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RESUMEN 

En este artículo, se utilizan dos funciones de la teoría de la información como una 
medida de los huecos de Fermi y Coulomb para electrones del mismo espín. El primero es el 
contenido de la información del hueco de Intercambio–Correlación (χXC), calculado con la 
divergencia de Kullback–Leibler usando la densidad de pares condicional respecto a la 
probabilidad marginal. Como se reportó previamente, el χXC se puede utilizar para mostrar las 
regiones en el espacio asociadas al modelo clásico del par de electrones. En este, funciones 
de onda correlacionas, tales como CISD, MP2 y CCSD, son consideradas para el cálculo del χXC. 
Esto se consigue introduciendo un método de aproximación basado en el uso de los orbitales 
naturales y sus ocupaciones. Adicionalmente al χXC, en este trabajo se propone una medida 
del contenido de la información de la correlación debido a electrones del mismo espín, el cual 
se calcula en términos de la divergencia de Kullback–Leibler usando una densidad de pares 
condicional del mismo espín con respecto a la densidad de pares sin correlación de Hartree–
Fock (χC). La metodología propuesta se discute con los resultados encontrados para átomos 
de gas noble, la molécula de F2 y sistemas con enlaces no covalentes. 

 
Palabras clave: Localización electrónica, hueco de Fermi, hueco de Coulomb, 

correlación electrónica, divergencia de Kullback–Leibler  
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ABSTRACT 

In this paper, two information-based functions are employed as a real space measure 
of the Fermi and Coulomb holes for same-spin electrons. The first one is the information 
content of the Exchange-Correlation hole, calculated from the Kullback–Leibler divergence of 
the same-spin conditional pair density respect to the marginal probability (χXC). As reported 
previously, χXC, can be used to reveal the regions of the space associated to the classical 
electron pair model. Here, correlated wave-functions, such as CISD, MP2, and CCSD, are 
considered for the calculation of χXC. This is achieved by introducing an approximated method 
based on employing natural orbitals and their occupancy numbers. In addition to χXC, in this 
work we propose a measure of the information content of the same-spin correlation hole, 
which is computed in terms of the Kullback–Leibler divergence of a correlated same-spin 
conditional pair density respect to the uncorrelated Hartree–Fock pair density (χC). The 
proposed methodology is discussed in the light of the result derived from noble gas atoms, 
the F2 molecule and some non-covalently bonded systems. 

 
Keywords: Electron localization; Fermi hole; Coulomb hole; electron correlation; 

Kullback–Leibler divergence. 
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ABSTRACT
In this paper, two information-based functions are employed as a real space measure of the
Fermi and Coulomb holes for same-spin electrons. The first one is the information content of
the Exchange-Correlation hole, calculated from the Kullback–Leibler divergence of the same-spin
conditional pair density respect to the marginal probability (χXC). As reported previously, χXC ,
can be used to reveal the regions of the space associated to the classical electron pair model.
Here, correlated wave-functions, such as CISD, MP2, and CCSD, are considered for the calcula-
tion of χXC . This is achieved by introducing an approximated method based on employing nat-
ural orbitals and their occupancy numbers. In addition to χXC , in this work we propose a mea-
sure of the information content of the same-spin correlation hole, which is computed in terms of
the Kullback–Leibler divergence of a correlated same-spin conditional pair density respect to the
uncorrelated Hartree–Fock pair density (χC). The proposed methodology is discussed in the light
of the result derived from noble gas atoms, the F2 molecule and some non-covalently bonded
systems.
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1. Introduction

The electron pair concept has played a fundamental role
in the chemical thinking, becoming a part of the chemical
intuition, customarily employed in the description and
understanding of a variety of molecular properties [1].
One of the challenges of modern theoretical chemistry is
to develop a link between the classical electron pair con-
cept and the results of sophisticated electronic structure
calculations. Nowadays, the most widely used procedure
consists in the analysis of the same-spin pair density, �,

CONTACT Luis Rincon lrincon@usfq.edu.ec Grupo de Química Computacional y Teórica (QCT-USFQ) and Instituto de Simulación Computacional
(ISC-USFQ), Dept. de Ingeniería Química, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Diego de Robles y Via Interoceánica, Quito
17-1200-841, Ecuador

or the related same-spin conditional pair density [2–10],
γ . In this context, it is important to notice that γ is com-
posed of two non-separable contributions: (i) the Fermi
hole, arising from the antisymmetric character of the
wave-function, and (ii) the same-spin component of the
Coulomb hole, which is a consequence of the electronic
repulsion between same-spin electrons. Moreover, it is
possible to state that the properties of the different types
of chemical interactions, ranging from strong covalent
bonds to weak dispersion forces, are a consequence of

© 2018 Informa UK Limited, trading as Taylor & Francis Group
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the interplay between the Fermi and the Coulomb holes.
Nevertheless, as stated by Lennard-Jones, for most of the
interactions, the effect of the former is the predominant
one:

Electrons of like spin tend to avoid each other. This effect
is more powerful, muchmore powerful, than the electro-
static forces. It does more to determine the shapes and
properties of molecules than other single factor. It is the
exclusion principle that plays the dominant role in chem-
istry. Its all-pervading influence does not seem hitherto
to have fully realised by chemists, but it is safe to say that
ultimately it will be regarded as themost important prop-
erty to be learned by those concerned with molecular
structure [11].

Due to the importance of these ideas, during the
last decades, they have been revisited and extended by
many authors [2–10]. As a result, a number of elec-
tron localisation measurements based on the analysis of
the pair density have been proposed in the last three
decades (see for instance [12–23]). In these regards, it
has been demonstrated that electron localisation can
be revealed using information theoretical tools, and as
examples, we can mention the information theoretical
electron localisation function (ELF) of Nalewajski et al.
[24] and our electron localisation measure based on the
analysis of the information content of the Exchange-
Correlation hole [25, 26]. The last mentioned quantity
is capable of revealing electron pair localisation regions
in systems with different bond types: covalent, multi-
ple, aromatic, ionic, charge shifting, and three centre-two
electron bonds [25, 26]. Nevertheless, in spite of the accu-
racy achieved in the characterisation of bonding, lone
pair and core electron regions, it has not been possible
to characterise, with comparable detail, the regions asso-
ciated with non-classical interactions, i.e. non-covalent
bonding. It is important to point out that the electron
correlation play an important role in the formation of all
these interactions [27, 28]; hence, for properly describ-
ing them through the Exchange-Correlation hole analysis
is critical to access the Coulomb hole information con-
tent, which in good measure, is hindered by the dom-
inant Fermi hole. Thus, it is clear that for gaining fur-
ther insights on the properties of many molecular sys-
tems, some strategies are required to study separately
the behaviour of the Fermi and Coulomb holes. In these
regards, the objectives of this paper are twofold: The
first objective is to extend our recent electron locali-
sation measurement based on the information content
of the same-spin conditional pair density for the case
when correlated wave-functions are used [25, 26]. For
this, an approach that makes use of the natural orbitals,
and their associated occupancy numbers, while fulfill
the Pauli principle requirement and some of the exact

second-order density matrix sum rule is presented. This
procedure allows to calculate the same-spin conditional
pair density from methods such as CISD, MP2 and
CCSD. Our second objective is related to the possibility
of visualise directly the effect of the Coulomb correla-
tion for same-spin electrons in the space. Thus, by com-
paring the same-spin pair density at the correlated and
un-correlated levels we introduce an information theo-
retical measurement of the Coulomb hole that reveals
the zones of the space more affected by the electron
correlation.

