariate 

models present that is that they do not allow us to determine what the effects of macroeconomic 

variables are, for example, in a change in policy or aggregate variable (Verbeek, 2017). By 

adding more variables, first, one must study the stationarity of the series; when there is a non-

stationary process, covariances are ill-defined and a spurious regression can be found  
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(Verbeek, 2017). There is a common agreement that “the appropriate way to manipulate [non-

stationarity] series is to use differencing and other transformations to reduce them to 

stationarity” (Greene, 2012). Nevertheless, when the non-stationarity series have the same 

stochastic trend in common, i.e., both are drifting together at roughly the same rate, a 

cointegration process is the appropriate way to analyze those trending variables (Greene, 2012).    

To sum up, the principal studies regarding government regulation have been made in the 

micro economic field and little attention has been paid to the macro economic environment. 

Through the use of econometric and macro economy models, it is possible to measure the real 

effects of regulations on the private sector. Even though the application of any updated filter 

could improve the decomposition of variables (Hamilton, 2017), and by applying complex 

econometric models, we could have improved insights about the behavior of the variable, the 

question relies on what is sought in the data.  

 Considering that there has not been any study regarding regulation and its effect on 

macroeconomic variables in Ecuador, it is useful to conduct a characterization of the time series 

of regulation by applying statistical and univariate time series econometric models. The 

purpose of this research is to set the ground for future economic studies that use regulation and 

to provide the statistical framework in which time series analysis that use regulation should be 

conducted. Stationarity and Autocorrelation examinations provide the main tools to search for 

a suitable model of the macroeconomic effect of regulation. Finally, in Ecuador and countries 

that have faced an increase in their regulatory flow, this study hopes to contribute to the debate 

regarding the question of who is receiving the benefits from regulation that is maybe negatively 

affecting the aggregate economy. 

3 METHODOLOGY & DATA 
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3.1  Methodology  

The characterization of quarterly and monthly regulation data begins with statistical 

description of moments and the decomposition of the observed variable. These processes 

provide the basis for the econometric model construction that is required. The first statistical 

moment consists of the average and the second moment encompasses the variances of the time 

series, both are defined as: 𝜇 = ∑
𝑥𝑡

𝑛
, and 𝑣𝑎𝑟 = ∑(𝑥𝑡 − 𝜇)2. Following the Cowpertwail & 

Mercalfe time series approach, plotting the time series provides intuitive insights about 

frequency and distribution of data (2009). Furthermore, as economic theory is specified in 

terms of a stationary environment, and in order to transform observed nonstationary data 

without modeling the previous mentioned process; two decomposition methods are going to be 

applied. First, the moving average procedure and second the Hodrick-Prescott filter. Both 

methods rely on the assumption that there is a trend 𝑚𝑡 and/or seasonal effect 𝑠𝑡 inside the 

data, in an additive or multiplicative way: 

𝑥𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑧𝑡 ( 3 ) 

𝑥𝑡 = 𝑚𝑡 ∗ 𝑠𝑡 + 𝑧𝑡 ( 4 ) 

The moving average procedure does not assume any specific form for the time series, 

and dive it into its trend and seasonal effect with “an average of a specified number of time 

series values around each value in the time series, with exception of the first few and las few 

terms” (Cowpertwail & Mercalfe, 2009), equal weight is given to all data (equation 5). The 

estimate of the monthly additive effect is obtained by subtracting 𝑚𝑡̂, giving us equation 6. In 

this way, trend, seasonal effect, and the random variation are obtained. The literature suggests 

that after this transformation, if the average random variation is equal to 0 and there is no 

autocorrelation, the model captures all the elements of variability of the time series, and no 

other transformation is needed (Cowpertwail & Mercalfe, 2009). 
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𝑚𝑡̂ =

1
2

𝑥𝑡−6 + 𝑥𝑡−5+. . . +𝑥𝑡−1 + 𝑥𝑡 + 𝑥𝑡+1+. . . +𝑥𝑡+5 +
1
2

𝑥𝑡+6

12
 

( 5 ) 

𝑠̂𝑡 = 𝑥𝑡 − 𝑚̂𝑡 ( 6 ) 

 Moreover, as the moving average filter does not encompass the cycle term that is 

present in real aggregate data, Hodrick & Prescott proposed a conceptual framework where the 

time series 𝑦𝑡 is represented by the sum of a growth component 𝑔𝑡 and a cyclical component 

𝑐𝑡 (1997):  

min
{𝑔𝑡}𝑡=−1

𝑇
{∑ (𝑦𝑡 − 𝑔𝑡)2

𝑇

𝑡=1
+ 𝜆 ∑ [(𝑔𝑡 − 𝑔𝑡−1) − (𝑔𝑡−1 − 𝑔𝑡−2)]2

𝑇

𝑡=1
} ( 7 ) 

Their proposed method relies on the assumption that “𝜆 [the smoothness parameter] is 

a positive number which penalizes variability in the growth component series” (Hodrick & 

Prescott, 1997). This implies that, when 𝜆 → 0, the algorithm does not penalize deviations from 

the trend (no change materializes) and when 𝜆 → ∞, the penalty over the trend is infinite, 

therefore, the estimation is the linear approximation obtained by Ordinary Least Squares 

(OLS). This is the main limitation of the process, due to the sensibility of the model to the 𝜆 

value; moreover, the common practice is to use a value of λ = 100 for yearly data, λ = 1600 for 

quarterly time series, λ = 14400 for monthly data (Hamilton, 2017).  

