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RESUMEN 

El archipiélago de Galápagos está influenciado por un sistema complejo de corrientes 
oceánicas y se encuentra en el centro de acción de los eventos ENSO. La convergencia de 
corrientes resulta en fluctuaciones de la temperatura superficial del mar, creando una 
variación térmica espaciotemporal con diferentes regímenes de afloramiento. Las 
respuestas de organismos ectotérmicos a cambios de temperatura pueden ser modificadas 
tanto a nivel de individuos como de poblaciones a través de mecanismos de aclimatación o 
adaptación. Por lo tanto, Galápagos es un sistema ideal para llevar a cabo estudios de 
aclimatación por su gradiente térmico y porque muchos de los organismos están presentes 
en el archipiélago durante todo el año. El propósito de este estudio fue entender la 
sensibilidad térmica de diferentes poblaciones del erizo lapicero (Eucidaris galapagensis), 
a través de la cuantificación de su consumo de oxígeno en un rango determinado de 
temperaturas. Se realizaron experimentos en cámaras de respirometría con ocho 
individuos de seis diferentes localidades submareales sujetas a regímenes de afloramientos 
variables: tres con alto (Cabo Douglas, Punta Espinosa, La Botella) y tres con bajo (Punta 
Cormorant, Bartolomé, Cabo Ibbetson). Se generaron curvas de rendimiento térmico para 
caracterizar la sensibilidad térmica de cada población y se compararon las temperaturas 
óptimas de rendimiento entre localidades. Los resultados concuerdan con la hipótesis de 
que las poblaciones de especies ectotérmicas están adaptadas y/o aclimatadas a 
condiciones térmicas locales. Las tasas de respiración calculadas sugieren que las 
poblaciones de E. galapagensis de sitios más cálidos (bajo afloramiento) poseen umbrales 
térmicos más elevados. Existió un efecto significativo de localidad en la temperatura optima 
entre Cabo Douglas (sitio más frío) y Bartolomé (sitio más caliente), y entre Cabo Douglas y 
Punta Cormorant, el segundo sitio más caliente. Las temperaturas óptimas de los erizos 
colectados en la localidad más caliente y más fría difirieron en aproximadamente 4°C. Este 
tipo de estudios son una herramienta ideal para modelar las dinámicas poblacionales de 
distintas comunidades a medida que la temperatura de los océanos aumenta. 
 
Palabras clave: Curva de Rendimiento Térmico, cambio climático, Galápagos, Erizo Lapicero, 
respiración, afloramiento, sensibilidad térmica. 
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ABSTRACT 

Oceanic conditions of the Galápagos archipelago are highly variable due to its complex 
ocean current regime and because it sits at the center of action for the ENSO events. The 
convergence of currents results in fluctuations of the sea surface temperature, creating a 
spatiotemporal variation of temperature and different upwelling intensities across the 
Archipelago. The responses of ectothermic organisms to changes in temperature can be 
modified scaling from individuals to population levels, trough mechanisms of 
acclimatization or adaptation. Galápagos system is ideal to conduct acclimatization studies, 
due to its thermal gradient and because most of the organisms are present at all sites 
throughout the year. The purpose of this study was to quantify the acute thermal sensitivity 
of different populations of the pencil sea urchin, Eucidaris galapagensis, by monitoring 
individual oxygen consumption in a determined range of temperatures. Respirometry 
experiments were conducted in acrylic respiration chambers using eight individuals from 
six different locations with different upwelling regimes: three with high (Cabo Douglas, 
Punta Espinosa, La Botella) and three with low (Punta Cormorant, Bartolomé, Cabo 
Ibbetson). Thermal Performance Curves were characterized for each population and the 
thermal optima of performance was compared among locations. Results agree with the 
hypothesis that ectothermic species are adapted and/or acclimatized to local thermal 
conditions. The obtained respiration rates suggest that E. galapagensis populations at 
warmer sites (low upwelling) have higher thermal thresholds. There was a significant effect 
of site on the thermal optimum between Cabo Douglas (coldest site) and Bartolomé 
(warmest site), and between Cabo Douglas and Punta Cormorant, the second warmest site. 
Thermal optimums of urchins collected at the warmest and the coldest sites differed in 
approximately 4°C. This type of studies is an ideal tool to model the population dynamics 
of different communities as the temperature of the oceans increases. 
 