The outline of this paper is as follows: The information-
based measurements of the Fermi and Coulomb holes
are presented in Section 2. The basic concepts and nota-
tions relevant to the same-spin pair density function and
the associated same-spin conditional probability are dis-
cussed in the Section 2.1. In Section 2.2, we present
our previous information tool based on the information
gained by an electron from ‘knowing’ about the posi-
tion of a reference electron with the same spin is pre-
sented on the basis of the Kullback–Leibler divergence
between the same-spin conditional probability respect
to the marginal probability, DKL,XC. Moreover, from
this result, the information content of the Exchange-
Correlation hole is defined through a modified func-
tion that is roughly normalised between 0 and 1, χXC.
In Section 2.3, we introduce an approximate procedure
that allows the calculation of the same-spin pair density
for correlated wave-functions from their natural orbitals
expansion. In Section 2.4, a new function, χC, is intro-
duced, which provides the information gained when the
correlated conditional pair density is employed, instead
of the Hartree–Fock one. Computational details are pre-
sented in Section 3. In Section 4, we present prelimi-
nary calculations of χXC and χC to some atomic systems
and a series of problems in which mono-determinantal
approximations sound problematic. The final remarks
are presented in Section 5, making emphasis in a dis-
cussion on the challenges that have to be addressed
to improve our information-based tools. Finally, we
conclude the work by enumerating some problems in
which χXC and χC could be of valuable use in the
future.

2. The information content of the
exchange-correlation hole

2.1. The pair density

We start this section by introducing the concept of
the same-spin pair density, and the associated same-
spin conditional pair density, as central quantities for

MOLECULAR PHYSICS 12
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the following discussion about the Fermi and Coulomb
hole.

For a system of Nσ electrons of spin σ , the same-spin
pair density, �σσ (r1, r2), is defined as:

�σσ (r1, r2) = Nσ (Nσ − 1)
2

∑
σ1

δ(σ1, σ)
∑
σ2

δ(σ2, σ)

∫

dx3 · · ·
∫

dxN | �(x1, x2, . . . , xN) |2 .
(1)

Here, �(x1, x2, . . . , xN), denotes an antisymmetric N =
Nα + Nβ electron wavefunction and xi = (ri, σi) corre-
sponds to the position and spin coordinates of electron
i. �σσ (r1, r2) is interpreted as Nσ (Nσ − 1)/2-times the
joint probability density to find one electron at r1 with
spin σ and, simultaneously, a second electron at r2 with
the same spin.

Some of the properties of �σσ (r1, r2) are:

• If r1 �= r2, �σσ (r1, r2) is always positive:

�σσ (r1, r2) > 0; (2)

• It vanishes at electron coalescence due to the Pauli
Principle, that is:

�σσ (r1, r1) = 0. (3)

• It is normalised to the number of electron pairs of σ

spin:

∫
dr1

∫
dr2�σσ (r1, r2) = Nσ (Nσ − 1)

2
. (4)

• Integration over the coordinates of electron 2 leads to
the σ -spin electron density at r1, ρσ (r1), with a factor
of (Nσ − 1)/2:

∫
dr2�σσ (r1, r2) = (Nσ − 1)

2
ρσ (r1). (5)

• When �(x1, x2, . . . , xN) is approximated by a sin-
gle Slater determinant with a set of ortho-normalised
molecular orbitals, {φσ

i },�σσ (r1, r2) can be computed
as follows:

�σσ (r1, r2) = 1
2

×
⎛
⎝ρσ (r1)ρσ (r2) −

∣∣∣∣∣
∑
i

φσ
i (r1)φσ

i (r2)

∣∣∣∣∣
2
⎞
⎠ . (6)

The conditional pair density, γ σ ,σ
cond(r2 | r1), is related

to �σσ (r1, r2) by the equation,

�σσ (r1, r2) = 1
2
ρσ (r1)γ σ ,σ

cond(r2 | r1). (7)

Here, γ σ ,σ
cond(r2 | r1) can be interpreted as the probability

density of the Nσ − 1 electrons at r2 when it is known,
with certainty, that a reference electron is at position r1.
γ

σ ,σ
cond(r2 | r1) can be partitioning in two terms: (i) an

uncorrelated density-dependent term and (ii) a part con-
taining the exchange-correlation hole density [29–31],

γ
σ ,σ
cond(r2 | r1) = ρσ (r2)(1 + f σXC(r2 | r1))

= ρσ (r2) + ρσ
XC(r2 | r1). (8)

Conventionally, the exchange-correlation hole density,
ρσ
XC(r2 | r1) = ρσ (r2)f σXC(r2 | r1), is defined as a neg-

ative quantity, and it integrates to minus one electron
for any position of the reference electron. Therefore, the
presence of an electron at r1 reduce the probability of
finding an electron at r2 with the same spin by a frac-
tion f σXC(r2 | r1) [30].Moreover, both the conditional pair
density and the hole density depend parametrically on
the position r1.

In the Hartree–Fock approximation the hole density,
ρσ
X (r2 | r1), or alternatively the Fermi hole density, only

contains exchange effects and is completely determined
by the one-electron density matrix. Thus, the Fermi hole
is simply interpreted as the exclusion of one electron due
to the localisation of another electron with the same-
spin at some reference position [2–6]. On the other hand,
when the electron correlation is explicitly introduced,
part of the Coulomb correlation hole is also included
in the description of the system. The Coulomb hole is
customarily defined as the difference between the exact,
or a correlated derived, conditional pair density and the
Hartree–Fock one [31], but alternative definitions can be
found in the literature [32].

At this point, it is important to emphasise that the
same–spin conditional pair density can be obtained at
any level of theory, as long as its related same–spin pair
density is also accessible. However, as pointed out by
Lennard-Jones, it is well-known that the effect of the
antisymmetry in the pair density is the dominant one.
As a consequence, the uncorrelated Hartree–Fock model
is enough to provide a good qualitative description of
the full conditional pair density localisation pattern. In
other words, the Coulomb correlation has a compar-
atively minor effect in the same–spin conditional pair
density pattern; and therefore, its description constitutes
a more challenging task. Thus, in the next sections, the
localisation of ρσ

XC(r2 | r1) will be discussed, together
with the interplay between the Fermi and the Coulomb
holes, obtained at various levels of theory.