On the other hand, modeling the process is another way to adapt non-stationary data 

into stationary one, but the process that is required is based on econometric theory. As 

previously mentioned, there are two branches in which econometrics interpret time series: 

univariate and multivariate time series process. In order to model monthly and quarterly data, 

the univariate models will be developed first; hence, Autoregressive (AR), Moving Average 

(MA), and combinations of both are going to be discussed. Recalling Equations ( 1 ) and ( 2 ), 

the next step is to identify stationarity and autocorrelation properties of those processes. 
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                                            𝑌𝑡 =  𝛿 + 𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2+. . . + 𝜃𝑝𝑌𝑡−𝑝 + 𝜖𝑡                  ( 8 ) 

                                                      𝑥𝑡 =∈𝑡+ 𝛼 ∈𝑡−1+ 𝛼2 ∈𝑡−2+ ⋯                                      ( 9 ) 

First, when talking about stationarity and autocorrelation of economic variables, 

econometric tests can confirm the presence of these properties. Stationarity represents “a 

stochastic process [where] its probability distribution remains unchanged when time 

progresses” (Verbeek, 2017). This is to say that realizations over different time intervals would 

be similar, due to the presence of a stochastic equilibrium. In time series data, it is required that 

just the means, variances and covariances of the series be independent of time, rather than the 

entire distribution; this is the definition of a weakly stationary process: 

𝐸{𝑌𝑡} = 𝜇 < ∞,  ( 10 ) 

𝑉{𝑌𝑡} = 𝐸{(𝑌𝑡 − 𝜇)2} = 𝛾0 < ∞,  ( 11 ) 

cov{Yt, 𝑌𝑡−𝑘} = 𝐸{(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)} = 𝛾𝑘 , 𝑘 = 1,2,3, … ( 12 ) 

 “Conditions ( 10 ) to ( 12 ) require the process to have constant finite mean and variance, 

while states that the autocovariances of Yt depend only upon the distance in time between the two 

observations” (Verbeek, 2017). As mentioned by Verbeek (2017), “MA processes are stationary 

by construction and because they correspond to a weighted sum of a fixed number of stationary 

white noise processes” (2017). However, for AR processes, it is more complicated to determine 

whether the presence of stationarity, due to the occurrence of unit roots, i.e., stochastic trends. 

The problem with unit roots is that “shocks (which may be due to policy intervention) have 

effects that last forever; whereas in stationary models, shocks can only have a temporary effect” 

(Schafgans, 2017). As shown in the seminal paper of Dickey & Fuller (1979) and bearing in 

mind equation ( 8 ), under the null that 𝜃𝑘 = 1 the standard t-ratio does not have a t distribution, 

not even asymptotically, due to the presence of non-stationarity that invalidate inference. 

Instead, Dickey & Fuller (1979) proposed an standardize t-statistic and critical values in order 

to test stationarity (see Appendix 1): 
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DF =
𝜃 − 1

𝑠𝑒(𝜃)
 ( 13 ) 

Moreover, since the autocovariances of the time series are not standardized in time, the 

autocorrelations are defined as 𝜌𝑘: 

𝜌𝑘 =
𝑐𝑜𝑣{𝑌𝑡, 𝑌𝑡−𝑘}

𝑉{𝑌𝑡}
=

𝛾𝑘

𝛾0
 ( 14 ) 

Note that 𝜌0= 1, while −1 ≤ 𝜌𝑘≤ 1. 

The set of autocorrelations as a function of 𝑘 is referred as the autocorrelation function 

(ACF) or correlogram. “From the ACF we can infer the extent to which one value of the process 

is correlated with previous values and thus the length and strength of the memory of the 

process” (Verbeek, 2017). Additionally, “if 𝜌𝑘= 0, the sampling distribution of 𝑟𝑘 is 

approximately normal, with a mean of  −1/𝑛 and a variance of 1/𝑛…. If 𝑟𝑘 [the sample ACF] 

falls outside these [values], we have evidence against the null hypothesis that 𝜌𝑘 = 0 at the 5% 

level” (Cowpertwail & Mercalfe, 2009) Therefore, the 5% critical values are calculated as: 

−
1

𝑛
±

2

√𝑛
 

After the description of the stationary and autoregressive characteristics, the question 

riles on which model and order must be selected, i.e., the number of lags for both (𝑝) and (𝑞). 

