UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio de Ciencias e Ingeniería

Diseño de una vivienda del programa Casa Para Todos en sistema "Steel Framing" y análisis comparativo económico con sistema de construcción tradicional

Proyecto de Investigación

Diego Edwin Lucero Castro Ingeniería Civil

Trabajo de titulación presentado como requisito para la obtención del título de Ingeniero Civil

Quito, 14 de mayo de 2019

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio Ciencias e ingenierías

HOJA DE CALIFICACIÓN DE TRABAJO DE TITULACIÓN

Diseño de una vivienda del programa Casa Para Todos en sistema "Steel Framing" y análisis comparativo económico con sistema de construcción tradicional

DIEGO EDWIN LUCERO CASTRO

Calificación:	
Nombre del profesor, Título académico	Ing. Gustavo Tapia, MDI
Firma del profesor	

Derechos de Autor

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Firma del estudiante:	
Nombres y apellidos:	Diego Edwin Lucero Castro
Código:	00127620
Cédula de Identidad:	0401577754

Quito, 14 mayo de 2019

Lugar y fecha:

AGRADECIMIENTOS

Quiero agradecer al Ingeniero Gustavo Tapia por su tiempo y enseñanzas, también al Ingeniero Mateo Sotomayor por sus conocimientos y ayuda durante la realización de este trabajo de titulación, a mis padres Edwin y Soñita, por su esfuerzo y motivación, a mis hermanas Mary y Sandy por estar siempre apoyándome, a mi cuñado Martin y mis sobrinos Juan Martin y Matías Alejandro.

RESUMEN

Los marcos de acero galvanizado o Steel Frame, son un sistema constructivo que ha tenido gran acogida, ya que representa múltiples beneficios en la construcción entre ellos es la economía de la ingeniería, siendo un sistema eficiente que brinda facilidades para la construcción y optimiza los costos y tiempo, sin perjudicar el confort de los usuarios.

La vivienda que se diseñó está dada por las tipologías de vivienda aprobadas por el Ministerio de Desarrollo Urbano y Viviendas (Programa casa para Todos). La vivienda consta de 4 departamentos con un área total aproximada de 208 m2. Cada departamento tiene un área social (sala-comedor), área de cocina, dos dormitorios y una zona de lavado y secado.

Para el diseño Sísmico se estableció, que la vivienda se va a encontrar ubicada en la ciudad de Manta, por lo que se encontró publicaciones de estudios de perfiles de suelo realizadas en esta ciudad sobre el tipo de suelo y cuál es el perfil sísmico predominante, siendo el tipo D, por lo que se procedió a realizar el análisis con este tipo de suelo. Para el diseño de las estructuras se basó en la Norma Ecuatoriana de la Construcción (NEC).

Para realizar el análisis económico se calculó los volúmenes de obra de los dos sistemas tanto para el sistema tradicional (Hormigón Armado), como para Steel Framing, donde el sistema de hormigón Armado fue más costoso, teniendo una diferencia de un 10.63%, cabe recalcar que otro de los beneficios seria el tiempo de construcción que también tendría impacto económico en la construcción de las viviendas, pero que no fue analizado en esta investigación.

ABSTRACT

The frames of galvanized steel or Steel Frame, are a constructive system that has had great reception, since it represents multiple benefits in the construction between them is the economy of the engineering, being an efficient system that provides facilities for the construction and optimizes the costs and time, without harming the comfort of users.

The housing that was designed is given by the types of housing approved by the Ministerio de Desarrollo Urbano y Viviendas (Programa casa para Todos). The house has 4 apartments with a total area of approximately 208 m2. Each apartment has a social area (living-dining room), kitchen area, two bedrooms and a laundry and drying area.

For the seismic design it was established that the house will be located in the city of Manta, so it was found publications of studies of soil profiles made in this city on the type of soil and what is the predominant seismic profile, being type D, so we proceeded to perform the analysis with this type of soil. For the design of the structures, it was based on the Norma Ecuatoriana de la Construcción (NEC).

In order to carry out the economic analysis, the volumes of the two systems were calculated both for the traditional system (Reinforced Concrete) and for Steel Framing, where the traditional system was more expensive, having a difference of 10.63%, it should be emphasized that another benefit would be the construction time that would also have an economic impact on the construction of the houses, but that was not analyzed in this investigation.

TABLA DE CONTENIDO

1) INTRODUCCIÓN	15
1.1. Objetivos	16
1.2. Antecedentes	17
1.3. Justificación	
2) MARCO TEORICO	
2.1. Hormigón Armado	
2.2. Steel Framing	
2.2.1. Componentes:	
2.2.1. Perfiles:	
2.2.2. Rigidizadores:	
2.2.3. Recubrimientos:	
2.2.4. Aislantes:	
2.3. Acción del sismo en el sistema Steel Framing	33
2.4. Entrepiso seco	37
2.5. VAE	39
3) DESARROLLO DE LA INVESTIGACIÓN	43
3.1. Vivienda de diseño	43
3.2. Prediseño Hormigón Armado	46
3.2.1. Especificaciones asumidas para el diseño:	
3.2.2. Predimensionamiento Losa	46
3.2.3. Predimensionamiento de vigas	49
3.2.4. Predimensionamiento Columnas	
3.2.5. Diseño Sísmico	61
3.2.6. Espectro de Diseño	64
3.3. Criterios de Diseño Definitivo Hormigón Armado	72
3.3.1. Periodo de vibración fundamental	72
3.3.2. Modos de vibración	74
3.3.3. Derivas de piso	75
3.4. Diseño Steel Framing utilizando FRAMECAD	77
3.5. Diseño Steel Framing utilizando SAP2000	85
3.5.1. Carga permanente	87
3.5.2. Carga Viva	89
3.5.3. Cargas Sísmicas	
3.5.4. Vistas de la estructura Diseñada en el Software	
3.5.5. Peso de la estructura	
3.5.6. Derivas de Piso	96

	3.5.7. Periodo de vibración fundamental	97
4)	VOLUMENES DE OBRA	99
4	4.1. Volúmenes de Obra Hormigón Armado	99
	4.1.1. Hormigón	99
	4.1.1.1. Volumen de hormigón en Vigas	99
	4.1.1.2. Volumen de hormigón en Columnas	99
	4.1.1.3. Volumen de hormigón en Losas	
	4.1.1.4. Cantidad total de hormigón para la estructura	
	4.1.2. Acero de Refuerzo	100
	4.1.2.1. Columnas Acero longitudinal	
	4.1.2.2. Columnas Refuerzo transversal	
	4.1.2.3. Vigas Refuerzo a flexión	
	4.1.2.4. Vigas Refuerzo transversal	
	4.1.2.5. Acero para losas	116 117
	4.1.2.6. Resumen Total Acero de Refuerzo	
	4.1.3. Área de Mampostería4.1.4. Volumen escaleras	
2	4.2. Volúmenes de Steel Framing	
	4.2.1. Perfiles Acero Galvanizado	120
	4.2.2. Fibrocemento Paredes Exteriores	 121
	4.2.3. Gypsum paredes internas	
	4.2.4. Entrepiso Seco con placa de fibrocemento	
	4.2.5. Fibrocemento para paredes medianeras	124
	4.2.6. Cielo Raso de Gypsum RH (Zonas Húmedas)	125
	4.2.7. Cielo Raso de Gypsum	126
	4.2.8. Placa de fibrocemento recubierto con protección hidrófuga	
	4.2.9. Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor	:_130
5)	ANÁLISIS COMPARATIVO GENERAL	134
4	5.1. Peso de la Estructura	134
4	5.2. Cortante Basal	135
5	5.3. Análisis de Rendimientos	136
5	5.4. Cálculo del VAE	140
6)	ANÁLISIS ECONÓMICO	142
(6.1. Presupuesto con Sistema Tradicional (Hormigón Armado)	142
(6.2. Presupuesto con Sistema Steel Framing	145
(6.3. Análisis Comparativo Sistema Steel Framing vs Hormigón Armado	
	6.3.1. Costo por metro cuadrado	149
7)	CONCLUSIONES	151
8)	RIRLIOGRAFÍA	153

9) ANEXOS	156
9.1. Anexo A. Análisis de Precios Unitarios	156
9.2. Anexo B. Tablas NEC	171
9.3. Anexo C. Tabla de Varillas con sus Pesos	177
9.4. Anexo D. Lista de precios Steel Framing	178
9.5. Anexo E. Datos obtenidos de FrameCad	181

ÍNDICE DE TABLAS

Tabla 1. Comparación Características Materiales	24
Tabla 2. Componentes de una Estructura Steel Framing	26
Tabla 3. Perfiles Disponibles Kubiec	
Tabla 4. Características de los Perfiles eje X	29
Tabla 5.Características de los Perfiles eje Y	
Tabla 6. Resistencia de los Perfiles	
Tabla 7. Accesorios Steel Framing	
Tabla 8. Tipos de Recubrimientos	
Tabla 9. Tipos de Aislantes	
Tabla 10. Limitaciones adicionales en zonas de alta sismicidad	
Tabla 11. Programa Losa Equivalente	
Tabla 12. Datos Obtenidos losa equivalente	
Tabla 13. Carga Permanente Losa (Carga Muerta)	
Tabla 14. Carga Permanente Acabados (Carga Muerta)	
Tabla 15. Carga Permanente Total	
Tabla 16. Dimensionamiento de columnas	
Tabla 17. Programa de cálculo de Cortante Basal	
Tabla 18. Datos para el cálculo del Espectro	
Tabla 19. Datos Obtenidos del Cortante Basal	
Tabla 20. Derivas de Piso Hormigón Armado	
Tabla 21. Cargas para el entrepiso	
Tabla 22. Cargas para la cubierta	
Tabla 23. Carga Permanente Entrepiso Seco	
Tabla 24. Carga Permanente Panel Estructural	
Tabla 25. Carga Permanente Total	87
Tabla 26. Programa Cálculo de Cortante Basal	
Tabla 27. Programa Cálculo de Cortante Basal	
Tabla 28. Dataos Obtenidos programa de Cortante Basal	
Tabla 29. Derivas de Piso Steel Framing	
Tabla 30. Volumen de Hormigón en Vigas	
Tabla 31. Volumen de Hormigón en Columnas	
Tabla 32. Volumen de Hormigón en Losas	100
Tabla 33. Volumen Total de Hormigón	100
Tabla 34. Cuantía de Acero en Columnas (%)	101
Tabla 35. Cuantía de Acero en Columnas (cm²)	
Tabla 36. Varillas Utilizadas en Columnas	101
Tabla 37. Peso total de Acero Longitudinal en Columnas	101
Tabla 38. Resumen de Estribos para Columnas	105
Tabla 39. Cantidad de Varillas necesarias	
Tabla 40. Peso Total de Estribos para Columnas	106
Tabla 41. Acero Mínimo en Varillas	
Tabla 42. Acero faltante en Varillas	108
Tabla 43.Resumen de acero por Flexión para Vigas	109

Tabla 44.	Peso de Varillas por Flexión en Vigas	.109
Tabla 45.	Resumen de Acero Transversal en Vigas	.115
Tabla 46.	Cantidad de Varillas para Estribos	.115
Tabla 47.	Peso Total de Estribos para Vigas	.116
Tabla 48.	Cantidad de Varillas para losa	.116
Tabla 49.	Peso Total de Acero en Losa	.116
Tabla 50.	Resumen Total de Acero de Refuerzo	.117
Tabla 51.	Mampostería Interior Planta Baja	.117
Tabla 52.	Mampostería Interior Planta Alta	.118
Tabla 53.	Mampostería Exterior Planta Baja	.118
Tabla 54.	Mampostería Exterior Planta Alta	.119
Tabla 55.	Resumen Total Mampostería	.119
Tabla 56.	Volumen de Escaleras	.119
Tabla 57.	Peso Total de Perfil de Acero Galvanizado	.120
Tabla 58.	Paneles Fibrocemento para exterior en Planta Baja	.121
	Paneles Fibrocemento para exterior en Planta Alta	
Tabla 60.	Resumen Total Paneles Fibrocemento para Exterior	.122
	Gypsum para interiores Dormitorios PB	
Tabla 62.	Gypsum para interiores Paredes Perimetrales PB	.122
Tabla 63.	Gypsum para interiores Dormitorios PA	.123
Tabla 64.	Gypsum para interiores Paredes Perimetrales PA	.123
Tabla 65.	Resumen total de Gypsum para paredes Interiores	.123
Tabla 66.	Área Total para Entrepiso	.124
Tabla 67.	Resumen de Cielo Raso de Gypsum para Zonas Húmedas	.125
Tabla 68.	Resumen Área de Cielo Raso de Gypsum	.126
Tabla 69.	Resumen de Placa de fibrocemento con protección hidrófuga	.128
Tabla 70.	Resumen Total en Área de Cubierta	.134
Tabla 75.	Comparación de Pesos de los Sistemas Constructivos	.134
Tabla 76.	Comparación de Cortante Basal de los Sistemas Constructivos	.136
Tabla 77.	Duración de la Construcción en Hormigón Armado	.137
Tabla 78.	Duración de la Construcción en Steel Framing	.138
Tabla 79.	Comparación de Duración de los Sistemas Constructivos	.138
Tabla 73.	Porcentaje de Participación Ecuatoriano Mínimo HA	.140
Tabla 74.	Porcentaje de Participación Ecuatoriano Mínimo SF	.141
Tabla 71.	Presupuesto Hormigón Armado	. 144
Tabla 72.	Presupuesto Steel Framing	.146
Tabla 80.	Costo total vivienda en Obra gris	.148
Tabla 81.	Costo por metro Cuadrado	.149

ÍNDICE DE FIGURAS

Ilustración 1. Comparación Económica Proyecto Boreal	
Ilustración 2. Comparación en días Proyecto Boreal	22
Ilustración 3. Comparación Área Útil Proyecto Boreal	22
Ilustración 4. Comparación Peso Mampostería	23
Ilustración 5. Especificaciones perfil G	28
Ilustración 6. Entrepiso Seco	39
Ilustración 7. Ejemplo VAE	42
Ilustración 8. Fachada Frontal Vivienda 4D	43
Ilustración 9. Diseño Arquitectónico Planta Baja	44
Ilustración 10. Diseño Arquitectónico Planta Alta	45
Ilustración 11. Sección Losa Alivianada 25cm	
Ilustración 12. Área contribuyente de vigas	51
Ilustración 13. Transformación de cargas (Prismática)	52
Ilustración 14. Transformación de cargas (Triangular)	52
Ilustración 15. Cargas aplicadas en la viga	
Ilustración 16. Diagrama de Momentos de la viga	
Ilustración 17. Área contribuyente columnas	
Ilustración 18. Inercias Agrietadas	61
Ilustración 19. Espectros de diseño	
Ilustración 20. Peso total de la estructura	
Ilustración 21. Cortante basal estático	
Ilustración 22. Coeficiente de la Base a cortante	68
Ilustración 23. Sismo estático corregido	
Ilustración 24. Cortante Basal dinámico	
Ilustración 25. Corrección factor en X	70
Ilustración 26. Corrección factor en Y	
Ilustración 27. Sismo dinámico corregido	
Ilustración 28. Vista 3D de la estructura modelo SAP2000	
Ilustración 29. Verificación del diseño con la norma	
Ilustración 30. Periodo de la estructura	
Ilustración 31. Chequeo de diseño	74
Ilustración 32. Desplazamientos Piso 2	
Ilustración 33. Desplazamientos Piso 1	76
Ilustración 34. Vista en planta software FRAMECAD	
Ilustración 35. Vista 3D software FRAMECAD	
Ilustración 36. Resultados emitidos por FRAMECAD	
Ilustración 37. Solicitaciones frente a carga	
Ilustración 38. Fuerza Sísmica	
Ilustración 39. Capacidad Sección	83
Ilustración 40. Capacidad Sección	
Ilustración 41. Detalle del entrepiso seco	
Ilustración 42. Detalle de panel estructural	
Ilustración 43. Transformación de cargas	
Ilustración 44. Transformación de cargas	

Ilustración 45. Transformación de cargas	89
Ilustración 46. Transformación de cargas	90
Ilustración 47. Espectros de diseño	93
Ilustración 48. Vista Frontal	93
Ilustración 49. Vista Lateral	94
Ilustración 50. Vista 3D	94
Ilustración 51. Peso de la estructura	95
Ilustración 52. Peso carga permanente	96
Ilustración 53. Periodo de la estructura	98
Ilustración 54. Separación de Estribos	102
Ilustración 55. Shear Reinforcemnet	
Ilustración 56. Porcentage Rebar XZ	106
Ilustración 57. Porcentage Rebar YZ	107
Ilustración 58. Espaciamiento Estribos Vigas	
Ilustración 59. Shear Reinforcement	111
Ilustración 60. Porcentaje Rebar	
Ilustración 61. Diagrama de Cortante	114
Ilustración 62. Planos AutoCAD	
Ilustración 63. Planos AutoCAD	125
Ilustración 64. Planos AutoCAD	126
Ilustración 65. Planos AutoCAD	127
Ilustración 66. Planos AutoCAD	127
Ilustración 67. Planos AutoCAD	128
Ilustración 68. Planos AutoCAD	129
Ilustración 69. Planos AutoCAD	129
Ilustración 70. Planos AutoCAD	130
Ilustración 71. Planos AutoCAD	131
Ilustración 72. Planos AutoCAD	131
Ilustración 73. Planos AutoCAD	132
Ilustración 74. Planos AutoCAD	132
Ilustración 75. Planos AutoCAD	133
Ilustración 76. Planos AutoCAD	133
Ilustración 77. Comparación de Pesos de los Sistemas Constructivos	135
Ilustración 78. Comparación de Cortante Basal de los Sistemas Constructivos	136
Ilustración 79. Comparación de Duración de los Sistemas Constructivos	
Ilustración 80. Comparación Económica	
Ilustración 81. Comparación Económica por m²	
Ilustración 82. Cargas vivas	
Ilustración 83. Combinaciones de carga	
Ilustración 84. Perfiles de Suelo ciudad de Manta	
Ilustración 85. Zonificación sísmica	
Ilustración 86. Factor de zona Z	
Ilustración 87. Coeficiente de amplificación de suelo en la zona de período corto	
Ilustración 88. Fd: amplificación de las ordenadas del espectro elástico de respuest	
desplazamientos para diseño en roca	
Ilustración 89. Fs: comportamiento no lineal de los suelos	

Ilustración 90. Ecuaciones para Espectro	175
Ilustración 91. Categoría de edificio y coeficiente de importancia I	176
Ilustración 92. Sistemas estructurales y coeficiente R de reducción de respi	uesta estructural
	176
Ilustración 93. Descripción tabla de Varillas	177
Ilustración 94. Lista de precios	178
Ilustración 95. Lista de precios	179
Ilustración 96. Lista de precios	180
Ilustración 97. Resumen de peso de la Estructura	181
Ilustración 98. Secciones para el primer piso	182
Ilustración 99. Secciones para el segundo piso	
Ilustración 100. Secciones gradas	184
Ilustración 101. Secciones para entrepisos	
Ilustración 102. Secciones para Cerchas	186

1) INTRODUCCIÓN

El trabajo de titulación está enfocado en una comparación de dos metodologías constructivas, donde se describe un diseño en acero de lámina delgada de grado estructural, "sistema Steel framing", de la tipología de vivienda denominada 4D del plan estratégico Casa Para Todos del Ecuador y a su vez un diseño estructural tradicional en hormigón armado de la misma vivienda con la finalidad de analizar y comparar técnica y económicamente dichos sistemas constructivos.

El plan de vivienda Casa para Todos, es un plan del actual gobierno con el objetivo de disminuir el déficit habitacional, proporcionando vivienda digna a los hogares vulnerables del Ecuador. Este proyecto es el primero en nuestro país que busca "Promover el desarrollo de programas habitacionales integrales accesibles para todos, en especial a grupos prioritarios y adecuados a las necesidades de los hogares y las condiciones climatológicas, ambientales y culturales, considerando la capacidad de acogida de los territorios, además ejecutar proyectos y programas para la construcción de vivienda de interés social."

Por tal motivo, en éste trabajo de titulación se realizó un diseño y análisis estructural de ambos sistemas constructivos, posteriormente se elaboró un análisis económico, y de esta manera se comparó los resultados obtenidos, buscando promover sistemas constructivos alternativos en nuestro país, donde se priorice el cuidado del ambiente, se disminuya desperdicios, el uso de agua y de energía en la obra, pero que a su vez no perjudique la estética y el confort de la vivienda.

1.1. Objetivos

- Realizar el diseño estructural en Steel Framing de la tipología de vivienda denominada 4D del plan estratégico Casa Para Todos del Ecuador.
- Realizar el diseño estructural tradicional en hormigón armado de la tipología de vivienda denominada 4D del plan estratégico Casa Para Todos del Ecuador.
- Analizar comparativamente en términos económicos (hormigón, acero, mampostería) de las dos metodologías constructivas.
- Investigar sobre la viabilidad del sistema Steel Framing frente a solicitudes de carga sísmicas para zonas de peligro sísmico según NEC 2015.

1.2. Antecedentes

La situación económica en el Ecuador ha hecho que mediante Decreto Ejecutivo número 101, expedido por el licenciado Lenín Moreno Garcés, Presidente Constitucional de la República, de fecha 3 de agosto de 2017 cuyo artículo 1 reemplaza el artículo 8 del Decreto Ejecutivo número 11 de fecha 25 de mayo de 2017, publicado en Segundo Suplemento del Registro Oficial No.- 16 de 16 de junio de 2017, se DECRETA: "Modifiquese la denominación de la Empresa Pública de Vivienda EP a Empresa Pública "Casa para Todos" EP y encárguese de la ejecución del "Programa Casa para Todos" y, como un componente de la Misión "Toda una Vida", a la Empresa Pública "Casa para Todos" EP y a la Empresa Pública de Desarrollo Estratégico Ecuador Estratégico EP". Usando este programa de vivienda se va a realizar una investigación comparativa del "sistema steel framing", y el sistema constructivo tradicional.

Las viviendas de interés social tienen como objetivo ser realizadas de forma masiva y rápida, pero que mantengan la calidad deseada, por ello este trabajo de titulación ha tomado en cuenta el programa Casa para Todos y a su vez el sistema constructivo tradicional al ser el más utilizado en nuestro país y el sistema Steel Fraiming por ser un sistema nuevo que brinda variedad de ventajas constructivas.

La técnica constructiva del hormigón armado, consiste en la utilización de hormigón reforzado con barras o mallas de acero, llamadas armaduras. El hormigón armado es de amplio uso en la construcción siendo utilizado en edificios de todo tipo, caminos, puentes, presas, túneles, obras industriales y también en obras marítimas. (Barbera, Oviedo. 2007)

El concepto principal de las estructuras realizadas con Steel Framing es dividir la estructura en una gran cantidad de elementos estructurales, de manera que cada uno resista

una porción de la carga total. Con este criterio, es posible utilizar elementos más esbeltos, más livianos y fáciles de manipular. Así, una pared continua tradicional resuelta, por ejemplo, con mampostería se convierte, al construirla con Steel Framing, en un panel compuesto por una cantidad de perfiles "C" denominados montantes, que transmiten las cargas verticalmente, por contacto directo a través de sus almas, estando sus secciones en coincidencia. Por lo tanto, las almas de las vigas deben coincidir con las almas de los montantes ubicados sobre y/o por debajo del entrepiso, dado que la carga recibida por cada viga será transmitida puntualmente al montante del panel que le sirve de apoyo. Esta descripción es la que da origen al concepto de estructura alineada, (o "in line framing"). (Cremaschi, Marsili, Saenz 2013).

1.3. Justificación

El motivo del presente estudio, es para realizar una comparativa lo más ajustada a la realidad en lo que respecta a costos en el sistema constructivo tradicional vs un sistema dinámico moderno que se adapta a las necesidades de nuestro entorno. El objetivo de esta comparación es establecer las diferencias marcadas para que el futuro consumidor pueda optar por la mejor estrategia constructiva que se adapte a su presupuesto y cronograma.

En el desarrollo del presente estudio se establecerán las mejores cualidades que permitan optar por este tipo de construcción alternativa, generando principalmente seguridad y confianza tanto al constructor cómo al consumidor final, lo que nos permitirá avanzar hacia un futuro de construcciones modernas y amigables con el medio ambiente sin perder las propiedades constructivas y estéticas que toda vivienda se merece.

En lo referente a costos el presente estudio se enfocará a obtener un porcentaje de descuento significativo al tomar este tipo de construcción como alternativa sin que esto afecte al cliente. Cabe señalar que en la actualidad el tipo de sistema de vivienda está encaminado a construcciones livianas, siendo esta alternativa idónea para optimizar tiempo, materiales y sobre todo peso debido a que se relaciona con la carga sísmica, de esta manera el objetivo es obtener viviendas seguras y confortables a un precio razonable.

2) MARCO TEORICO

2.1. Hormigón Armado

El sistema constructivo del hormigón armado, es una técnica de construcción que se viene utilizando desde finales de la Republica Romana, consiste en la utilización del hormigón reforzado con barras o mallas de acero, llamadas armaduras. La utilización del acero cumple la misión de transmitir los esfuerzos de tracción y cortante a los que está sometida la estructura, mientras el hormigón tiene gran resistencia a la compresión, pero su resistencia a tracción es pequeña. Este sistema es utilizado para la construcción de edificios, viviendas, puentes, presas, túneles, obras industriales y también en obras marítimas. (Barbera, Oviedo. 2007).

2.2. Steel Framing

El Steel Framing es un sistema constructivo que utiliza perfiles de acero galvanizado, haciendo de este sistema un sistema liviano y resistente, además se puede industrializar lo que hace que su construcción sea rápida y limpia (Siuciak, 2015).

Para el Ingeniero Mateo Sotomayor de Kubiec, los marcos de acero galvanizado o Steel Frame, son un sistema constructivo que ha tenido gran acogida en Chile después del terremoto, ya que representa múltiples beneficios en la construcción, como son: diseños versátiles, cronograma corto y predecible, menos desechos y desperdicios, facilidad para instalaciones, menor estructura de cimentación, no usa maquinaria pesada y no requiere mano de obra calificada lo que nos da como resultado economía al constructor y a su vez puede garantizar la seguridad ya que son estructuras sismoresistentes, resistente contra incendios, no es vulnerable a plagas, hongos, moho y es resistente al oxido y a la corrosión por lo que necesita menos mantenimiento y da mayor vida útil.

Dentro de las aplicaciones del sistema Steel Frame en nuestro país, tenemos varias empresas que venden casas con la modalidad llave en mano como son Ecoliving con casas que van desde 26.500 dólares dependiendo del modelo que el cliente escoja, otra empresa similar es Acero Tec, que también cuenta con la misma modalidad y Kubiec que también ofrece una gama de productos para el sistema Steel Frame y han sido utilizados en proyectos como por ejemplo las viviendas unifamiliares del "Proyecto Navarra" ubicado en el Valle de Chillos, en el "Proyecto Anezi" se utilizó el sistema Steel Frame para muros divisorios o mampostería no estructural y en ampliaciones y remodelaciones como es el caso del "Proyecto Boreal" ubicado en la Av. 12 de Octubre y Av. Colón.

A continuación, tenemos el estudio comparativo realizado por el Ing. Mateo Sotomayor de la empresa Kubiec, en el Proyecto Boreal ubicado en la Av. 12 de Octubre y Av. Colón, en la ciudad de Quito, el cual presentó los siguientes resultados:

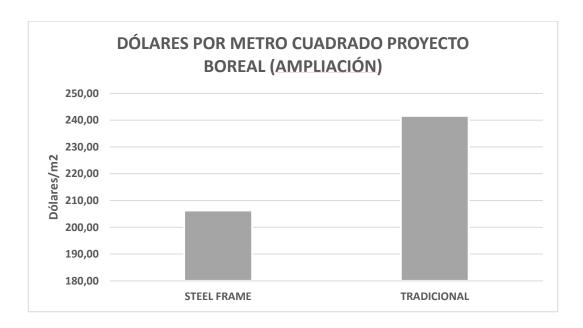


Ilustración 1. Comparación Económica Proyecto Boreal

Fuente: Ing. Mateo Sotomayor

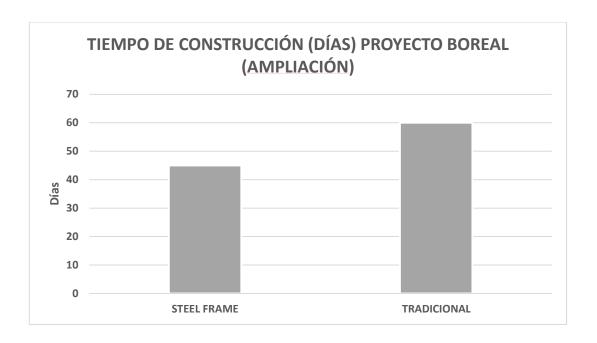


Ilustración 2. Comparación en días Proyecto Boreal Fuente: Ing. Mateo Sotomayor

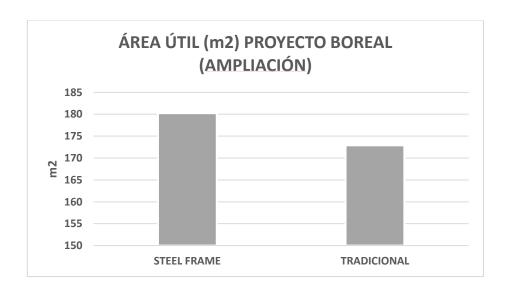
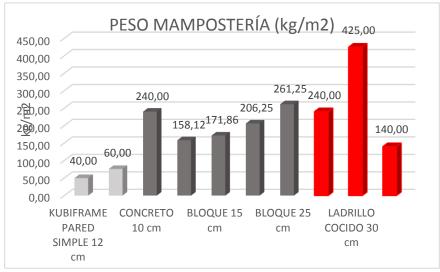



Ilustración 3. Comparación Área Útil Proyecto Boreal Fuente: Ing. Mateo Sotomayor

En la imagen anterior se muestra una comparativa del área útil entre los dos tipos de sistemas constructivos, esta diferencia se debe a que con el sistema tradicional se va a tener un ancho de paredes de 20 cm en cambio en el sistema Steel Framing el ancho de pared va a ser de 15 cm con lo que esta cambio de espesor en todos las paredes hara que

aumente el área útil en m2 de la vivienda.

Ilustración 4. Comparación Peso Mampostería

Fuente: Ing. Mateo Sotomayor

En la ilustración anterior se observa una comparación del peso distribuido entre diferentes tipos de mamposterías como son paneles de Kubriframe, concreto, y en diferentes espesores de bloque y ladrillo, como se ve el de menor peso son los paneles de Kubiframe con lo que le da una ventaja en comparación con los otros sistemas.