2.2. Kullback–Leibler divergence of the conditional
pair density

The concept of Information was introduced in statis-
tic for the first time by Sir R.A. Fisher in 1925 [33].
Later, in 1948, C.A. Shannon introduced the definition of
‘entropy’ as an information measure in his seminal paper
entitle: ‘A mathematical theory of communication’ [34].
In some way, Information Theory, IT, is a convenient
way to analyse any probabilistic system of observations.
Roughly speaking, whenever we need to make statistical
inference, we seek for ‘information’. Thus, IT applications
are found in any fields characterised by the use of some
kind of statistical estimation or statistical inference. In this
context, IT has been proposed as a tool for the analysis of
the electronic structure of atoms, molecules, and solids
where, in contrast with classical systems, the dynamics is
described in a probabilistic way due to the quantum char-
acter of the components [35–43]. In this sense, since the
seminal works of Collins and Smith [44] which propose a
connection between the correlation energy of a molecu-
lar system and an ITmeasurement (the Jaynes entropy), a
number of important contributions have appeared in this
field [45–58]. The connection between the IT tools and
the electron correlation in atoms and molecules reveals
that the essential part of the correlation holes can be
captured by entropic measurements.

An important generalisation to the Shannon’s entropy,
called the ‘divergence’, also known as the ‘missing infor-
mation’, or ‘entropy deficiency’, was proposed by Kull-
back and Leibler in 1951 [59, 60]. For two normalised
probability density functions (PDFs), say p(x) and q(x),
that depend on the same continuous random variables,
‘the Kullback–Leibler divergence of p respect to q’ is
defined as follows:

DKL(p || q) =
∫

p(x) log2
p(x)
q(x)

dx. (9)

In this equation, the logarithm is taken in base 2 to com-
pute DKL(p || q) in units of bits; however, it is important
to indicate that most formulas involvingDKL(p || q) hold
regardless the base of the logarithm employed. DKL(p ||
q) is usually interpreted as the amount of information
lost when the PDF q is used to approximate the PDF p.
This interpretation is used along the present paper.More-
over, it is found that DKL(p || q) is always non-negative
as a result of the Gibbs’ inequality [61], and it is zero if
p and q are the same in the whole domain. It is impor-
tant to mention that some upper bounds of DKL based
on the χ2 distance have been proposed (see for instance
Ref. [62, 63]).

Following our previous work [43], we will assume that
electron localisation can be revealed from the informa-
tion content of the Exchange-Correlation hole. Based
on this unorthodox (but measurable) definition of elec-
tron localisation, we introduce in 2016 [25] the Kull-
back–Leibler divergence of the conditional probability
density as follows:

DKL,XC(r1) =
∫

dr2ρσ ,σ
cond(r2 | r1) log2

×
(

ρ
σ ,σ
cond(r2 | r1)

σ σ (r2)

)
. (10)

where

ρ
σ ,σ
cond(r2 | r1) = γ

σ ,σ
cond(r2 | r1)
Nσ − 1

, (11)

which guarantees the normalisation of γ σ ,σ
cond to 1, and

σσ (r) = ρσ (r)
Nσ

, (12)

is themarginal probability, also known as the shape func-
tion [64–66].

Thus, in the present context, DKL,XC is interpreted as
the amount of information gained when the the PDF
ρ

σ ,σ
cond is used to describe the electronic system, instead

of σσ . Therefore, from Equations (8), (10) and (11) one
can conclude that DKL,XC provides a measurement of
the information content of the exchange-correlation hole
density, ρσ

XC(r2 | r1). This interpretation apparently dif-
fers from that employed previously [25]. There,DKL,XC is
employed to reveal the localisation of electrons in space,
in such a way that small values of DKL,XC are associ-
ated with regions in which, the conditional probability
is close to the marginal distribution; which indicates that
electrons are not strongly correlated and; hence, are delo-
calised. On the other hand, high values of DKL,XC corre-
spond to regions in which the influence of the reference
electron is large, that is, to regions where the electron
pair is highly correlated, which is associated with elec-
tron localisation. Thus, this interpretation just recasts
the manner under which DKL,XC measures the recip-
rocal electron correlation, via the same-spin Fermi and
Coulomb holes. After taking into account the approxi-
mated scaling of DKL,XC with the number of σ -spin elec-
trons, a general descriptor of electron localisation in the
space was introduced:

χXC(r1) = (Nα − 1)DKL,XC(r1)fcut(r1), (13)

where fcut is a cut-off function that goes smoothly to zero
for negligible density values (ρcut = 1.0 × 10−4 a.u.),

fcut(r) = 1
2

(
1.0 + ERF

[
0.5 log10

(
ρ(r)
ρcut

)])
. (14)
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Here, ERF is the error function defined in such a way
that fcut = 0.5 at distances satisfying ρ(r) → ρcut. Our
previous studies on χXC, using density functional theory
(DFT) calculations and assuming a monodeterminan-
tal approximation for the calculation of the pair density,
reveal that χXC depicts the region where electrons are
spatially localised with atonishing success and in addi-
tion produce a clear differentiation between localisation
basins that can be traced to the fluctuation in the aver-
age number of electron in these regions. This observation
confirms our original hypothesis: ‘electron localisation is
encoded in the information content of the pair density’.

2.3. Approximated pair-density expression from the
natural orbitals

The calculation of χXC, Equation (13), involves the access
to the same-spin pair density at the level of theory of the
calculation. For the cases where the monodeterminan-
tal approximation is employed, like Hartree–Fock and
DFT, the computation of χXC is very simple. For corre-
lated wave functions the situation is slightly different (at
least from the computational point of view). In principle,
it is possible to obtain access to the exact same-spin pair
density from a linear combination of Slater determinant,
for example a CASSCF or CISD wave–function, or even-
tually, the use of optimised orbital expansion in MP2 or
CCSD. However, our experience with the computation of
χXC for the F2 molecule using a CASSCFwave–functions
(or an equivalentGVBone)with a large grid of points and
medium basis set was disappointing due to the prolifera-
tion of non-negligible term in the pair density expansion
and the fact that we need to recalculate the pair density
at each point of the grid. For this reason, we look for an
alternative and approximated approach able to circum-
vent this technical issue. The central idea is to obtain the
pair density, as defined in Equation (1); without resort-
ing to a correlated wave-function expansion but using
its natural orbital expansion and the associated occupa-
tion numbers which are easily accessible in most of the
modern electronic structure programs.