Verbeek (2017) describes two characteristics in which the selection of models is based: the 

ACF and the Partial ACF (PACF). In the case of an AR(𝑝) process, the ACF must be infinite 

in extent, in such way that it tails off; and the PACF must be close to zero, for lags larger than 

(𝑝). In the case of a MA(𝑞) process, the ACF must be close to zero for lags larger than (𝑞), 

and the PACF must be infinite in extent (it tails off)  (Verbeek, 2017).  In the absence of these 

two situations in both models, a combined ARMA may provide a parsimonious representation 

of the data. In the case of the MA(𝑞) process, as could be notice, the ACF provides the lag that 

must be imposed. For an AR(𝑝) process, it is better to “fit” it with a Maximum Likelihood 
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Estimator (MLE), i.e., the number of lags depending on an index that penalizes models with 

too many parameters: the Akaike’s Information Criterion (AIC). 

𝐴𝐼𝐶 = 𝑙𝑜𝑔𝜎2 + 2
𝑝 + 𝑞 + 1

𝑁 − 𝑘 − 1
 ( 15 ) 

The MLE method used in the fitting procedure above is based on maximizing the 

likelihood function (the probability of obtaining the data given the model) with respect to the 

unknown parameters. Then, the lowest AIC value of a model is chosen as the one that better 

fits the AR process. As mentioned before, there are cases in which a simple process is not 

enough to capture all the structure of the model. Therefore, a combination of processes is 

needed, giving us as a result the ARMA (𝑝, 𝑞) process: 

yt = 𝜃1𝑦𝑡−1 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝛼1𝜀𝑡−1 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞 

Or expressed in the form of a backward operator 

Θ𝑝(𝐵)𝑦𝑡 = 𝜙𝑞(𝐵)𝜀𝑡 

( 16 ) 

 

( 17 ) 

When talking about more complex econometric time series models, the fundamentals 

of statistics arise once again. Trend and seasonal effects influence the observed data and 

therefore they change the model that must be applied. Even though, univariate models capture 

the effects of past values, there could also be the presence of some seasonal effects that always 

produces a rise in the value in some periods. The ARIMA(𝑝, 𝑑, 𝑞) (autoregressive integrated 

moving average) model tries to transform it into a stationary series by first-order differencing 

the variable (Cowpertwail & Mercalfe, 2009). In this line, the seasonal ARIMA model, along 

with the AIC criteria are going to be used as the main framework in which the flow of 

regulation is going to be studied. In this way, monthly and quarterly seasonality is considered: 

ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) 

Θ𝑃(𝐵𝑠)𝜃𝑝(𝐵)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑥𝑡 = 𝜙𝑄(𝐵𝑠)𝜙𝑞(𝐵)𝑤𝑡 ( 18 ) 

Where:  
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𝑝 = 1 ⇒ 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝜖𝑡 

𝑃 = 1 ⇒ 𝑦𝑡 = 𝜙𝑠𝑦𝑡−𝑠  ⇒ 𝑦𝑡 = 𝜙12𝑦𝑡−12 + 𝜖𝑡      𝑠 = 12 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 19 ) 

𝑝 refers to the autoregressive order 

𝑃 refers to the seasonal autoregressive order 

𝑑 = 1 ⇒ ∆𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−1) 

𝐷 = 1 ⇒ ∆𝑠𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−𝑠)  ⇒ ∆12𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−12)      𝑠 = 12 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 20 ) 

𝑑 refers to the simple difference of the series 

𝑃 refers to the seasonal difference 

𝑞 = 1 ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃𝜖𝑡−1 

𝑄 = 1 ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃𝑠𝜖𝑡−𝑠  ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃12𝜖𝑡−12     𝑠 = 12 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 21 ) 

𝑞 refers to the simple moving average order 

𝑄 refers to the seasonal moving average order 

3.2  Data  

The data of the monthly flow of regulation is obtained from Alcívar (2017) and 

aggregated on a quarterly basis. The methodology applied by Alcívar (2017) is a version of the 

QuantGov technique that tries to quantify state and federal regulation in the United States. In 

this sense, the Ecuadorian Official Records and supplements that are daily posted were 

collected from October 20th, 2008, to May 24th, 2017.  It is important to notice that this version 

of collecting regulation data does not capture the stock of regulation (due to the length of the 

data) but the flow of regulation. Furthermore, another limitation to this process is that there is 

no classification among regulations; this is to say that the variety of regulations is broad and 

covers all number of regulations, from economic regulations to environmental regulations.  