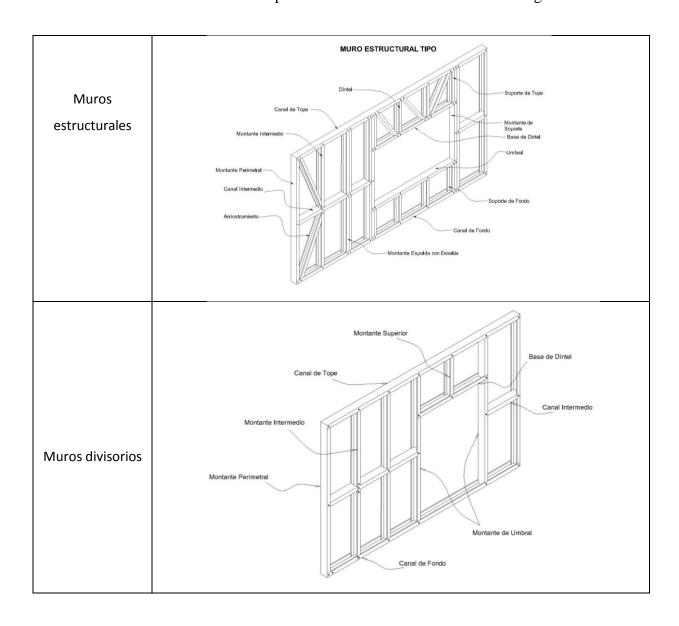
Tabla 1. Comparación Características Materiales

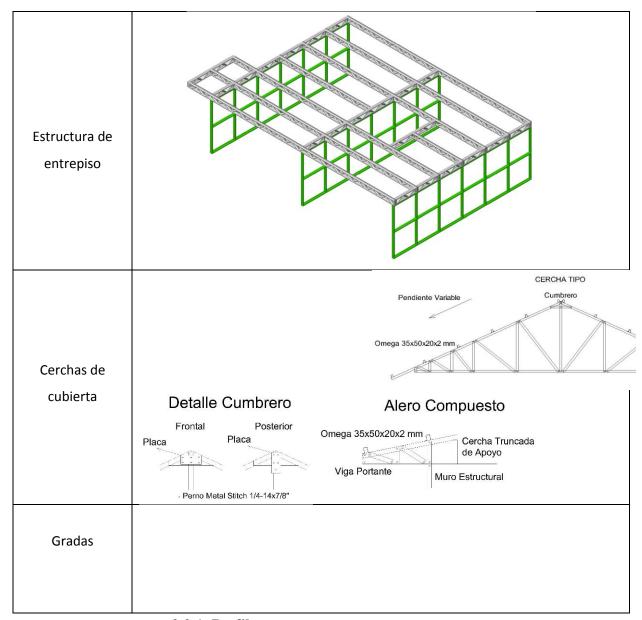
CARACTERÍSTICA	STEEL FRAME	TRADICIONAL	
Peso	40-60 kg/m2	220-385 kg/m2	
Espesor pared	10-20 cm	10-30 cm	
Aislamiento Acústico	45-60 STC	48 STC	
Aislamiento Térmico	SI	NO	
Incombustible	SI	SI	
Prefabricación	SI	NO	
Simplicidad Instalación	SI	NO	
Tiempo Ejecución (1 casa 100m2)	6 semanas	18-20 semanas	

El Ingeniero Sotomayor después de estudiar distintos pesos de mampostería concluyó que las paredes Kubiframe ya sean simples o dobles, son las más livianas del mercado, lo que genera los siguientes beneficios:

- Disminución de carga permanente de la estructura, lo que implica menores secciones de la estructura.
- Ideal para ampliaciones y remodelaciones, ya que su bajo peso no perjudica a la estructura existente.
- Facilidad de instalación en zonas remotas.

Adicionalmente, debido al proceso constructivo Steel Frame tiene las siguientes ventajas:


- Disminución de los tiempos de ejecución.
- Disminución de mano de obra.
- Mayor control de la construcción, ya que se minimizan los desperdicios.
- Adaptabilidad para instalaciones, tanto eléctricas como hidrosanitarias.
- Aislamiento termo acústico.
- Materiales no combustibles.


Todo esto repercute en la economía de la ingeniería, siendo un sistema eficiente que brinda facilidades para la construcción y optimiza los costos, sin perjudicar el confort de los usuarios.

Kubiec, siendo una de las empresas que fabrica soluciones para la construcción, cuenta con una línea exclusiva para el sistema Steel Frame, la cual se denomina Kubiframe y dispone de:

2.2.1. Componentes:

Tabla 2. Componentes de una Estructura Steel Framing

2.2.1. Perfiles:

A continuación, se muestra los perfiles disponibles por la empresa Kubiec, la cual consta de tres tipos de perfiles que cambian solamente en su espesor, estos son perfiles tipo G. Para un mejor entendimiento en la ilustración 5 se muestra a que parte corresponde cada dimensión de la siguiente tabla.

Tabla 3. Perfiles Disponibles Kubiec

SECCIÓN	A	B1	B2	C	E
	mm	mm	mm	mm	mm
PGG 89x39x41x11x0,75	89	39	41	11	0,75
PGG 89x39x41x11x0,90	89	39	41	11	0,90
PGG 89x39x41x11x1,20	89	39	41	11	1,20

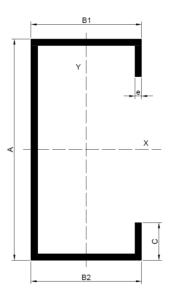


Ilustración 5. Especificaciones perfil G

Fuente: Ing. Mateo Sotomayor

Propiedades de los Perfiles

En siguientes tablas se muestras las diferentes propiedades geométricas para cada uno de los ejes de cada uno de los perfiles disponibles.

Tabla 4. Características de los Perfiles eje X

SECCIÓN	ÁREA	P	Ix	Sx	rx
BECCION	mm2	kg/m	mm4	mm3	mm
PGC 89x39x41x11x0,75	140,19	1,10	180203	4049	35,85
PGC 89x39x41x11x0,90	167,57	1,32	214507	4820	35,7
PGC 89x39x41x11x1,20	221,69	1,74	281407	6323	35,63

Tabla 5.Características de los Perfiles eje Y

SECCION	ly	Sy	ry	J
	mm4	mm3	mm	mm4
PGC 89x39x41x11x0,75	31983	1181	15,09	26,00
PGC 89x39x41x11x0,90	37818	1398	15,02	53,00
PGC 89x39x41x11x1,20	49086	1815	14,88	95,00

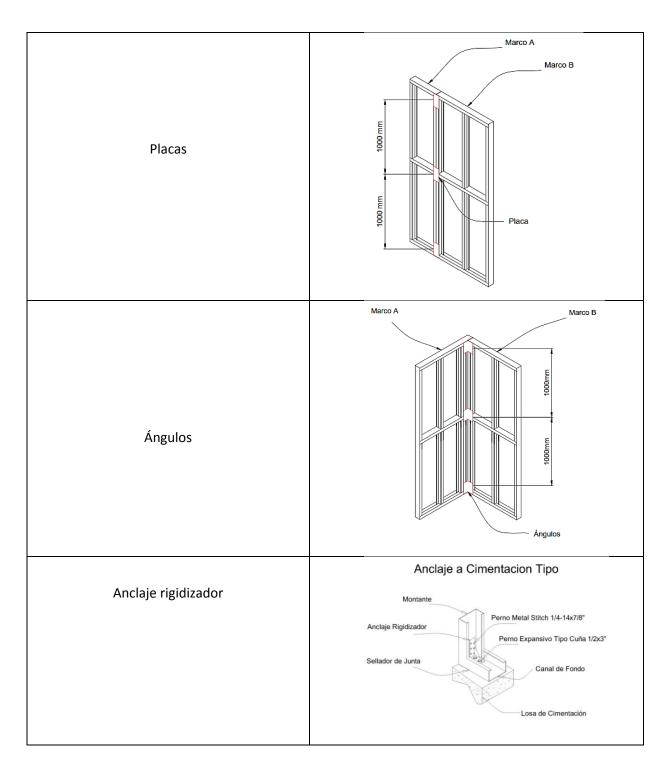
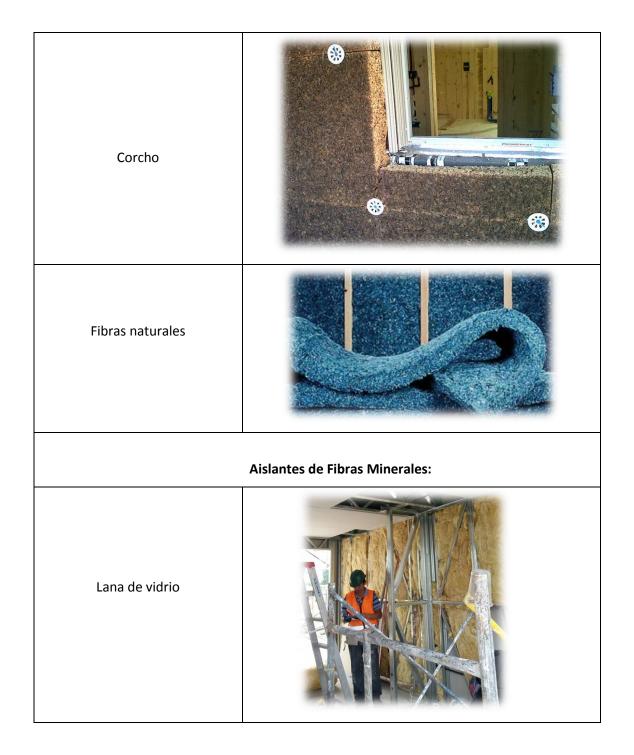

En la tabla que se muestra a continuación se especifica a qué tipo de acero estructural corresponde cada uno de los perfiles y de acuerdo a esto cuáles son sus resistencias a fluencia y resistencia última.

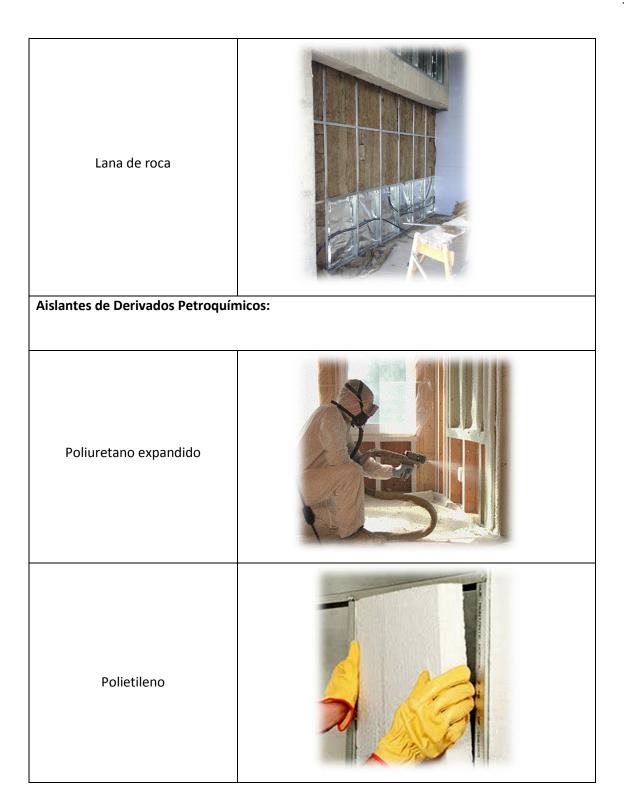
Tabla 6. Resistencia de los Perfiles

PERFIL	ACERO ESTRUCTURAL	FLUENCIA	TENSIÓN	
	7.02.1.0 2011.0 01 01.11.12	Fy	Fu	
PGG 89x39x41x11x0,75	G50	50 ksi (415 Mpa)	74 ksi (510 Mpa)	
PGG 89x39x41x11x0,90	G50	50 ksi (415 Mpa)	74 ksi (510 Mpa)	
PGG 89x39x41x11x1,20	G80	80 ksi (552 Mpa)	90 ksi (623 Mpa)	

2.2.2. Rigidizadores:

Tabla 7. Accesorios Steel Framing


2.2.3. Recubrimientos:


Tabla 8. Tipos de Recubrimientos

EXTERIORES:	A RECUBRIMIENTO
Fibrocemento	EXTERIOR
Multilaminado fenólico	
Placas de PVC	RECUBRIMIENTO
Placas metálicas	ESTRUCTURA DE MURO
INTERIORES:	
Placas de Yeso	
Multilaminado fenólico	

2.2.4. Aislantes:

Tabla 9. Tipos de Aislantes

2.3. Acción del sismo en el sistema Steel Framing

Debido a que éstas construcciones se tratan de construcciones esencialmente livianas es una ventaja sismorresistente. Por eso, en general no será conveniente agregar masas a estas construcciones, tales como revestimientos de ladrillos, tejas cerámicas, etc. Sin embargo si

estos agregados se efectúan racionalmente y tomando en cuenta los efectos sobre las respuestas sísmicas, pueden realizarse con el debido control por un ingeniero especializado en el tema. Por ejemplo, si en una construcción de este tipo se agrega una capa de hormigón en el entrepiso, será importante agregarle una malla de acero y con ello asegurar que la losa así constituida, actúe como un diafragma para distribuir las fuerzas inerciales del sismo.

Por estas razones, según el Manual de Ingeniería de Steel Framing realizado por la asociación latinoamericana del acero (Chile), ha percibido que tiene algunas limitaciones para las zonas de alta sismicidad y vientos fuertes. Las construcciones en zona de alto riesgo sísmico y fuertes vientos, quedan sujetas a las limitaciones adicionales de esta sección.

- En zonas de alto riesgo sísmico, los sobrecimientos deben quedar limitados a una altura de 1,20 m desde el nivel del terreno hasta el tope del sobrecimiento o platea de fundación.
- Los diafragmas de pisos y de techo deben tener una relación de forma no menor que 0,25:1 y no mayor de 4:1. La relación de forma de diafragmas se debe determinar dividiendo la distancia entre muros arriostrados por el largo del diafragma paralelo a dichos muros arriostrados.
- Las líneas de arrostramiento de muros pueden estar ubicadas en las paredes exteriores,
 y en paredes interiores según sea requerido.
- Donde un muro arriostrado separa a dos secciones de un edificio, la longitud requerida del muro arriostrado debe ser determinada sumando las longitudes de los muros arriostrados de cada porción del edificio.
- Donde existen desplazamientos verticales en los diafragmas de piso y de techo deben ser conectados entre sí por líneas arriostrados de muros, que sean capaces de transmitir los esfuerzos de un nivel al otro.

- Las líneas de muros arriostrados que sean requeridas por razones de estabilidad y resistencia del edificio deben ser continuas en un mismo plano vertical desde la fundación hasta el piso superior.
- No deben existir desplazamientos horizontales de muros arriostrados.

Para adicionar todas limitaciones antes mencionadas se adjunta la siguiente imagen la cual se la obtuvo del Manual de Ingeniería de Steel Framing.

Tabla 10. Limitaciones adicionales en zonas de alta sismicidad

Atributo	Limitación	
Número de niveles	General	
	2 pisos	
Carga de Nieve	3.35 KN/m² máximo con cubierta liviana	
	1.5 KN/m ² máximo para cubierta pesada	
Categoría Sísmica	Categorías D1, D2, E (Nota: Categorías según tecnología	
	norteamericana)	
Peso propio de muros	Muros	
	0.35 KN/m² maximo para sistema de muros livianos	
	0.70 KN/m ² para sistema de muros pesados	
Peso propio de techos y cielos	Techos	
	0.6 KN/m ² para sistema liviano	
	0.7 KN/m ² para sistema normal	
	1.2 KN/m ² para sistema pesado	
Pendiente del techo	25% a 50%	

En el Ecuador, el diseño en Acero Formado está basado según la sección 5.4 Acero formado en frío de la Norma Ecuatoriana de la Construcción (NEC). Nos dice que cuando se usen en vivienda, los pórticos resistentes a momentos de acero formado en frío deberán diseñarse de acuerdo a las normas de diseño de la AISI. No obstante, el diseño deberá satisfacer los requisitos de la sección 3.2, y a la NEC-SE-AC. Además, las uniones

estructurales soldadas deberán regirse por la AWS y las uniones estructurales empernadas deberán regirse a la norma AISC.

La empresa FRAMECAD es el sistema integral de diseño y fabricación de perfiles de acero más avanzado del mundo, que le permite producir en masa perfiles de acero conformados en frío con la precisión que determina el sistema, no el nivel de habilidad de los operarios de la fábrica o de quienes realizan el montaje en obra.

Mark Taylor, presidente FRAMED, comenta en el perfil de la empresa, que el software FRAMECAD permite al proceso de producción convierta rápidamente el modelo tridimensional en una realidad concreta y precisa. Están liderando la revolución para acelerar el proceso de diseño y construcción. Se asociaron con otros desarrolladores de software CAD de primera línea para ofrecer un proceso de diseño más sencillo e inteligente. El equipo de fabricación es como la impresora que se conecta a la computadora, sólo generará un resultado preciso si le da las instrucciones correctas. El aspecto realmente inteligente de la solución es el know-how y el software que instruyen al equipo de fabricación.

Dentro del grupo de sistemas que conforman FRAMECAD tenemos: FRAMECAD Solutions, FRAMECAD Building Products, FRAMECAD Architect, FRAMECAD ProDesign, FRAMECAD Factory, FRAMECAD Detailer, FRAMECAD-FrameMaster, FRAMECAD Mobile Factory. Esta empresa ha realizado estudios para demostrar que las casas realizadas con ésta tecnología pueden comportarse bastante bien durante los eventos sísmicos, por lo que se ha incrementado la construcción de estas viviendas en regiones sísmicas. En una zona sísmica, las casas pueden ser diseñadas con estructuras dúctiles que absorban la energía del evento telúrico tal como lo es el acero alivianado.

El Profesor Charles Clifton de la Universidad de Auckland y NASH. Puso a prueba una típica construcción de Nueva Zelanda en una mesa de sismo, el comportamiento de la

casa de prueba fue representada tal como los constructores estructurales y científicos predijeron, una actuación extremadamente buena en respuesta a un sismo. La casa probada fue diseñada por Graham Rundle, Redco (NZ). Cuyas especificaciones fueron las siguientes:

- 2.6 *2.8m en planta con una altura de 2.4m
- FRAMECAD Light steel frame 0.75 mm de espesor G550 lipped C-sections
- Brick veneer exterior cladding standard 70 Series with Type B brick ties
 screwed to the flanges of the studs through a 40 x 10 mm thermal break
- Plasterboard interior lining
- Estructura con una frecuencia de 4Hz

El ambiente agradable del Steel Framing ha hecho que sea una solución disponible rápida y efectiva, además en la reconstrucción de viviendas en zonas sísmicas ha sido una de las más utilizadas. También, se han realizado estudios en diferentes universidades del mundo como los realizados por la universidad de Auckland, donde los resultados son muy alentadores frente a solicitaciones sísmicas.

2.4. Entrepiso seco

Entrepiso seco se denomina así por realizarse la rigidización con placas que se atornillan a las vigas de acero. Estas placas pueden ser multilaminados fenólicos, placas cementicias, placas celulósicas, entre otras. Estos componentes le proveen al entrepiso menor peso, esto es particularmente deseable en situaciones donde se desea construir un segundo piso y el peso de la construcción debe disminuirse. Otra característica de este tipo de entrepiso es que su ejecución es más rápida que los entrepisos húmedos. Las placas de rigidización más utilizadas son multilaminados fenólicos de 25mm. En caso de un piso cuya terminación sea un cerámico, se deberá utilizar una placa cementicia, o celulósica, ambas

permiten el pegado directo de los cerámicos. En cuanto a la aislación acústica, de ser necesario se debería colocar bajo la placa utilizada polietileno expandido o lana de vidrio. Otra técnica que se puede utilizar, es colocar sobre el borde superior del perfil y por debajo de la placa de substrato, una interfaz elástica como es la silicona. Para el revestimiento final se puede utilizar piso cerámico, vinílico o alfombra.

Es importante determinar el apoyo que tendrán los perfiles galvanizados que van a ir como vigas del entre piso, ya que es por donde se transmiten las cargas hacia las fundiciones. Lo más usual es fijarlo a la pared, un perfil ángulo laminado en caliente por debajo de las vigas para que sirva de apoyo a la estructura de perfiles que conforman el entrepiso. La fijación se hace por medio de brocas expansivas. En los entrepisos se debe considerar no solo la resistencia de los perfiles a soportar cargas, sino también, la deflexión máxima admisible.

Para la orientación de las vigas, generalmente se hace en dirección a donde haya menor distancia entre apoyos pero de acuerdo al diseño pueden ir en otra dirección.

El entrepiso seco tiene varias ventajas en las que destaca la seguridad que brinda al ser resistente al fuego, hongos, organismos y al impacto, además al ser una estructura liviana, ésta técnica es práctica, rápida, económica y segura (Siuciak, 2015).

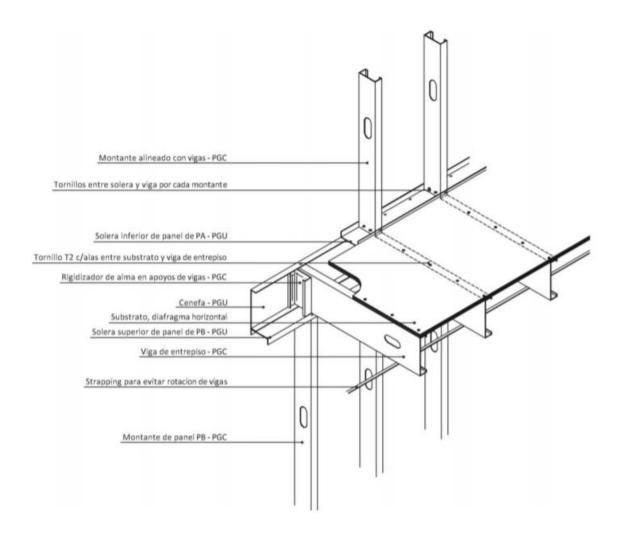


Ilustración 6. Entrepiso Seco

Fuente: Siuciak, R.

2.5. VAE

Todo proveedor participante, debe expresar en porcentaje la participación ecuatoriana de cada uno de los rubros del precio unitario. Entendiendo que el precio unitario es el desglose detallado de todos los elementos de costo involucrados para la ejecución de una unidad de medida de un rubro en particular, este es el insumo fundamental para cuantificar el componente ecuatoriano que tiene, es decir, su Valor Agregado Ecuatoriano.

Dentro del formulario principal del presupuesto se debe registrar el Valor Agregado Ecuatoriano de cada rubro del proyecto, se procederá con la ponderación del Valor Agregado Ecuatoriano de cada rubro con su peso relativo en relación con el presupuesto.

El porcentaje de participación ecuatoriana mínimo del proyecto será el resultado de la sumatoria de los valores agregados calculados de cada uno de los rubros constituidos.

La designación del porcentaje de participación ecuatoriana a los componentes se lo realiza bajo la estructura del SERCOP, teniendo en cuenta las siguientes consideraciones.

- Si el elemento, en función del CPC (Clasificador Central de Productos)
 correspondiente se encuentra dentro de la lista de Bienes No Producidos, su
 Valor Agregado Ecuatoriano se considerará 0%;
- Si el elemento en función del CPC correspondiente se encuentra dentro de la lista de Bienes Enteramente Producidos, su Valor Agregado Ecuatoriano se considerará 100%;
- Para aquellos elementos que no son parte de las listas antes mencionadas, el Valor Agregado Ecuatoriano que se considerara será el mínimo fijado para acreditar origen ecuatoriano, esto es, 40%.

Hasta la fecha actual no existe la lista de bienes producidos y no producidos en el Ecuador, razón por el cual el porcentaje de Valor Agregado designado a cada componente será subjetivo de quien los realiza, y de acuerdo al artículo 2 de la resolución del SERCOP del año 2014 numeral 00008 (RE-SERCOP-2014-00008) las máximas autoridades contratantes o sus delegados, en forma previa a convocar a un procedimiento de contratación de obras cuyo presupuesto sea igual o superior al monto correspondiente a licitaciones de obras, aprobarán los estudios de desagregación tecnológica a través de un documento que

será publicado como información relevante en el portal institucional del SERCOP. (Chela, Vela. 2018)

Determinación del VAE de la oferta

Se utilizará la siguiente fórmula:

$$= 1 - (a+b)/c * 100$$

Donde:

- a. Monto en dólares de las importaciones directas realizadas por el oferente, relativas a los bienes, y/o servicios de la oferta presentada.
- b. Monto en dólares de las compras realizadas en Ecuador que son importadas por terceros (proveedores del oferente), relativas a los bienes y/o servicios de la oferta presentada.
- c. Monto en dólares de la oferta total (este literal se lo obtendrá directamente de la oferta económica del proveedor).

Condiciones para el correcto cálculo del VAE:

- El valor de la sumatoria (a+b) no puede ni debe ser superior al valor de c.
- En caso de que el proceso corresponda a adjudicación total, el oferente deberá registrar en su oferta y adjuntar en el Módulo Facilitador de la Contratación Pública, un solo formulario de "Declaración de Valor Agregado Ecuatoriano (VAE)" independientemente del número de lotes de contratación.
- Si se trata de adjudicación parcial, el oferente deberá registrar en su oferta y adjuntar en el Módulo Facilitador de la Contratación Pública, un formulario de "Declaración de Valor Agregado Ecuatoriano (VAE)" por cada lote de contratación (SERCOP, s/f).

Ejemplo para un solo CPC:

CPC 1: 35290

CPC	VAE (Umbral) (a) (Público en el portal institucional del SERCOP)	Presupuesto Referencial (bi) USD\$	PRPPi (Peso Relativo) c=(bi/∑bi)	VAE Ponderado del Procedimiento d= (a*c)	Umbral VAE ∑d
352900001	39%	1.000	100%	39%	39%
TO	TAL (∑bi)	1.000			

Ilustración 7. Ejemplo VAE

Fuente: SERCOP

3) DESARROLLO DE LA INVESTIGACIÓN

3.1. Vivienda de diseño

La vivienda a diseñar esta dado por las tipologías de vivienda aprobadas por el Ministerio de Desarrollo Urbano y Viviendas (Programa casa para Todos). La vivienda consta de 4 departamentos con una área total aproximada de 208 m2. Cada departamento tiene un área social (sala-comedor), área de cocina, dos dormitorios y una zona de lavado y secado.

VIVIENDA 4D CASA PARA TODOS

Región: Costa - Amazonía

Área total aproximada: 208,00 m2

Descripción de espacios:

- Área social (sala comedor)
- Área de cocina
- Dos dormitorios
- En planta baja: Un baño completo con 4 barras de acero inoxidable, asiento de ducha abatible, ducha con un accesorio regadera tipo teléfono. En planta alta: Baño completo.
- Zona de lavado y secado

Ilustración 8. Fachada Frontal Vivienda 4D

Fuente: Ministerio de Desarrollo Urbano y Vivienda

A continuación se adjunta los planos arquitectónicos de la planta baja y alta de la vivienda:

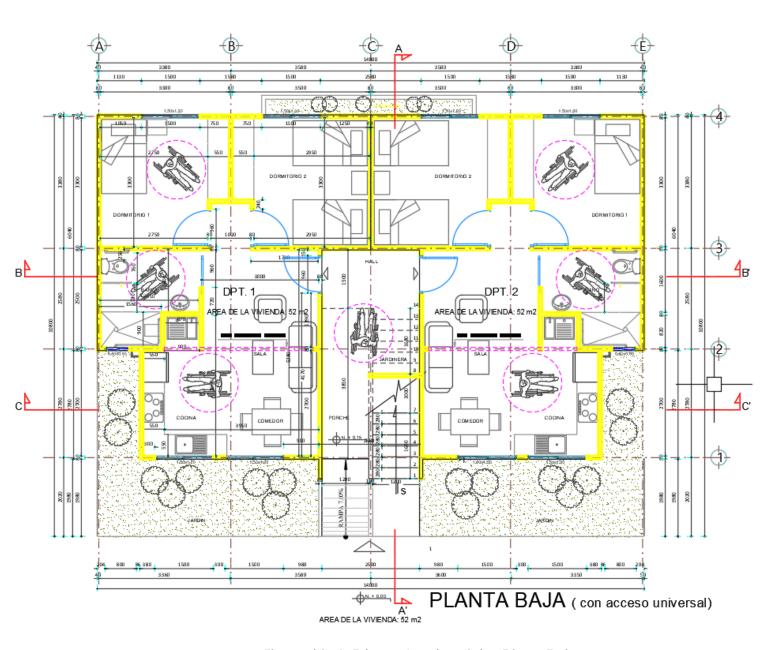


Ilustración 9. Diseño Arquitectónico Planta Baja

Fuente: Ministerio de Desarrollo Urbano

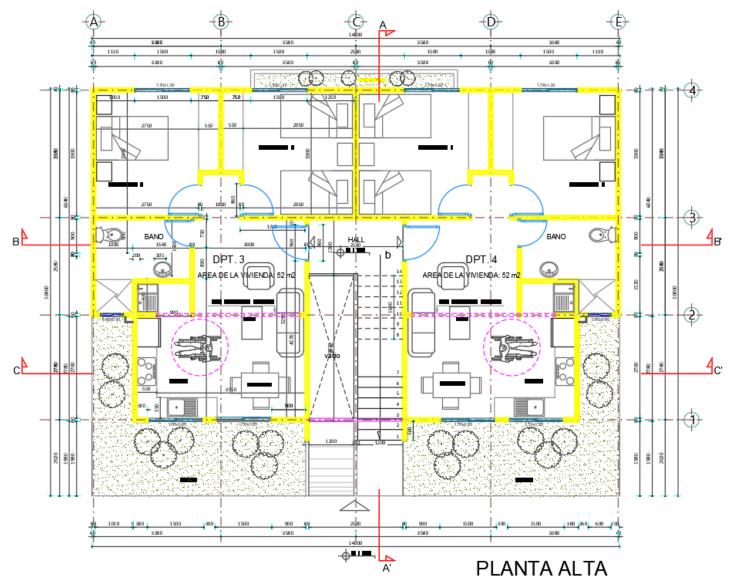


Ilustración 10. Diseño Arquitectónico Planta Alta

Fuente: Ministerio de Desarrollo Urbano

3.2. Prediseño Hormigón Armado

3.2.1. Especificaciones asumidas para el diseño:

Para la ubicación del proyecto se asumió Manta, provincia de Manabí ya que, en consecuencia, del terremoto ocurrido en el año 2016, se vio la necesidad de ofrecer viviendas como son las que brinda el programa "Casa para de todos", expedido por el presidente Lenin Moreno en el año 2017. A continuación, se muestra los datos que serán asumidos para el predimensionamiento.

f'c=21 MPa

fy=420Mpa

Luz más grande= 5.05 m

Altura de entrepiso = 2.9 m

Carga Viva 200 Kg/m2 según NEC (Uso residencial)

Para el procedimiento de pre-dimensionamiento se seguirá el método propuesto por Tapia (2014) se diseñará en base a la normativa NEC y ACI 318.