Here, it is assumed that the reduced first-order matrix
can be expressed as a combination of nNO orthogonal
Natural Orbitals (NOs), {χσ

i },

γ σ (r, r′) =
nNO∑
i=1

ησ
i χσ

i (r)χσ
i (r′). (15)

The ησ
i are the occupation numbers for σ spin natural

orbitals, which fulfill the sum rule,∑
i

ησ
i = Nσ . (16)

The diagonal of γ (r, r′) is the electron density, mean-
ing that ρσ (r) = γ σ (r, r). For a Hartree–Fock wave-
function, the pair density can be written exactly from the
reduced first-order matrix as in the following:

�σσ
HF (r1, r2) = 1

2
(
ρσ
HF(r1)ρ

σ
HF(r2)− | γ σ

HF(r1, r2) |2) .
(17)

It is important to note that the previous equation coin-
cides with the definition in Equation (6). It is possible
to define a zero-order pair density for an explicit corre-
lated level using the same expression of Equation (17);
however, the correlated γ σ (r, r′) has to be employed:

�σσ
X (r1, r2) = 1

2
(
ρσ (r1)ρσ (r2)− | γ σ (r1, r2) |2) .

(18)
The previous equation obviously satisfies the antisymme-
try requirement of the true pair density, Equation (3).
Unfortunately, it violates the sum rule of Equation(4),
because any exchange term, similar to the one derived in
the Hartree–Fock method, integrates solely to the num-
ber of electrons for a single Slater determinant. For this
reason an additional term to Equation (18) has to be
included as follows:

�σσ
XC (r1, r2) = �σσ

X (r1, r2) + 1
2
�σσ
C (r1, r2)

= 1
2
(
ρσ (r1)ρσ (r2)− | γ σ (r1, r2) |2

+ �σσ
C (r1, r2)

)
. (19)

The three contributions appearing in Equation (19) can
be interpreted as the uncorrelated Coulomb part, the
Hartree–Fock-like exchange interaction, and the corre-
lation correction, respectively. In this particular parti-
tion, the large part of the pair density is dominated
by the Coulomb and the Hartree–Fock like exchange
terms that depend on the natural orbital expansion,
while the only unknown term is the relatively small
�σσ
C (r1, r2) component. This partition of�σσ

XC (r1, r2)was
suggested for first time by Levy in 1987 [67], however,
it appears naturally in the cumulant expansion of the
density matrix [68]. Some characteristics of �σσ

XC , includ-
ing scaling, bounds, convexity, and asymptotic behaviour
are discussed by Levy [67]. Approximated expressions
for �σσ

C (r1, r2) in terms of the natural orbital expan-
sion have been proposed in the literature in the frame
of the Density Matrix Functional Theory. An histori-
cal account of this problem is presented by Piris [69,
70]. At this point, it is important to point out that the
pair density must satisfy certain conditions to ensure
the reliability of its derivation from an antisymmetric N-
electron wave–function. These requirements are known



as the N-representability conditions. The sets of condi-
tions that guarantee N-representability of the second-
order density matrix [71–74] as well as the conditions
associated to the pair density are known [75] (the lat-
ter ones are implicit in the seminal work of Garrod
and Percus [72]). Some approximated conditions for the
pair density have been also proposed [70, 76–83]. The
implementation in practical applications of some (not
necesarily all) N-representability conditions has evolved
with great success in the last decade. As a result, the
N-representabiliity problem became the basic ingredi-
ent of the Density Matrix Functional Theory [69, 70,
83–85]. The first approximate relation for the reduced
second-order matrix was proposed by Müller in 1984
[86], while the first natural orbital functional for the
second-order densitymatrix was proposed by Goedecker
and Umrigar in 1998 [87]. Then, Buijse and Baerends’s
proposed a functional that removes some restrictions of
the Goedecker and Umrigar [88], and Holas has gener-
alised the Goedecker and Umrigar functional which pre-
severve the sum rules [89]. Recently, Piris has proposed a
correction based on a cumulant expansion that systemat-
ically enforce many of the N-representability conditions
of the pair density [85].However, to our knowledge a suit-
able expression of the pair density in terms of the natural
orbital expansion that fulfill all the N-representability
conditions has not yet been found. We need to mention
at this point that a comparison of different approxima-
tions to the pair density in the context of the ELF have
been reported by Feixas et al. [90], and a condition for
the intracule of the pair density that is relevant for the
study of non-covalent interactions have been found by
Via-Nadal et al. [91]. In the present work, we follow a
more pragmatic strategy taking advantage of the fact that
the natural orbital expansions can be obtained in advance
by means of standard procedures. Thus, the pair den-
sity is constructed by explointing some restricted set of
conditions, Equations(2)–(6).

In order to obtain an expression to�σσ
C (r1, r2), the fol-

lowing approximated exchange-like ansatz is considered:

�σσ
C (r1, r2) =

nNO∑
i=1

nNO∑
j=1

[αijχ
σ
i (r1)χσ

i (r1)χσ
j (r2)χσ

j (r2)

− βijχ
σ
i (r1)χσ

j (r1)χσ
j (r2)χσ

i (r2)]. (20)

The parameters {αij} and {βij} are introduced to fulfill as
close as possible the conditions of Equation(2)–(5). For
instance, it is easy to show that the antisymmetry require-
ment, Equation(3), implies the following constraint:

αij = βij, (21)

whereas the requirements of Equations (4) and (5)
hold by observing that each natural orbital occupation

number, ησ
i , has to obey the following sum rule:∑

j�=i

αij = ησ
i (ησ

i − 1). (22)

Finally, the conditions of Equations(22) and (23) guar-
antee the requirement of Equation (6). However, with
the purpose of further simplifying the introduction of
the previously-commented constraints, the {αij} and {βij}
parameters are approximated as follows:

αij = βij = −aiaj. (23)

In this way, only one set of unknown parameters {ai}
for each natural orbital has to be determined, and the
easiest manner of finding these parameters is through
theminimisation of the χ2 functional.

χ2 =
nNO∑
i

⎛
⎝ησ

i (ησ
i − 1) +

∑
j�=i

aiaj

⎞
⎠

2

. (24)

With the set of parameters {ai}determined,χXC Equation
(13), from correlated wave-functions can be readily
computed.