Moreover, as mentioned by Alcívar (2017), the flow of regulations has a behavior that is 

related with presidential terms. In Ecuador, during the period analyzed, three terms are captured 

and in all of them one president remained in power. Furthermore, three phases are present, 
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from October 2008 to February 2011, where there is not a definite tendency; until August 2015 

where there is a lineal increase; and lastly, until 2017 when volatility and shocks are present. 

Finally, in order to characterize the flow of regulation the aggregate counter variable of Alcívar 

(2017) is going to be used as our monthly basis. and doing a cumulative process it is going to 

be changed into quarterly data.  

4 RESULTS 

4.1 Statistical description and filters  

Before structuring the seasonal ARIMA model for the flow of regulation in Ecuador, 

statistical description is required to obtain basic insights about the distribution of the data in 

both, monthly and quarterly basis.  From Figures (1) and (2), we conclude that there is a 

tendency, but it is not a linear one in both series; therefore, a deeper study is needed. 

Furthermore, seasonal effects do influence this process and corrections must be done. As 

mentioned before, the three phases of regulations in Ecuador are present and visually noticeable 

in monthly and quarterly basis. When discussing the moments of those time series; for monthly 

data, the average is 12,428 words with a standard deviation of 4,178; while for quarterly data, 

the mean is 37,598 with a standard deviation of 10,074 words. Also, in monthly data the 

maximum and minimum values are: 4,794 and 26,669; for quarterly data, the maximum value 

is 55,806 and the minimum value is 15,263. 
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Figure 1: Monthly Flow of Regulation from 2008 to 2017 

 
Figure 2: Quarterly Flow of Regulation from 2009 to 2017 

 

The months with higher regulatory words are: June, October, July, September, and 

August; all the averages over the sample mean are reported in Table 1. The quarterly data has 

the same pattern, giving us the second and third quarters as the ones with greater regulatory 

flow (Table 2). After the statistical description, the common filters will be applied: moving 

averages and the Hodrick-Prescott Filter. The fitted results will be plotted and compared with 
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the unfiltered time series. The Moving averages process will follow equations (5) and (6) from 

which the trend, seasonal components, and random variation are obtained from both series and 

plotted in Figures (3) and (4). As noticeable in the results, the seasonal component is present 

in both series and there is a pattern along all the period. Furthermore, the trends in both 

processes are not linear (as expected) and have been fitted into the process with the Moving 

Averages method. About the random variation, the results show us that after removing trend 

and seasonality, the mean is around 1 and the standard deviation is 0.192 and 0.116 for monthly 

and quarterly basis; that in fact is a correction that reduces the normal standard deviations that 

were 4,178 and 10,074 respectively.  

Table 1: Monthly Distribution of Regulation 

 

Table 2: Quarterly Distribution of Regulation 

 

 

 

 

 

 

 

January February March April May June

0,91 0,95 0,9 0,93 0,91 1,23

July August September O ctober November December

1,10 0,95 1,09 1,16 0,97 0,95

Monthly Distribution of Regulation

(1)   > 1 represents regulation above the monthly mean

(2)  < 1 represents regulation below the monthly mean

I Quarter II Quarter III Quarter IV Quarter

0,91 1,04 1,04 1,02

(1)   > 1 represents regulation above the monthly mean

(2)  < 1 represents regulation below the monthly mean

Quarterly Distribution of Regulation
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Figure 3: Moving Average Decomposition of Monthly Regulation 

 

Figure 4: Moving Average Decomposition of Quarterly Regulation 

 

 Even though, the Moving Average method suggests a precise correction for the data; it 

does not encompass the theory of stationarity; therefore, an autocorrelation test must be applied 
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to the random variation, that will be done in the next section. Moreover, the combined trend 

and seasonality are plotted in Figures (5) and (6) in order to have a better understanding of both 

time series. As reviewed in the methodology section, the Hodrick-Prescott (HP) filter is the 

most common filter applied to economic variables in order to obtain stationarity and to 

elaborate business cycles with the data.  

Figure 5: Monthly Flow of Regulation from 2008 to 2017 - Trend & Seasonality 

 

Figure 6: Quarterly Flow of Regulation from 2008 to 2017 - Trend & Seasonality 

 

 Recalling equation (7), with 𝜆 = 14400 and 𝜆 = 1600 for monthly and quarterly data, 

the HP filter was applied to the regulation data and as result Figure (7) and (8) are obtained. 

What calls our attention to this result is that for both time series the HP filter does not produces 
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a suitable fit. This could be because as both series present high volatility; hence, a different 

lambda could be applied in order to obtain better results with this filter. Nevertheless, the 

application of the HP filter or any variation, are not part of this research. Moreover, the 

application of econometric theory could provide a better modeling process than any 

sophisticated filter. For this purpose, autocorrelation and stationarity must be considered as the 

main problems of the next models that are going to be tried on the data.  