Key words: Thermal Performance Curve, climate change, Galápagos, Pencil sea urchin, 
respiration, upwelling, thermal sensitivity.  
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Abstract 

Oceanic conditions of the Galápagos archipelago are highly variable due to its complex 

ocean current regime and because it sits at the center of action for the ENSO events. The 

convergence of currents results in fluctuations of the sea surface temperature, creating a 

spatiotemporal variation of temperature and different upwelling intensities across the 

Archipelago. The responses of ectothermic organisms to changes in temperature can be 

modified scaling from individuals to population levels, trough mechanisms of acclimatization 

or adaptation. Galápagos system is ideal to conduct acclimatization studies, due to its thermal 

gradient and because most of the organisms are present at all sites throughout the year. The 

purpose of this study was to quantify the acute thermal sensitivity of different populations of 

the pencil sea urchin, Eucidaris galapagensis, by monitoring individual oxygen consumption 

in a determined range of temperatures. Respirometry experiments were conducted in acrylic 

respiration chambers using eight individuals from six different locations with different 

upwelling regimes: three with high (Cabo Douglas, Punta Espinosa, La Botella) and three with 

low (Punta Cormorant, Bartolomé, Cabo Ibbetson). Thermal Performance Curves were 

characterized for each population and the thermal optima of performance was compared among 

locations. Results agree with the hypothesis that ectothermic species are adapted and/or 

acclimatized to local thermal conditions. The obtained respiration rates suggest that E. 

galapagensis populations at warmer sites (low upwelling) have higher thermal thresholds. 

There was a significant effect of site on the thermal optimum between Cabo Douglas (coldest 

site) and Bartolomé (warmest site), and between Cabo Douglas and Punta Cormorant, the 

second warmest site. Thermal optimums of urchins collected at the warmest and the coldest 

sites differed in approximately 4°C. This type of studies is an ideal tool to model the population 

dynamics of different communities as the temperature of the oceans increases. 

 

Introduction  

Anthropogenic climate change is increasingly affecting the natural world, intensifying 

mean environmental temperatures and extreme thermal events (Hansen, Sato and Ruedy, 2012; 

Diffenbaugh and Field, 2013; Gunderson and Stillman, 2015; Silbiger et al., 2019). To 

understand how climate change will affect the populations of species is still one of the greatest 

challenges for ecology (Seebacher, White and Franklin, 2014). Global warming is of 

substantial concern, because it can decrease genetic diversity, alter ecosystem services and 

functioning, and cause cascading effects on multiple species (Pinsky et al., 2019). Even though 

both terrestrial and marine species populations are responding to warming (Pinsky et al., 2019), 

there is a lack of knowledge of variation in tolerance to temperature of species of different 
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ecosystems (Gunderson and Stillman, 2015). Aquatic organisms are less able to behaviorally 

buffer themselves against changing thermal conditions, because aquatic habitats tend to have 

more spatially constant thermal conditions at an operational scale (Gunderson and Stillman, 

2015). In addition, factors such as thermal limits related to geographical range boundaries and 

oxygen availability suggest that tropical marine species may be the most sensitive group to 

increasing temperatures (Pinsky et al., 2019).  

The Metabolic Theory of Ecology (MTE) states that different biological processes are 

governed by the rates of the organismal metabolism, which at the same time, are related to the 

organism mass and temperature. More specifically, metabolism is governed by metabolic 

enzymes, whose levels of activity increase as a function of temperature (Gillooly et al., 2001, 

2002; Brown et al., 2004; Molnár et al., 2017). Many ectothermic species possess the ability to 

remodel their physiology, adjusting their thermal tolerance in response to changes in their local 

environment (Gunderson and Stillman, 2015). These abilities reduce the extent to which 

physiological rates change responding to temperature fluctuations, such as chronic, 

extemporaneous or recurring changes (Seebacher et al., 2014). Specific mechanisms of 

ectotherms to resist changes in temperatures and acquire thermal compensation include 

physiological plasticity, acclimatization (i.e. reversible changes in response to multiple 

environmental variables under field conditions), thermal acclimation (i.e. in response to a 

single environmental variable) and/or adaptation (Guderley, 1990; Seebacher et al., 2014; 

Gunderson and Stillman, 2015). In evolutionary scales, thermal windows shift through 

adaptation at genomic levels (Pörtner et al., 2009). The whole thermal niche beyond limits of 

acclimatization capacity would further shift after evolutionary adaptations occur over 

generations of the population (Pörtner, 2010). These mechanisms involve adjustments through 

gene expression at the level of energy metabolism capacity (Pörtner, 2010) and can 

compensate, until a certain point, for the negative consequences of rising habitat temperatures 

(Gunderson and Stillman, 2015). 