2.4. The information content of the coulomb hole

In order to obtain a more detailed description of elec-
tronic systems that includes the effects of electron cor-
relation, we have computed the Kullback–Leibler diver-
gence between the conditional pair density obtained
at some correlated level, γ

σ ,σ
cond,corr(r2 | r1), and its

Hartree–Fock counterpart, γ σ ,σ
cond,HF(r2 | r1):

DKL,C(r1) = 1
Nσ − 1

∫
dr2γ σ ,σ

cond,corr(r2 | r1) log2

×
(

γ
σ ,σ
cond,corr(r2 | r1)

γ
σ ,σ
cond,HF(r2 | r1)

)
. (25)

where according to Equation (8),

γ
σ ,σ
cond,corr(r2 | r1) = ρσ

corr(r2) + ρσ
XC,corr(r2 | r1), (26)

and,

γ
σ ,σ
cond,HF(r2 | r1) = ρσ

HF(r2) + ρσ
X,HF(r2 | r1). (27)

The first factor in Equation (25) account for the nor-
malisation factor of the conditional pair density. Here,
ρσ
corr(r2) is the electron density at the correlated level

of theory, and ρσ
HF(r2) is the Hartree–Fock one, and

ρσ
XC,coor(r2 | r1) is the exchange-correlation hole den-

sity for the correlated level, and ρσ
X,HF(r2 | r1) is the

Hartree–Fock exchange hole density.
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In this case, DKL,C(r1) can be interpreted as the infor-
mation gained when the correlated conditional pair den-
sity, obtained with the reference electron located at r1,
is employed instead of the approximated Hartree–Fock
pair density, with the reference electron at the same
position. Thus, Equation (25) provides a direct mea-
sure of the information content corresponding to the
same-spin electronic Coulomb hole density at r1, free
of the exchange effects which dominates the DKL,XC(r1)
behaviour. This definition departs from the usual rep-
resentation of the Coulomb hole that depends on the
inter-electronic distance. Nevertheless, theHartree–Fock
density, ρσ

HF(r2) in Equation (27), may differ significantly
from the correlated one, ρσ

corr(r2) in Equation (26), as
a consequence, for these cases the amount of informa-
tion obtained through DKL,C(r1) is not necessarily only
related to the Coulomb hole, which may lead to wrong
conclusions. In spite of the fact that for most systems, the
differences between these two electron densities are not
significant, it is important to avoid the possibility of spu-
rious results arising for those few cases; therefore, instead
of employing conditional pair densities, the hole densi-
ties of Equation (8) will be directly used, and with it,
DKL,C(r1) becomes:

DKL,C(r1) = −
∫

dr2ρσ
XC,corr(r2 | r1) log2

×
(

ρσ
XC,corr(r2 | r1)
ρσ
X,HF(r2 | r1)

)
(28)

in this expression, the negative sign is a consequence of
the fact that ρσ

XC is negative everywhere.
Let us emphasise that, as mentioned above, for most

systems, the definitions in Equations (25) and (28) are
equivalent; however, the discussion that follows will
be based on the latter. Since DKL,C is non-negative,
it has a well defined lower bound; nonetheless, its
upper bound is not clearly defined. An approximated
upper limit can be obtained by introducing the inequal-
ity log2(x) ≤ x − 1 in Equation (28) and considering
the partition ρσ

XC,corr(r2 | r1) = ρσ
X,HF(r2 | r1) + ρσ

C (r2 |
r1). Moreover, since it is known that the exchange
effects dominate the exchange-correlation hole; the con-
tribution of ρσ

C (r2 | r1) can be considered negligible in
comparison to ρσ

X,HF(r2 | r1); and hence, the first term
ρσ
XC,corr(r2 | r1) in the integrand, can be approximated by

ρσ
X,HF(r2 | r1). After these considerations, the following

expression is obtained:

DKL,C(r1) ≤
∫

dr2ρσ
C (r2 | r1). (29)

Following a similar procedure for Equation (25) an
expression, in terms of ρσ ,σ

cond,C(r2 | r1), is obtained,

DKL,C(r1) ≤ 1
Nσ − 1

∫
dr2ρσ ,σ

cond,C(r2 | r1), (30)

in other words, the Coulomb hole information content
at r1 is always lower than the average value of the differ-
ence between the hole density and the Hartree–Fock hole
density, or alternatively, of the difference between the
full conditional probability density and theHartree–Fock
probability pair density.

A simple quantification of the bounds presented in
Equations (29) and (30) can be obtained by evaluating
the deviation of the correlated wave–function from a sin-
gle Slater determinantal one. In the particular case where
Equation (15) is employed, this deviation depends on
howmuch η deviates from 1 (full occupied) or 0 (unocu-
pied). Thus, for this wave-function, the inequalities in
Equation (29) can be rewritten as:

DKL,C(r1) ≤
nNO∑
i

(ηi − η2i ) ≡ NC. (31)

By taking this result into account, the functionmeasuring
the localisation due to the same-spin electron Coulomb
hole χC is defined as:

χC(r1) = DKL,C(r1)
NC

fcut(r1). (32)

In the previous equationwe use the same cut-off function
employed for χXC, Equation (14).

3. Computational details

Themost time–consuming step of the present methodol-
ogy is the evaluation of theDKL integral of Equation (10)
or Equations (25)–(28) for the computation of χXC
and χC, respectively. This section describes our effort
to implement an efficient computational code for the
numerical calculation of the DKL integrals in a grid
of points. In all examples presented, the DKL integra-
tion was performed numerically by using the Becke’s
algorithm, which is particularly suitable in atomic and
molecular problems where the integrand is dominated
by nuclei basins [92, 93]. In the Becke’s algorithm, the
kernel of the Kulback-Leibler divergence, Equation (9),
p(x) log2(p(x)/q(x)), is first decomposed as a combina-
tion of functions for each nuclei employing a contin-
uous generalisation of the Voronoi polyhedral scheme
[92]. Each nuclear function is then integrated in spher-
ical polar coordinates around each nuclei using a



combination of the Lebedev’s quadrature for the angu-
lar part [94–96], and theGauss–Chebyshev quadrature of
the second kind for the radial part. We have used Lebe-
dev’s quadrature containing 110 integrations points for
DKL,XC and 194 integrations points for DKL,C. With the
present implementation, we obtain six figures of accu-
racy in the normalisation of the conditional probability
density for all levels.