Figure 7: HP Filter for Monthly Regulation Data 

 

Figure 8: HP Filter for Quarterly Regulation Data 
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4.2 Autocorrelation and stationarity tests 

The first step in econometric time series analysis is to define the Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF), established in Equation (14). 

Furthermore, as in Equation (13) the Dickey-Fuller test will help us to determine if there is 

stationarity in our process and how well models fit our data. The results of both techniques are 

shown in Figures (9), (10), and Tables (3) and (4), respectively for monthly and quarterly basis. 

The ACF tests reflect that, in monthly basis the autocorrelation is statistically insignificant after 

lag 6; and for quarterly data after lag 2. The Dickey-Fuller tests show that in a monthly basis 

the process is stationary in two lags, in processes with drifts and with/out trends. but after those 

periods the process is non-stationary. In quarterly data, the process is non-stationary in all lags. 

Figure 9: ACF & PACF for Monthly Regulation

  

Table 3:Mothly Augmented Dickey-Fuller Test 

 

alternative: stationary 

Type 1: no drift no trend Type 2: with drift no trend Type 3: with drift and trend 

      lag    ADF p.value       lag   ADF p.value       lag   ADF p.value

 [1,]   0 -1.480   0.147  [1,]   0 -5.38  0.0100  [1,]   0 -5.74   0.010

 [2,]   1 -1.033   0.308  [2,]   1 -3.88  0.0100  [2,]   1 -4.07   0.010

 [3,]   2 -0.808   0.389  [3,]   2 -2.88  0.0534  [3,]   2 -2.94   0.185

 [4,]   3 -0.590   0.468  [4,]   3 -2.20  0.2529  [4,]   3 -1.94   0.595

 [5,]   4 -0.804   0.391  [5,]   4 -2.28  0.2222  [5,]   4 -2.43   0.396

 [6,]   5 -0.656   0.444  [6,]   5 -2.03  0.3184  [6,]   5 -1.95   0.591

 [7,]   6 -0.732   0.416  [7,]   6 -2.32  0.2049  [7,]   6 -2.48   0.373

 [8,]   7 -0.735   0.415  [8,]   7 -2.29  0.2173  [8,]   7 -2.52   0.358

 [9,]   8 -0.814   0.387  [9,]   8 -2.41  0.1708  [9,]   8 -2.76   0.258

[10,]   9 -0.642   0.449 [10,]   9 -2.07  0.3005 [10,]   9 -2.32   0.437

---- 

Note: in fact, p.value = 0.01 means p.value <= 0.01 

Augmented Dickey-Fuller Test 
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Figure 10: ACF of Quarterly Regulation

 

Table 4: Quarterly Augmented Dickey-Fuller Test 

 

  Moreover, the ACF observation discards the Moving Average process, due to the 

presence of significant autocorrelation at lag 9 in monthly data and, lags 3 and 8 in quarterly 

data (Figure 11).With the data obtained from these analyses, and after rejecting the filters as 

methods to be used in this time series, it is now possible to set up some basic models as an 

Autoregressive (AR) or Moving Average (MA) with the adequate orders that were studied in 

section 3. Furthermore, the analysis will continue to the ARIMA and seasonal ARIMA 

processes from which the last is the main model to be applied in this paper. 

 

 

alternative: stationary 

Type 1: no drift no trend Type 2: with drift no trend Type 3: with drift and trend 

      lag    ADF p.value       lag    ADF p.value       lag   ADF p.value

 [1,]   0 -0.553   0.473  [1,]   0 -2.737  0.0841  [1,]   0 -2.89   0.222

 [2,]   1 -0.345   0.538  [2,]   1 -1.910  0.3631  [2,]   1 -2.11   0.516

 [3,]   2 -0.574   0.465  [3,]   2 -2.175  0.2660  [3,]   2 -2.90   0.220

 [4,]   3 -0.224   0.572  [4,]   3 -1.916  0.3608  [4,]   3 -2.22   0.474

 [5,]   4 -0.347   0.537  [5,]   4 -1.335  0.5699  [5,]   4 -2.26   0.456

 [6,]   5 -0.389   0.525  [6,]   5 -1.891  0.3698  [6,]   5 -2.78   0.263

 [7,]   6 -0.118   0.603  [7,]   6 -1.306  0.5800  [7,]   6 -2.36   0.422

 [8,]   7  0.105   0.667  [8,]   7 -1.020  0.6790  [8,]   7 -2.53   0.356

 [9,]   8  0.373   0.744  [9,]   8 -1.187  0.6211  [9,]   8 -1.85   0.618

[10,]   9  0.524   0.787 [10,]   9 -0.841  0.7413 [10,]   9 -2.13   0.507

---- 

Note: in fact, p.value = 0.01 means p.value <= 0.01

Augmented Dickey-Fuller Test 
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Figure 11: Monthly and Quarterly Detrend and Deseasonalize ACF