3.2.2. Predimensionamiento Losa

Para el predimensionamiento de losas se utilizó lo estipulado en el ACI 318-08 en donde se habla de losas dispuestas de vigas en sus cuatro bordes, por lo que se aplica la siguiente ecuación para calcular el espesor mínimo:

$$hmin = \frac{\ln(0.8 + \frac{fy}{1400})}{36 + 5\beta(\alpha_{fm} - 0.2)}$$
 [1]

Donde ln es la luz libre más larga del panel, fy el esfuerzo de fluencia del acero β la relación de las dimensiones de los paneles de losas y el α_{fm} es un valor promedio, para todas

las vigas, de la relación entre la rigidez a la flexión de una sección de viga y la rigidez a flexión de una franja limitada lateralmente por los ejes centrales de los paneles adyacentes. Es seguro asumir un valor de α_{fm} igual a 0.2 cuando no se tiene vigas interiores. Con este valor de α_{fm} igual a 0.2 cuando no existen vigas interiores, la ecuación se transforma a lo siguiente, estando ya en unidades métricas.

$$h = \frac{\ln(800 + 0.0712 * fy)}{3600}$$
 [2]

Para el cálculo es necesario conocer la luz más grande de la estructura, para este caso es 5.05m

$$hmin = \frac{5.05(800 + 0.0712 * 4200)}{3600}$$

$$hmin = 15.42 cm$$

Se obtuvo un espesor de 15.42 cm para una losa maciza, pero debido a las mejoras que brinda una losa alivianada, se decidió realizar una losa alivianada, para lo cual se debe calcular las áreas e inercias, para esto se utilizó el programa de Excel para saber la altura que nos daría si utilizamos una losa alivianada de 25 cm, dicha altura es mayor a la altura mínima antes calculada con lo que cumple el requisito, además se debe verificar que se cumpla con las recomendaciones de la ACI en donde nos pide que el ancho de cada nervio deberá ser al menos 10 cm y un peralte no mayor a 3.5 veces dicho ancho, de igual manera la separación entre nervios no será mayor que 75 cm. En la siguiente imagen se muestra como nos quedaría la losa alivianada con sus respectivas dimensiones, además con la línea roja se muestra donde se encuentra el centroide de área el cual es igual a 16.94 cm medidos desde la base de la sección.

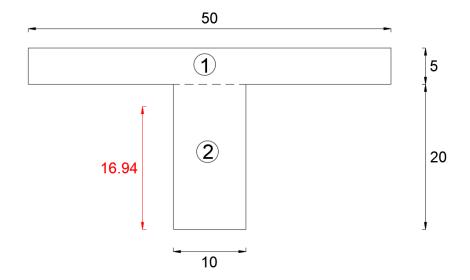


Ilustración 11. Sección Losa Alivianada 25cm Fuente: Diego Lucero

Tabla 11. Programa Losa Equivalente

Figura 1				
h1	5 cm			
b1	50 cm			
Y1	22,5 cm			
A1	$250,00 \text{ cm}^2$			
I1	520,83 cm ⁴			
R1	5,56 cm			
Figura2				
h2	20 cm			
b2	10 cm			
Y2	10 cm			
A2	200,00 cm ²			
I2	6666,67 cm ⁴			
R2	6,94 cm			

Tabla 12. Datos Obtenidos losa equivalente

Ancho (b)	50 cm
Y	16,94 cm
Ixx	24548,61 cm ⁴
h Altura	18,06 cm

Se verifica que la altura equivalente de la losa alivianada supere a la altura mínima antes calculada para losa maciza.

$$h_{equiv} = 18.06 cm > 15.42 cm CUMPLE$$

3.2.3. Predimensionamiento de vigas

Para realizar el predimensionamiento de las vigas es necesario conocer el peso de la losa y las cargas permanentes como se muestra a continuación:

Tabla 13. Carga Permanente Losa (Carga Muerta)

Carga Losa					
Nombre	Sección Utilizada	Densidad (Kg/m ³)	Carga (Kg/m ²)		
Peso Nervios	0.1*0.20*3.6	2400	172.8		
Loseta Compresión	1*1*0.05	2400	120		
Peso de Alivianamientos	8 12		96		
	Carga Permanente Total (Kg/m ²) 388.8				

Tabla 14. Carga Permanente Acabados (Carga Muerta)

Carga Permanente				
Nombre	Sección Utilizada	Densidad (Kg/m ³)	Carga (Kg/m ²)	
Enlucido y Masillado	1*1*0,04	2200	88	
Recubrimiento Piso	1*1*0,02	2200	44	
Peso Asumido Mampostería Bloque			200	
	Carga Perma	332		

Se procedió a sumar las dos cargas antes dichas como se muestra en la siguiente tabla:

Tabla 15. Carga Permanente Total

Peso Propio de Losa	388.8 (Kg/m ²)
Peso Permanente	$332(Kg/m^2)$
Peso Total	720.8 (Kg/m ²)

Para conocer la carga muerta total es necesario la suma de la carga de losa y la carga permanente más el peso de las vigas que se asume por recomendaciones de Guerra (2013) un 25% de la carga de las losas más la carga permanente.

Peso de las vigas =
$$0.25*720.8=180.2 \text{ Kg/m}^2$$

En nuestra carga última el coeficiente de 1.3 utilizado para mayorar la carga se utilizó por recomendaciones de Guerra (2013) por efecto sísmico

Carga Ultima (q) =
$$1.3*(1.2*(0.7208+0.1802)+1.6*(0.2)) = 1.82T/m2$$

Con la siguiente imagen se puede ver el área contribuyente de cada viga, donde se puede evidenciar que las vigas más críticas son las del eje B, por tanto, con lo que se decidió realizar el pre diseño para esta.

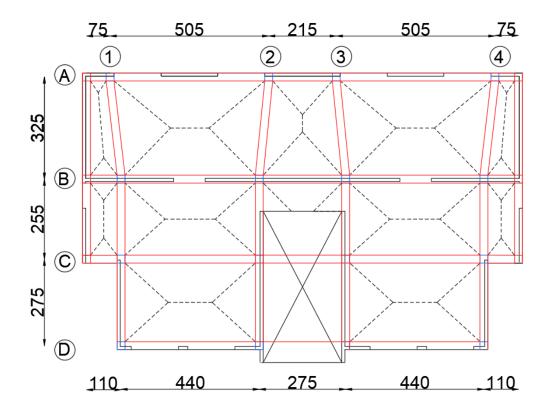


Ilustración 12. Área contribuyente de vigas

Fuente: Diego Lucero

En el sistema de losa, las cargas se distribuyen a los elementos de borde (vigas) de manera triangular y o prismática como se muestra en la imagen anterior. La distribución de carga sobre vigas de manera prismática se da cuando el área de losa en cuestión es rectangular, mientras que en un área de losa cuadrada se tiene una distribución de cargas de tipo triangular. Para nuestro caso tenemos los dos tipos de distribuciones. Estos tipos de carga se pueden transformar a una carga distribuida de la siguiente manera:

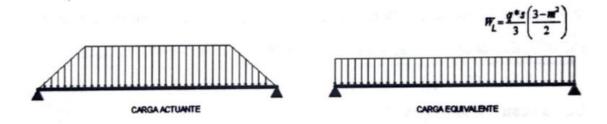


Ilustración 13. Transformación de cargas (Prismática)

Fuente: Ing. Marcelo Guerra

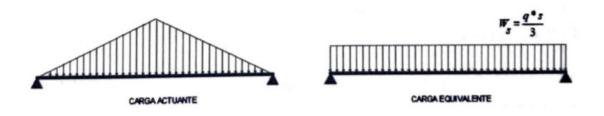


Ilustración 14. Transformación de cargas (Triangular)

Fuente: Ing. Marcelo Guerra

En las fórmulas de transformación de carga prismática m es la relación de la luz menor sobre la luz mayor, q es la carga última previamente calculada y s es la luz menor. En la transformación de carga triangular q es la carga última y s es la luz menor. Dichas distribuciones se calcularon para la viga más crítica, en nuestro caso la viga B

Se procedió a calcular en cada tramo la distribución de carga para esto fue necesario conocer la luz menor (S) y la luz mayor (L) para cada sección.

S = 2.55 m

L = 4.40 m

$$m = \frac{s}{L}$$

$$m = \frac{2.55}{4.40} = 0.58$$

$$WL = \frac{q*s}{3} * \left(\frac{3-m^2}{2}\right)$$

$$WL = \frac{1.82 * 2.55}{3} * \left(\frac{3-0.58^2}{2}\right)$$

$$WL = 2.06 T/m$$
[4]

S = 3.25 m

L = 4.40 m

$$m = \frac{s}{L}$$

$$m = \frac{3.25}{4.40} = 0.74$$

Se calculó las cargas en cada uno de los trapecios y triángulos

$$WL = \frac{q * s}{3} * \left(\frac{3 - m^2}{2}\right)$$

$$WL = \frac{1.82 * 3.25}{3} * \left(\frac{3 - 0.74^2}{2}\right)$$

$$WL = 2.42 T/m$$

$$W = 2.42 + 2.06 = 4.48 T/m$$

$$Ws = \frac{q * s}{3} \tag{5}$$

$$WL = \frac{1.82 * 2.15}{3}$$

$$WL = 1.3 * 2$$

$$W = 2.6 \, T/m$$

$$Ws = \frac{q * s}{3}$$

$$WL = \frac{1.82 * 1.1}{3}$$

$$WL = 0.67 * 2$$

$$W = 1.34 T/m$$

Para saber los momentos máximos de la viga se procedió a aplicar las cargas antes calculadas, y a continuación se colocó en nuestro modelo de SAP2000, donde se encontró los momentos a ser diseñados.

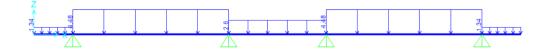


Ilustración 15. Cargas aplicadas en la viga

Fuente: Diego Lucero

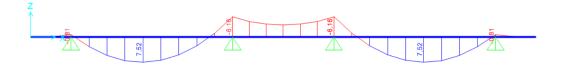


Ilustración 16. Diagrama de Momentos de la viga

Fuente: Diego Lucero

Se obtuvo el momento máximo de 7.52 Tm

Se usa la siguiente ecuación de momento nominal:

$$Mn = Ru * b * d^2$$
 [6]

Donde Mn es el momento nominal, Ru es un factor de resistencia a la flexión, b el ancho de viga y d el peralte efectivo de viga. Donde Ru se encuentra de la siguiente ecuación:

$$Ru = pfy \ 1 - 0.588 \frac{pfy}{f'c}$$
 [7]

Donde p es la cuantía de refuerzo, fy el esfuerzo de fluencia del acero y f'c la resistencia a compresión del hormigón.

Según la NEC p debe ser igual a 0.5 de p_b . Siendo p_b la cuantía de refuerzo balanceado que es cuando se obtiene en el mismo tiempo tanto la falla del hormigón como del acero, y para encontrarla se tiene la siguiente ecuación:

$$p_b = 0.85\beta_1 \frac{f'c}{fy} \frac{0.003}{0.003 + \varepsilon_y}$$
 [8]

Donde β_1 depende de la característica del hormigón. Para hormigones con f´c menores a los 280 kg/cm2 es igual a 0.85 y ε_y es el esfuerzo de deformación al cual el acero comienza a fluir igual 0.002 para este caso.

$$p_b = 0.85 * (0.85) \frac{210}{4200} \frac{0.003}{0.003 + 0.002}$$

$$p_b = 0.021675$$

$$p = 0.5$$

$$* 0.021675 = 0.010838$$

$$Ru = 0.010838 (4200) 1 - 0.588 \frac{0.010838 (4200)}{210}$$

$$Ru = 39.72 \frac{kg}{cm^2}$$

Además, se conoce:

$$Mu = \emptyset * Mn$$

$$Mu = \emptyset * Ru * b * d^2$$

$$\frac{Mu}{\emptyset} = 39.72 * b * d^2$$

Se asume b=25cm, debido a que la NEC en su sección 4.2.1 requisitos para elementos en flexión exige que el ancho mínimo debe ser igual a 25 cm

$$\frac{7.52Tm * 10^5}{0.9} = 39.72 * 25 * d^2$$

$$d = 29.01cm = 35cm$$

Con los resultados obtenidos se usaran vigas de 25 cm * 35 cm

3.2.4. Predimensionamiento Columnas

Para el predimensionamiento se utilizó el método que establece una relación entre las cargas axiales resistentes y los correspondientes momentos flectores en una columna conocido como curva o diagrama de interacción. En este diagrama se busca el punto de equilibrio balanceado en el que el hormigón alcanza su deformación última al mismo tiempo que refuerzo de acero en tensión. Se busca un tipo de falla balanceado con lo cual se optimizan las secciones y la capacidad de los materiales; Guerra menciona que es probable, en la mayoría de diagramas de interacción, que el punto balanceado se encuentre aproximadamente a 1/3 de la carga axial máxima que resiste la columna. De este modo:

$$P_{bal} \approx \frac{Po}{3}$$

Donde Po es la carga axial a compresión máxima que resiste la columna y se puede calcular como:

$$Po = 0.85 f'cAg + Ast fy$$
[9]

Donde Ag es el área gruesa de la columna y Ast el área de refuerzo del acero. Se trabaja la ecuación y se tiene:

$$Po = 0.85 f' cAg + pAg fy$$

$$Po = Ag(0.85 f'c + p fy)$$

Aplicando el criterio $P \le P_{bal}$

$$3P = Ag(0.85 f'c + p fy)$$

$$A_g = \frac{3P}{(0.85f'c + p fy)}$$

Considerando un 30% de la acción sísmica y pasando de kilogramos a toneladas, se tiene:

$$A_g = \frac{3900P}{(0.85f'c + pfy)}$$
 [10]

Con p = 1 %, remplazando:

$$A_g = \frac{3900 * P}{(0.85 * 210 \frac{kg}{cm^2} + 1\% * 4200 \frac{kg}{cm^2})}$$

$$A_g = 17.69 * P$$

Se encontró el área gruesa de columna que se necesita en función de la carga axial, la misma carga será encontrada continuación en función de los pisos y cargas aplicadas.

Carga Muerta (CM)=
$$2*(0.721+0.180) + 1*(0.1) = 1.9T/m2$$

Carga Viva=0.2 T/m2

Para conocer el área contribuyente hacia cada columna se realizó el siguiente gráfico:

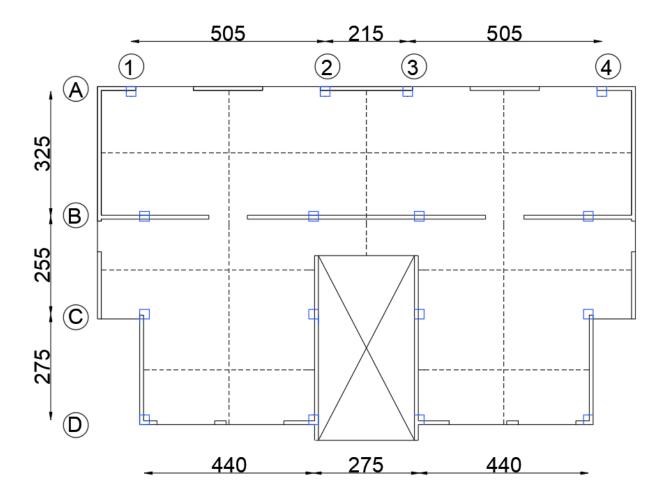


Ilustración 17. Área contribuyente columnas

Fuente: Diego Lucero

Para el diseño de la columna se realizó un programa en Excel donde se puede obtener cual es la sección más adecuada de acuerdo al área cooperante y la carga.

Tabla 16. Dimensionamiento de columnas

W	2,6	T/m ²

UBICACIÓN	ÁREA COOP	P(T)	Ag=17,69*P(cm2)	SEC	CCIÓN (cm)
			L	b	t
A1	5,33	13,86	245,15	25	9,81
A2	5,85	15,21	269,07	25	10,76
A3	5,85	15,21	269,07	25	10,76
A4	5,33	13,85	245,15	25	9,81
B1	9,57	24,88	440,16	25	17,61
B2	10	26	459,94	25	18,39
В3	10	26	459,94	25	18,39
B4	9,57	24,88	440,16	25	17,61
C 1	7,24	18,82	332,99	25	13,32
C2	5,83	15,15	268,15	25	10,73
C3	5,83	15,15	268,15	25	10,73
C4	7,24	18,82	332,99	25	13,32
D1	3,03	7,86	139,13	25	5,57
D2	3,03	7,86	139,13	25	5,57
D3	3,03	7,86	139,13	25	5,57
D4	3,03	7,86	139,13	25	5,57

Se utilizaría una sección de 25 cm*20 cm, pero tomando como referencia la norma Ecuatoriana de la Construcción sección 4.3.1 requisitos para elementos en flexo-compresión, se utilizó una sección de 30 cm*30 cm debido a que es la sección mínima que se puede utilizar.

A continuación, se procede a definir las secciones de las vigas, columnas y losa siguiendo las dimensiones calculadas en el predimensionamiento. Para vigas y columnas se

61

tomó en consideración el porcentaje de agrietamiento de inercias establecidas por la norma

NEC como se muestra en la siguiente imagen:

En este caso, en el cálculo de la rigidez y de las derivas máximas se deberán utilizar los valores de las inercias agrietadas de los elementos estructurales, de la siguiente manera:

0.5 l_a para vigas (considerando la contribución de las losas, cuando fuera aplicable)

• 0.8 la para columnas

• 0.6 la para muros estructurales:

 Para estructuras sin subsuelos, se aplicarán únicamente en los dos primeros pisos de la edificación

Ilustración 18. Inercias Agrietadas

Fuente: NEC-SE-DS

El cálculo del módulo de elasticidad se calculó según la NEC Ecuación 1.2 especificada en la parte de Anexos y que se detalla a continuación:

$$E_c = 4.7 \times \sqrt{\text{(f'c)}}$$

$$E_c = 4.7 \times \sqrt{\text{(f'c)}} = 21.54 \text{ GPa} = 219646.87 \text{ kg/cm}^2$$

3.2.5. Diseño Sísmico

Para fines prácticos y desarrollo de este trabajo de titulación, se asumió que la vivienda se va encontrar ubicada en la ciudad de Manta, por lo que se encontró una publicación realizada por Bonifaz, H. y Haro, J. en el año 2017 de estudios de perfiles de suelo realizadas en esta ciudad sobre el tipo de suelo y cuál es el perfil sísmico predominante, siendo el tipo D, por lo que se procedió a realizar el análisis con este tipo de suelo encontrado.

Los datos solicitados para el cálculo del cortante basal son el coeficiente de importancia, el espectro de diseño en aceleración, el factor de reducción de resistencia sísmica, los coeficientes de configuración en planta y elevación, dichos datos fueron obtenidos mediante la NEC como se especifica en las ilustraciones ubicadas en los anexos. Finalmente se necesitó el peso de la estructura cuya información es proporcionada por el programa.

Tabla 17. Programa de cálculo de Cortante Basal

Datos dado	s				
Tipo de suelo	D				
Lugar	MANTA	0,5	VI		
Importancia	1				
Carga total (Wt)	200,18	T			
R	8				
Datos dado	Datos dados				
Tipo de suelo	D				
Lugar	MANTA	0,5	VI		
Importancia	1				
Carga total (Wt)	200,18	T			
R	8		1		

Siendo R el factor de reducción de resistencia estructural, en nuestro caso es igual a 8 ya que nuestra estructura pertenece a pórticos especiales sismoresistentes, de hormigón armado con vigas descolgadas tal como lo establece la NEC en la sección 6.3.4 literal d.

Tabla 18. Datos para el cálculo del Espectro

n	1,8	Costa
Z	0,5	
Fa	1,12	
Fd	1,11	
Fs	1,4	
Ct	0,055	
Н	5,8	m
Alfa	0,9	

Donde n es la relación de amplificación espectral que depende de la región donde se ubique la estructura y Z que es el factor de zona sísmica que representa la aceleración esperada en roca, Fa, Fd y Fs son factores de amplificación o reducción dinámica de sitio que depende principalmente del tipo de suelo y la zona sísmica, C_t y Alfa son constantes que dependen del tipo de sistema estructural y H que es la altura máxima medida desde la base en metros, todo esto especificado en la sección 6.3 procedimiento de cálculo del DBF de la NEC.

Según la tipología existente, no existe irregularidades en planta ni en elevación por lo que se utilizó 1 para dichos valores, tal como lo establece la NEC sección 6.2.1 literal e procedimiento de análisis espectral. Además, para el cálculo del periodo de vibración "Ta" se utilizó la ecuación de los anexos.

Tabla 19. Datos Obtenidos del Cortante Basal

Cálculos				
Тс	0,763 s			
Ta	0,268 s			
Sa elástico	1,008 g			
Sa inelástico	0,126 g			
Cortante (basal)	25,223 T			

Donde Tc es el periodo del espectro, Ta es el periodo de la estructura, Sa es el espectro de aceleración. Sa inelástico es el resultado de la división del Sa para el coeficiente R.

3.2.6. Espectro de Diseño

Para realizar la gráfica de los espectros inelástico y elástico, se hizo la siguiente tabla de acuerdo a las especificaciones de la NEC sección 3.3.1. Espectro elástico horizontal de diseño en aceleraciones. Para el periodo se utilizó un intervalo de 0.2 s en el gráfico.

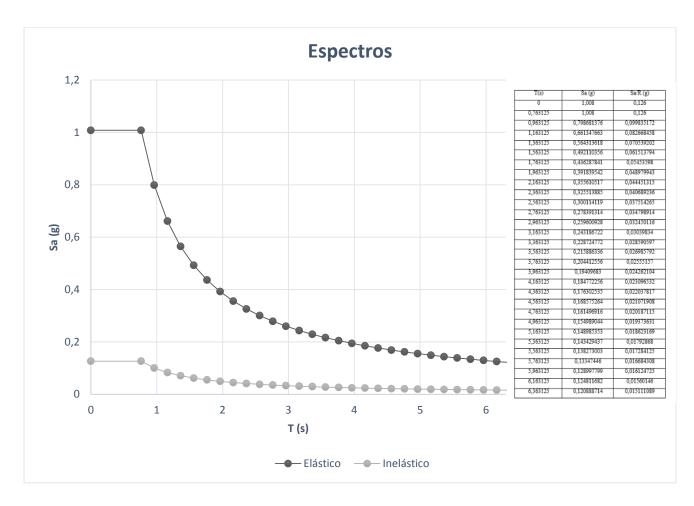


Ilustración 19. Espectros de diseño

Fuente: Diego Lucero

Luego de haber realizado el modelo y colocar las cargas de acuerdo a las calculadas y secciones requeridas para columna y viga, se procedió a correr el programa.

Para la corrida final de la estructura, se procedió a calcular la corrección del cortante basal estático y dinámico, lo cual establece la NEC en la sección 6.2.2 literal b donde nos dice que el valor del cortante dinámico total en la base obtenida por cualquier método de análisis dinámico, no puede ser menor que el 90% del cortante basal obtenido por el método estático para estructuras regulares, cumpliendo nuestra estructura con este requerimiento también.

Para esto fue necesario utilizar Mass Source, definir el peso total de la vivienda, que es la suma de las cargas DEAD y Permanente, debido a que en la carga DEAD se encuentra el peso de la estructura como vigas, columnas y losas. Estas están calculadas por SAP2000. En cambio, la carga permanente es la carga adicional como mampostería, recubrimientos, acabados como cerámicas, etc.

En el caso del cortante basal estático, es necesario conocer el peso de la estructura para calcular el valor del cortante, mediante la ayuda de SAP es posible determinarlo mostrando los resultados del análisis de la estructura considerando carga Muerta Total, que es la suma de la carga Dead más la Permanente.

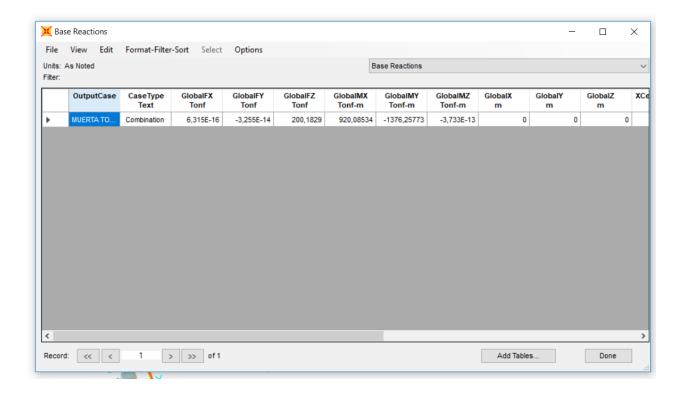


Ilustración 20. Peso total de la estructura

Fuente: Diego Lucero

$$Wt = 200.1829 \ tonf$$

Este peso obtenido se multiplica por el coeficiente adquirido en base a los parámetros de la NEC calculados anteriormente, obteniendo de esta forma el cortante basal estático.

$$Vc = 0.126 W$$

$$Vc = 25.22 tonf$$

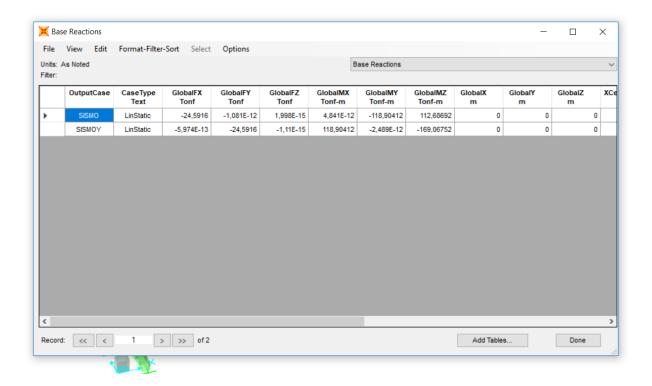


Ilustración 21. Cortante basal estático

Fuente: Diego Lucero

$$Vs = 24.59 \ tonf$$

Para este caso, tanto el Sismo X como el Sismo Y tienen el mismo valor.

El factor de corrección se calculó: dividiendo el cortante basal calculado en base a la NEC para el cortante basal obtenido del programa.

$$fc = \frac{Vc}{Vs} = 1,026 \ tonf$$

Por lo tanto, el coeficiente de cortante basal corregido será igual al factor de corrección "fc" multiplicado por el coeficiente obtenido mediante la NEC.

Coeficiente corregido =
$$1,026 * 0,126 = 0,129$$

Dicho coeficiente fue modificado en el patrón de carga para SismoX y SismoY.

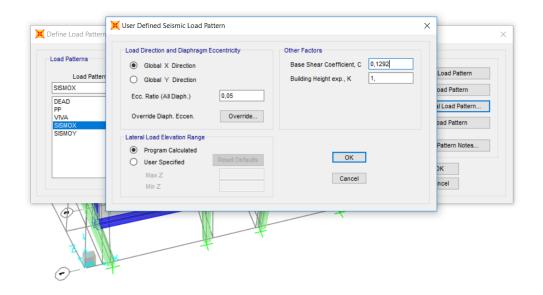


Ilustración 22. Coeficiente de la Base a cortante

Fuente: Diego Lucero

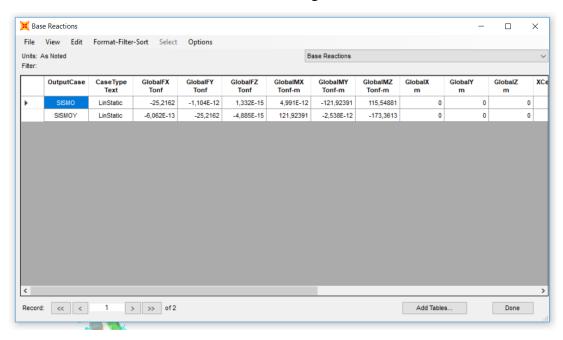


Ilustración 23. Sismo estático corregido

Fuente: Diego Lucero

Una vez corregido el cortante basal estático, se procedió a corregir el dinámico. Para esto se determinó los valores del espectro en "x" y en "y".

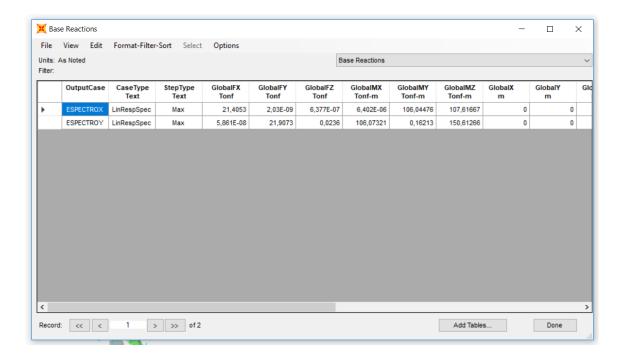


Ilustración 24. Cortante Basal dinámico

Fuente: Diego Lucero

$$Ex = 21.405 tonf$$

$$Ey = 21.907 \ tonf$$

El factor de corrección dinámico fue obtenido dividiendo el cortante basal estático conseguido anteriormente para los valores el espectro en "x" y en "y".

$$Fcx = \frac{Vc}{Ex} = 1,178 \ tonf$$

$$Fcy = \frac{Vc}{Ex} = 1,151 tonf$$

Finalmente, el factor de corrección se multiplicó por la gravedad consiguiendo el coeficiente corregido tanto para x como para y.

Coeficiente corregido
$$x = fcx * 9.81 = 11.558$$

Coeficiente corregido y = fcy * 9,81 = 11,293

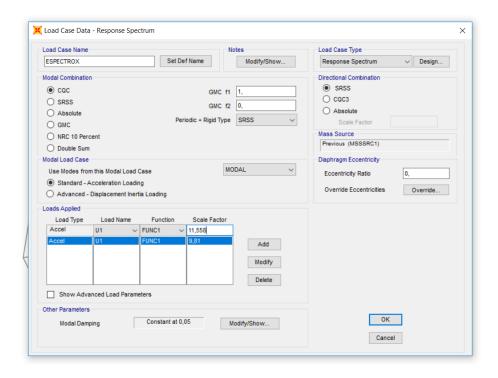


Ilustración 25. Corrección factor en X

Fuente: Diego Lucero

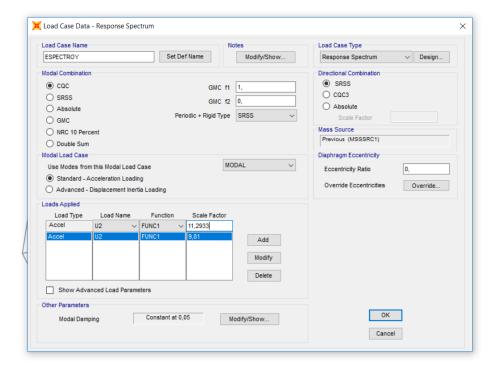


Ilustración 26. Corrección factor en Y

Fuente: Diego Lucero

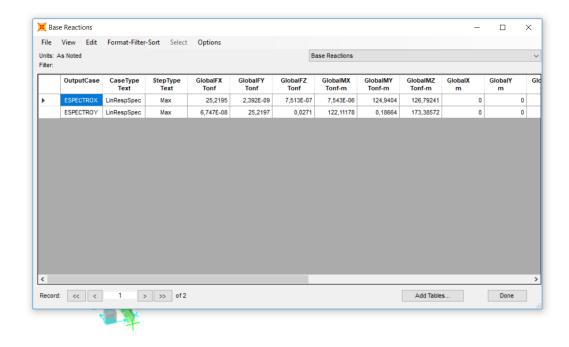


Ilustración 27. Sismo dinámico corregido

Fuente: Diego Lucero

Dichos valores fueron modificados en el patrón de carga de espectro.