Under a climate change context, the importance of studies on organisms’ thermal 

sensitivity arises. Urchins belong to the guild of benthic marine invertebrates that provide 

crucial services to reef systems, contributing to nutrient cycling, water quality regulation, and 

most importantly, herbivory (Przeslawski et al., 2008). As key herbivores, they are considered 

voracious consumers of algae, causing sizeable effects in marine habitats, creating extensive 

barrens of encrusting coralline algae (Chapman and Johnson, 1990; Andrew, 1993; Irving and 

Witman, 2009). High densities of urchins are associated with large declines in primary 

productivity and biodiversity. The absence of factors capable of controlling urchin abundance 

and/or foraging behavior (e.g. abundance of urchin predators, natural disturbances) lead to 
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scenarios were urchins initiate barrens and maintain low- productivity ecosystems (Steneck et 

al., 2002; Siddon and Witman, 2003; Graham, 2004). With the highest average densities 

reported among urchin species in Galápagos, Eucidaris galapagensis represents one of the 

most significant invertebrate meso-grazer in the system (Brandt and Guarderas, 2002; Irving 

and Witman, 2009). The purpose of this study was to quantify the thermal sensitivity of 

different populations of the pencil sea urchin, Eucidaris galapagensis, by determining 

individual oxygen consumption in a range of temperatures in locations with different upwelling 

regimes across the Galápagos archipelago. A Thermal Performance Curve (TPC) can be used 

to empirically characterize the thermal sensitivity of ectotherms, such as sea urchins. This 

model quantifies the relationship of a rate of a biological performance (vital and physiological 

rates such as growth, reproduction and respiration) with a changing temperature (Silbiger et 

al., 2019), TPCs are typically unimodal, with parameters such as critical maximum (CTmax), 

critical minimum (CTmin) and thermal optimum (Topt) that explain the organism’s thermal niche 

(Angilletta, 2009; Molnár et al., 2017; Silbiger et al., 2019). We hypothesized that pencil urchin 

populations are adapted and/or acclimatized to local thermal conditions: higher thermal 

optimums will be found in populations of warmer locations, while in colder sties, this metric 

will be lower. To test this hypothesis, TPCs were generated for each urchin population and 

then compared among locations.  

 

Materials and Methods  

Study site  

Oceanic conditions of the Galápagos archipelago are highly variable due to its complex 

ocean current regimes and because it sits at the center of action for the ENSO events 

(Houvenaghel, 1984; Ruttenberg, 2001; Wellington, Strong and Merlen, 2001). The 

convergence of a number of ocean currents (Panama current, Peru current and Cromwell or 

Equatorial Undercurrent) results in variation (14-29°C) of the sea surface temperature among 

islands and between seasons (Wellington et al., 2001).  

Upwelling intensity varies across the Archipelago: high upwelling and nutrient-rich 

zones are usually located in the colder western section of the Archipelago, and low-upwelling 

zones in the warmer, eastern and northern sites. Because of this, five different bioregions can 

be identified in the Archipelago, where the assemblages of fish and macroinvertebrate species 

vary according to the oceanographic conditions (Harris, 1969; Wellington, 1984; Jennings et 

al., 1994; Edgar et al., 2010). In addition, a strong and marked seasonality exists as a result of 

the migration of the Intertropical Convergence Zone (Houvenaghel, 1978; Wellington et al., 

2001), creating a warm and rainy season from December to May and a cold and dry season 
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from June to November. As a result, the maximum average sea surface temperature occurs in 

February/March and the minimum in September/October (Houvenaghel, 1978; Schaeffer et al., 

2008).  

 

Study species 

The pencil sea urchin (Eucidaris galapagensis) is widely distributed in the shallow 

waters of the Galápagos archipelago (Brandt and Guarderas, 2002; Sonnenholzner et al., 2013). 

Reaching extremely high densities, E. galapagensis is considered the most conspicuous and 

abundant echinoid species of the islands (Brandt and Guarderas, 2002; Lawrence and 

Sonnenholzner, 2004), representing one of the most significant meso-grazers in the system 

(Brandt and Guarderas, 2002; Irving and Witman, 2009; Brandt et al., 2012). Brandt and 

Guarderas (2002) reported average densities of 3.2 ind·m-2 across the Archipelago, however in 

some sites they can reach up to 28 ind·m-2 (Irving and Witman, 2009). At high densities, this 

urchin species can convert macroalgal assemblages to urchin barrens or pavements of 

encrusting coralline algae (Ruttenberg, 2001; Edgar et al, 2010).  