 

4.3 Univariate models: Autoregressive and Moving Average processes 

Following the Verbeek (2017) approach to univariate time series models, the MA(𝑞) 

model is effortless to specify. An observation of the ACF provide us enough information in 

order to set the lags of the process; hence, for monthly data, after lag 6, the autocorrelation is 

statistically indistinguishable from 0 at 5 % significance level, and for quarterly data after lag 

2, the autocorrelation is statistically 0 at the same significance level. The models in MA process 

could be written as: 

 𝑥𝑡 =∈𝑡+ 𝛼 ∈𝑡−1+ 𝛼2 ∈𝑡−2+ 𝛼3 ∈𝑡−3+ 𝛼4 ∈𝑡−4+ 𝛼5 ∈𝑡−5+ 𝛼6 ∈𝑡−6 for monthly data, with  

 𝑥𝑡 =∈𝑡+ 0.478 ∈𝑡−1+ 0.0832 ∈𝑡−2+ 0.345 ∈𝑡−3+ 0.433 ∈𝑡−4+ 0.183 ∈𝑡−5+ 0.452 ∈𝑡−6 

and 

 𝑥𝑡 =∈𝑡+ 𝛼 ∈𝑡−1+ 𝛼2 ∈𝑡−2, with 

 𝑥𝑡 =∈𝑡+ 0.5596 ∈𝑡−1+ 0.7897 ∈𝑡−2, for quarterly data. 

In the case of the Autoregressive models, since it is not easy to interpret the Partial 

Autocorrelation Function along with the Autocorrelation Function, the MLE procedure with 

the AIC variable are conducted, as suggested by Cowpertwail & Mercalfe (2009). The results 

of the model are reported as an AR (5) for monthly data and AR (1) for quarterly data: 

𝑌𝑡 =  𝛿 + 𝜃1𝑌𝑡−1 + 𝜃2𝑌𝑡−2+ 𝜃3𝑌𝑡−3+ 𝜃4𝑌𝑡−4+ 𝜃5𝑌𝑡−5 + 𝜖𝑡, with  
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𝑌𝑡 =  1 + 0.439 𝑌𝑡−1 + 0.092 𝑌𝑡−2 + 0.102 𝑌𝑡−3 + 0.295 𝑌𝑡−4 − 0.170 𝑌𝑡−5 + 𝜖𝑡, for 

monthly data,  

𝑌𝑡 =  𝛿 + 𝜃1𝑌𝑡−1 + 𝜖𝑡,, with  

𝑌𝑡 =  𝛿 + 0.6479 𝑌𝑡−1 + 𝜖𝑡, for quarterly data. 

 As mentioned by Verbeek (2017) the selection of models is not based on any subjective 

parameter that could give us the perfect model for our time series. Yet, the models follow the 

econometric theory of lag selection; hence, a diagnostic of the residuals must be conducted in 

order to determine whether the modelling process is working in a suitable way. Furthermore, 

the combination of models (ARMA) improves the estimation of the previous univariate time 

series methods. Appendixes 2 to 7 summarize the residuals diagnostic for all models, where 

the ACF, PACF, White Noise Probability and Theoretical Quantiles are displayed. 

Subsequently, we can conclude that; for monthly models, the AR process does not correct the 

PACF, the residuals do not follow a White Noise process after lag 7 and the theoretical 

quantiles do not fit with the model extremes (see Appendix 2). For the MA (6) model, it does 

not reduce the PACF to 0 when lag ⟶ ∞, and the White Noise probability could be improved 

(see Appendix 3). The combination of models as the ARMA (5, 6) provides a better fit, but the 

White Noise probability, along with the theoretical Quantiles represent major issues for 

applying this model, due to non-stationary characteristics (see Appendix 4).  

  On the other hand, for quarterly basis models, the AR (1) does not reduce the PACF to 

0 in time, the White Noise probability is not significant enough and the theoretical quantiles 

go out of the expected values (see Appendix 5). The MA (2) process, does not correct the PACF 

and the theoretical quantiles do not fit the expectation (see Appendix 6). Finally, both models 

together provide a satisfactory fit, but the PACF could be improved to reduce its value in time 

(see Appendix 7). For this reason and because no model has seasonality characteristics, the 
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next section will develop the application of the seasonal ARIMA model as discussed in section 

3. 

4.4 The ARIMA model 

As defined by Cowpertwail & Mercalfe (2009), “a seasonal ARIMA model uses 

differencing at a lag equal to the number of seasons (s) to remove additive seasonal effects”. 

The specification of a seasonal ARIMA model, could have several combinations depending on 

the orders and lags that could be included, because of the presence of the AR, MA, and 

integration parts: ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄). Hence, it is relevant to try a wide range of models 

before arriving at the best fitting one. For this purpose, the Akaike’s Information Criterion 

(AIC) must be used in both monthly and quarterly series.  