The wave-functions are obtained by using the
Gaussian-16 suite of programs [97]. For the noble gas
examples and the F2 molecule the Duning’s aug-cc-pvtz
basis set was employed, in the rest of the examples the
split-valence 6−31+G* basis function was employed.
The canonicalmolecular orbitals, or alternatively the nat-
ural orbitals in the case of correlated wave-functions,
were extracted from a WFN Gaussian file. The pair
density at correlated wavefunctions was calculated from
the natural orbital expansion using the approximated
approach described in Section 2.3. The approach involves
the minimisation of the χ2 functional of Equation (24),
that depends on the natural orbitals occupations num-
bers and the parameters {ai}. This functional was min-
imised by the Levenberg–Marquardt algorithm [98, 99].
The Levenberg–Marquardt is ideal for minimisation
of nonlinear χ2 type functionals because its interpo-
lates between the Gauss–Newton algorithm and the
steeped decent algorithm. Many variations of the Lev-
enberg–Marquardt have been published (see for instance
Numerical Recipes in FORTRAN 90) [100]. In the present
implementation convergence is achieved when the fol-
lowing two criteria are satisfied: (i) convergence in the
gradient of χ2 lower than 1 × 10−3, (ii) convergence in
χ2, lower than 1 × 10−7. With these convergence crite-
ria, the sum rule of Equation (3) for the pair density is
satisfied with five figures. The initial value for every coef-
ficient ai was considered to be the natural orbital occupa-
tion number of the i−th orbital, except for core orbitals
that have an occupation of 1, in which case acore = 0. In
few cases, occupation numbers reach unphysical values
(could be larger than 1 or lower than 0), these cases can
occur either by a lack in theN-representability conditions
(for example at the MP2 level) or due to small numerical
errors in very large systems. In the actual implementa-
tion of the code, we enforce the occupation numbers to
be between 0 and 1; that is, if the occupation number is
larger than 1 the occupation is set to 1, and if it is negative
is set to 0. For our test cases, this problem produces – in
the worse case – an error near 0.05% in the sum rule of
Equation (16).

In order to use in an efficient way our computa-
tional resources an hybrid parallelisation that use both
MPI (Message Passing Interface) and OpenMP (Open
Multi-Processing) are employed. The combination of

a coarse-grained parallelisation of the Becke algorithm
with MPI and an underlying fine-grained parallelisation
of individual MPI-tasks for a grid of points allows to
use the maximum number of processors efficiently. The
sending and receivingmessages is achieved through stan-
dards libraries calls, so the present program is portable to
any architectures for which MPI Libraries are available.
The last version of the FORTRAN 90/MPI/Open-MP
code to create the grids of points, along with techni-
cal documentation and test cases, is available from the
authors under request.

4. Results and discussion

With the purpose of assessing the performance of χXC,
obtained from correlated methods, and its associated χC
to visualise the same-spin component of the Coulomb
hole, we present in this section calculations for the Ne
and Ar noble gases, the F2 molecule which is expected
to be highly affected by electron correlation, and some
none-covalent systems.

4.1. Noble gases

χXC calculated at the RHF level has been previously
demonstrated that is a good tool to obtain the shell
structure of atoms in the sense that it reproduces the
expectation of the number of electrons per shell with a
deviation of 0.05–0.15 [25]. In order to check the effect of
the electronic correlation onχXC and χC for the ground
state of Ne and Ar atoms, we perform calculations at
the CISD/aug-cc-pvtz level of theory. Figure 1 shows the
results for χXC at the RHF (solid line) and CISD (dotted
line) levels of theory, and forχC at the CISD level (dashed
line).

In the two cases we observe the following trends:
(i) the observed tendencies in χXC are similar to the
observed using ELF [12, 101–103] or the one electron
potential [14]; (ii) the minima and maxima of χXC are
located at the same distance of the nuclei regardless the
level of theory, that means that the radius and occupa-
tion of the each shell is almost independent on the level
of theory; (iii) the value of χXC is almost identical for
inner shells; however an small decrease between 2.2%
and 2.5% is observed in the valence shell using CISD
when compared to RHF, that means that the electron
correlation tends to decrease the localisation of valence
electrons due to the unoccupation of the RHF orbitals
and the occupation of the virtual ones; (iv) the plot of χC
(dotted curve) is almost constant from the origin to the
border between the inner and the valence shells; further-
more, it presents a minimum in the region of the valence
shell and local maxima in the region where χXC changes
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Figure 1. Plots of χXC at the RHF (solid line) and CISD (dotted line) and χC for CISD (dashed line) as a function of the distance to the
nuclei for the case of noble gas atoms: (a) Ne and (b) Ar.

drastically. In view of the latter, it can be suggested that
the maxima information attained by the correlation hole
is located when the reference electron is placed at the
atomic borders.

4.2. The F2 molecule

In this section, the behaviour of χXC and χC is anal-
ysed at two interatomic distances for the F2 molecule,
whose properties are expected to be significantly affected

Figure 2. Plots of χXC and χC along the bond axis (in atomic units) of the F2 molecule. (a)χXC and (b) χC at R(F–F)= 1.4 Å; (c) χXC and
(d) χC at R(F–F)= 2.0 Å. Levels of theory: RHF (solid), CISD ( dotted), MP2 (dashed) and CCSD (double dashed).



by the inclusion of electron correlation. It is impor-
tant to remind that the Hartree–Fock approximation was
shown to be inappropriate for describing the F2 molecule
since this method produces negative binding energy val-
ues [104–112], suggesting that the stability of the F–F
bond is totally due to the effects of the electron corre-
lation. Figure 2(a ,c) shows plot of χXC along the bond
axis at R(F–F) = 1.40Å and R(F–F) = 2.00Å, respec-
tively, for four different levels of theory, namely: RHF
(solid), CISD (dotted), MP2 (dashed) and CCSD (dou-
ble dashed). The basis set in all cases was the Duning’s
aug-cc-pvtz. Figure 2(b ,d) shows the same plots forχC.

At a R(F-F) distance of 1.40Å (near the equilibrium
distance, Figure 2(a)), the topology of χXC along the
bond axis is the same for all levels of theory: two large
basins containing the core electrons with a population of
about 2.30–2.40 electrons and a small basin at the cen-
tre of the bond with a population that decrease from
0.42 electrons for RHF to 0.22 electrons for CCSD are
observed. Figure 2(a) also shows that the χXC maximum
value obtained at the correlated levels decreases at the
central basin with respect to the RHF result, and with
it its electronic occupation number varies from 0.325
at RHF, 0.307 for CISD, 0.301 for MP2 and 0.299 for
CCSD. Therefore, the drain of the Hartree–Fock orbitals
in favour of the virtual ones tends to remove electron
density from the central basin and reduce the degree of
localisation. The central maxima reduction, due to the
occupation of the virtual orbitals, can explain the uncon-
ventional positive value of the Laplacian of the electron
charge density,∇2ρ(r), at theF2 bond critical point [113],
which indicates an electronic density migration from the
bonding region to other molecular zones. The latter sup-
ports the idea of the charge-shifting character of the F–F
bond, whose stability requires the resonance between