E. galapagensis is known as an omnivore and bioeroder with a diverse diet. It feeds on 

encrusting algae (Wellington, 1975; Hickman, 1998), hermatypic corals (Pocillopora and 

Pavona) and barnacle plates (Glynn et al., 1979). V. Francisco found in E. galapagensis 

stomachs fragments of other sea urchin species, including the white sea urchin Tripneustes 

depressus and the green sea urchin Lytechinus semituberculatus, as well as fragments of 

cirripedes (taken from Brandt, 2003). After the 1982-1983 El Niño event that devastated coral 

reefs around the Galápagos archipelago, Glynn (1988) found that the densities of E. 

galapagensis increased six times, from 5 to 30 ind·m-2, evidencing intense and opportunistic 

predation on both live and dead hermatypic coral polyps. 

 

Data collection and thermal response measurements 

Physiology data was collected daily on August 11-17th 2018, during a research cruise 

around the Galápagos archipelago. Six sites with different upwelling regimes were sampled 

(Figure 1). By hand and using scuba, eight individuals of E. galapagensis per site were 

collected at depths of 10-15 m in natural subtidal rocky reefs. Urchins were placed in a diving 

mesh bag during short shallow dives (30-40 min). Once in the boat and before experimentation, 

individuals were allowed to recover while submerged in a bucket with seawater and air pumps. 

Sea surface temperature and salinity were recorded for each collection site using a digital 

thermometer and a refractometer. 



12 
 

Individual-specific thermal sensitivity was measured in a closed system of ten 620 ml 

acrylic respiration chambers with magnetic stir bars (Figure 2). Each specimen was 

individually placed in a chamber. The two other chambers remained empty and served as 

controls. Each chamber maintained independent-controllable temperatures. For each 

individual, oxygen consumption was monitored with a fiber-optic oxygen probe (Presens 

dipping probes). In addition, ambient temperature inside each chamber was measured with an 

individual temperature probe (Pt1000). Oxygen consumption by the urchins and in the control 

chambers was measured every 1 s during 10 min trials, while urchins were exposed to different 

temperatures. In order to control for the temperature, the respirometry setup included a 

thermostat system (Apex Aquacontroller, Neptune Systems), bucket heaters and a chiller. The 

temperature at which each trial started matched the ambient temperature of the site where the 

specimens were collected. Eleven temperatures were used for the populations of low upwelling 

sites and 12 for high upwelling sites, ranging from 22-42°C and 19-42°C, respectively. The 

highest temperature tested led to the deceased of the specimens at each site. After finishing all 

trials, the volume of each urchin was recorded by placing each urchin in a 1000 mL beaker and 

reading the volume of water that it displaced. Finally, each urchin was preserved individually 

in a labeled ziploc bag and then placed in a freezer. Frozen urchin samples were brought back 

to the Marine Ecology Laboratory of the Galápagos Science Center (GSC) at San Cristóbal 

Island. In order to estimate their Ash-Free Dry Weight (AFDW) based on organic carbon 

contents. Samples were placed in a drying oven for 24 hrs at 60°C (Preburn weight) and then 

burned in a muffle furnace for 4 hrs at 500°C (Postburn weight).  

 

Data Analyses, Model Construction and Fitting 

TPCs were used to characterize the relationship between urchin respiration and 

temperature. The TPCs approach is a widely used model in climate change research to predict 

if organisms will be able to cope with increasing environment temperatures. A conscious TPC 

approach (Schulte et al., 2011) can provide useful metrics to compare performance between 

organisms, populations, species, localities and across time (Sinclair et al., 2016; Silbiger et al., 

2019). Respiration data was normalized to the urchin individual organic carbon content. TPCs 

were modelled using a modified log-transformed Sharpe-Schoolfield equation (Schoolfield et 

al., 1981, Padfield et al., 2017; Silbiger et al., 2019): 

, 

where:  
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b(Tc) is the log rate at a constant temperature (for respiration μmol cm-2 hr-1), 

E is the activation energy, 

Eh is the deactivation energy, 

Tc is the reference temperature at which no temperature inactivation is experienced, 

K is Boltzmann constant (8.62 ✕ 10-5 eV K-1), 

Th is the Temperature in Kelvin (K), where half the enzymes are inactivated, or the temperature 

after the optimum, where the rate is half of the maximal rate, and 

Ti is the Temperature in K. 