For monthly regulation, the seasonal ARIMA model is specified as follows: 

ARIMA (4,0,4)(1,0,0)12 

Θ1(𝐵12)𝜃4(𝐵)(1 − 𝐵12)0(1 − 𝐵)𝑑𝑥𝑡 = 𝜙0(𝐵12)𝜙4(𝐵)𝑤𝑡 ( 22 ) 

Where:  

𝑝 = 4 ⇒ 𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙4𝑦𝑡−4 + 𝜖𝑡, with 

𝐁(𝐀𝐑): 1 + 0.368𝐁𝟏 + 0.888𝐁𝟐 − 0.339𝐁𝟑 − 0.1911𝐁𝟒 

𝑃 = 1 ⇒ 𝑦𝑡 = 𝜙𝑠𝑦𝑡−𝑠  ⇒ 𝑦𝑡 = 𝜙12𝑦𝑡−12 + 𝜖𝑡      𝑠 = 12 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑎𝑡𝑎), with 

𝐁(𝐒𝒂𝒓): 1 + 0.131𝐁𝟏𝟐 

( 23 ) 

𝑝 refers to the autoregressive order 

𝑃 refers to the seasonal autoregressive order 

𝑑 = 0 ⇒ ∆𝑦𝑡 = 0 

𝐷 = 0 ⇒ ∆𝑠𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−𝑠)  ⇒ ∆12𝑦𝑡 = 0      𝑠 = 12 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 24 ) 

𝑑 refers to the simple difference of the series 

𝐷 refers to the seasonal difference 
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𝑞 = 4 ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃𝜖𝑡−1 − 𝜃𝜖𝑡−2 − 𝜃𝜖𝑡−3 − 𝜃𝜖𝑡−4, with  

𝑩(𝑴𝑨): 1 + 0.0894𝐁𝟏 − 0.781𝐁𝟐 + 0.1996𝐁𝟑 + 0.542𝐁𝟒 

𝑄 = 0 ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃𝑠𝜖𝑡−𝑠  ⇒ 𝑦𝑡 = 0     𝑠 = 12 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 25 ) 

𝑞 refers to the simple moving average order 

𝑄 refers to the seasonal moving average order 

Residuals tests are reported in Appendixes 8 and 9 for monthly and quarterly basis. On the 

other hand, in quarterly data, the seasonal ARIMA model is specified as follows: 

ARIMA (7,1,6)(1,1,1)4 

Θ1(𝐵4)𝜃7(𝐵)(1 − 𝐵4)1(1 − 𝐵)1𝑥𝑡 = 𝜙1(𝐵4)𝜙6(𝐵)𝑤𝑡 ( 26 ) 

Where:  

𝑝 = 7 ⇒ 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝜙𝑦𝑡−2 + 𝜙𝑦𝑡−3 + 𝜙𝑦𝑡−4 + 𝜙𝑦𝑡−5 + 𝜙𝑦𝑡−6 + 𝜙𝑦𝑡−7 + 𝜖𝑡 

𝑃 = 1 ⇒ 𝑦𝑡 = 𝜙𝑠𝑦𝑡−𝑠  ⇒ 𝑦𝑡 = 𝜙4𝑦𝑡−4 + 𝜖𝑡      𝑠 = 4 (𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 27 ) 

𝑝 refers to the autoregressive order 

𝑃 refers to the seasonal autoregressive order 

𝑑 = 1 ⇒ ∆𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−1) 

𝐷 = 1 ⇒ ∆𝑠𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−𝑠)  ⇒ ∆4𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−4)      𝑠 = 4 (𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 28 ) 

𝑑 refers to the simple difference of the series 

𝑃 refers to the seasonal difference 

𝑞 = 6 ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃𝜖𝑡−1 − 𝜃𝜖𝑡−2 − 𝜃𝜖𝑡−3 − 𝜃𝜖𝑡−4 − 𝜃𝜖𝑡−5 − 𝜃𝜖𝑡−6 

𝑄 = 1 ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃𝑠𝜖𝑡−𝑠  ⇒ 𝑦𝑡 = 𝜖𝑡 − 𝜃4𝜖𝑡−4     𝑠 = 4 (𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑑𝑎𝑡𝑎) 

( 29 ) 

𝑞 refers to the simple moving average order 

𝑄 refers to the seasonal moving average order 
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5 DISCUSSION 

5.1 The ARIMA model & economic analysis 

While an econometric model gives us the best fitting process that describes the times 

series, the interpretation of the results, e.g., the meaning of an AR (1) process, is beyond the 

scope of the econometric literature. However, for our purposes we could mention the behavior 

of 𝑦 in terms of 𝑡, such that 𝑦𝑡 is defined in terms of an Autoregressive, Integrated, Moving 