covalent and ionic structures aswell as the dynamical cor-
relation [114]. At a distance R(F-F) distance of 2.00Å,
Figure 2(c), the central basin splits in two symmetric
basins for the correlated methods, whereas for the RHF
level, it remains unimodal. It is important to point out
that this splitting is also observed using the ELF at the
equilibrium distance [103]. The χC function (Figure 2(b
,d)) exhibits sixmaxima, symmetrically distributed about
the bond centre. In the two figures, the absolute max-
ima are approximately at the border region separating
the F core electron basins (corresponding to the largest
χXC maxima on the F nuclei) and the bonding basin
(associated with the central χXC maximum of Figure 2(a)
or the two small central maxima in Figure 2(c)). Two
maxima are observed at each side of the central basin
χXC maximum in Figure 2(a) or the central minima of
Figure 2(c). On the other hand, a minimum χC value is
at the bond centre, two relative minima are at the centre
of the F core electron basins and two more relative min-
ima are located on each F at the core basin edges. From
this set of results, and by comparing χXC(r1) and χC(r1),
it is possible to conclude that due to the Coulombic inter-
action, χC(r1) has its minima at or around the positions
where χXC(r1) has its maxima, which corresponds to
zones of electronic localisation. Also, as a consequence
of this correlation effect, the χC(r1) information con-
tent is maximum at some distance from the electronic
population maxima, coinciding with the zones where
χXC(r1) changes rapidly or reaches a minimum, at the
border between shells: the inter-shell region between core
and valence electrons, and between core and lone-pair
electrons. In other words, these results indicate that the
Coulomb hole is greater near the regions where χXC(r1)
shows amaximum: near themolecular centre and around
the core electron basins.

Figure 3. (a) χXC and (b) χC for the water dimer.
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4.3. Non-covalent interactions from the
information content of the Coulomb hole

In this section, a number of non-covalent bonded sys-
tems, namely, the water and the T-shaped benzene
dimers, and different HFn (n = 1, 2, 3, 4, 5, and 6) clus-
ters are discussed. Here, the χC and χXC results are pre-
sented graphically to facilitate the discussion of the role of
electron correlation in these system formation. The cal-
culations were performed at theMP2/6 − 31 + G∗ level,
adopting the geometries reported in the S22 benchmark
data set [115, 116].

For the water dimer, Figure 3(a ,b) exhibit, respec-
tively, the χXC and χC functions contour maps on the
hydrogen bond molecular plane. The analysis of the
results in Figures 3(a) leads to conclude that the topol-
ogy and behaviour of χXC are close to those reported for
this system described by ELF [12, 117–124]. Therefore,
in order to gain further insights on this system forma-
tion, the discussion will be focused on the χC function.
From Figure 3(b), one observes that χC shows maxima
in the inter-shell region between the oxygen core elec-
tron basin and the covalent O–H bond basin, where, as
shown in Figure 3(a), χXC, i.e. the electronic occupa-
tion, has a minimum. In other words, this result shows
that the correlation between same-spin electron tends to
reduce the electron–electron repulsion by maximising
the Coulomb holes around the regions where the elec-
tronic occupation, i.e. χXC, is a maximum. This result is,
qualitatively similar to that obtained for the F2 molecule,
and a similar behaviour is observed around the region
where the hydrogen bond interaction takes place. Thus,
it is observed that a χC maximum is located in the region
where χXC reaches a local minimum. This behaviour is
further evidenced by the changes in the χC value in the
outer region of the hydrogen atom, from 0.36 for the free
water molecule, to 0.42, for the hydrogen atom involved
in the water dimer hydrogen bond. As it will be seen from
the following examples, this behaviour can be considered
as a signature of the hydrogen bond existence.

Next, the HFn (n = 1, 2, 3, 4, 5, and 6) clusters are
considered. These systems have been chosen, because
they are among the clusters with the largest detectable
gas phase cooperative effects [27]. Additionally, with the
exception of the dimer, all these clusters have highly-
symmetric planar cyclic geometries; fact that simplifies
considerably the analysis [27, 28, 125]. Before continuing,
it is important to mention that simple electrostatic mod-
els, or pair-wise additive potential models, predict that
the binding energy per hydrogen bond (BEHB) remains
approximately constant with the variation in the num-
ber of cluster members, i.e. the hydrogen bond strength
remains approximately the same, regardless of the cluster

size. Nevertheless, as it has been extensively discussed,
this is not the case. Thus, for instance, one of the major
finding of Ref. [27] is that in the HFn clusters, the coop-
erative effects are the main cause for the formation of
stable hydrogen-bond networks. A conclusion that was
corroborated after performing a detailed analysis of the
topology of the ELF [125]. Moreover, this conclusion was
further supported by a many body energy decomposi-
tion analysis, which revealed that the three and four body
terms, besides being non-negligible, must be included in
the system description, if a correct qualitative behaviour
is to be obtained [28]. As a consequence of these results,
the electron correlation effects are expected to be of
great importance, and these effects become more sig-
nificant for the system stabilisation, as the cluster size
increases.

In Figure 4, the χC results for the considered HFn
clusters are displayed as contour maps on the cluster
planes. As obtained for the water dimer, two maxima are
observed for each monomer, one located in the inter-
shell region, between the fluor core electron basin and the
covalent F–H bond basin, and the second one around the
hydrogen bond region, near the hydrogen atom. Inspec-
tion of Figure 4 shows that for the dimer, the behaviour
resembles the properties of the water dimer. Neverthe-
less, for the other clusters it is clear that the value of
the second maximum increases with the cluster size,
becoming comparable with that of the maximum located
around the inter-shell region. Even more interestingly,
it is observed that for the larger clusters, the χC values
become approximately constant throughout the whole
molecular network. Recalling that the same-spin corre-
lation tends to maximise the Coulomb hole, around the
regions where the electronic occupation is maximum,
the obtained χC value homogeneity leads to think that
the electronic occupation is also approximately uniform
throughout the whole system. This allow us to state
that the larger the cluster size the more homogeneously
distributed the electrons are over the whole hydrogen
bonding network. It was previously concluded [27, 125],
that this increase in the electronic density delocalisation
around the whole cluster is correlated with the BEHB.
Further evidence for this conclusion can be drawn from
the plot at the bottom-right of Figure 4. The results there
show that BEHB correlates well with the value of the
χC maxima around the hydrogen bond region, close to
the hydrogen atom (i.e. R2 = 0.9995 for a quadratic fit-
ting). This quadratic correlation form is indicative of the
rapid growth in the cluster stabilisation as the electron
correlation increases, result that evidences the connec-
tion between the correlation and the cooperative effects,
characteristic of the hydrogen bonded clusters.