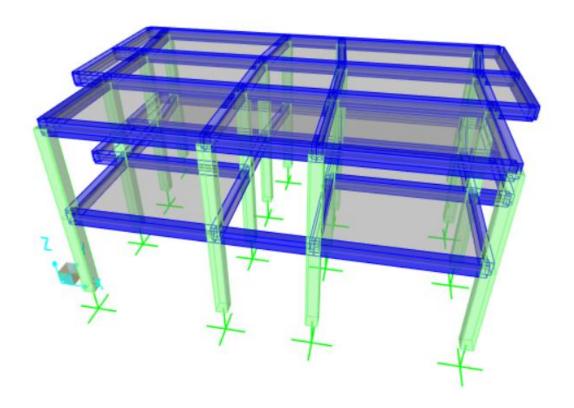


Ilustración 28. Vista 3D de la estructura modelo SAP2000

Fuente: Diego Lucero

3.3. Criterios de Diseño Definitivo Hormigón Armado

A continuación, se muestra la gráfica de SAP2000 donde la estructura pasa todos los requerimientos de diseño como son cuantías longitudinales, transversales, columna fuerte y viga débil.

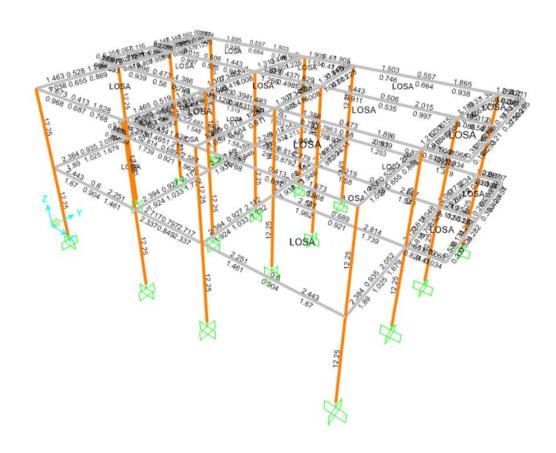


Ilustración 29. Verificación del diseño con la norma

Fuente: Diego Lucero

3.3.1. Periodo de vibración fundamental

El periodo de vibración fue determinado mediante los 2 métodos de la NEC.

En el primer método este valor fue determinado de una manera aproximada en base al coeficiente que depende del tipo de edificio, periodo de vibración y altura máxima de la edificación. Dicho coeficiente fue determinado en la primera parte del proyecto.

$$Ta = 0.2675 s$$

El segundo método consiste en un análisis más profundo en el cual se utiliza propiedades estructurales y características de deformación de elementos resistentes, dicho análisis fue determinado con SAP2000.

$$Ts = 0.3879 s$$

Deformed Shape (MODAL) - Mode 1; T = 0.38797; f = 2.57755

Ilustración 30. Periodo de la estructura

Fuente: Diego Lucero

Dicho valor no difiere mucho del valor calculado por el primer método, ya que es menor al 30% del valor del primer método tal como lo establece la norma en la sección 6.3.3 literal b.

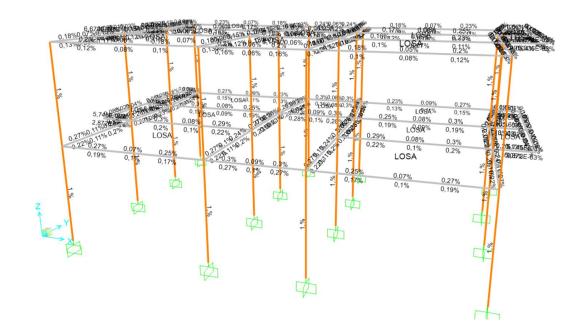


Ilustración 31. Chequeo de diseño

Fuente: Diego Lucero

En la anterior imagen se muestra las cuantías que necesita la estructura como refuerzo longitudinal, en esta se observa que todas están dentro de los rangos permitidos utilizando una cuantía del 1% para todas las columnas y menor al 1% para las vigas.

Para el diseño definitivo siguiendo los criterios de diseño que son modos de vibración, demanda/capacidad de elementos, derivas de piso y conexiones Viga-columna, siendo el parámetro que mando este diseño las conexiones viga-columna.

Columnas de 35*35 cm y para las vigas se utilizaron de 40*25 cm.

3.3.2. Modos de vibración

En la estructura se verificó que los tres primeros modos de vibración son considerados los que mayor impacto generan, el primer modo o periodo fundamental de vibración fue de tipo traslacional, el segundo modo de vibración de igual forma fue de tipo traslacional y el tercer modo fue de tipo torsional.

De esta forma se pudo concluir que la estructura presenta modos de vibración adecuados, que impedirán que al momento de un sismo exista un colapso estructural.

3.3.3. Derivas de piso

Se realizó un chequeo de derivas debido a que están asociadas directamente con el daño estructural. Además, en la NEC sección 6.3.9 se pide que se haga un control de deformaciones, a través del cálculo de las derivas inelásticas máximas de piso. En este caso se realizó un chequeo para el patrón de carga más crítico que viene a ser el sismo en dirección de "x" y "y".

Para el cálculo de derivas se usó las siguientes ecuaciones dadas por la NEC sección 6.3.9:

Deriva elástica:
$$\Delta e = (\Delta 2 - \Delta 1)/he$$

Deriva inelástica:
$$\Delta i = 0.75 * (\Delta e * R) \le 0.02$$
 [13]

El mayor desplazamiento relativo para el sismo en "X" y "Y" se encontró en la esquina del segundo piso. A continuación, se muestra los valores obtenidos en el software SAP2000, los cuales están dados en metros para los desplazamientos para el eje x en los dos pisos. Para conocer el desplazamiento en el segundo piso es igual a la diferencia entre el desplazamiento total y el desplazamiento del primer piso, el mismo procedimiento se realizó para calcular las derivas en el eje y.

Ilustración 32. Desplazamientos Piso 2

Fuente: Diego Lucero

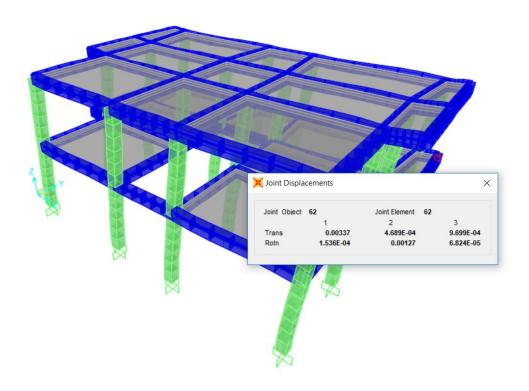


Ilustración 33. Desplazamientos Piso 1

Tabla 20. Derivas de Piso Hormigón Armado

Cálculo de deriva elástica en x

h	2,9000	m	h	2,9000	m
D3-D2	0,0037	m	D2-D1	0,0034	m
D elástica x	0,0013		D elástica x	0,0012	
					_
D inelástica x	0,0078	OK!	D inelástica x	0,0072	OK!
Cálculo	de deriva elásti	ica en y			
		,	_		
h	2,9	m	h	2,9	m
h D3-D2	2,9 0,0028	m m	h D3-D2	2,9 0,0027	m m
	ŕ			,	
	ŕ			,	
D3-D2	0,0028		D3-D2	0,0027	

Donde h es la diferencia de altura que existe entre pisos y D-D es la diferencia de desplazamientos que existe entre el nodo superior e inferior, además se debe saber que el coeficiente de Reducción R es igual a 8.

3.4. Diseño Steel Framing utilizando FRAMECAD

Para el diseño de la estructura en Steel Framing se basó en la Norma Ecuatoriana de la Construcción Capítulo 10: Viviendas de hasta dos pisos con luces de hasta 5 metros. En la que se habla que estos muros deberán diseñarse de acuerdo a los requisitos mínimos establecidos en la norma AISI S200-07.

El primer diseño se realizó en el software FRAMECAD. Para el diseño se utilizó el código de diseño AISI S100-12 LRFD tal como establece la norma NEC y código para sismo se utilizó el IBC 2015. Las cargas aplicadas utilizadas fueron las siguientes:

Tabla 21. Cargas para el entrepiso

Applied	d Loads
Dead Load (kPa)	2.35
Live Load (kPa)	2
Ceiling Load (kPa)	0.107
Snow Load (kPa)	0
Design Point Load (kN)	1.5

Tabla 22. Cargas para la cubierta

Loads				
Roof Live Load (kPa)	0.7			
Ceiling Live Load (kPa)	0			
Roof Dead Load (kPa)	0.12			
Ceiling Dead Load (kPa)	0.14			
Ceiling Services Load (kPa)	0			
Design Point Load (kN)	1.1			
Suspended Ceilings	False			

Además, para continuar con el diseño se utilizó los perfiles que ofrece Kubiec, con sus respectivas propiedades del material de la tabla 6, se usaron los tres tipos de perfiles debido a que para cada sección los esfuerzos sobre estos cambiaban por lo que hacía necesario utilizar secciones de diferente espesor para optimizar costo en la construcción, dichos perfiles de espesor de 0.75 mm y 0.90 mm con un acero estructural de grado 50 con un fy=50 ksi y Fu = 74 ksi y para el perfil de 1.2 mm de espesor un acero de grado estructural de grado 80 con un fy=80 ksi y Fu= 90ksi.

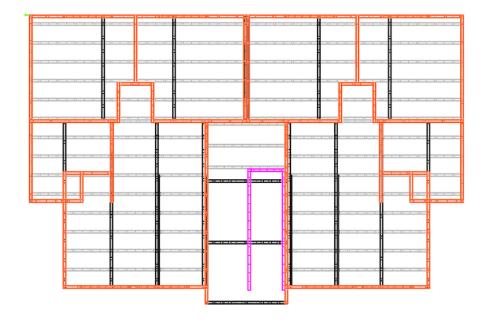


Ilustración 34. Vista en planta software FRAMECAD

Fuente: Mateo Sotomayor

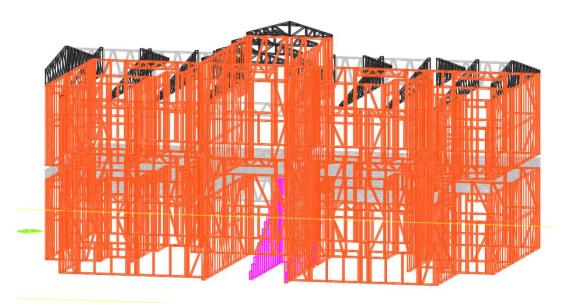


Ilustración 35. Vista 3D software FRAMECAD

Fuente: Mateo Sotomayor

En las imágenes antes mostradas se observa la vista en planta y la vista 3D de la vivienda a diseñar, donde se muestra los perfiles y cómo van a ir distribuidas las secciones en el diseño.

Del análisis se obtuvieron los siguientes resultados:

Bracing Report Summary

Company: Kubiec Dwg Name: Modelo4D

Project: Vivienda 4D AU Detailer: Mateo Sotomayor

Print Date: 28-02-2019

Job Number: Page No: 1

Current Drawing View:	2		
		Earthquake Bracing:	
Design Basics:			
Steel Design Code	AISI S100-12 LRFD	Earthquake Code	IBC 2015
Loading Code	IBC 2015 LRFD	0.2s Spectral Response	100
Wind Speed (m/s)	W21	Structural Response	4
Terrain Factor Kz	1.00	Fundimental Period	0.229 Second
Importance Factor I	1.00	Total Seismic Weight	504.059 kN
Topography Factor Kzt	1.00	Storey Seismic Weight	504.059 kN
		Seismic Storey Shear Force	83.17 kN
		Base Shear Force	83.17 kN
Area Calculation:		Earthquake Load Combination Factor	1
Wall Area X	75.65 m2	Seismic Coefficient	0.165
Wall Area Y	51.04 m2		
Roof Area X	6.62 m2		
Roof Area Y	4.46 m2	Bracing Make Up:	
Total Aerodynamic Area X	82.27 m2	Brace Resistance X	89.1 kN
Total Aerodynamic Area Y	55.5 m2	Brace Resistance Y	88.4 kN
		Sheath Resistance X	0 kN
		Sheath Resistance Y	0 kN
Wind Bracing:		P/Board Resistance X	5.5 kN
Wind Pressure	0.23 kPa	P/Board Resistance Y	14.6 kN
Gust Factor G	0.85	Cladding Resistance X	0 kN
Net Pressure Coefficient along X	1.3	Cladding Resistance Y	0 kN
Net Pressure coefficient along Y	1.3		
Load Combination Factor	1	Bracing Results Wind:	
Wind Force along X	14.092 kN	Total Resistance X	94.6 kN
Wind Force along Y	20.9 kN	Total Resistance Y	103 kN
		Total Demand X	14.1 kN
		Total Demand Y	20.9 kN
		Shortage Wind X	0 kN
		Shortage Wind Y	0 kN
		Province Possille Footbeweley	
		Bracing Results Earthquake: Total Resistance X	94.6 kN
		Total Resistance X	94.6 KN 103 kN
		Total Demand X	83.2 kN
		Total Demand Y	83.2 kN
		Shortage Earthquake X Shortage Earthquake Y	0 kN 0 kN

Ilustración 36. Resultados emitidos por FRAMECAD

Fuente: Mateo Sotomayor

Según los datos obtenidos en el software FRAMECAD la estructura tiene un peso total de 504.059 KN (51.4 Ton), el periodo fundamental de la estructura es 0.229 segundos, el coeficiente sísmico es de 0.165, teniendo un cortante basal estático de 83.17 KN (8.48Ton), En los cálculos de resistencia versus la demanda, se observa como los resultados por viento cumple con un margen bastante amplio debido a que las cargas de viento no son significativas en esta zona, para los resultados de sismo se observa que cumple la demanda respecto a la resistencia tanto para X como Y, la demanda requerida por sismo fue de 83.2 KN (8.48Ton) para X y Y, la resistencia de la estructura fue de 94.6 kN (9.65 Ton) y 103 KN (10.5 Ton) para los ejes X y Y respectivamente. Los parámetros y fórmulas utilizadas por el programa se muestran a continuación en las siguientes imágenes:

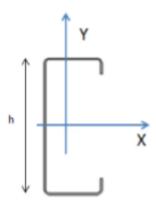
5.3.2.2 IBC 2012 LRFD

LC1	0.42W _u		Serviceability check
LC2	1.0G		Serviceability check
LC3	Max (1.0Q, 1.0S)		Serviceability check
LC4	1.2G + 1.6Q + 0.5W _d		Strength check
LC5	0.9G + 1.0W _u		Strength check
LC6	1.2G + 1.0W _d + 0.5Q		Strength check
LC7	1.2G + 1.6S + 0.5W _d	(if S>0)	Strength check
LC8	1.2G + 1.6 P _e		Strength check

Ilustración 37. Solicitaciones frente a carga

4.7.2 EARTHQUAKE FORCE

Earthquake code can be selected from the command BSET. The earthquake code available are IBC 2009, AS 1170.4-2007, NZS 1170.5-2004 and EN 1998-1:2004.


4.7.2.1 IBC 2009

	Vi	Earthquake Shear Force (kN) at	t level i	V_{i}	=	$V_{\text{base}} \; \frac{\sum_{j=i}^{n} w_{i} H_{i}}{\sum_{j=base}^{n} w_{i} H_{i}}$
Where,	Level i V _{base}	Level considered for the analysi Base Shear Force (kN)	is	V_{base}	=	C_sW_T
vvnere,	$\begin{array}{l} W_T \\ W_i \\ H_i \end{array}$	Total Seismic weight of all level: Total Seismic weight of level i (k Height of top of level i	` '	W_{T}	=	1.0G + 0.2S
	Cs	Seismic coefficient	Cs =	max[mi	n(0.66S1	F1.I ₁ ,0.66SsFs.I ₁)]
Where,					1.100	
	S1	1s Spectral response				
	Ss	0.2s Spectral response				
	P	Fundamental Period		Р	=	0.055 Hauilding 0.75
	H _{building}	Total building height				
	Ru	Structural response				
	I	Importance factor (depend on the	ne Importance le	vel)		
		If Level 1		ı	=	1.0
		If Level 2		I	=	1.0
		If Level 3		I	=	1.25
		If Level 4		1	=	1.5
	Fs	Site coefficient at short period (S	See table below))		
	F1	Site coefficient at 1s period (See				

CLASS	Α	В	C	D	E			
	Fs							
Ss >= 1.25	0.8	1.0	1.2	1.6	2.5			
Ss < 1.25	0.8	1.0	1.2	1.4	1.7			
Ss < 1.0	0.8	1.0	1.1	1.2	1.2			
Ss < 0.75	0.8	1.0	1.0	1.1	0.9			
Ss < 0.5	0.8	1.0	1.0	1.0	0.9			
		-	F 1					
\$1>=0.5	0.8	1.0	1.7	2.4	3.5			
\$1<0.5	0.8	1.0	1.6	2.0	3.2			
S1 < 0.4	0.8	1.0	1.5	1.8	2.8			
S1 < 0.3	0.8	1.0	1.4	1.6	2.4			
S1 < 0.2	0.8	1.0	1.3	1.5	2.4			

Ilustración 38. Fuerza Sísmica

B.1 LC SECTION

B.1.1 TENSION CAPACITY

Where	Tn_{LC}		Tension Section Capacity		Tn_{LC}	=	\emptyset_t min	(T _{na} , T _{nt})
Where,	\boldsymbol{T}_{na}		tensile capacity of member for yie	eld in g					
	Tnb		tensile capacity of member for ru	nture in	T _{na}	= tion	$A_9 F_y$		
	an I		tensile capacity of member for ru	pluie iii	T _{nb}	=	0.83AnF	=	
	Øt	-	capacity reduction factor For AISI S100-07 LRFD For AISI S100-07 LSD For AISI S100-07 ASD		Ø1 Ø1 Ø1	= = =	0.90 0.90 1/Ω ₁	=	1/1.67
E	3.1.2	SHEAR	CAPACITY						
	Vn_{LC}		Shear Section Capacity		$Vn_{\text{\tiny LC}}$	=	Ø _v A _w F	v	
Where,									
	A_w		Area of Web element		Aw	=	h.t		
	Fv		Nominal Shear stress	F _v	=	0.60 F _v	C3.2.1-	1	
			For h/t \leq (5.34E / Fy) ^{0.5} For h/t \leq 1.51 (5.34E / Fy) ^{0.5}	r v	F _v	0.00 Fy	0 60 (5	.34EF _v)0	5/(h/t)
			For h/t > 1.51(5.34E / F _v) ^{0.5}		Fv	=	4.827E		7(101)
Where:			,,						
	h t		Depth of flat portion of web (see Thickness of material	figure)					
	Øv	=	capacity reduction factor For AISI S100-07 LRFD For AISI S100-07 LSD For AISI S100-07 ASD		Øv Øv Øv	= = =	0.95 0.90 1/Ω _v	=	1/1.60

Ilustración 39. Capacidad Sección

```
B.1.3 COMPRESSION CAPACITY
         PnoLC
                              Compression section capacity
                                                                                PnoLC =
                                                                                                    Øc AsylcFy
                              Compression member capacity
                                                                                PnLC
                                                                                                    Ø<sub>c</sub> A<sub>enLC</sub>F<sub>n</sub>
         Pn<sub>LC</sub>
Where,
         AeyLC
                              effective area at yield stress Fy
                              effective area at critical stress Fn
          AenLC
                              Nominal buckling stress
                                        λ₀ ≤ 1.5
                                                                                                    (0.658\lambda_c^2)F_v
                              For
                                        \lambda_c > 1.5
                                                                                F_n
                                                                                                    (0.877/\lambda_c^2)F_y
                              For
Where,
                                                                                                    (F_y/F_e)^{0.5}
                              Slenderness factor
                                                                                λο
                                                                                          =
Where,
         F_e
                              min(F_e, F_{ex})
         F<sub>e</sub>
                              (0.5 / \beta)[(F_{ex} + F_{ez}) - ((F_{ex} + F_{ez})^2 - 4\beta F_{ex}F_{ez})^{0.5}]
         β
                   =
                              1 - (x_0 / r_0)^2
         Fex
                   =
                              \prod^2 E/(\lambda_x)^2
         F_{\alpha y}
                   =
                              \prod^2 E/(\lambda_y)^2
         \textbf{F}_{\text{ez}}
                              (GJ/A_gr_{o1}^2)(1 + \prod^2 EC_w/(GJL_x^2))
                    =
          \lambda_x
                    =
                             L_x / r_x
         \lambda_y
                   =
                             L_y / r_y
         \chi_0
                    =
                              Distance from shear center to centroid
                              Polar radius of gyration
         Γo
                   =
                    =
                              Radius of gyration
         r_{x,y}
         L_{x,y} \\
                   =
                              Buckling length
         G
                              Shear Modulus
         J
                              Saint-Venant torsion constant
         C_w
                              Torsion Warping constant
         Ø.
                              capacity reduction factor
                              For AISI S100-07 LRFD
                                                                                Øc
                                                                                                    0.85
                              For AISI S100-07 LSD
                                                                                Ø٥
                                                                                                    0.80
                              For AISI S100-07 ASD
                                                                                Ø.
                                                                                                    1/Ω.
                                                                                                                        1/1.80
          B.1.4 BENDING CAPACITY
         MnxoLC
                              Bending section capacity
                                                                                MnxoLC
                                                                                                              Ø<sub>bio</sub> S<sub>eLC</sub>F<sub>y</sub>
         MnxLc
                              Bending member capacity
                                                                                MnxLc
                                                                                                              Øbx Scl.cFc
Where,
         S_{eLC}
                              Effective sectional modulus calculated at Fv
          Selc
                              Effective sectional modulus calculated at Fc
         F_c
                              Critical buckling stress
                              For F_e \le 0.56F_y
                                                                                F_c
                              For 0.56Fy < Fe < 2.78Fy
                                                                                                    1.11Fy [1 - (10Fy/36Fe)]
                                                                                Fc
                              For F<sub>e</sub> ≥ 2.78F<sub>y</sub>
                                                                                                     F_y[1/F_e^z]
Where,
                              Elastic buckling stress
                                                                                F<sub>e</sub>
                                                                                                    C_b A_g r_{o1} (F_{ey} F_{ez})^{0.5} / S_f
         Sr
                              full sectional modulus
          Cb
                              Bending Coefficient
                                                                                Cb
                                                                                                    1
                              \prod^2 E / (Lx / r_x)^2
                              \prod^2 E/(Ly / r_y)^2
                              (GJ/A_0r_{o1}^2)(1 + \prod^2 EC_w/(GJL_{x^2}))
         Øtmo
                              capacity reduction factor
                              For AISI S100-07 LRFD
                                                                                                    0.95
                                                                                Øbxo
                              For AISI S100-07 LSD
                                                                                Ø_{bxo}
                                                                                                    0.90
                              For AISI S100-07 ASD
                                                                                Ø_{bm}
                                                                                                    1/\Omega_{toro} =
                                                                                                                        1/1.67
```

Ilustración 40. Capacidad Sección

3.5. Diseño Steel Framing utilizando SAP2000

Debido a las limitaciones del software FRAMECAD, que solo se encarga de realizar un análisis estático, se procedió a realizar este mismo diseño, utilizando las mismas secciones y cargas en el programa SAP2000, para realizar un análisis dinámico de la estructura entre estos las derivas.

Para calcular la carga en las viguetas, se calculó la carga que actúa sobre ellas y como se distribuyen dichas cargas, este procedimiento se realizó para cargas muerta permanente y carga viva.

En la carga muerta se calculó la carga del entrepiso seco, que es el tipo de entrepiso que se va a utilizar.

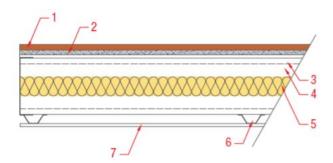


Ilustración 41. Detalle del entrepiso seco

Fuente: Manual "Barbieri" para Steel Framing

Tabla 23. Carga Permanente Entrepiso Seco

	Nombre	Carga (Kg/m2)
1	Baldosa cerámica	28
2	Capa de nivelación	28.5
3	Panel de OSB	7
4	Perfil G	2.5
5	Aislación termoacústica	1.6
6	Perfil omega 12.5*0.5	0.6
7	Panel de yeso 10 mm	7
	Total	75.2

En esta tabla se detalla el peso de cada componente que conforma el entrepiso seco.

Para el cálculo de la carga del panel estructural, se utilizó los valores de la tabla que se detallan en la ilustración del panel estructural:

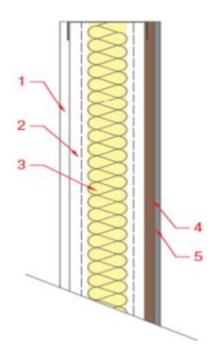


Ilustración 42. Detalle de panel estructural

Fuente: Manual "Barbieri" para Steel Framing

Tabla 24. Carga Permanente Panel Estructural

	Nombre	Carga (Kg/m ²)
1	Panel de yeso 12.5 mm	9
2	Perfil C	1.5
3	Aislación termoacústica	1.6
4	Perfil omega 12.5*0.5	7.0
5	Panel de yeso 10 mm	16
	Total	35.1

Se procedió a sumar las dos cargas antes dichas:

Tabla 25. Carga Permanente Total

Entrepiso Seco	75.2 (Kg/m ²)
Panel Estructural	35.1 (Kg/m ²)
Peso Total	110.3 (Kg/m ²)

Carga permanente de 110.3(Kg/m2) = 0.1103T/m2

Carga viva 0.2T/m2

3.5.1. Carga permanente

En la carga permanente se consideró que va a tener un entrepiso seco, por lo que se calculó la carga del entrepiso con todos sus componentes, además se calculó la carga permanente del panel estructural. Se consideró que va a existir una distribución de cargas sobre las viguetas de manera prismática cuando el área de la losa en cuestión es rectangular, mientras que en un área de losa cuadrada se tiene una distribución de carga triangular.

Se escogió la vigueta más crítica teniendo en ésta una distribución de carga prismática para lo que fue necesario conocer la luz menor (S) y la luz mayor (L).

Distribución Prismática

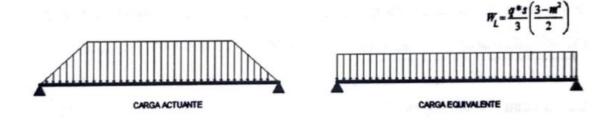


Ilustración 43. Transformación de cargas

Fuente: Ing. Marcelo Guerra

S = 0.6

L=4.7

$$m = \frac{s}{L}$$

$$m = \frac{0.6}{4.7} = 0.128$$

$$WL = \frac{q * s}{3} * \left(\frac{3 - m^2}{2}\right)$$

$$WL = \frac{0.1103 * 0.6}{3} * \left(\frac{3 - 0.128^2}{2}\right)$$

$$WL = 0.0329$$

$$WL = 0.0329 * 2 = 0.0658 T/m$$

Distribución Triangular



Ilustración 44. Transformación de cargas

Fuente: Ing. Marcelo Guerra

$$Ws = \frac{q * s}{3}$$

$$WL = \frac{0.1103 * 0.6}{3}$$

$$WL = 0.02206 T/m$$

$$WL = 0.02206 * 2$$

$$W = 0.04412 T/m$$

3.5.2. Carga Viva

En la carga viva se utilizó la establecida por la NEC para viviendas residenciales, la cual se adjunta en los anexos. Se realizó la distribución de carga para la vigueta más crítica como se muestra a continuación.

Distribución Prismática

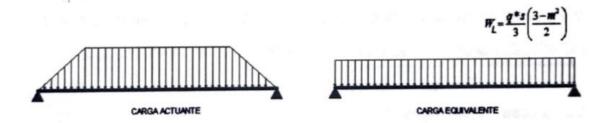


Ilustración 45. Transformación de cargas

Fuente: Ing. Marcelo Guerra

Para esto es necesario conocer la luz menor (S) y la luz mayor (L)

S = 0.6

L=4.7

$$m = \frac{s}{L}$$

$$m = \frac{0.6}{4.7} = 0.128$$

$$WL = \frac{q * s}{3} * \left(\frac{3 - m^2}{2}\right)$$

$$WL = \frac{0.2 * 0.6}{3} * \left(\frac{3 - 0.128^2}{2}\right)$$

$$WL = 0.0596$$

$$WL = 0.119 * 2 = 0.119 T/m$$

Distribución Triangular

Ilustración 46. Transformación de cargas

Fuente: Ing. Marcelo Guerra

$$Ws = \frac{q * s}{3}$$

$$WL = \frac{0.2 * 0.6}{3}$$

$$WL = 0.04 T/m$$

$$WL = 0.04 * 2$$

$$W = 0.08 T/m$$

3.5.3. Cargas Sísmicas

Los datos solicitados para el cálculo del cortante basal fueron el coeficiente de importancia, el espectro de diseño en aceleración, el factor de reducción de resistencia sísmica, los coeficientes de configuración en planta y elevación, dichos datos son obtenidos mediante la NEC como se especifica en las ilustraciones ubicadas en los anexos. Finalmente se necesitó el peso de la estructura cuya información fue proporcionada por el programa.

Tabla 26. Programa Cálculo de Cortante Basal

	Datos dados		
Tipo de suelo	D		
Lugar	MANTA	0,5	VI
Importancia	1		
R	2.5		

Siendo R el factor de reducción de resistencia estructural, en nuestro caso es igual a 2.5 ya que nuestra estructura pertenece a estructuras conformado en frio, aluminio, madera, limitadas a 2 pisos tal como lo establece la NEC en la sección 6.3.4 literal d.

Tabla 27. Programa Cálculo de Cortante Basal

	Datos de tabla		
n	1,8	Costa	
Z	0,5		
Fa	1,12		
Fd	1,11		
Fs	1,4		
Ct	0,073		
Н	5,8	m	
alfa	0,75		

Donde n es la relación de amplificación espectral que depende de la región donde se ubique la estructura y Z que es el factor de zona sísmica que representa la aceleración esperada en roca, Fa, Fd y Fs son factores de amplificación o reducción dinámica de sitio que depende principalmente del tipo de suelo y la zona sísmica, C_t y alfa son constantes que dependen del tipo de sistema estructural y H que es la altura máxima medida desde la base en metros.

Tabla 28. Dataos Obtenidos programa de Cortante Basal

Cálculos		
Тс	0,763 s	
Та	0,273 s	
Sa	1,008 g	
Sa Inelástico	0,403 g	

Donde Tc es el periodo del espectro, Ta es el periodo de la estructura, Sa es el espectro de aceleración, Sa inelástico es el resultado de la división del Sa para el coeficiente R.

Para realizar la gráfica de los espectros inelástico y elástico, se hizo la siguiente tabla de acuerdo a las especificaciones de la NEC, imagen de los anexos. Para el periodo se utilizó un intervalo de 0.2 s en el gráfico.