Average and seasonal patterns. Thus, the economic implications of this characterization will 

be deployed for both time series. Describing monthly data, the AR (4) tells us that regulation 

in 𝑡 depends linearly on the regulation level at 𝑡 − 1, 𝑡 − 2, 𝑡 − 3 & 𝑡 − 4. An I (0) implies 

that the time series does not need to be differentiated in order to present a stationary process 

with no trend. The MA (4) implies that regulation in 𝑡 depends linearly on the regulation shocks 

at  𝑡 − 1, 𝑡 − 2, 𝑡 − 3 & 𝑡 − 4.The seasonality, in this case is 1 for the AR process, thus, this 

is a simple transformation over 𝑡 − 12 periods. 

On the other hand, the quarterly time series the AR (7) tells us that regulation in 𝑡 depends 

linearly on the regulation level seven times backwards. An I (1) implies that the first difference 

converges the series into a stationary process with no trend. The MA (6) implies that regulation 

in 𝑡 depends linearly on the regulation shocks at lag number 6. Nevertheless, the structure of 

this model does not provide an adequate fit for our purposes. This is to say that there are 

problems of convergence in the data while trying different models. This could be possible 

because of the length of the data, 34 observations are not enough for a quarterly seasonal 

ARIMA model that identifies patterns and provides us a relevant estimation; nevertheless, the 

model is reported in Appendix 9. 
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6 CONCLUSION 

To sum up, this paper studies the different univariate time series models and adapts them 

to monthly and quarterly flow of regulation with the aim of obtaining first insights about the 

behavior of both series. As mentioned in the previous section, the analysis and economic 

interpretations of the models described in section 4 are not straightforward and therefore, 

further research should focus attention on the economic studies are to be conducted. In our 

case, the univariate models give us the lag structure in Autoregressive and Moving Average 

models, along with the seasonal description that the series maintains.  

For monthly data, we conclude that regulation in time 𝑡 depends linearly on regulation and 

on the regulation shocks at four lags, while controlling for seasonality at 12 periods. Thus, the 

monthly data after applying the ARIMA (4,0,4) (1,0,0)12 is stationary and is controlled for 

autocorrelation. For quarterly data, due to the small subset of observations, the results are not 

robust enough to be considered appropriate. Nevertheless, the first difference transforms the 

model into a stationary one with no autocorrelation. Now that the ground has been set, the 

analysis about regulation could be applied, here multivariate time series arises, and this paper 

provides the basis for the different models. Cointegration between the flow of regulation and 

aggregate economic variables, and the use of Vector Autoregressive models could be the main 

guidelines for further multivariate characterization of regulation. 

Finally, Dawson &Seater (2013) use cointegrated process in order to calculate the effect 

of regulation over GDP, Total Factor Productivity and Capital in the United States. Therefore, 

the contribution of this paper is to set the ground over the time series analysis required in order 

to obtain the correct characterization of the flow of regulation. Multivariate models and the 

study of cointegration processes over the previously analyzed series are the next step in order 

to determine the quantitative effect of regulation on the macroeconomy of Ecuador.  
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8  APPENDIX 1: DICKEY-FULLER CRITICAL 

VALUES 

 

  

Sample size 1% 5% 1% 5%

T = 25 -3,75 -3,00 -4,38 -3,60

T = 50 -3,58 -2,93 -4,15 -3,50

T = 100 -3,51 -2,89 -4,04 -3,45

T = 250 -3,46 -2,88 -3,99 -3,43

T = 500 -3,44 -2,87 -3,98 -3,42

T = ∞ -3,43 -2,86 -3,96 -3,41

Without trend With trend

Source: Fuller, W. (1976). Introduction to Statistical Time-Series.  p. 

373. John Wiley &Sons Inc: New York.

1% and 5 % critical values for Dickey-Fuller tests
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9 APPENDIX 2: MONTHLY AR (5) RESIDUAL 

DIAGNOSTIC PLOTS 
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10 APPENDIX 3: MONTHLY MA (6) RESIDUAL 

DIAGNOSTIC PLOTS 
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11 APPENDIX 4: MONTHLY ARMA (5,6) RESIDUAL 

DIAGNOSTIC PLOTS 
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12 APPENDIX 5: QUARTERLY AR (1) RESIDUAL 

DIAGNOSTIC PLOTS 
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13 APPENDIX 6: QUARTERLY MA (2) RESIDUAL 

DIAGNOSTIC PLOTS 
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14 APPENDIX 7: QUARTERLY ARMA (2) RESIDUAL 

DIAGNOSTIC PLOTS 
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15 APPENDIX 8: SEASONAL ARIMA MONTHLY 

MODEL 
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16 APPENDIX 9: SEASONAL ARIMA QUARTERLY 

MODEL 

 

 