It is well-known that the benzene dimer stabilisation
is almost exclusively due to non-covalent interactions,
and its understanding has posed substantial challenges,
from both, theoretical and experimental points of view
[126–135]. A complete characterisation of the factors
determining the formation of the stable geometries of
this kind of systems is still lacking. In general, it is
assumed that the same-spin correlation plays an impor-
tant role in the formation of dispersion interacting sys-
tems [132–135] hence, the Coulomb hole analysis could
be valuable to obtain information on the behaviour of
these systems. In this direction, Figure 5(a,b), display,
respectively, the results for χXC and χC, as contour maps

on the plane of the benzene interacting with the π elec-
tronic density of the second benzene. It is found that
the χXC results are similar to those obtained for an iso-
lated benzene molecule; however, close inspection shows
a slight difference in the electronic occupation pattern of
the C–H bond directly interacting with the π electronic
density of the other molecule. There, a small decrease
in this bond outer χXC maximum is obtained, a result
that leads to think that a small decrease in the electronic
density occurs around the hydrogen atom directly inter-
acting with the second molecule. Again, to get further
insights on this behaviour let us examine the χC func-
tion. These function results indicate that, as expected, the

Figure 4. χC for the hydrogen fluoride clusters from the dimer to the hexamer. A plot of the Binding Energy per Hydrogen Bond (BEHB
in kcal/mol) versus the maxima of χC at the Hydrogen border.

Figure 5. (a) χXC and (b) χC for the benzene dimer T-shape.
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electronic density is delocalised around the wholemolec-
ular basin: the χC values about the whole inter-molecular
region are non-negligible and approximately constant,
behaviour similar to that discussed for the HFn clusters.

5. Summary and final remarks

In this work, we have used two information-based func-
tions, aimed to describe separately the behaviour of
the Fermi and the Coulomb holes, and to visualise the
regions in which they are localised in space. The first of
these functions, χXC, provides the amount of electronic
system information gained when describing the system
by its conditional probability, ρ

σ ,σ
cond, in comparison to

that obtained by describing it by its marginal probabil-
ity, i.e. electronic density. Hence, this function can be
considered a measure of the extension of the Exchange-
Correlation hole density in space, providing the electron
localisation regions associated to core, bonding and lone
pair electrons. It is found that these regions are revealed
with the same, and in some cases even better, preci-
sion than that obtained from the widely employed ELF
[25]. The second function, χC, provides the informa-
tion gained when going from describing the electronic
system by the uncorrelated Hartree–Fock pair density
(i.e. the only-Exchange hole density) to an correlated one
(i.e. the associated Exchange-Correlation hole density).
Therefore, χC can be considered a measure of the exten-
sion of the same–spinCoulombhole density at a reference
position; and consequently, it can be used to analyse the
effects of the electron correlation in molecular system
behaviour. It is also worth emphasising that the char-
acterisation of the electron correlation and their effects
provides the basis for understanding non-classical bonds
and their behaviour. Here, the χXC and χC functions
have been calculated by using correlated wave-functions,
and this has been achieved by employing an approxi-
mated methodology, that allows the pair density to be
computed by using natural orbitals and their occupancy
numbers which are accessible from most of the mod-
ern electronic structure calculation programs. We have
decided to use approximated pair densities to reduce the
computational cost that would represent the computa-
tion of the exact one from correlated levels of theory. It
is important to notice that this approximated method,
fulfils some of the symmetry conditions and sum rules
(Equations (3)–(5)), required by the exact pair density,
and we have checked these conditions as a criteria of
confidence in our pair density. We need to admit that
more stringent criteria could be used in the future, for
example a comparison between the approximated ener-
gies (using the computed pair density) and that obtained
without approximation. By comparing the χXC(r1) and

χC(r1) results, it has been noticed that, as a result of the
Coulombic interactions, the last function has its min-
ima at or around the positions where the first has its
maxima, which are located about the electronic locali-
sation regions. Also, as a consequence of this dynamical
Coulombic correlation effect, it has been observed that
the χC(r1) information content is maximum at at the
border regions between shells, at some distance from
the electronic population maxima, coinciding with the
regions where χXC(r1) changes rapidly: the inter-shell
region between core and valence electrons, and between
core and lone-pair electrons. These results confirm that
the Coulomb hole is greater close to the molecular bond-
ing and lone pair basin centres. Thus, for each considered
X–H bond, with X = O,F and C, two maxima have
been observed, the largest one located in the inter-shell
region between theX core electron basin and the covalent
X–H bond basin, and the second one around the exter-
nal region of the hydrogen atom. The characterisation
of the χXC(r1) and χC(r1) functions has also allowed a
preliminary analysis of non-convalently bonded systems.
Here three widely studied systems have been considered:,
the water and the T-shaped benzene dimers and vari-
ous HFn clusters. For the HFn clusters, the homogeneity
of the χC value obtained throughout the whole cluster,
has led to think that the electronic occupation is also
approximately uniform throughout the whole hydrogen
bonded system, with the electronic density delocalisation
becoming larger with the cluster size. The excellent cor-
relation found between the BEHB and the value of the
χC maxima around the hydrogen bond region, close to
the hydrogen atom, has permitted to confirm previous
results relating electronic density delocalisation around
the whole cluster with the increase in the cooperative
effects. For the T-shaped benzene dimer, the χC function
inspection has revealed a non-symmetrical pattern, that
points out to the existence of a small electronic depletion
in the half of the molecule closer to the second benzene.
Moreover, analysis of the χC behaviour of the C–H bond
closer to the second molecule, has showed a deviation
of the pattern mentioned above, indicating that the C–H
bond electronic density becomes more homogeneously
distributed throughout the bond and becomes smaller
near the interaction region. These results, have allowed us
to conclude that for this weak dispersive intermolecular
interaction, the same-spin correlation, associatedwith the
intermolecular dispersion interaction, distorts the ring
π electronic density, and affects the electronic occupa-
tion pattern of the C–H bond directly involved in this
non-covalent interaction. These applications point out
to the potentially of χXC and χC in the characterisation
of systems formed by non-conventional bonding. There
is a link between χXC and χC and electron localisation



function [12, 13], especially its modern formulation
based on the analysis of the exchange-correlation hole
[14–17, 19–23]. The approach based on non-local
exchange correlation model seem particular connected
to the information content of the conditional pair density
[16, 17, 19].

In spite of the advantages observed for χC from the
results showed in this work, it is important to introduce
some limitations that are important to address in the near
future:

• The efficiency in the numerical calculation of the Kull-
back–Leibler divergency needs to be improve. The
performance of the employed parallelised code limits
the completeness of the employed basis, the size of the
considered systems and the density of the grid points
used in the χC computation.

• Theoretical efforts to unveil a way to compute DFT
pair densities without resorting to mono-determinant
approximations have to be carried out in future.

• The present approach should be extended to con-
sider the contribution of different-spin electrons to the
Coulomb hole.

The work to overcome these difficulties is in progress,
and in subsequents manuscripts, the χC calculations will
be applied to obtain some deeper insights on problems as
charge-shifting bonds, excited states and open-shell sys-
tems, where the employment of a correlated level of cal-
culation is mandatory to acquire a better understanding
of these system.
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