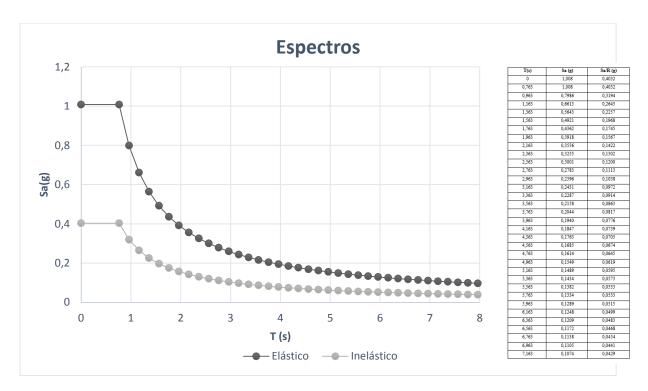


Ilustración 47. Espectros de diseño

Fuente: Diego Lucero



Ilustración 48. Vista Frontal

3.5.4. Vistas de la estructura Diseñada en el Software

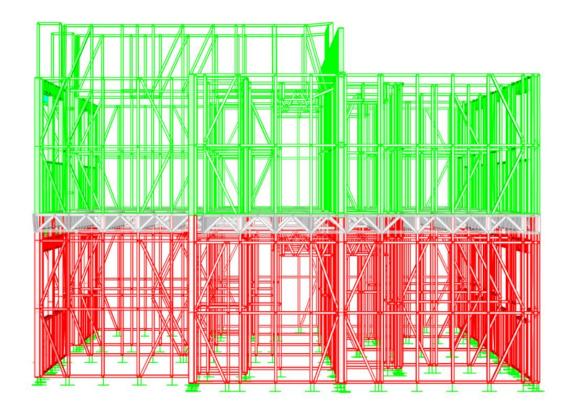


Ilustración 49. Vista Lateral

Fuente: Diego Lucero

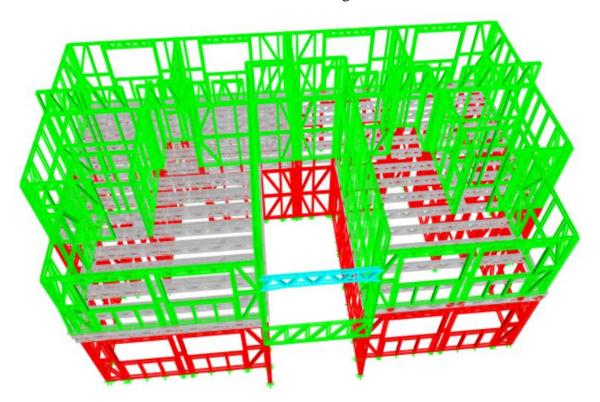


Ilustración 50. Vista 3D

3.5.5. Peso de la estructura

En las siguientes imágenes se muestra el peso de la estructura y peso de la carga permanente con lo que la suma de las dos cargas nos da la carga total de la estructura que incluye la carga muerta de las secciones y la carga permanente estas calculadas de la suma del entrepiso seco y el panel estructural, dicha carga total es de 51.97 Toneladas

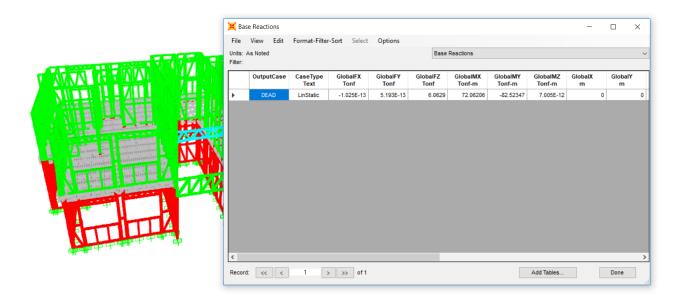


Ilustración 51. Peso de la estructura

96

X Base Reactions File View Edit

Record: << <

Ilustración 52. Peso carga permanente

> >> of 1

Fuente: Diego Lucero

3.5.6. Derivas de Piso

Se realizó un chequeo de derivas debido a que están asociadas directamente con el daño estructural. Además, en la NEC sección 6.3.9 se pide que se haga un control de deformaciones, a través del cálculo de las derivas inelásticas máximas de piso. En este caso se realizó un chequeo para el patrón de carga más crítico que viene a ser el sismo en dirección de ''x'' y ''y''.

Para el cálculo de derivas se usó las siguientes ecuaciones dadas por la NEC sección 6.3.9:

Deriva elástica: $\Delta e = (\Delta 2 - \Delta 1)/he$

Deriva inelástica: $\Delta i = 0.75 * (\Delta e * R) \le 0.02$

El mayor desplazamiento relativo para el sismo en "X" y "Y" se encontró en la esquina del segundo piso.

Tabla 29. Derivas de Piso Steel Framing

Cálculo de deriva elástica en x

h	2.9000	m	h	2.9000	m
D3-D2	0.0031	m	D2-D	0.0010	m
		_		•	
D elástica x	0.0011		D elásti	ca x 0.00035	
D inelástica x	0.002	OK!	D inelást	tica x 0.00065	OK!
Cálculo d	le deriva elásti	ca en y			
,					
h	2.9	m	h	2.9	m
h D3-D2	2.9 0.0047	m m	h D3-D		m m
				0.0005	
D3-D2	0.0047		D3-D	0.0005	

Donde h es la diferencia de altura que existe entre pisos y D-D es la diferencia de desplazamientos que existe entre el nodo superior e inferior, además se debe saber que el coeficiente de Reducción R es igual a 2.5

3.5.7. Periodo de vibración fundamental

El periodo de vibración puede ser determinado mediante dos métodos según la NEC. En el primer método este valor puede ser determinado de una manera aproximada en base al coeficiente que depende del tipo de edificio, periodo de vibración y altura máxima de la edificación. Dicho coeficiente fue determinado en la primera parte del proyecto.

$$Ta = 0.2728$$

El segundo método consiste de un análisis más profundo en el cual se utilizó propiedades estructurales y características de deformación de elementos resistentes, dicho análisis fue determinado con SAP2000.

$$Ts = 0.1608$$

Deformed Shape (MODAL) - Mode 1; T = 0.16084; f = 6.21739

Ilustración 53. Periodo de la estructura

4) VOLUMENES DE OBRA

Para realizar el análisis económico se calculó los volúmenes de obra de los dos sistemas tanto para el sistema tradicional (Hormigón Armado), como para Steel Framing, como se muestra a continuación.

4.1. Volúmenes de Obra Hormigón Armado

Para el cálculo de volumen de hormigón armado se utilizó el tamaño de las secciones de viga y columnas, con lo que se calculó el área de las secciones y esto se multiplicó por las longitudes de los elementos, en la losa se utilizó el área calculada en AutoCAD de los planos arquitectónicos del proyecto y se multiplicó por el espesor.

4.1.1. Hormigón

4.1.1.1. Volumen de hormigón en Vigas

Tabla 30. Volumen de Hormigón en Vigas

Secciones [cm]	Área [m ²]	Longitud Viga [m]	Volumen Vigas [m ³]
25*40	0.1	195.2	19.52

Volumen total en vigas = 19.52[m3]

4.1.1.2. Volumen de hormigón en Columnas

Tabla 31. Volumen de Hormigón en Columnas

Secciones [cm]	Área [m ²]	Altura de pisos [m]	Volumen Columnas [m ³]
35*35	0.1225	2.9	11.4

Volumen total en columnas = 11.4[m3]

4.1.1.3. Volumen de hormigón en Losas

Tabla 32. Volumen de Hormigón en Losas

Piso	Espesor [cm]	Área [m²]	Volumen Losas [m ³]
1	15.42	112	17.27
2	15.42	142.72	22.01
	Volumen Total Losas [m3]		39.28

Volumen total en Losas= 39.28[m3]

4.1.1.4. Cantidad total de hormigón para la estructura

Tabla 33. Volumen Total de Hormigón

Secciones	Volumen [m ³]
Vigas	19.52
Columnas	11.4
Losas	39.28
Volumen Total [m3]	70.2

4.1.2. Acero de Refuerzo

Para el cálculo del acero de refuerzo de las columnas, vigas y losas, se siguió los lineamientos de la guía de diseño para hormigón armado dadas por la NEC, además, se utilizó como referencia la tesis del Ingeniero Gustavo Tapia (2014).

4.1.2.1. Columnas Acero longitudinal

Para el diseño del acero longitudinal se procedió a ver cuál es la cuantía requerida mediante el programa SAP 2000, siendo el 1% para todas las columnas.

Tabla 34. Cuantía de Acero en Columnas (%)

Secciones [cm]	Porcentaje de Acero en columnas
35*35	1%

De acuerdo al área de la sección se calculó la cuantía necesaria en cm²

Tabla 35. Cuantía de Acero en Columnas (cm²)

Secciones [cm]	Área de acero en Columnas [cm²]
35*35	12.25

Conociendo el área necesaria, se procedió a calcular la cantidad de varillas y diámetro requerido para cumplir dicha demanda.

Tabla 36. Varillas Utilizadas en Columnas

Secciones [cm]	Acero en Columnas [cm ²]
35*35	8 Φ14 (12.310 cm ²)

Una vez obtenido el diámetro y cantidad de varillas que vamos a utilizar se verificó que cumpla con los espaciamientos requeridos, ya que de no hacerlo se debería cambiar la configuración del armado.

Espaciamiento=
$$\frac{35-8-(2*1)-(3*1.4)}{2} = 10.4cm \text{ OK}$$

A continuación, se detalla el resumen del peso requerido para acero longitudinal:

Tabla 37. Peso total de Acero Longitudinal en Columnas

Cantidad Varillas	Altura	Total Varillas	Peso [KG]	Peso Total [KG]
128	5.8	64	14.496	927.744

4.1.2.2. Columnas Refuerzo transversal

Para el refuerzo transversal (estribos), se inició calculando la separación requerida en la zona de confinamiento y en la zona de no confinamiento, se realizó dichos cálculos utilizando la siguiente imagen:

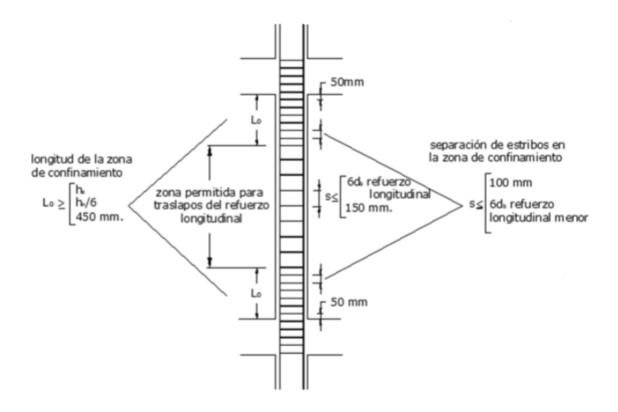


Ilustración 54. Separación de Estribos

Fuente: NEC-SE-DS

Cálculo de longitud Lo (Longitud de la zona de confinamiento)

2) Lo=
$$\frac{h}{6} = \frac{(5000-400)}{6} = 766.6 \, mm$$

3) Lo=450 mm

Se tomó un Lo de 800 mm por temas constructivos.

Separación de estribos en la zona de confinamiento.

1)
$$s = 6*14 = 84 \text{ mm}$$

$$2) s = \frac{h}{4} = \frac{350}{4} = 87.5mm$$

3)
$$s=100+\left(\frac{350-118}{3}\right) = 177.3$$
mm

Para la separación de estribos en zona de confinamiento se tomó de 50mm por temas constructivos.

Separación de estribos fuera de la zona de confinamiento.

1)
$$s = 6*14 = 84 \text{ mm}$$

Por lo que, igual que en la zona de confinamiento se utilizó el mismo espaciamiento de 50 mm.

Adicionalmente a la verificación del cortante por resistencia (fuerzas actuantes), los códigos imponen que debe existir refuerzo transversal mínimo de confinamiento para el cual la NEC establece las siguientes ecuaciones:

$$A_{sh} = 0.3 * \frac{s * bc * f'c}{f_{yt}} * \left[\frac{Ag}{A_{ch}} - 1 \right]$$
 [14]

$$A_{sh} = 0.09 * \frac{s * bc * f'c}{f_{yt}}$$
 [15]

Donde s es el espaciamiento entre estribos en cm, bc es la dimensión de la base del núcleo de concreto de la columna en cm, y Ach es el área confinada del núcleo de concreto en cm², Ag Área bruta del hormigón y f'c el esfuerzo a la compresión del hormigón en kg/cm².

Se procedió a calcular dichas ecuaciones colocando los datos provistos:

$$A_{sh} = 0.3 * \frac{s * bc * f'c}{f_{yt}} * \left[\frac{Ag}{A_{ch}} - 1 \right]$$

$$A_{sh} = 0.3 * \frac{5 * 27 * 210}{4200} * \left[\frac{1225}{729} - 1 \right]$$

$$A_{sh} = 1.38cm2$$

$$A_{sh} = 0.09 * \frac{s * bc * f'c}{f_{yt}}$$

$$A_{sh} = 0.09 * \frac{5 * 27 * 210}{4200}$$

$$A_{sh} = 0.6075 \ cm2$$

Entonces se eligió el mayor:

$$A_{sh} = 1.38cm\ 2$$

Para cumplir esta área de acero para refuerzo transversal se utilizó estribos de Φ10 mm cada 50 mm.

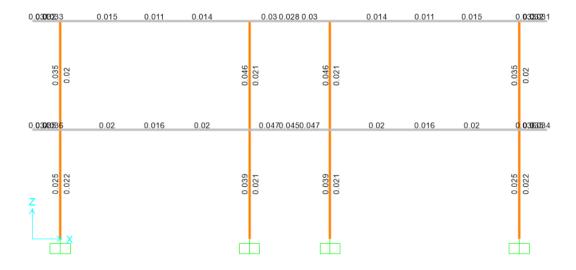


Ilustración 55. Shear Reinforcemnet

Fuente: Diego Lucero

En la ilustración observamos la cantidad de reforzamiento por cortante que necesita la estructura, como se evidenció que el acero requerido por confinamiento es mayor al requerido por cortante que se necesita mediante el programa SAP2000, con lo que se cumple con estos requisitos también.

Tabla 38. Resumen de Estribos para Columnas

# Estribos por Col	# Columnas	Total Estribos
58	32	1856

Tabla 39. Cantidad de Varillas necesarias

Longitud estribo [mm]	Total Estribos	Long Total Estribos [mm]	Long Total Estribos [m]	# Varillas
1150	1856	2134400	2134.4	178

Tabla 40. Peso Total de Estribos para Columnas

Total Varillas	Peso [KG]	Peso Total [KG]
178	7.404	1317.91

4.1.2.3. Vigas Refuerzo a flexión

Para el diseño a flexión se tomó los datos obtenidos del SAP 2000, la siguiente imagen fue para el eje XZ

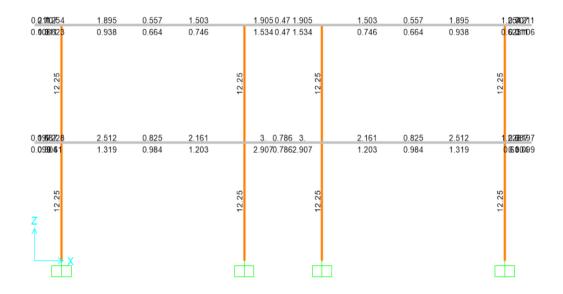


Ilustración 56. Porcentage Rebar XZ

La siguiente imagen para el YZ

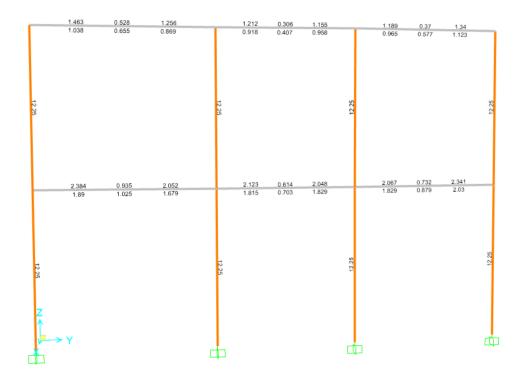


Ilustración 57. Porcentage Rebar YZ

Fuente: Diego Lucero

Para el cálculo del acero a colocar en la estructura primero se colocó el acero mínimo para ambos momentos a lo largo de las vigas y posterior a eso verificar el faltante para llegar a la demanda de acero encontrado por el SAP2000. El acero mínimo se obtuvo a partir de:

Cálculo de peralte efectivo

$$d=40cm-4cm-1cm-\frac{1.6}{2}cm=34.2 cm$$

$$As_{min} = \frac{14}{fy}bd \quad cm2$$
 [16]

Donde b fue el ancho de viga, d el peralte efectivo y se ingresa en kg/cm². Por lo tanto:

$$As_{min} = \frac{14}{fy}bd cm2$$

$$As_{min} = \frac{14}{4200} * 25 * 34.2 cm2$$

$$As_{min} = 2.85cm2$$

$$As > As_{min}$$

$$3cm2 > 2.85cm2$$

Según la sección el acero mínimo y la cantidad de varillas necesarias para cubrir la demanda es:

Tabla 41. Acero Mínimo en Varillas

Secciones de Vigas	As min [cm ²]	Varillas min
40*25	2.85	2 Ø16

Definido el volumen de acero mínimo, el siguiente paso fue colocar el acero faltante (acero necesario menos acero mínimo) con el cual se cumpla la demanda de acero es de 3 cm² dicho valor fue obtenido de las cuantías para refuerzo longitudinal dadas por SAP2000

Tabla 42. Acero faltante en Varillas

Secciones de Vigas	As faltante [cm ²]	Varillas min
40*25	0.15	1 Ø12

Tabla 43. Resumen de acero por Flexión para Vigas

Varillas por viga	Longitud Viga [m]	Long Varillas	# Varillas
4 Ø16	195.2	780.8	70
2 Ø12	6	12	1

Tabla 44. Peso de Varillas por Flexión en Vigas

Ø	# Varillas	Peso [KG]	Peso Total [KG]
16	70	18.936	1325.52
12	1	10.656	10.56
		Total [KG]	1336.08

4.1.2.4. Vigas Refuerzo transversal

Para el cálculo de peso de refuerzo transversal en vigas (estribos), se utilizó la siguiente imagen dada por la NEC, donde debe cumplir los espaciamientos mínimos y las distancias de zonas de confinamiento.

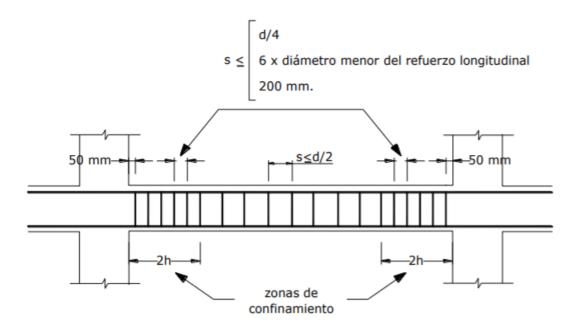


Ilustración 58. Espaciamiento Estribos Vigas

Fuente: NEC-SE-DS

La zona de confinamiento tubo una distancia de 2h medido desde la cara externa de la columna donde se apoyó la viga, el espaciamiento fue menor de: d/4, 6x diámetro menor de varilla longitudinal y menor a 200mm. En el resto de la viga debía ser menor o igual que d/2 y el primer estribo pudo colocarse a 50mm

En la zona de confinamiento

$$s \le \frac{d}{4} = \frac{34.2}{4} = 8.55 \ cm$$

$$s \le 6 * \emptyset L = 6 * 1.2 cm = 7.2 cm$$

$$s \le 20cm$$

Se tomó un espaciamiento de 5 cm por temas constructivos

En la zona de no confinamiento

$$s \le \frac{d}{2} = \frac{34.2}{2} = 17.1cm$$

El espaciamiento para esta zona se tomó de 15 cm por facilidades al momento de la construcción.

Datos obtenidos por SAP 2000 por el refuerzo de cortante

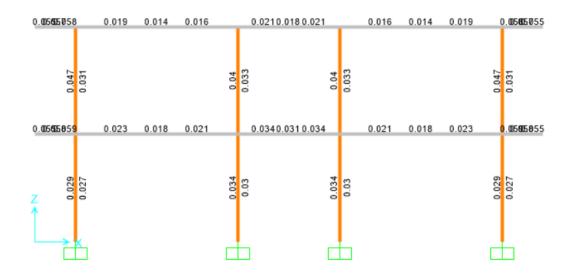


Ilustración 59. Shear Reinforcement

Fuente: Diego Lucero

La resistencia nominal viene dada por la siguiente expresión:

$$V_n = V_c + V_s \tag{16}$$

Donde: V_n es la resistencia nominal a cortante, V_c es la resistencia nominal a cortante proporcionada por el hormigón y V_s la resistencia nominal a cortante proporcionada por el refuerzo a cortante.

En el diseño de pórticos especiales resistentes a momentos de acuerdo al diseño sismo resistente la capacidad de la viga fue también verificada para las fuerzas cortantes considerando los momentos probables que actuaron en los extremos de la viga junto con una carga distribuida. A esta verificación se la conoce como diseño de estribos por capacidad.

Esta verificación es muy importante, ya que se ha observado que existen zonas críticas a cortante que se dan principalmente cerca de los apoyos de vigas y que generan fisuras en el hormigón, aproximadamente a 45 grados de inclinación, que podrían llevar a posibles fallas de tipo frágiles y hasta colapsos de sistema de pisos, lo cual es indeseable e inadmisible y que debe ser controlado adecuadamente (Tapia, 2014).

Fue importante realizar el diseño de los estribos por capacidad, ya que se debe considerar que, al diseñar la viga con el acero de refuerzo longitudinal, se genera momentos en los extremos que producen doble curvatura, y que provocan fuerzas de corte hiperestáticas.

Para hallar los valores de los momentos en los extremos de vigas se usa la siguiente expresión:

$$M_p = A_s * \times * fy * \left(d - \frac{a}{2}\right)$$
 [17]

Siendo $\propto = 1.25$

$$a = \frac{A_s * \times * fy}{0.85 * f'c * b}$$
 [18]

Se usó los datos dados por el SAP2000, donde nos proporcionó el área en cm2, necesaria para el momento más grande de la parte más crítica.

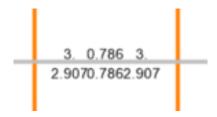


Ilustración 60. Porcentaje Rebar

$$a = \frac{3 * 1.25 * 420}{0.85 * 21 * 25} = 3.53 cm$$

$$a = \frac{2.907 * 1.25 * 420}{0.85 * 21 * 25} = 3.42 \ cm$$

Se calculó el momento plástico:

$$M_p = A_s * \times * fy * \left(d - \frac{a}{2}\right)$$

$$M_p = 3 * 1.25 * 420 * \left(0.342 - \frac{0.0353}{2}\right)$$

$$M_p = 5.21 t * m$$

$$M_p = A_s * \times * fy * \left(d - \frac{a}{2}\right)$$

$$M_p = 2.907 * 1.25 * 420 * \left(0.342 - \frac{0.0342}{2}\right)$$

$$M_p = 5.06 t * m$$

$$V_p = \left(\frac{5.21 + 5.06}{3}\right)$$

$$V_p = 3.42 t$$

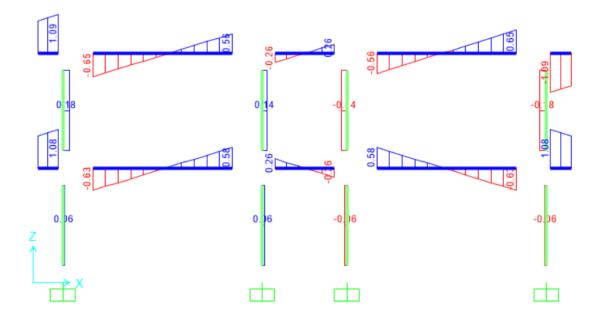


Ilustración 61. Diagrama de Cortante

El cortante por fuerzas gravitacionales se tomó en cuenta el 75% de las cargas muertas mayoradas, se obtuvo mediante el diagrama de cortante por carga muerta proporcionado por ${\rm SAP}\,V_{CM}=0.58$

$$0.75 * (1.2 * 0.58) = 0.522 t$$

$$V_u = V_a + V_p$$

$$V_u = 3.42 + 0.522 = 3.942 t$$

$$V_p \ge 0.5V_u$$

$$3.42 \ge 0.5 * 3.942$$

$$3.42 \ge 1.971$$

Entonces Vc=0

$$A_{v} = \frac{\frac{V_{u}}{\varnothing} - V_{c}}{fy * d}$$
 [19]

$$A_v = \frac{\frac{38657.81}{0.75} - 0}{420 * 0.342}$$

$$A_v = 3.59 * 10 - 4 \text{ m}2$$

$$A_v = 3.59 \text{ cm}2$$

$$\frac{A_v}{S} = 0.718 \ cm2/m$$

Se utilizó para los estribos Ø10

Para las longitudes se consideró que las zonas bordes van a ser iguales a 2/3 de L y en el centro 1/3 de L, donde L es la longitud de la viga, esto se hizo tomando en cuenta los consejos constructivos dados en clases, para tener la zona de confinamiento mayor.

Tabla 45. Resumen de Acero Transversal en Vigas

Sección	Longitud [m]	# Estribos
Borde	130	2600
Centro	65	434
	Total Estribos	3034

Tabla 46. Cantidad de Varillas para Estribos

Longitud estribo	Total	Long Total Estribos	Long Total Estribos	# Varillas
[mm]	Estribos	[mm]	[m]	# Vaiiias
980	3034	2973320	2973.32	248

Tabla 47. Peso Total de Estribos para Vigas

Total Varillas	Peso [KG]	Peso Total [KG]
248	7.404	1836.19

4.1.2.5. Acero para losas

Para el cálculo de acero losas se utilizó el acero mínimo:

$$As_{min} = \frac{14}{fy}bd \quad cm2$$

$$As_{min} = \frac{14}{420}100 * 17.4 \quad cm2$$

$$As_{min} = 5.8 \ cm2$$

Por lo tanto, se coloca 1 \$\Phi10 \text{ mm@12.5cm}\$

Tabla 48. Cantidad de Varillas para losa

Sección	Longitud [m]	# Varillas
losa	13	220

Tabla 49. Peso Total de Acero en Losa

Total Varillas	Peso [KG]	Peso Total [KG]
220	7.404	1628.88

4.1.2.6. Resumen Total Acero de Refuerzo

A continuación, se muestra la siguiente tabla donde se detalla el peso total de acero de refuerzo requerido para la estructura:

Tabla 50. Resumen Total de Acero de Refuerzo

Acero de Refuerzo	Peso [Kg]
Longitudinal Columnas	927.744
Transversal Columnas	1317.91
Longitudinal Vigas	1336.08
Transversal Vigas	1836.19
Losas	1628.88
Peso Total [Kg]	7046.8

4.1.3. Área de Mampostería

En el área de mampostería se realizó paredes interiores y paredes exteriores, se hizo por nivel, debido a que un poco del diseño arquitectónico cambiaba por piso. Para el cálculo se utilizó las distancias de paredes por la altura.

Tabla 51. Mampostería Interior Planta Baja

Mampostería Interior Planta Baja					
	Distancia [m] Altura [m] Área [m2]				
Dormitorio 1	6.05	2.9	17.55		
Dormitorio 2	4.675	2.9	13.56		
Baño	4.25	2.9	12.33		
Corredor	5.01	2.9	14.53		
	·	Total, DPT. 1	57.96		
		Total PB	115.91		

Tabla 52. Mampostería Interior Planta Alta

Mampostería Interior Planta Alta					
	Distancia [m] Altura [m] Área [m2]				
Dormitorio 1	6.05	2.9	17.55		
Dormitorio 2	4.675	2.9	13.56		
Baño	3.9	2.9	11.31		
Corredor	5.01	2.9	14.53		
		Total, DPT. 1	56.94		
		Total PA	113.88		

Se dividió a cada una de las vistas en PC y PV, siendo PC las paredes completas y PV las paredes con ventanas ya que era necesario conocer la altura para poder calcular el área.

Tabla 53. Mampostería Exterior Planta Baja

Mampostería Exterior Planta Baja					
	Distancia [m] Altura [m] Área [m2]				
Frente PC	3.3	2.9	9.57		
Frente PV	6	1.7	10.2		
Posterior PC	8	2.9	23.2		
Posterior PV	6	1.7	10.2		
Lateral PC	17.2	2.9	49.88		
Lateral PV	1.6	2.3	3.68		
-	·	Total PB	106.73		

Tabla 54. Mampostería Exterior Planta Alta

	Mampostería Exterior Planta Alta				
	Distancia [m] Altura [m] Área [m				
Frente PC	3.3	2.9	9.57		
Frente PV	6	1.7	10.2		
Posterior PC	8	2.9	23.2		
Posterior PV	6	1.7	10.2		
Lateral PC	17.8	2.9	51.62		
Lateral PV	1.6	2.3	3.68		
,		Total PA	108.47		

Tabla 55. Resumen Total Mampostería

Mampostería	Área [m²]
Mampostería Interior Planta Baja	115.91
Mampostería Interior Planta Alta	113.88
Mampostería Exterior Planta Baja	106.73
Mampostería Exterior Planta Alta	108.47
Área Total [m2]	445.00

4.1.4. Volumen escaleras

Para calcular el Volumen de las escaleras se calculó mediante el ancho total por la longitud, siendo la longitud diagonal calculada a partir de la altura que es de 2.9 m y la longitud en planta de 5m y por la altura promedio utilizada para este tipo de construcción que es de 0.5m.

Tabla 56. Volumen de Escaleras

Ancho [m]	Longitud [m]	Altura [m]	Volumen [m ³]
1.25	5.78	0.5	3.61

4.2. Volúmenes de Steel Framing

Cantidades de obra en Steel framing

4.2.1. Perfiles Acero Galvanizado

Para los perfiles de acero galvanizado

Tabla 57. Peso Total de Perfil de Acero Galvanizado

Sección	Peso [Kg]	% Incidencia
Cerchas	426.8	7%
Correas	302.9	5%
Entrepiso	1536.1	25%
Grada	287.5	5%
Piso 1	2123.6	34%
Piso 2	1304.7	21%
Tapa Gradas	132	2%
Vigas	103.1	2%
Total [Kg]	6216.7	

Los datos mostrados en la tabla anterior del peso de la estructura fueron obtenidos en el programa FrameCad, que están adjuntos en resúmenes en los anexos, además, se encontró el % de incidencia para ver como cada sección influye en el peso total de la estructura. Como se observó, la zona de mayor incidencia en el peso de la estructura es el piso 1, a pesar de que con el piso 2 tienen la misma geométrica, esto se debe a que al ser un sistema donde las secciones en su mayoría son el soporte de la estructura en el piso se usa secciones con espesor más grande, ya que son el soporte de la estructura superior.

4.2.2. Fibrocemento Paredes Exteriores

Para el cálculo de las paredes exteriores se realizó con la ayuda del AutoCAD, donde se encontró las distancias de cada pared y se las multiplicó por la altura de cada una ellas, en las gradas se utilizó la altura promedio del total.

Tabla 58. Paneles Fibrocemento para exterior en Planta Baja

Paneles Fibrocemento Exterior Planta Baja			
	Distancia [m]	Altura [m]	Área [m2]
Frente PC	3.3	2.9	9.57
Frente PV	6	1.7	10.2
Posterior PC	8	2.9	23.2
Posterior PV	6	1.7	10.2
Lateral PC	17.2	2.9	49.88
Lateral PV	1.6	2.3	3.68
Corredor	10.02	2.9	29.06
Gradas	4.4	1.45	6.38
		Total PB	142.17

Tabla 59. Paneles Fibrocemento para exterior en Planta Alta

Paneles Fibrocemento Exterior Planta Alta			
	Distancia [m]	Altura [m]	Área [m2]
Frente PC	3.3	2.9	9.57
Frente PV	6	1.7	10.2
Posterior PC	8	2.9	23.2
Posterior PV	6	1.7	10.2
Lateral PC	17.8	2.9	51.62
Lateral PV	1.6	2.3	3.68
Corredor	10.02	2.9	29.06
		Total PA	137.53

Tabla 60. Resumen Total Paneles Fibrocemento para Exterior

Paneles Fibrocemento Exterior	Área [m2]
Planta Baja	142.168
Planta Alta	137.528
Total [m2]	279.696

4.2.3. Gypsum paredes internas

Para el cálculo de cantidad de obra se utilizó AutoCAD, para conocer longitudes y se las multiplicó por las alturas, las paredes internas incluyen las paredes de los dormitorios y las paredes perimetrales interiores con excepción de paredes de baños, cocina y área de lavado.

Tabla 61. Gypsum para interiores Dormitorios PB

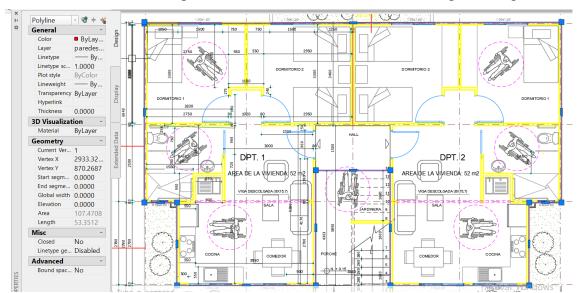
Gypsum Interior Planta Baja			
Distancia [m] Altura [m] Área [m ²]			
Dormitorio 1	6.05	2.9	17.55
Dormitorio 2	4.675	2.9	13.56
	•	Total, DPT. 1	31.10
		Total PB	62.21

Tabla 62. Gypsum para interiores Paredes Perimetrales PB

Gypsum Interior Planta Baja			
	Distancia [m]	Altura [m]	Área [m ²]
Frente PC	1.8	2.9	5.22
Frente PV	3	1.7	5.1
Posterior PC	8	2.9	23.2
Posterior PV	6	1.7	10.2
Lateral PC	6.5	2.9	18.85
Corredor	10.02	2.9	29.06
	1	Total PB	91.63

Tabla 63. Gypsum para interiores Dormitorios PA

Gypsum Interior Planta Alta			
	Distancia [m]	Altura [m]	Área [m²]
Dormitorio 1	6.05	2.9	17.55
Dormitorio 2	4.675	2.9	13.56
		Total, DPT. 3	31.10
		Total PA	62.21


Tabla 64. Gypsum para interiores Paredes Perimetrales PA

Gypsum Interior Planta Alta			
	Distancia [m]	Altura [m]	Área [m ²]
Frente PC	1.8	2.9	5.22
Frente PV	3	1.7	5.1
Posterior PC	8	2.9	23.2
Posterior PV	6	1.7	10.2
Lateral PC	6.5	2.9	18.85
Corredor	10.02	2.9	29.06
	•	Total PA	91.63

Tabla 65. Resumen total de Gypsum para paredes Interiores

Gypsum Interior	Área [m²]
Planta Baja	153.84
Planta Alta	153.84
Total [m ²]	307.68

4.2.4. Entrepiso Seco con placa de fibrocemento

Para el área de entrepiso se utilizó AutoCAD, trazando en los planos arquitectónicos.

Ilustración 62. Planos AutoCAD

Fuente: Diego Lucero

Tabla 66. Área Total para Entrepiso

Área [m ²]	107.5
------------------------	-------

El área de entrepiso seco para la vivienda 4D es de 107.5m².

4.2.5. Fibrocemento para paredes medianeras

Para paredes medianeras se utilizó placa de fibrocemento de 6 mm, como recomendaciones del Ingeniero Sotomayor para que se aislé el ruido de las dos viviendas por piso y además por si llegara a existir un robo no tengan la posibilidad de ingresar a la otra vivienda.

Piso	Longitud [m]	Altura [m]	Área [m²]
Planta Baja	3.46	2.9	10.034
Segundo piso	3.46	2.9	10.034
		Total Área [m²]	20.068

4.2.6. Cielo Raso de Gypsum RH (Zonas Húmedas)

El Gypsum de zonas húmedas para la vivienda se utilizó únicamente en los baños, se calculó el área del baño por piso y se multiplicó por dos ya que son simétricos.

Tabla 67. Resumen de Cielo Raso de Gypsum para Zonas Húmedas

Piso	Área [m ²]
Planta Baja	11
Segundo piso	10
Total Área	21

Planta Baja

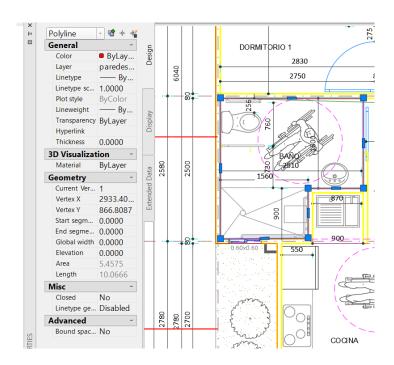


Ilustración 63. Planos AutoCAD

Planta Alta

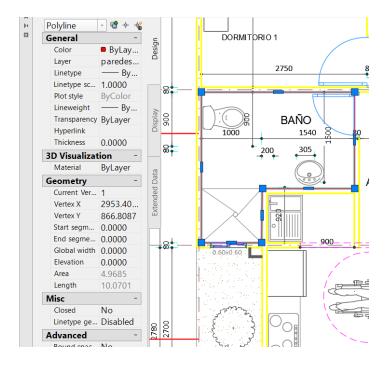


Ilustración 64. Planos AutoCAD

Fuente: Diego Lucero

4.2.7. Cielo Raso de Gypsum

El cielo raso con Gypsum se utilizó para los dos pisos de la vivienda con excepción del área de los baños y para el primer piso en la zona del tapa gradas que es una zona descubierta.

Tabla 68. Resumen Área de Cielo Raso de Gypsum

Piso	Área [m ²]
Planta Baja	91
Segundo piso	104
Total Área	195

Planta Baja

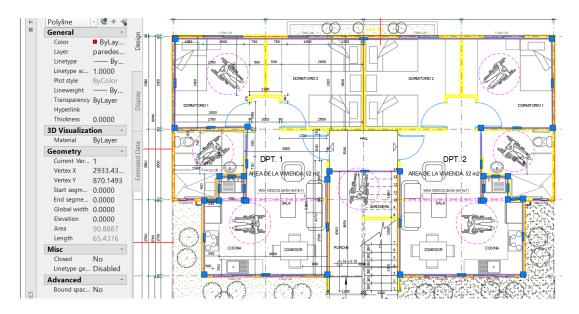


Ilustración 65. Planos AutoCAD

Fuente: Diego Lucero

Planta Alta

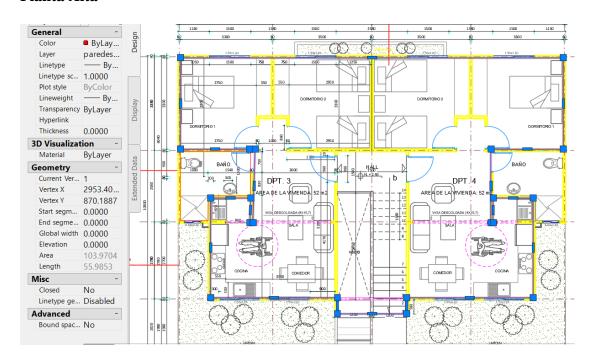


Ilustración 66. Planos AutoCAD

4.2.8. Placa de fibrocemento recubierto con protección hidrófuga

La placa de fibrocemento con protección hidrófuga para paredes se utilizó para los baños, zona de lavado y cocina. En los baños se utilizó en la pared completa y en zona de lavado y cocina se descontó la altura de los mesones.

Tabla 69. Resumen de Placa de fibrocemento con protección hidrófuga

Piso	Longitud [m]	Altura [m]	Área [m²]
Planta Baja Baño	10	2.7	27
Planta Baja Cocina	8	1.8	14.4
Segundo piso Baño	10	2.7	27
Segundo piso Cocina	8.3	1.8	15
		Total Área [m²]	83.4

Planta baja

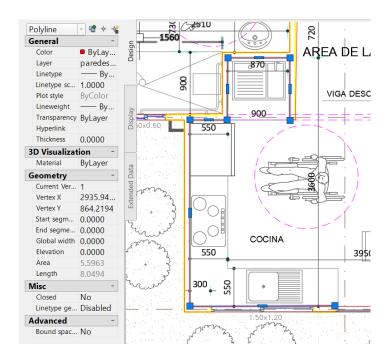


Ilustración 67. Planos AutoCAD

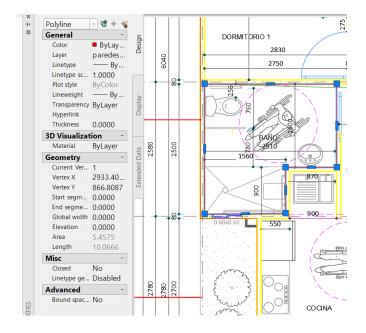


Ilustración 68. Planos AutoCAD

Planta Alta

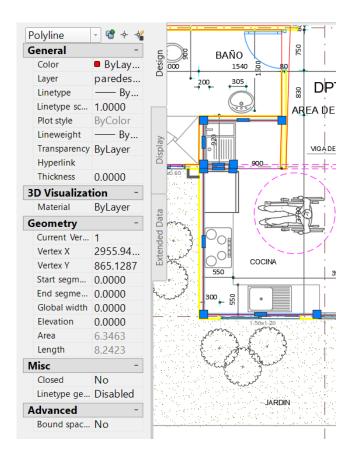


Ilustración 69. Planos AutoCAD

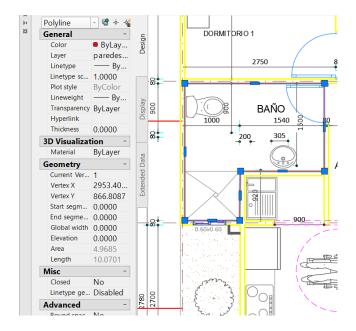


Ilustración 70. Planos AutoCAD

4.2.9. Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor

Para la cubierta se calculó las longitudes de los perímetros debido a que es una cubierta con pendientes a dos aguas, además cuenta con un tapa gradas que se encuentra en la parte de la mitad de la estructura y a una altura diferente que el resto de la cubierta.

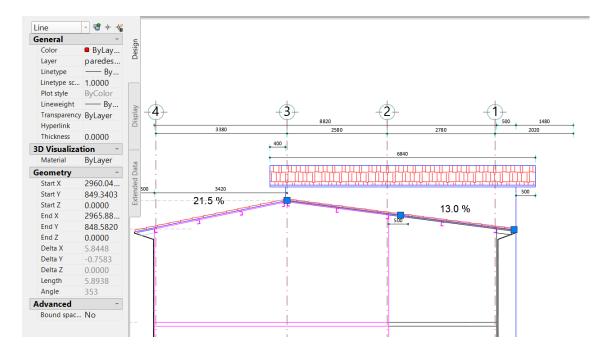


Ilustración 71. Planos AutoCAD

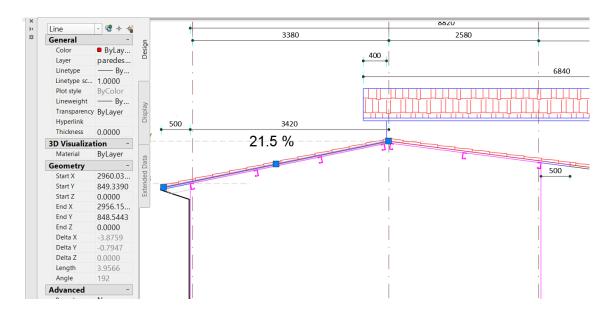


Ilustración 72. Planos AutoCAD

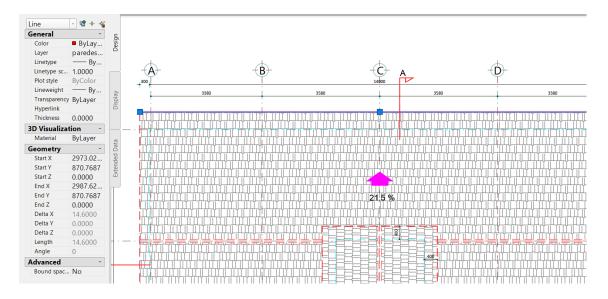


Ilustración 73. Planos AutoCAD

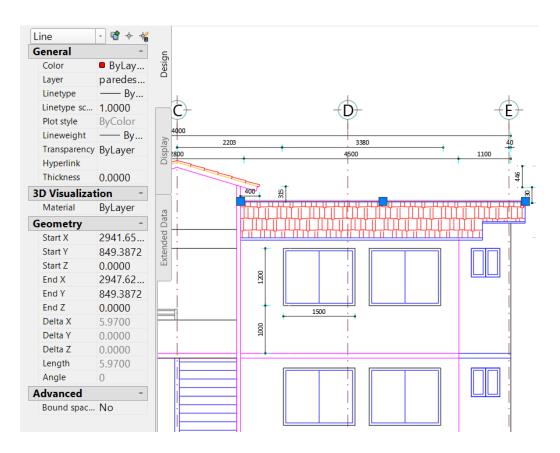


Ilustración 74. Planos AutoCAD

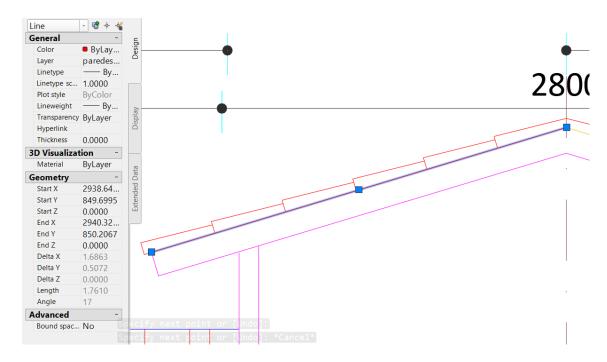


Ilustración 75. Planos AutoCAD

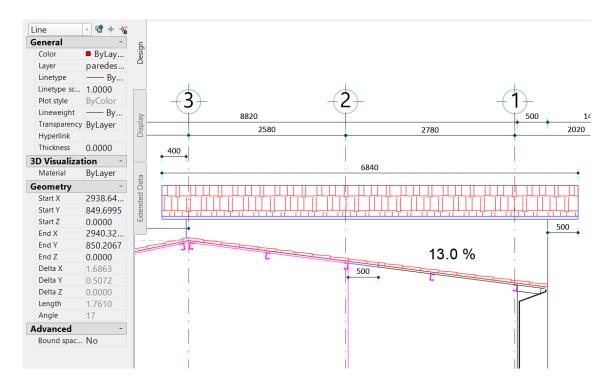


Ilustración 76. Planos AutoCAD

Tabla 70. Resumen Total en Área de Cubierta

Sección	Ancho[m]	Largo [m]	Área [m ²]
Frente	12	5.9	60.8
Posterior	14.6	3.96	57.82
Medio	3.52	6.84	24.1
		Total Área	142.72

5) ANÁLISIS COMPARATIVO GENERAL

5.1. Peso de la Estructura

Un factor importante para la construcción de viviendas es el peso de la estructura, porque de esto depende el tamaño de las secciones, cimentaciones, columnas y vigas con lo que se abarataría costos ya que se optimiza los materiales. Para el peso de las viviendas se consideró las cargas muertas que son la carga de estructura más la carga permanente de los acabados. A continuación, se muestra el peso en toneladas de los dos sistemas constructivos:

Tabla 71. Comparación de Pesos de los Sistemas Constructivos

Sistema	Peso (Ton)
Hormigón Armado	200.18
Steel Framing	51.4

Ilustración 77. Comparación de Pesos de los Sistemas Constructivos
Fuente: Diego Lucero

Como se evidencia el peso de la vivienda en Steel Framing corresponde al 25% de la vivienda Tradicional.

5.2. Cortante Basal

Otro factor decisivo en la construcción de viviendas es el cortante basal, porque está directamente ligado con el peso, es decir, a menor peso menor cortante basal, en otras palabras, la estructura de menor cortante basal tendría menor impacto frente a un sismo. A continuación, se muestra el cortante basal en toneladas de los dos sistemas constructivos:

Tabla 72. Comparación de Cortante Basal de los Sistemas Constructivos

Sistema	Cortante Basal (Ton)
Hormigón Armado	25.22
Steel Framing	8.34

Ilustración 78. Comparación de Cortante Basal de los Sistemas Constructivos

Como se muestra en la gráfica, el cortante basal del sistema Steel Framing corresponde al 33% del cortante basal del sistema tradicional.

5.3. Análisis de Rendimientos

La medición de los rendimientos es muy importante, ya que ayuda a cuantificar el desempeño del recurso humano y para ello se debe tomar en cuenta varios factores que influyen en el desempeño laboral de cada trabajador como son el lugar de trabajo, el clima, la remuneración salarial, las herramientas que disponga, el tipo de trabajo y el material utilizado.

La metodología para medir los rendimientos sigue una serie de pasos de fácil aplicación, pero, requiere estar lo más ajustada a la realidad y tener precisión, pues dentro de la construcción los rendimientos juegan un papel importante ya que se debe cumplir con contratos y trabajos de otras personas, por eso debe realizarse de forma responsable, precisa y justa posible. (Montero, 2010)

Para la obtención de rendimientos en el sistema tradicional se hizo basándose en los rendimientos de hormigón armado de varios autores y para el rendimiento del sistema Steel Framing se basó en datos dados por la empresa Kubiec.

La duración se calculó en función de los rendimientos determinados para cada rubro y están dadas por la siguiente ecuación.

Duración = Rendimiento* Cantidad de Obra

Tabla 73. Duración de la Construcción en Hormigón Armado

	HORMIGON ARMADO					
RUBRO	DESCRIPCION DEL RUBRO	UNIDAD	CANTIDAD	RENDIMIENTO	DURACION (DIAS)	
1.1	Hormigón Columnas f´c 210 kg/cm²	m ³	11.4	0.32	3.65	
1.2	Hormigón en vigas f'c 210 kg/cm ²	m ³	19.52	0.32	6.25	
1.3	Hormigón en losas f'c 210 kg/cm ²	m ³	39.28	0.32	12.57	
1.4	Acero de Refuerzo fy=4200 kg/cm ²	Kg	7048.8	0.002	14.10	
1.5	Bloque de Alivianamiento 15*20*40 cm, mortero 1:6 e=2.5cm	m ²	445	0.0025	1.11	
1.6	Escalera de Hormigón Armado f´c 210 kg/cm²	m ³	3.61	1	3.61	
	Espera para Desencofrado	Días	7	2	14	
			Duración Total		55.28	

Se obtuvo un tiempo de 55.28 días aproximadamente 56 días de construcción, en otras palabras, dos meses para llegar hasta obra gris.

Tabla 74. Duración de la Construcción en Steel Framing

	STEEL FRAMING					
RUBRO	DESCRIPCION DEL RUBRO	UNIDAD	CANTIDAD	RENDIMIENTO	DURACION (DIAS)	
2.1	Perfil G galvanizado para Steel Frame 89*39*41*11mm	Kg	6216.7	0.0011	6.84	
2.2	Placa de fibrocemento paredes exteriores de 10mm de espesor	m^2	279.696	0.03	8.39	
2.3	Placa de yeso Estándar para paredes interiores de 12.7mm(Incluye tratamiento de juntas, lana de vidrio)	m^2	307.68	0.03	9.23	
2.4	Entrepiso Seco con placa de fibrocemento de 20mm	m^2	107.5	0.03	3.23	
2.5	Placa de fibrocemento paredes medianeras de 6mm de espesor	m^2	20.068	0.03	0.60	
2.6	Cielo Raso de Gypsum RH (Zonas Húmedas)	m^2	21	0.028	0.59	
2.7	Placa de fibrocemento recubierto con protección hidrófuga de 6mm de espesor	m^2	83.4	0.03	2.50	
2.8	Cielo Raso de Gypsum	m^2	195	0.028	5.46	
2.9	Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor	m^2	142.72	0.014	2.00	
	·	_	Duració	n (Días)	38.83	

Se calculó un tiempo de duración de 38.83 días aproximadamente 39 días de construcción, es decir, en otras palabras, un mes y medio para llegar hasta obra gris.

A continuación, tenemos la comparativa de tiempo de duración en días de construcción de los dos sistemas:

Tabla 75. Comparación de Duración de los Sistemas Constructivos

Sistema	Duración (Días)
Hormigón Armado	56
Steel Framing	39



Ilustración 79. Comparación de Duración de los Sistemas Constructivos
Fuente: Diego Lucero

Existe una diferencia de 17 días entre ambos sistemas, correspondiendo a una reducción del 18% del tiempo utilizando el sistema Steel Framing, cabe recalcar que este valor puede variar considerando que son datos aproximados, que se pueden ver afectados por distintas variables como son el clima, materiales utilizados, herramientas que dispongan entre otros.

5.4. Cálculo del VAE

Tabla 76. Porcentaje de Participación Ecuatoriano Mínimo HA

	HORMIGÓN ARMADO						
RUBRO	DESCRIPCION DEL RUBRO	PRECIO GLOBAL DEL RUBRO	PESO RELATIVO DEL RUBRO	AGREGADO ECUATORIANO DEL RUBRO (%)	AGREGADO ECUATORIANO PONDERADO (%)		
1.1	Hormigón Columnas f´c 210 kg/cm²	\$ 1,505	5.26%	100%	5.26%		
1.2	Hormigón en vigas f´c 210 kg/cm²	\$ 2,506	8.76%	100%	8.76%		
1.3	Hormigón en losas f´c 210 kg/cm ²	\$ 6,021	21.06%	100%	21.06%		
1.4	Acero de Refuerzo fy=4200 kg/cm ²	\$ 11,701	40.92%	88%	36.01%		
1.5	Bloque de Alivianamiento 15*20*40 cm, mortero 1:6 e=2.5cm	\$ 5,353	18.72%	100%	18.72%		
1.6	Escalera de Hormigón Armado f´c 210 kg/cm ²	\$ 1,509	5.28%	84%	4.43%		
	COSTO TOTAL	\$ 28,594	100.00%		94.25%		

Tabla 77. Porcentaje de Participación Ecuatoriano Mínimo SF

		STE	EL FRAMING		
RUBRO	DESCRIPCION DEL RUBRO	PRECIO GLOBAL DEL RUBRO	PESO RELATIVO DEL RUBRO	AGREGADO ECUATORIANO DEL RUBRO (%)	AGREGADO ECUATORIANO PONDERADO (%)
2.1	Perfil G galvanizado para Steel Frame 89*39*41*11mm	\$ 11,998	46.95%	84%	39.44%
2.2	Placa de fibrocemento paredes exteriores de 10mm de espesor	\$ 3,393	13.28%	88%	11.68%
2.3	Placa de yeso Estándar para paredes interiores de 12.7mm (Incluye tratamiento de juntas, lana de vidrio)	\$ 2,480	9.70%	92%	8.93%
2.4	Entrepiso Seco con placa de fibrocemento de 20mm	\$ 2,397	9.38%	86%	8.07%
2.5	Placa de fibrocemento paredes medianeras de 6mm de espesor	\$ 184	0.72%	89%	0.64%
2.6	Cielo Raso de Gypsum RH (Zonas Húmedas)	\$ 150	0.59%	92%	0.54%
2.7	Placa de fibrocemento recubierto con protección hidrófuga de 6mm de espesor	\$ 1,126	4.41%	87%	3.83%
2.8	Cielo Raso de Gypsum	\$ 1,256	4.91%	92%	4.52%
2.9	Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor	\$ 2,572	10.06%	88%	8.86%
	COSTO TOTAL	\$ 25,556	100%		86.51%

La desagregación tecnológica del proyecto se la realizó para cada uno de los rubros, en este análisis se pudo observar el porcentaje de participación ecuatoriano en el proyecto, los mismos que fueron:

- En hormigón armado 94.25%
- En Steel framing 86.51%

Como se observó, el de mayor Valor Agregado Ecuatoriano Ponderado es el de hormigón Armado, debido a que la mayoría de la materia prima es ecuatoriana, como son el cemento y los agregados, por el contrario del Steel framing, se importa la materia prima como es el acero galvanizado y viene en forma de bobinas a el Ecuador, pero para la realización del material terminado se utiliza producción ecuatoriana por lo que en consecuencia aumenta el Valor Agregado Ecuatoriano., dando así un porcentaje alto en la utilización del Sistema Steel Framing para viviendas.

6) ANÁLISIS ECONÓMICO

Para los precios de los componentes: equipos, mano de obra, materiales y transporte se consideró la información dada por la Cámara de la Industria de Construcción (CAMICON).

6.1. Presupuesto con Sistema Tradicional (Hormigón Armado)

El presupuesto para la vivienda 4D en Hormigón armado se realizó hasta llegar a obra gris, la cantidad de material utilizado para cada rubro se encuentra descrita en los volúmenes de obra calculados anteriormente, los precios unitarios se muestran en los APUs, adjuntos en los anexos.

Para los APUs de la vivienda de hormigón armado, se tomó en cuenta los costos referenciales dados por la Revista de la Cámara de la Industria de la Construcción CAMICON con fecha de octubre de 2018, donde se consideró los materiales, mano de obra y equipo. Para la mano de obra se tomó en cuenta el costo horario en jornada diurna para las diferentes estructuras ocupaciones y para equipos se consideró herramientas menores las cuales corresponden al 5% del costo total de mano de obra.

A continuación, se muestra el presupuesto detallado de los rubros de la vivienda en hormigón armado:

Tabla 78. Presupuesto Hormigón Armado

HORMIGON ARMADO					
RUBRO	DESCRIPCION DEL RUBRO	CANTIDAD	UNIDAD	PRECIO UNITARIO DEL RUBRO	PRECIO GLOBAL DEL RUBRO
1.1	Hormigón Columnas f´c 210 kg/cm²	11.4	m^3	132.01	\$ 1,505
1.2	Hormigón en vigas f'c 210 kg/cm ²	19.52	m^3	128.37	\$ 2,506
1.3	Hormigón en losas f'c 210 kg/cm ²	39.28	m ³	153.28	\$ 6,021
1.4	Acero de Refuerzo fy=4200 kg/cm ²	7048.8	Kg	1.66	\$ 11,701
1.5	Bloque de Alivianamiento 15*20*40 cm, mortero 1:6 e=2.5cm	445	m ²	12.03	\$ 5,353
1.6	Escalera de Hormigón Armado f´c 210 kg/cm²	3.61	m ³	417.88	\$ 1,509
		Monto Total del Proyecto (\$)			\$ 28,594

Considerando los valores de hormigón en columnas, losas y vigas con una resistencia a compresión de 210 kg/cm2, acero de refuerzo fy=4200 kg/cm² con mampostería de bloque de alivianamiento 15*20*40 cm, mortero de 1:6, incluyendo el enlucido de 2.5cm de espesor y la escalera de hormigón armado f´c 210 kg/cm², obtuvimos un costo total de 28.594 dólares equivalente a 137.47 dólares por metro cuadrado de área útil.

6.2. Presupuesto con Sistema Steel Framing

El presupuesto para la vivienda 4D en Steel Framing se realizó de igual forma hasta llegar a obra gris, la cantidad de material utilizado para cada rubro se encuentra descrita en los volúmenes de obra calculados anteriormente, los precios unitarios se muestran en los APUs, adjuntos en los anexos.

Para los APUs de la vivienda, se tomó en cuenta las costos y rendimientos dados por la empresa Kubiec, donde se consideró los materiales, mano de obra y equipo. Para la mano de obra se tomó en cuenta el costo horario en jornada diurna para las diferentes estructuras ocupaciones y para equipos se consideró herramientas menores las cuales corresponden al 5% del costo total de mano de obra.

En la siguiente tabla se muestra detallado los rubros para la construcción de la vivienda con el sistema Steel Framing:

Tabla 79. Presupuesto Steel Framing

	STEE	L FRAMING			
RUBRO	DESCRIPCION DEL RUBRO	CANTIDAD	UNIDAD	PRECIO UNITARIO DEL RUBRO	PRECIO GLOBAL DEL RUBRO
2.1	Perfil G galvanizado para Steel Frame 89*39*41*11mm	6216.7	Kg	1.93	\$ 11,998
2.2	Placa de fibrocemento paredes exteriores de 10mm de espesor	279.696	m^2	12.13	\$ 3,393
2.3	Placa de yeso Estándar para paredes interiores de 12.7mm(Incluye tratamiento de juntas, lana de vidrio)	307.68	m ²	8.06	\$ 2,480
2.4	Entrepiso Seco con placa de fibrocemento de 20mm	107.5	m^2	22.3	\$ 2,397
2.5	Placa de fibrocemento paredes medianeras de 6mm de espesor	20.068	m^2	9.18	\$ 184
2.6	Cielo Raso de Gypsum RH (Zonas Húmedas)	21	m^2	7.16	\$ 150
2.7	Placa de fibrocemento recubierto con protección hidrófuga de 6mm de espesor	83.4	m^2	13.5	\$ 1,126
2.8	Cielo Raso de Gypsum	195	m^2	6.44	\$ 1,256
2.9	Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor	142.72	m ²	18.02	\$ 2,572
			Monto Total	del Proyecto (\$)	\$ 25,556

Considerando los valores de perfilería G de acero galvanizado para Steel Frame 89*39*41*11mm, placas de fibrocemento para paredes exteriores de 10mm de espesor, placas de yeso estándar para paredes interiores de 12.7mm, en donde está incluido el tratamiento de juntas y el recubrimiento aislante (lana de vidrio), además, entrepiso seco con placa de fibrocemento de 20mm incluye recubrimiento aislante (lana de vidrio) y membrana niveladora, también placas de fibrocemento para paredes medianeras de 6mm de espesor, cielo raso de Gypsum RH para zonas húmedas (baños), placas de fibrocemento recubierto con protección hidrófuga de 6mm de espesor, cielo raso de Gypsum normal (sala, comedor, cocina, dormitorios y pasillos), cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor formada por una cara metálica de lámina lisa de acero, acabado prepintado terracota, de espesor exterior 0,3 mm con aislante de poliuretano de densidad media 40 kg/m³ y una capa de acero prepintado blanco E=0.40mm en la parte inferior, montadas en posición inclinada, con sistema de fijación de perno visto. Se obtuvo un costo total de 25.556 dólares equivalente a 122.87 dólares por metro cuadrado en área útil.

6.3. Análisis Comparativo Sistema Steel Framing vs Hormigón

Armado

Siendo uno de los factores más importantes el factor económico, al momento de elegir qué sistema utilizar para la construcción de viviendas, se realizó una comparativa económica entre el sistema tradicional (Hormigón Armado) y Steel Framing para la vivienda 4d de interés social. Se analizó solamente los rubros representativos de estructura. En el caso de sistema tradicional se consideró el hormigón de columnas, vigas y losas, acero de refuerzo, mampostería en bloque hasta el enlucido y las gradas. En el sistema Steel Framing se consideró los perfiles de acero galvanizado, los paneles estructurales en Gypsum y Fibrocemento con aislamiento, además el entrepiso seco.

Luego de haber calculado el costo total de la estructura hasta tenerla en obra gris para los dos sistemas, se muestra a continuación la tabla de costos, donde se muestra la información antes mencionada:

Tabla 80. Costo total vivienda en Obra gris

Sistema	Costo (\$)
Hormigón Armado	28594
Steel Framing	25556

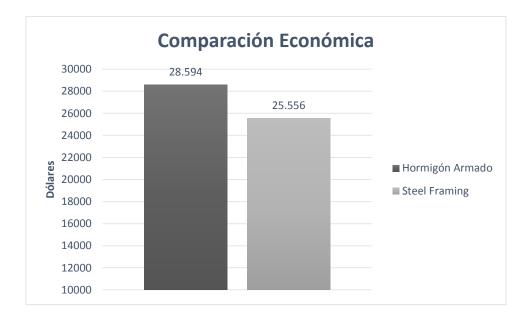


Ilustración 80. Comparación Económica

Donde el sistema de hormigón Armado fue más costoso, teniendo una diferencia de 3038\$ correspondiendo a un 10.63%, éste valor es muy significativo en una construcción de este tipo, ya que permitiría que se incremente las utilidades del constructor o que las viviendas tengan un valor menor, cabe recalcar que otro de los beneficios sería el tiempo de construcción que también tendría impacto económico en la construcción de las viviendas, pero que no fue analizado en esta investigación

6.3.1. Costo por metro cuadrado

Para calcular el costo por metro cuadrado de la vivienda en obra gris, se hizo la división entre el costo total sobre el área útil de la construcción. Siendo el área útil de 208m2.

Tabla 81. Costo por metro Cuadrado

Sistema	Costo m ²
Hormigón Armado	137.47
Steel Framing	122.87

Ilustración 81. Comparación Económica por m²

Mediante la tabla y la ilustración podemos observar que es más costoso el metro cuadrado en hormigón armado que el sistema Steel Framing para la construcción de la vivienda 4D, obteniendo un ahorro de 14,60\$ por metro cuadrado.

7) CONCLUSIONES

Después de realizar los diseños estructurales de los sistemas constructivos en Hormigón Armado y en Steel Framing, podemos concluir que el tipo de vivienda Steel Framing ofrece un mejor tipo de aportaciones si se desea reducir costos y tiempo en la construcción de viviendas denominadas 4D del plan estratégico Casa Para Todos del Ecuador.

Como se observó en los resultados obtenidos, se pudo notar la gran diferencia de peso que existió del uno en relación con el otro, siendo la estructura realizada en Kubiframe el 25% del peso de la estructura de hormigón tradicional, con esto se pudo reducir el tamaño de las secciones de las cimentaciones logrando abaratar costos, además el peso es directamente proporcional a la cortante basal, con lo que, teniendo un menor peso se va a reducir la carga sísmica y por ende se va a tener un menor impacto durante un sismo.

Además, según lo investigado se puede observar que este sistema tiene gran viabilidad en otros países como Australia donde este tipo de sistemas de construcción viene siendo utilizado por varios años y dentro de Latinoamérica, en Chile se empezó a utilizar después del terremoto del 2010, en Ecuador este sistema aún no tiene gran acogida, por falta de investigación y conocimiento por parte de los constructores.

Según las derivas calculadas para el sistema constructivo Steel Framing se puede notar que son muy pequeñas, con lo que se pudo evidenciar, que un evento sísmico no afectaría en gran medida a una estructura de este tipo, ya que estas tienen relación con el daño estructural de la vivienda. Por otra parte, se ha investigado que uno de los problemas para este sistema son los vientos, pero el Ecuador al tratarse de un país donde

la aceleración del viento se mantiene en los rangos normales no se vería afectado por estos problemas.

El sistema Steel Framing se puede integrar a construcciones ya existentes, como remodelaciones, ampliaciones o paredes interiores ya que pueden ser más simples, rápidas y limpias, además se puede tener la seguridad de que su durabilidad va a ser prolongada.

En el análisis económico se encontró que la diferencia de costo de un sistema constructivo con otro es del 10.63%, lo cual es un porcentaje bastante grande debido a que el coste es hasta obra gris, con lo que la diferencia del costo de los dos sistemas podría variar con los acabados. Al tratarse el proyecto de una vivienda de interés social, la reducción de costo es bastante significativa, ya que se lograría que las viviendas sean de menor valor y con esto sean más accesibles.

Dentro de lo que es la limpieza tiene también grandes beneficios, ya que no produce escombros como en el sistema tradicional, además es muy respetuoso con el medio ambiente, ya que el uso de agua es mínimo y no usa materiales como cemento que emiten una gran cantidad de CO² en su producción, además el acero galvanizado usado en la estructura es totalmente reciclado y puede ser reutilizado.

Otra de las grandes ventajas de este sistema constructivo es el tiempo de construcción, ya que puede resultar hasta 3 veces más rápido que con el sistema tradicional, siendo un factor determinante para la toma de decisiones, ya que esto representa cumplimiento de cronogramas de construcción con lo que también se podría tener un mayor ahorro dentro de la construcción.

8) BIBLIOGRAFÍA

- Ávila, I., & Oviedo, M. (2007). *Hormigón Armado Aplicado a Estructuras Navales*.

 Obtenido de
 https://wiki.ead.pucv.cl/images/d/df/Construcci%C3%B3n_y_Estructura_N%C3
 %A1utica_1_2007_HORMIG%C3%93N.pdf
- Bonifaz, H., & Haro, J. (2017). Tipos de perfil de suelo para diseño sísmico en Manta, Portoviejo, Chone y Bahía de Caráquez ciudades afectadas por el sismo del 16 Abril del 2016. Obtenido de https://www.researchgate.net/profile/Hugo_Bonifaz_Garcia/publication/328367 680_Docente-Investigador/links/5bc8c1aca6fdcc03c790933d/Docente-Investigador.pdf?origin=publication_detail
- CÁCERES, C. (2018). ANÁLISIS COMPARATIVO TÉCNICO-ECONÓMICO DE UN SISTEMA TRADICIONAL APORTICADO Y UN SISTEMA ESTRUCTURAL LIVIANO PARA LA CONSTRUCCIÓN DE VIVIENDAS. Obtenido de http://repositorio.puce.edu.ec/bitstream/handle/22000/14631/Tesis%20corregida.pdf?sequence=1&isAllowed=y
- CAMICON. (2018). Insumos. Revista de la Cámara de la Industria de la Construcción, 32-89.
- Cervantes, A. (2017). Análisis comparativo entre la planificación y la ejecución de un proyecto inmobiliario en la ciudad Quito. Obtenido de http://repositorio.usfq.edu.ec/handle/23000/7046
- Chela, A., & Vela, L. (2018). Análisis comparativo del cálculo de la desagregación tecnológica en estructuras de hormigón armado y su incidencia en la calificación de las ofertas en contratación pública en el cantón Quito Provincia de Pichincha. Obtenido de http://www.dspace.uce.edu.ec/handle/25000/15519
- Cremaschi, Marsili, & Saenz. (2013). *PROCESOS CONSTRUCTIVOS INTRODUCCIÓN AL STEEL FRAMING*. Obtenido de
 https://procesosconstructivos.files.wordpress.com/2013/05/ficha-26-sistemasteel-framing.pdf
- Dannemann, R. (2016). *Manual de Ingeniería de Steel Framing*. Obtenido de https://www.alacero.org/sites/default/files/u16/manual_ingenieria_steel_framing .pdf
- FRAMECAD. (2009). *PERFORMANCE OF STEEL FRAMES IN EARTHQUAKES*. Obtenido de https://www.framefactory.nl/_downloads/Aardbevingsbestendigheid%20rapport.pdf
- Guerra, M. (2013). Diseño sismo resistente de edificios utilizando Etabs. Quito
- Jaramillo, A. (2017). *KUBIFRAME SISTEMAS CONSTRUCTIVOS LIVIANOS*. Obtenido de http://fedimetal.com.ec/wp-content/uploads/2017/07/KUBIFRAME-KUBIEC-CONDUIT.pdf

- Montero, J. (2010). Cuantificación de rendimientos y productividad en elementos estructurales de concreto reforzado en edificios modulares en altura. Obtenido de https://repositoriotec.tec.ac.cr/bitstream/handle/2238/6237/cuantificaci%C3%B3 n-rendimiento-productividad-concreto-reforzado.pdf?sequence=1&isAllowed=y
- NASH. (s.f.). *STRUCTURE OF NASH*. Obtenido de https://www.nash.asn.au/nash/why-choose-steel/safety-and-security
- NEC. (2015). Capítulos de la NEC (Norma Ecuatoriana de la Construcción). Obtenido de https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-normaecuatoriana-de-la-construccion/
- NEC. (2015). Guía práctica para el diseño de estructuras de hormigón armado de conformidad con la Norma Ecuatoriana de la Construcción NEC 2015.

 Obtenido de https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2016/10/GUIA-2-HORMIGON-ARMADO.pdf
- Poveda, D. (2016). *Cálculo del VAE*. Obtenido de http://www7.quito.gob.ec/mdmq_ordenanzas/Sesiones%20del%20Concejo/2017/Sesi%C3%B3n%20Extraordinaria%202017-09-27/I.%20%20%20Autorizaci%C3%B3n%20de%20cr%C3%A9dito/EPMMOP%20-%20Quito%20Cables/Inf.%20Costos%20y%20Cronogramas.pdf
- Romo, H., & Soto, L. (2013). *Analisis de Factibilidad para la construción de viviendas unifamiliares utilizando el SEL (Sistema Estructural Liviano)*. Obtenido de https://dspace.ups.edu.ec/bitstream/123456789/4239/1/UPS-CT002601.pdf
- SERCOP. (2015). *METODOLOGÍA PARA LA DEFINICIÓN DE UNA OFERTA COMO ECUATORIANA EN LOS PROCESOS DE ADQUISICIÓN DE BIENES Y PRESTACIÓN DE SERVICIOS*. Obtenido de

 https://portal.compraspublicas.gob.ec/sercop/wpcontent/uploads/2018/05/ANEXO-2_
 Metodolog%C3%ADa_Declaraci%C3%B3n-VAE.pdf
- Siuciak, R. (2015). *Steel Framing y sus principales usos en Uruguay*. Obtenido de http://www.fadu.edu.uy/tesinas/files/2015/12/TESINA_Steel-Framing.pdf
- Sotomayor, M. (2018). KBIFRAME MARCOS DE ACERO O STEEL FRAME., (pág. 30). Quito.
- Sotomayor, M. (16 de Abril de 2019). Volumen de Obra en Steel Framing. (Entrevistador, Entrevistador)
- Tapia, G. (2014). Diseño sismo resistente de edificios con muros estructurales, período de retorno variable y el impacto en los costos de construcción, considerando el diseño de conexiones viga-muro. Obtenido de http://repositorio.usfq.edu.ec/bitstream/23000/3381/1/111074.pdf
- Yu, C. (2016). *Recent Trends in Cold-Formed Steel Construction*. Obtenido de https://books.google.com.ec/books?id=4VXBBwAAQBAJ&pg=PA48&lpg=PA48&dq=AISI+S211:&source=bl&ots=uEGLUMbbL-

&sig=ACfU3U284dUZUyYQRJJXRWiOnoy4bIQqYg&hl=es&sa=X&ved=2ahUKEwiQxuvEkMngAhUFm1kKHTbBCj84ChDoATAMegQICBAB#v=onepage&q=AISI%20S211%3A&f=false

9) ANEXOS

9.1. Anexo A. Análisis de Precios Unitarios

	Anál	isis de Precios	Unitarios			DETERMIN	NACIÓN DEI	VAE POR RUE	BRO
Detalle:		Hormi	gón en columnas f´c 2:	10 kg/cm ²					
Rubro		1.1	Unida	ad	m ³				
		Materiale	S						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UN	IITARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Cemento Gris	Saco	7.21	7.68	3	55.37	42%	100%	EP	42%
Arena	m ³	0.65	13.7	5	8.94	7%	100%	EP	7%
Ripio	m ³	0.95	18.0	0	17.10	13%	100%	EP	13%
Agua	m ³	0.22	0.76	5	0.17	0%	100%	EP	0%
			Total materiales						
		Mano de Ol	ora						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Peón	Hora	6.00	3.51	1.00	21.06	16%	100%	EP	16%
Albañil	Hora	2.00	3.55	1.00	7.10	5%	100%	EP	5%
Maestro de Obra	Hora	1.00	3.93	1.00	3.93	3%	100%	EP	3%
Ayudante	Hora	3.00	3.51	1.00	10.53	8%	100%	EP	8%
			Total mano	de obra	42.62				
	Mad	μuinaria y Herr	amientas						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	2.13	1.00	2.13	2%	100%	EP	2%
Concretera 1 saco	etera 1 saco Hora 1.00 4.48 1.00		1.00	4.48	3%	100%	EP	3%	
Vibrador eléctrico a gasolina	orador eléctrico a gasolina Hora 1.00 3.00 0.40				1.20	1%	100%	EP	1%
			Total Maq	uinaria	7.81				
		To	otal Costo Directo		132.01		VAE	RUBRO	100%

		Análisis de Pre	DETE	ERMINACIÓI	N DEL VAE POR RI	JBRO			
Detalle:		Horm	nigón en vigas f´c 2	10 kg/cm²					
Rubro		1.2		Unidad	m ³				
		Mate	iales						
						Peso Relativo			VAE(%)
DESCRIPCIÓN	UNIDAD	CANTIDAD	PREC	IO UNITARIO	COSTO	Elemento	VAE (%)	NP/ND/EP	Elemento
Cemento Gris	Saco	7.21		7.68	55.37	43%	100%	EP	43%
Arena	m ³	0.65		13.75	8.94	7%	100%	EP	7%
Ripio	m ³	0.95		18.00	17.10	13%	100%	EP	13%
Agua	m ³	0.22		0.76	0.17	0%	100%	EP	0%
			Tota	ıl materiales	81.58				
		Mano d	e Obra						
			PRECIO						
DESCRIPCIÓN	UNIDAD	CANTIDAD	UNITARIO	RENDIMIENTO	COSTO				
Peón	Hora	6.00	3.51	1.00	21.06	16%	100%	EP	16%
Albañil	Hora	3.00	3.55	1.00	10.65	8%	100%	EP	8%
Maestro de Obra	Hora	1.00	3.93	1.00	3.93	3%	100%	EP	3%
Ayudante	Hora	1.00	3.51	1.00	3.51	3%	100%	EP	3%
			Total	mano de obra	39.15				
		Maquinaria y	Herramientas						
			PRECIO						
DESCRIPCIÓN	UNIDAD	CANTIDAD	UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	1.96	1.00	1.96	2%	100%	EP	2%
Concretera 1 saco	Hora	1.00	4.48	1.00	4.48	3%	100%	EP	3%
Vibrador eléctrico a									
gasolina	Hora	1.00	3.00	0.40	1.20	1%	100%	EP	1%
	Total Maquinaria								
		Tota	l Costo Directo		128.37		VA	E RUBRO	100%

	Anális	is de Precios Unit	arios			DETE	RMINACIÓI	N DEL VAE POR	RUBRO
Detalle:		Hormi	gón en losas f´c 2	210 kg/cm ²					
Rubro		1.3	Unidad m ³						
		Materiales				_			
						Peso Relativo			VAE(%)
DESCRIPCIÓN	UNIDAD	CANTIDAD	PREC	IO UNITARIO	COSTO	Elemento	VAE (%)	NP/ND/EP	Elemento
Cemento Gris	Saco	7.21	7.68 5			36%	100%	EP	36%
Arena	m ³	0.65	13.75 8.94			6%	100%	EP	6%
Ripio	m ³	0.95		18.00	17.10	11%	100%	EP	11%
Agua	m ³	0.22		0.76	0.17	0%	100%	EP	0%
					81.58				
		Mano de Obra			•				
			PRECIO						
DESCRIPCIÓN	UNIDAD	CANTIDAD	UNITARIO	RENDIMIENTO	COSTO				
Peón	Hora	5.00	3.51	1.00	17.55	11%	100%	EP	11%
Albañil	Hora	10.00	3.55	1.00	35.50	23%	100%	EP	23%
Maestro de Obra	Hora	2.50	3.93	1.00	9.83	6%	100%	EP	6%
			Totalı	mano de obra	62.88				
	Maqu	inaria y Herramie	entas						
			PRECIO						
DESCRIPCIÓN	UNIDAD	CANTIDAD	UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	3.14	1.00	3.14	2%	100%	EP	2%
Concretera 1 saco	Hora	1.00	4.48	1.00	4.48	3%	100%	EP	3%
Vibrador eléctrico a gasolina	Hora	1.00	3.00	0.40	1.20	1%	100%	EP	1%
			Total	Maquinaria	8.82				
		Tota	l Costo Directo		153.28	_	VA	E RUBRO	100%

	Análisis de	Precios Unita	arios			DETERMINA	CIÓN DEL	. VAE POR F	RUBRO
Detalle:	Ace	ero de Refuer	zo fy=4200 kg/cm² cor	ı Alambre Galv N°1	18				
Rubro		1.4	Unidad kg						
	M	lateriales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UN	ITARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Acero de Refuerzo fy=4200 kg/cm2	kg	1.00	1.25			75%	85%	ND	64%
Alambre galvanizado No. 18	kg	0.06	1.25			5%	85%	ND	4%
					1.33				
	Mai	no de Obra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Fierrero	Hora	1.00	3.55 0.03		0.11	6%	100%	EP	6%
Ayudante	Hora	1.00	3.51	0.06	0.21	13%	100%	EP	13%
			Total mano	de obra	0.32				
	Maquinari	a y Herramie	ntas	,					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	0.02		0.02	1%	100%	EP	1%
			Total Maq	uinaria	0.02				
	_								<u></u>
		T	otal Costo Directo		1.66		VAE	RUBRO	88%

А	Análisis de Precios Unitarios									
Detalle:	Bloque	e de Aliviana	miento 15*20*40 cm	, mortero 1:6 e=2	5cm					
Rubro		1.5	Unida	nd	m ³					
	Ma	ateriales								
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UN	IITARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP VA	E(%) Elemento	
Bloque Alivianamiento 15*20*40 cm	Unidad	13.00	0.43	1	5.59	46%	100%	EP	46%	
Cemento	Saco	0.16	7.36	j	1.18	10%	100%	EP	10%	
Arena	0.03	13.7	5	0.41	3%	100%	EP	3%		
Agua	0.01	0.76	j	0.01	0%	100%	EP	0%		
	Man	o de Obra								
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO					
Peón	Hora	1.00	3.51	0.62	2.18	18%	100%	EP	18%	
Albañil	Hora	1.00	3.55	0.62	2.20	18%	100%	EP	18%	
Maestro de Obra	Hora	1.00	3.93	0.06	0.24	2%	100%	EP	2%	
			Total mano	de obra	4.61					
N	⁄laquinaria	y Herramier	ntas	,	_					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO					
Herramienta menor	Herramienta menor Global 1.00				0.23	2%	100%	EP	2%	
			Total Maquinaria		0.23					
		1.0.00		\\A.F. 5		1000/				
		Т	otal Costo Directo		12.03		VAE R	UBRO	100%	

	,	Análisis de Precio	os Unitarios			DETERMINA	CIÓN DEL	VAE POR RI	UBRO
Detalle:		Escalera	de Hormigón Armado f´c 210	kg/cm ²					
Rubro		1.6	Unidad		m ³				
		Materia	es						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITAF	RIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Cemento Gris	Saco	9.00	7.68		69.12	17%	100%	EP	17%
Arena	m ³	0.65	13.75			2%	100%	EP	2%
Ripio	m ³	0.95	18.00		17.10	4%	100%	EP	4%
Agua	m ³	0.25	0.76		0.19	0%	100%	EP	0%
Alambre galvanizado No. 18	Kg	6.60	6.60		43.56	10%	85%	ND	9%
Varilla Corrugada 8-10-12 mm	qq	2.15	40.11		86.24	21%	85%	ND	18%
Varilla Corrugada 14mm o mayor	qq	0.36	40.11			3%	85%	ND	3%
			Total material	es	239.58				
	1	Mano de (Г	1				
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Peón	Hora	17.50	3.51	1.00	61.43	15%	100%	EP	15%
Fierrero	Hora	8.75	3.55	1.00	31.06	7%	100%	EP	7%
Maestro de Obra	Hora	8.75	3.93	1.00	34.39	8%	100%	EP	8%
			Total mano de o	bra	126.88				
		Maquinaria y He	rramientas						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	6.34	1.00	6.34	2%	100%	EP	2%
Concretera 1 saco	Hora	1.00	4.48	1.00	4.48	1%	100%	EP	1%
Vibrador eléctrico a gasolina	Hora	10.00	4.06	1.00	40.60	10%	100%	EP	10%
			Total Maquina						
					T	_		T	
			Total Costo Directo		417.88		VAE	RUBRO	84%

	Aná	álisis de Precios U	nitarios			DETERMINA	CIÓN DI	EL VAE POR I	RUBRO
Detalle:		Perfil G galva	nizado para Steel Frame 89	9*39*41*11mm					
Rubro		2.1	Unidad		Kg				
		Materiales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT	ΓARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Perfil G galvanizado para Steel Frame 89*39*41*11mm	Kg	1.00	0.91	0.91	47%	70%	ND	33%	
Perno Metal cabeza plana 10-16*3/4"	UNIDAD	2.56	0.01		0.03	1%	100%	EP	1%
Placa	UNIDAD	0.04	0.30		0.01	1%	70%	ND	0%
Ángulo	UNIDAD	0.04	0.24		0.01	0%	100%	EP	0%
Anclaje rigidizador	UNIDAD	0.01	1.80	0.02	1%	70%	ND	1%	
Fulminante y clavos de impacto	UNIDAD	0.04	0.18	0.01	0%	100%	EP	0%	
Perno expansivo tipo cuña 1/2 *3	UNIDAD	0.06	0.90	0.06	3%	70%	ND	2%	
Silicona sellante	UNIDAD	0.01	12.00	0.11	6%	100%	EP	6%	
			Total mater	1.15					
		Mano de Obr	a						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Fierrero	Hora	1.00	3.55	0.11	0.37	19%	100%	EP	19%
Peón	Hora	1.00	3.51	0.11	0.37	19%	100%	EP	19%
			Total mano d	e obra	0.74				
	Ma	ıquinaria y Herraı	mientas						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	0.04	1.00	0.04	2%	100%	EP	2%
			Total Maquinaria		0.04				
			Total Costo Directo		1.93		VAE	RUBRO	84%
	Análisis	de Precios Unita	rios			DETERMINACIÓ	N DEL V	AE POR RUB	RO

Anál	Análisis de Precios Unitarios										
Detalle:	Placa de	e fibrocemer	nto paredes exterior	es de 10mm de e	espesor						
Rubro		2.2	Unid	ad	m ²						
	Mate	riales									
DESCRIPCIÓN		CANTIDAD	PRECIO UN	IITARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento		
Placa de fibrocemento espesor 10mm	m ²	1.00	7.45	5	7.45	61%	85%	ND	52%		
Silicona sellante	Silicona sellante UNIDAD 0.20				2.21	18%	85%	ND	15%		
Tornillo autoperforante autoavellanentes	0.03	1	0.12	1%	85%	ND	1%				
Masilla Base Pernos (Saco 30Kg)	Masilla Base Pernos (Saco 30Kg) Saco 0.01				0.13	1%	85%	ND	1%		
			Total materiales 9.90								
	Mano d	e Obra									
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO						
Instalador de revestimiento en general	Hora	1.00	3.55	0.30	1.07	9%	100%	EP	9%		
Peón	Hora	1.00	3.51	0.30	1.05	9%	100%	EP	9%		
			Total mano	de obra	2.12						
Mac	juinaria y l	Herramienta	S								
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO						
Herramienta menor	Herramienta menor Global 1.00				0.11	1%	100%	EP	1%		
			Total Maquinaria		0.11						
		To	otal Costo Directo		12.13		VAE	RUBRO	88%		

	Análisi	s de Precios Un	itarios			DETERMINA	CIÓN DI	EL VAE POR	RUBRO
Detalle:	Plac	•	dar para paredes interior miento de juntas, lana de	•	cluye				
Rubro		2.3	Unidad		m ²				
		Materiales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT	ARIO	соѕто	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Placa de yeso estándar 1220*2440*12.7mm. Paredes interiores	m ²	1.00	2.15 2.15			27%	85%	ND	23%
Cinta papel para yeso 5cm*75m	ROLLOS	0.02	2.67		0.05	1%	85%	ND	1%
Masilla para 25 kg	SACO	0.03	12.50		0.38	5%	85%	ND	4%
Lana de Vidrio	ROLLOS	0.03	55.23			21%	85%	ND	17%
Tornillos tipo drywell	UNIDAD	12.00	0.01		0.12	1%	85%	ND	1%
			Total materi	Total materiales 4.36					
		Mano de Obra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Instalador de revestimiento en general	Hora	1.00	3.55	0.50	1.78	22%	100%	EP	22%
Peón	Hora	1.00	3.51	0.50	1.76	22%	100%	EP	22%
			Total mano de	e obra	3.53				
	Maqu	inaria y Herram	ientas						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	0.18	1.00	0.18	2%	100%	EP	2%
			Total Maquinaria		0.18				
		-	Total Costo Directo		8.06		VAE	RUBRO	92%

	Análisis (de Precios Uni	tarios			DETERMINA	CIÓN DEL	VAE POR R	UBRO
Detalle:		Entrepiso Se	co con placa de fibroceme	nto de 20mm					
Rubro		2.4	Unidad		m ²				
		Materiales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITA	RIO	costo	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Placa de fibrocemento espesor 20mm	m ²	1.00	15.42		15.42	69%	85%	ND	59%
Silicona sellante	UNIDAD	0.20	11.04		2.21	10%	85%	ND	8%
Tornillo autoperforante autoavellanentes	UNIDAD	12.00	0.01		0.12	1%	85%	ND	0%
Lana de Vidrio	ROLLOS	0.03	55.23		1.66	7%	85%	ND	6%
Membrana Niveladora	ROLLOS	0.10	6.72		0.67	3%	85%	ND	3%
			Total materia	les	20.08				
	N	lano de Obra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	costo				
Instalador de revestimiento en general	Hora	1.00	3.55	0.30	1.07	5%	100%	EP	5%
Peón	Hora	1.00	3.51	0.30	1.05	5%	100%	EP	5%
			Total mano de	obra	2.12				
	Maquina	aria y Herrami	entas						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	costo				
Herramienta menor	Global	1.00	0.11	1.00	0.11	0%	100%	EP	0%
	Г		Total Maquinaria		0.11		_		
			Total Costo Directo		22.30		VAE	RUBRO	86%

	Análisis o	de Precios Unit	arios			DETERMINA	CIÓN DEL	VAE POR R	RUBRO
Detalle:	Placa	a de fibroceme	nto paredes medianeras	de 6mm de esp	esor				
Rubro		2.5	Unidad		m^2				
		Materiales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT	ARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Placa de fibrocemento espesor 6mm	m ²	1.00	4.50		4.50	50%	85%	ND	42%
Silicona sellante	UNIDAD	0.20	11.04		2.21	24%	85%	ND	21%
Tornillo autoperforante autoavellanentes	UNIDAD	12.00	0.01		0.12	1%	85%	ND	1%
			Total materi	ales	6.83				
	M	ano de Obra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Instalador de revestimiento en general	Hora	1.00	3.55	0.30	1.07	12%	100%	EP	12%
Peón	Hora	1.00	3.51	0.30	1.05	12%	100%	EP	12%
			Total mano de	e obra	2.12	23%			
	Maquina	aria y Herramie	entas						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	0.11	1.00	0.11	1%	100%	EP	1%
			Total Maquinaria		0.11				
		Т	otal Costo Directo		9.05		VAE I	RUBRO	89%

álisis de P	recios Unitar	rios			DETERMINA	CIÓN DEL	. VAE POR F	RUBRO
	Cielo Ras	o de Gypsum RH (Zona:	s Húmedas)					
	2.6	Unidad		m ²				
Ma	teriales							
UNIDAD	CANTIDAD	PRECIO UNIT	ΓARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Rollo	0.02	2.22		0.04	1%	85%	ND	1%
Saco	0.01	12.50		0.13	2%	85%	ND	1%
UNIDAD	1.00	3.61		3.61	50%	85%	ND	43%
UNIDAD	8.50	0.01		0.09	1%	85%	ND	1%
UNIDAD	8.50	0.01		0.09	1%	85%	ND	1%
		Total mater	iales	3.95				
Mand	de Obra							
UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Hora	2.00	3.51	0.28	1.97	27%	100%	EP	27%
Hora	1.00	3.55	0.28	0.99	14%	100%	EP	14%
		Total mano d	e obra	2.96				
aquinaria	y Herramien	tas						
UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Global	1.00	0.15	1.00	0.15	2%	100%	EP	2%
Hora	1.75	0.06	1.00	0.11	1%	100%	EP	1%
		Total Maquinaria		0.25				
		Fotal Costo Directo		7.16		\/_	DLIDDO	92%
	Mai UNIDAD Rollo Saco UNIDAD UNIDAD UNIDAD Hora Hora Iaquinaria UNIDAD	Materiales UNIDAD CANTIDAD Rollo 0.02 Saco 0.01 UNIDAD 1.00 UNIDAD 8.50 UNIDAD 8.50 UNIDAD 8.50 UNIDAD CANTIDAD Hora 2.00 Hora 1.00 aquinaria y Herramien UNIDAD CANTIDAD Global 1.00 Hora 1.75	Description	Cielo Raso de Gypsum RH (Zonas Húmedas)	Cielo Raso de Gypsum RH (Zonas Húmedas) 2.6	Cielo Raso de Gypsum RH (Zonas Húmedas) 2.6	Cielo Raso de Gypsum RH (Zonas Húmedas) 2.6	Cielo Raso de Gypsum RH (Zonas Húmedas) 2.6

Análisis	de Precios	Unitarios				DETERMINA	CIÓN D	EL VAE POR	RUBRO
	Placa de	fibrocemento	recubierto con prot	ección hidrófuga c	le 6mm				
Detalle:			de espesor						
Rubro		2.7	Unid	ad	m ²				
	Materiale	!S							
						Peso Relativo	VAE		VAE(%)
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UI	NITARIO	COSTO	Elemento	(%)	NP/ND/EP	Elemento
Placa de fibrocemento recubierto con protección									
hidrófuga 1220*2440*6mm	m ²	1.00	8.9	5	8.95	66%	85%	ND	56%
Silicona sellante	UNIDAD	0.20	11.04 2		2.21	16%	85%	ND	14%
Tornillo autoperforante autoavellanentes	UNIDAD	12.00	0.0	1	0.12	1%	85%	ND	1%
			Total mat	teriales	11.28				
	Mano de O	bra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Instalador de revestimiento en general	Hora	1.00	3.55	0.30	1.07	8%	100%	EP	8%
Peón	Hora	1.00	3.51	0.30	1.05	8%	100%	EP	8%
			Total mand	de obra	2.12				
Maqui	naria y Heri	ramientas							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	0.11	1.00	0.11	1%	100%	EP	1%
	•	1	Total Maquinaria		0.11				
		To	otal Costo Directo		13.50		VAE	RUBRO	87%

An	álisis de P	recios Unitar	ios			DETERMINA	CIÓN DEI	L VAE POR R	UBRO
Detalle:			Cielo Raso de Gypsum	1					
Rubro		2.8	Unidad		m ²				
	Mat	eriales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT	TARIO	COSTO	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Cinta de Juntas para Gypsum (rollo de 75m)	Rollo	0.02	2.22		0.04	1%	85%	ND	1%
Masilla Base Juntas para Gypsum (Saco 30Kg)	Saco	0.01	12.50		0.13	2%	85%	ND	2%
Gypsum	UNIDAD	0.34	8.48		2.88	45%	85%	ND	38%
Tornillo BH para instalación Gypsum	UNIDAD	8.50	0.01		0.09	1%	85%	ND	1%
Tornillo LH para instalación de Gypsum	UNIDAD	8.50	0.01		0.09	1%	85%	ND	1%
			Total mater	iales	3.22				
	Mand	de Obra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Peón	Hora	2.00	3.51	0.28	1.97	31%	100%	EP	31%
Albañil	Hora	1.00	3.55	0.28	0.99	15%	100%	EP	15%
			Total mano d	e obra	2.96				
Ma	aquinaria	y Herramient	as						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Herramienta menor	Global	1.00	0.15	1.00	0.15	2%	100%	EP	2%
Andamio	Hora	1.75	0.06	1.00	0.11	2%	100%	EP	2%
			Total Maquinaria		0.25				
		-	Total Costo Directo		6.44		\/^_	RUBRO	92%
			iotai costo pirecto		0.44		VAE	KOBKO	92%

А	nálisis de F	recios Unitario	s			DETERMINA	CIÓN D	EL VAE POR F	RUBRO
Detalle:	Cubier	ta metálica pre	ointada con aislante de p espesor	ooliuretano de 15r	nm de				
Rubro		2.9	Unidad		m ²				
	Ma	teriales							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNI	ΓARIO	соѕто	Peso Relativo Elemento	VAE (%)	NP/ND/EP	VAE(%) Elemento
Cubierta metálica prepintada con aislante de poliuretano de 15mm de espesor	m²	1.00	17.02		17.02	94%	80%	ND	76%
Tornillos autorroscante de 5" de acero inoxidable, con arandela	UNIDAD	2.00	0.24		0.48	6%	100%	EP	6%
			Total mater	riales	17.50				
	Mano	de Obra							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	COSTO				
Instalador de revestimiento en general	Hora	0.50	3.55	0.14	0.25	3%	100%	EP	3%
Peón	Hora	0.50	3.51	0.14	0.25	3%	100%	EP	3%
			Total mano d	e obra	0.49				
	1aquinaria	y Herramienta:	5						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	RENDIMIENTO	соѕто				
Herramienta menor	Global	1.00	0.02	1.00	0.02	0%	100%	EP	0%
			Total Maquinaria		0.02				
		Т	otal Costo Directo		18.02		VA	E RUBRO	88%

9.2. Anexo B. Tablas NEC

Ocupación o Uso	Carga uniforme (kN/m²)	Carga concentrada (kN)
Hospitales		
Sala de quirtifanos, laboratorios Sala de pacientes	2.90	4.50 4.50
Comedores en pisos superiores a la planta baja	4.00	4.50
Instituciones penales		
Celdas	2.00	
Corredores	4.80	
Pasamanos, guardavias y agarraderas de seguridad	Véase sección	4.5 ASCE/SEI 7-10
Pasarelas y plataformas elevadas (excepto rutas de escape)	3.00	
Patios y terrazas peatonales	4.80	
Pisos para cuarto de máquinas de elevadores (áreas de 2600 mm²)		1.40
Residencias		
Viviendas (unifamiliares y bifamiliares)	2.00	
Hoteles y residencias multifamiliares	2.00	
Habitaciones	4.80	
Salones de uso público y sus corredores	1100	
Salas de baile	4.80	
Salas de billar, bolos y otras áreas de recreación similares	3.60	

Ilustración 82. Cargas vivas

Tabla 5: Combinación de cargas fuente: NEC	
Combinación 1	
1.4 D	
Combinación 2	
1.2 D + 1.6 L + 0.5 máx.[Lr ;S ;R]	
Combinación 3*	
1.2 D + 1.6 max[Lr; S; R] + max[L; 0.5W]	
Combinación 4*	
1.2 D + 1.0 W + L + 0.5 max[Lr; S; R]	
Combinación 5*	
1.2 D + 1.0 E + L + 0.2 S	
Combinación 6	
0.9 D + 1.0 W	
Combinación 7	
0.9 D + 1.0 E	

Ilustración 83. Combinaciones de carga

Fuente: NEC-SE-DS

Los resultados obtenidos son: Ciudad de Manta, los valores de Vs30 van desde 143 m/s hasta 402.2 m/s lo cual da un perfil sísmico del suelo (predominante) tipo D con zonas de perfil tipo E que coincide con el área de mayor vulnerabilidad en la parroquia de Tarqui . Ciudad de Portoviejo, los valores de Vs30 van desde 205 m/s hasta 332 m/s lo cual nos da un perfil sísmico del suelo (predominante) tipo D, existiendo zonas de perfil tipo D y E en el área del aeropuerto. Ciudad de Bahía de Caráquez, los valores de Vs30 van desde 205 m/s hasta 332 m/s Lo cual da un perfil sísmico del suelo (predominante) tipo D existiendo zonas con perfil sísmico tipo E al sur occidente de la ciudad. Ciudad de Chone los valores de Vs30 van desde 118 m/s hasta 193 m/s lo cual nos da un perfil sísmico del suelo (predominante) tipo E existiendo zonas con perfil sísmico tipo D al sur de la ciudad.

Ilustración 84. Perfiles de Suelo ciudad de Manta

Fuente: Bonifaz, H., & Haro, J

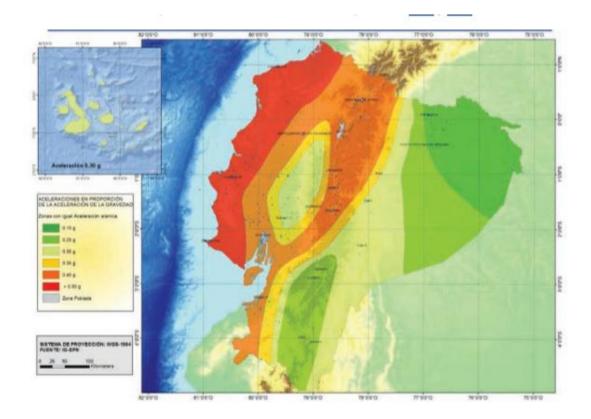


Ilustración 85. Zonificación sísmica

Fuente: NEC-SE-DS

Zona sísmica	I	II	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Tabla 1. Valores del factor Z en función de la zona sísmica adoptada

Ilustración 86. Factor de zona Z

	Zona sísmica y factor Z									
Tipo de perfil del subsuelo	I	II	III	IV	V	VI				
	0.15	0.25	0.30	0.35	0.40	≥0.5				
A	0.9	0.9	0.9	0.9	0.9	0.9				
В	1	1	1	1	1	1				
С	1.4	1.3	1.25	1.23	1.2	1.18				
D	1.6	1.4	1.3	1.25	1.2	1.12				
E	1.8	1.4	1.25	1.1	1.0	0.85				
F	Véase <u>Ta</u>	bla 2 : Clas	ificación de <u>10.</u>	los perfiles 5.4	de suelo y	la sección				

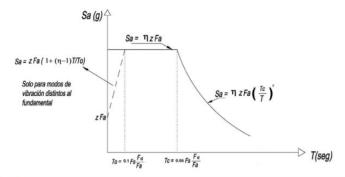
Tabla 3: Tipo de suelo y Factores de sitio Fa

Ilustración 87. Coeficiente de amplificación de suelo en la zona de período corto

Fuente: NEC-SE-DS

		Zona sísmica y factor Z									
Tipo de perfil del subsuelo	I	II	III	IV	V	VI					
	0.15	0.25	0.30	0.35	0.40	≥0.5					
Α	0.9	0.9	0.9	0.9	0.9	0.9					
В	1	1	1	1	1	1					
С	1.36	1.28	1.19	1.15	1.11	1.06					
D	1.62	1.45	1.36	1.28	1.19	1.11					
Е	2.1	1.75	1.7	1.65	1.6	1.5					
F	Véase <u>T</u>	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4					

Tabla 4 : Tipo de suelo y Factores de sitio F_d


Ilustración 88. Fd: amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca

	Zona sísmica y factor Z									
Tipo de perfil del subsuelo	1	П	III	IV	V	VI				
	0.15	0.25	0.30	0.35	0.40	≥0.5				
A	0.75	0.75	0.75	0.75	0.75	0.75				
В	0.75	0.75	0.75	0.75	0.75	0.75				
С	0.85	0.94	1.02	1.06	1.11	1.23				
D	1.02	1.06	1.11	1.19	1.28	1.40				
E	1.5	1.6	1.7	1.8	1.9	2				
F	Véase	Tabla 2 : C	lasificación	de los perf	iles de suel	o y 10.6.				

Tabla 5 : Tipo de suelo y Factores del comportamiento inelástico del subsuelo Fs

Ilustración 89. Fs: comportamiento no lineal de los suelos

Fuente: NEC-SE-DS

Dónde:

- η Razón entre la aceleración espectral S_a (T = 0.1 s) y el PGA para el período de retorno seleccionado.
- F_a Coeficiente de amplificación de suelo en la zona de período cortó. Amplifica las ordenadas del espectro elástico de respuesta de aceleraciones para diseño en roca, considerando los efectos de sitio
- F_d Coeficiente de amplificación de suelo. Amplifica las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca, considerando los efectos de sitio
- F_s Coeficiente de amplificación de suelo. Considera el comportamiento no lineal de los suelos, la degradación del período del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos
- S_a Espectro de respuesta elástico de aceleraciones (expresado como fracción de la aceleración de la gravedad g). Depende del período o modo de vibración de la estructura
- T Período fundamental de vibración de la estructura
- T₀ Período limite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- T_C Período limite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- Z Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g

Ilustración 90. Ecuaciones para Espectro

Categoria	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla 6: Tipo de uso, destino e importancia de la estructura

Ilustración 91. Categoría de edificio y coeficiente de importancia I

Fuente: NEC-SE-DS

Sistemas Estructurales de Ductilidad Limitada	R
Pórticos resistentes a momento	
Hormigón Armado con secciones de dimensión menor a la especificada en la NEC-SE-HM, limitados a viviendas de hasta 2 pisos con luces de hasta 5 metros.	3
Hormigón Armado con secciones de dimensión menor a la especificada en la NEC-SE-HM con armadura electrosoldada de alta resistencia	2.5
Estructuras de acero conformado en frío, aluminio, madera, limitados a 2 pisos.	2.5

llustración 92. Sistemas estructurales y coeficiente R de reducción de respuesta estructural

9.3. Anexo C. Tabla de Varillas con sus Pesos

			14	BLA DE VAR	ILLA			
Diámetro	(SANSA	1	2 m	9	m	6	Tolerancia	
mm	kg/m	kg	Varx qq	kg	Varx qq	kg	Var x qq	en Longitud
8	0,395	4,740	9,568	3,555	12,757	2,370	19,136	
10	0,617	7,404	6,125	5,553	8,167	3,702	12,251	
12	0,888	10,656	4,256	7,992	5,675	5,328	8,512	
14	1,208	14,496	3,129	10,872	4,171	7,248	6,257	
16	1,578	18,936	2,395	14,202	3,193	9,468	4,790	
18	1,998	23,976	1,892	17,982	2,522	11,988	3,783	
20	2,466	29,592	1,533	22,194	2,043	14,796	3,065	±50mm
22	2,984	35,808	1,267	26,856	1,689	17,904	2,533	
25	3,853	46,236	0,981	34,677	1,308	23,118	1,962	
28	4,834	58,008	0,782	43,506	1,042	29,004	1,564	
32	6,313	75,756	0,599	56,817	0,798	37,878	1,197	
36	7,990	95,880	0,473	71,910	0,631	47,940	0,946	
40	9,865	118,38	0,383	88,785	0,511	59,190	0,766	

Ilustración 93. Descripción tabla de Varillas

Fuente: ADELCA

9.4. Anexo D. Lista de precios Steel Framing

LISTA DE PRECIOS PARA PROFORMACIÓN KUBIFRAME

Código: F-720-04K-01 Rev. 0

group and continues

ESTRUCTURA	2000年,2000年中國門城市五世上
PERFILES ESTRUCTURALES KUBIFRAME TOTAL / M2	
	FACTOR
	25 KG/M2 DE CONSTRUCCIÓN
EDIFICACIONES DE UNA PLANTA	30 KG/M2 DE CONSTRUCCIÓN
EDIFICACIONES DE DOS PLANTAS	10 KG/M2 DE CUBIERTA
SOLO CERCHAS	30% DEL VALOR DEL PESO M2
ACCESORIOS DE ANCLAIE *Para obtener el valor por m2 de estructura integra en steel framing, se deberá multiplicar:	VALOR= (FACTOR X M2 X

*Para obtener el valor por m2 de estructura integra en steel framing, se deberá multiplicar;

\$1,7) + VALOR DE ACCESORIOS DE ANCLAJE

** El valor por kg puede variar según el peso total de la edificación, en donde se podra aplicar el siguiente descuento:

A: HASTA 5 TON

AA: 10% HASTA 10 TON AAA: 20% MAS DE 10 TON

DEDENIES DADA TARIOLIFRÍA	ESTRUCTURAL	KUBIFRAME /	M2 DE PARED

ESPESORES DEL ACERO	0,75 MM	0,9 MM	1,2 MM	INSTALACIÓN / M
89 MM DE ANCHO PREENSAMBLADO	\$9,35	\$11,82	\$14,28	\$5,00
180 MM DE ANCHO PREENSAMBLADO	\$18,70	\$23,63	\$28,56	\$10,0
ACCESORIOS DE ANCLAJE	\$2,81	\$3,54	\$4,28	

** El valor por kg puede variar según el peso total de la edificación, en donde se podra aplicar el siguiente descuento:

A: HASTA 2 TON

AA: 10% HASTA 8 TON AAA: 20% MAS DE 8 TON

PERFIL KUBIFRAME TRACK 90,93MM X 38,1MM X 2,44M	\$2,87	\$3,46	\$4,60	
PERFIL KUBIFRAME TRACK 103,63MM X 38,1MM X 2,44M	\$3,10	\$3,72	\$4,95	
PERFIL KUBIFRAME TRACK 141,73MM X 38,1MM X 2,44M	\$3,75	\$4,51	\$6,00	
PERFIL KUBIFRAME TRACK 154,43MM X 38,1MM X 2,44M	\$3,98	\$4,77	\$6,35	
PERFIL KUBIFRAME TRACK 205,23MM X 38,1MM X 2,44M	\$4,86	\$5,83	\$7,76	
PERFIL KUBIFRAME STUD 88,9MM X 41,4MM X 2,44M	\$3,63	\$4,33	\$5,80	
PERFIL KUBIFRAME STUD 101,6MM X 41,4MM X 2,44M	\$3,84	\$4,60	\$6,15	
PERFIL KUBIFRAME STUD 139,7MM X 41,4MM X 2,44M	\$4,48	\$5,39	\$7,17	
PERFIL KUBIFRAME STUD 152,4MM X 41,4MM X 2,44M	\$4,71	\$5,65	\$7,52	
PERFIT KURJERAME STUD 203, 2MM X 41, 4MM X 2, 44M	\$5.59	\$6.71	\$8.93	

^{*}La instalación podrá incrementarse de acuerdo a la dificultad, no se incluyen andamios, gruas, elevadores, sistemas de seguridad.

* EL descuento máximo para este tipo de perfiles será del 5%

REVESTIMIENTOS / EANA DE VIDRIO/ BARRERA PARED ESTANDA	R / MZ / SIN ESTRUC	SCALL OF STREET, STREET, SECRET	CO STATE OF	Current with a distant
	A	M.	AAA	INSTALACIÓN REVESTIMIENTOS
GYPLAC 12,7MM - GYPLAC 12,7MM	\$11,97	\$10,88	\$9,98	\$9,00
GYPLAC 12,7MM - SUPERBOARD ENCHAPE 8MM	\$20,90	\$19,00	\$17,42	
GYPLAC 12,7MM - SUPERBOARD JUNTAS 8MM	\$22,78	\$20,71	\$18,98	
GYPLAC 12,7MM - SUPERBOARD STANDAR 8MM	\$21,13	\$19,21	\$17,61	\$10,70
GYPLAC 12,7MM - SUPERBOARD STANDAR 10MM	\$28,21	\$25,65	\$23,31	
SUPERBOARD JUNTAS 10MM - SUPERBOARD JUNTAS 10MM	\$33,11	\$30,10	\$27,36	
GYPLAC 12,7MM - SINDING 8MM	\$25,48	\$23,16	\$21,23	

Ilustración 94. Lista de precios

Fuente: KUBIEC

^{**} Si deseamos cotizar con perfiles estándar, debemos usar la TABLA ADJUNTO (CUADRO DE DESPIECE DRYWALL M2 PARED) para sacar cantidade:

agina web: www.ku	ibiec.com		
)); Teléfono: 2691131 / 32 ind; Teléfono: 2150300 fax			
R M2 DE INSTALACIÓ	N DE REVEST	(IMIENTOS) +	(VALOR M2 DE
npleto deberemos realizar			140)
\$31,06	\$28,24	\$25,88	\$10,
The state of the s	-		\$13, \$10,
			\$9
	- Indiana		\$9
		-	\$10
			\$10
			\$13
\$24,03	\$21,85	\$20,03	\$10
\$17,14	\$15,58	\$14,28	\$
A A	AA .	AAA	INSTALACIÓN REVESTIMIENTOS
		N PINTURA	1 3 7 19
\$28,64	\$26,04	\$23,87	\$10
\$29,98	\$27,25		
\$25,60	\$23,27	\$21,33	\$1
\$18,63	\$16,94	\$15,53	\$
\$21,08	\$19,16	\$17,57	\$
\$27,19	\$24,72	\$22,66	\$1
\$24,18	\$21,98	\$20,15	\$1
A 515.72	AA \$14.29	AAA \$13.10	INSTALACIÓN REVESTIMIENTO
DIUM/ M2 / SIN ESTRUCT	URA	7	
		IN PINTURA	10 M
ERIORES / FIBROCEMENT	SUPERBOARD		
\$26,74	\$24,31	\$22,28	\$1
\$29,32	\$26,65	\$24,43	\$1
\$25,01	\$22,74	\$20,84	\$1
\$20,62	\$18,75	\$17,18	\$1
\$20,90	\$19,00	\$17,27	\$:
314,02	\$12,/3	\$11,6	8
	\$20,90 \$20,60 \$20,60 \$25,00 \$29,32 \$26,74 FERIORES / FIBROCEMENTO O/ BARRERA DE HUMEDA EDIUM/ M2 / SIN ESTRUCT A \$15,72 \$22,61 \$25,85 \$24,18 \$27,19 \$21,08 \$18,63 \$25,60 \$29,98 \$28,64 A/BARRERA DE HUMEDAD EMIUM/ M2 / SIN ESTRUCT A \$17,14 \$24,03 \$26,27 \$25,60 \$28,61 \$22,50 \$20,05 \$27,02 \$31,40 \$31,06 Inpleto deberemos realizar R M2 DE INSTALACIÓN 2480420 / 40 20); Teléfono: 2691131 / 32 Ind; Teléfono: 2691131 / 32 Ind; Teléfono: 2150300 fax (02) 3740245 Portoviejo:	\$20,90 \$19,00 \$20,62 \$18,75 \$25,01 \$22,74 \$29,32 \$26,65 \$26,74 \$24,31 FERIORES / FIBROCEMENTO SUPERBOARD O/ BARRERA DE HUMEDAD/ SIN ESTUCO / SEDIUM/ M2 / SIN ESTRUCTURA A AA \$15,72 \$14,29 \$22,61 \$20,55 \$22,61 \$20,55 \$22,85 \$23,50 \$24,18 \$21,98 \$27,19 \$24,72 \$21,08 \$19,16 \$18,63 \$16,94 \$25,60 \$23,27 \$29,98 \$27,25 \$28,64 \$26,04 AAA \$17,14 \$15,58 \$24,03 \$21,85 \$24,03 \$21,85 \$24,03 \$21,85 \$24,03 \$21,85 \$26,27 \$23,88 \$25,60 \$23,27 \$28,61 \$26,01 \$22,50 \$20,45 \$20,05 \$18,23 \$27,02 \$24,56 \$31,40 \$28,55 \$31,06 \$28,24 Inpleto deberemos realizar la siguiente formu	\$20,90 \$19,00 \$17,21 \$20,62 \$18,75 \$17,14 \$15,58 \$12,01 \$22,74 \$20,84 \$29,32 \$26,65 \$24,43 \$22,28 \$26,64 \$24,31 \$22,28 \$26,64 \$24,31 \$22,28 \$26,65 \$24,43 \$22,28 \$26,64 \$24,31 \$22,28 \$26,65 \$24,43 \$22,28 \$26,65 \$24,43 \$22,28 \$26,65 \$24,43 \$22,28 \$26,65 \$24,43 \$22,28 \$26,67 \$24,31 \$22,28 \$26,67 \$24,31 \$22,28 \$26,67 \$21,00 \$21,00 \$22,61 \$20,55 \$18,84 \$21,98 \$20,15 \$22,18 \$21,98 \$20,15 \$27,19 \$24,72 \$22,66 \$21,08 \$19,16 \$17,57 \$18,63 \$16,94 \$15,53 \$25,60 \$23,27 \$21,33 \$29,98 \$27,25 \$24,98 \$29,98 \$27,25 \$24,98 \$29,98 \$27,25 \$24,98 \$28,64 \$26,04 \$23,87 \$28,64 \$26,04 \$23,87 \$24,03 \$21,85 \$20,03 \$26,27 \$23,88 \$21,89 \$25,60 \$23,27 \$21,33 \$26,67 \$23,27 \$21,33 \$26,67 \$23,28 \$24,08 \$24,03 \$21,85 \$20,03 \$26,27 \$23,88 \$21,89 \$25,60 \$23,27 \$21,33 \$26,61 \$26,01 \$23,84 \$22,50 \$25,60 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$23,27 \$21,33 \$28,61 \$26,01 \$23,84 \$22,50 \$25,60 \$22,52 \$31,40 \$28,55 \$26,17 \$31,06 \$28,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$22,50 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$23,24 \$25,88 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$24,00 \$2

Ilustración 95. Lista de precios

Fuente: KUBIEC

			Kubiframe	Accesorios						Assessment of the last of the	Kuhiframe	Perfiles			
POLITICA DE DESCUENTOS Cliente A (usuario final) Cliente AA	Clavos de impacto y fulminantes	Perno expansivo tipo cuña 1/2"x3	Anclaje Químico	Ángulo Kubiframe	Anclaje Rigidizador Kubiframe	Placa Kubiframe	Producto	LISTA DE PRECIO	Precio de diseño estructural Precio de estructura pre-ensamblado Precio de instalación de estructura	Perfil Galvanizado	Perfil Galvanizado	Perfil Galvanizado		Producto	
	37	6.35X50.8	12,7X101.6	91X65X1.15	20X30X65X3	182X80X1.15	Dimensiones	S ACCESOR		89x40x11	89x40x11	89x40x11	(mm)	Dimensiones	
5% de descuento 10% de descuento							8	LISTA DE PRECIOS ACCESORIOS KUBIFRAME OCTUBRE 2018	0.10 S/kg adicional 0.20 S/kg adicional 1.50 S/kg adicional	G80	G60	G60		Resistencia del Acero	
								CTUBRE		1,20	0.90	0,75	(mm)	Espesor	
45	na	na	na	0,11	-	0,13	Peso	2018		1,68	1,25	1,03	(kg/m)	Peso	
	0,18	0,90	25,14	0,24	2,25	0,30	Precio			1,50	1,50	1,50	(\$/kg)	Precio	

Ilustración 96. Lista de precios

Fuente: KUBIEC

9.5. Anexo E. Datos obtenidos de FrameCad

Company: Kubiec Dwg Name: Modelo4D
Project: Vivienda 4D AU Tab Name:
Detailer: Mateo Sotomayor
Print Date: 18-04-2019

Job Number: Page No: 1

Material	Part Number	Length (mm)	Weight (kg)
Summary for Tab Cerchas:			
89S41-075-500		367949	426.8
FRAMECAD 10g-16mm Flathead	001539	272	
FRAMECAD 10g-19mm XDrive	001236	1684	
Summary for Tab Correas:			
89S41-115-500		169240	302.9
Summary for Tab Entrepiso:			
89S41-115-500		858181	1536.1
FRAMECAD 10g-16mm Flathead	001539	4332	
FRAMECAD 10g-19mm XDrive	001236	4332	
Summary for Tab Grada:			
89S41-115-500		160594	287.
FRAMECAD 10g-19mm XDrive	001236	512	
Summary for Tab Piso 1:			
150x32x0.95 Lintel		4004	5.
89S41-115-500		1183144	2117.
FRAMECAD 10g-16mm Flathead	001539	88	
FRAMECAD 10g-19mm XDrive	001236	3072	
Summary for Tab Piso 2:			
150x32x0.95 Lintel		13488	19.
89S41-075-500		1107765	128
FRAMECAD 10g-16mm Flathead	001539	288	
FRAMECAD 10g-19mm XDrive	001236	2782	
Summary for Tab Tapa Grada:			
89S41-075-500		113824	13
FRAMECAD 10g-19mm XDrive	001236	256	
Summary for Tab Vigas:			
89S41-075-350		10209	11.
89S41-075-500		78691	91.
FRAMECAD 10g-16mm Flathead	001539	312	
FRAMECAD 10g-19mm XDrive	001236	312	
Job Summary:			
150x32x0.95 Lintel		17492	25.
89S41-075-350		10209	11.
89S41-075-500		1668229	1935.
89S41-115-500		2371159	4244.
FRAMECAD 10g-16mm Flathead	001539	5292	
FRAMECAD 10g-19mm XDrive	001236	12950	
		Total Weight	6216.

Ilustración 97. Resumen de peso de la Estructura

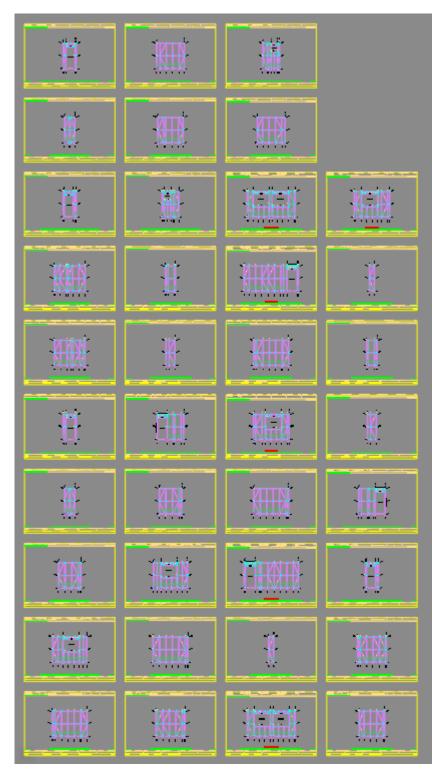


Ilustración 98. Secciones para el primer piso

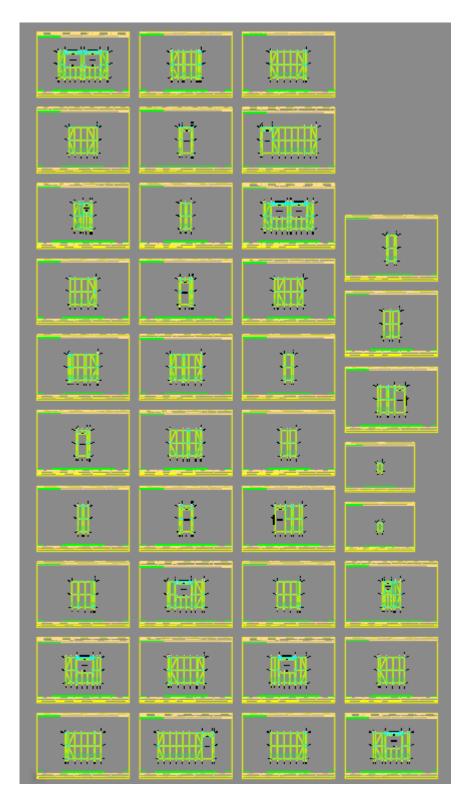


Ilustración 99. Secciones para el segundo piso

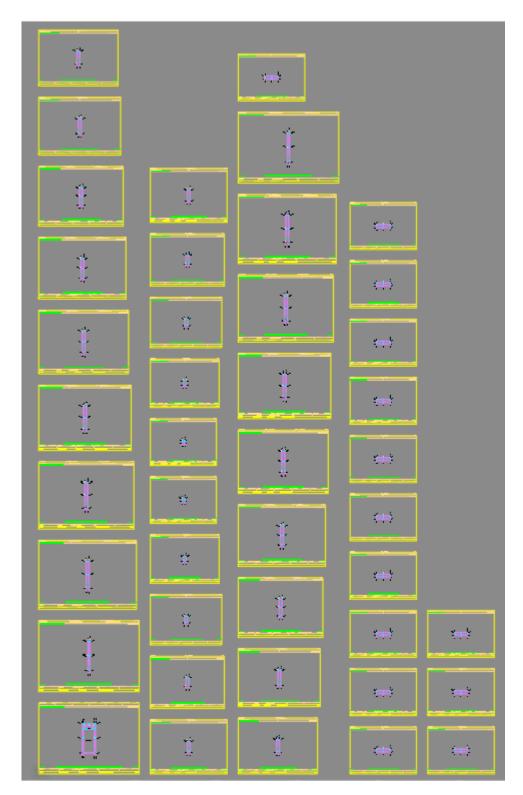


Ilustración 100. Secciones gradas

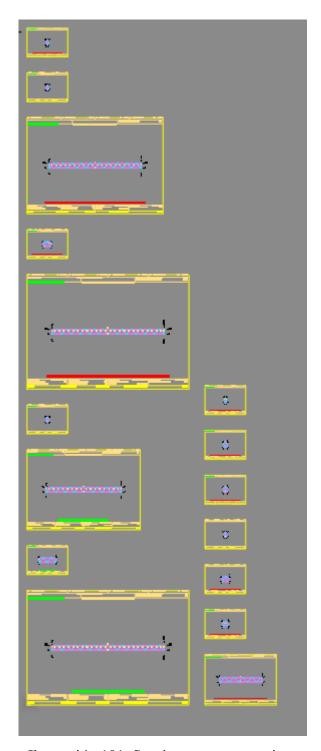


Ilustración 101. Secciones para entrepisos

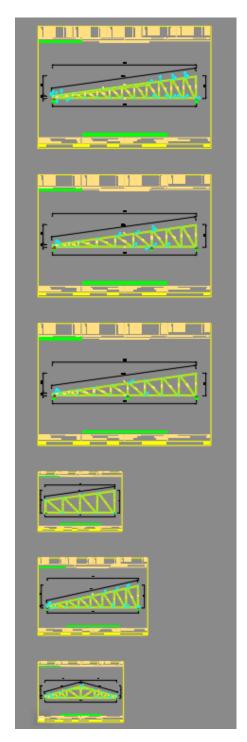


Ilustración 102. Secciones para Cerchas