In addition, to obtain the thermal optima of each urchin population, the following 

equation was used:  

 
 

In order compare Topt across sites, an ANOVA test was ran. A Tukey post hoc test for 

multiple comparisons of means of 95% family-wise confidence level was used to test the 

differences among sites. Finally, a quality control was carried out with the respirometry files: 

noisy files that used less than 30 points to calculate the slope were deleted. Six hundred and 

forty-nine respirometry files were used: 533 of urchin-chambers and 116 of blank-chambers. 

 

Results 

Thermal optimums of urchins collected at the warmest and the coldest sites differed in 

approximately 4°C: 29.5°C for Cabo Douglas vs. 33°C for Bartolomé (Figure 3). The 

descendent order of thermal optimum values, being higher at warmest sites and lower in colder 

sites, roughly matches the order of the mean temperatures of each site. Urchin populations from 

different parts of the Galápagos archipelago had notably distinct respiration responses to 

changes in seawater temperature (Figure 4). In addition, the TPCs of each urchin varied within 

the population. Each urchin presented a different oxygen consumption rate in accordance to its 

organic mass content. All TPCs together, showed the thermal sensitivity of respiration at a 

population level, with a peak signaling the temperature were oxygen consumption was the 

highest (Figure 4). There was a significant effect of site on the thermal optimum (F5,38=4.57, 

p=0.0023) between Cabo Douglas (coldest site) and Bartolomé (warmest site) (p<0.001), and 

between Cabo Douglas and Punta Cormorant, the second warmest site (F5,38=4.57, p=0.02). 
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Discussion  

For this study we hypothesized that E. galapagensis populations in the Galápagos 

archipelago are adapted and/or acclimatized to local thermal conditions; modeling the thermal 

sensitivity of each population using a Thermal Performance Curve approach tested this. The 

results indicate that pencil urchin populations from different locations around the Archipelago 

have different responses to acute warming. Each population, depending on its site, presented a 

different local thermal optimum. Statistical analysis proved an effect of location in the Topt. It 

was expected to have obtained significant differences between the most different sites 

(Bartolomé- Cabo Douglas, Punta Cormorant- Cabo Douglas), because these sites present the 

most different thermal histories and mean temperatures (4°C of difference, approximately). 

These results corroborate that differences in the thermal regimes of each site can affect urchin 

metabolism. Cabo Douglas in Fernandina Island is the westernmost site that can be sampled in 

the Galápagos archipelago, with nutrient-rich waters and high upwelling mainly brought by the 

Cromwell current. For Bartolomé in Santiago Island (northern bioregion of the Archipelago) 

and Punta Cormorant in Floreana Island (southern-eastern bioregion) have conditions were 

ocean water is warmer and upwelling regimes are lower. These sites are mostly linked to the 

warmer and nutrient-poor Panama Current (Houvenaghel, 1984; Ruttenberg, 2001; Wellington 

et al., 2001).  

The differences observed between Topt values of the pencil urchin populations roughly 

match differences in the average temperatures of each location, suggesting an adaptation to 

local thermal conditions of this ectotherm species. The fairly large differences in environmental 

temperatures of each site is a likely explanation for the observed thermal sensitivities in the 

urchin populations. Because of short thermal acclimation periods and since short- duration 

extreme hot temperatures often drive the strongest responses (Pinsky et al., 2019), acute 

thermal sensitivity measurements in this study could also be explained. Acute TPCs can be the 

result of an instantaneous thermal stress test (Silbiger et al., 2019) because sharp increments in 

temperature are the ones tested without a proper acclimatization time for the organisms. 

However, the Galápagos system also subject species populations to short acclimation times 

due to its highly variable thermal settings and harsh daily fluctuations in water temperatures. 

To better represent the population, more replicates with different individuals could be assessed 

per location. With a higher number of urchin replicates, TPCs can present a more homogeneous 

shape, giving a better representation of how temperature affects the whole urchin population 

at each location. For each site, we used eight individuals to estimate the TPCs for that 

population. This quantity of urchins could explain the variability at the individual level. The 
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decision of sampling this number of urchins per site was made following time and money 

restrictions.   

Sewell and Young (1999) found that temperature optima for fertilization and early 

development of the tropical sea urchin species Echinometra lucunter can occur at temperatures 

outside those seen in natural conditions in any part of the geographical range of the species, 

showing a high heat resistance of gametes and larvae in comparison with the thermal limits of 

adults. This type of studies shows that for a direct estimate of population responses to warming 

a full knowledge of other rates of performance (such as reproduction, larvae mortality, 

dispersal and growth) as a function of sublethal temperature is needed; since these other rates 

may be compromised differently to temperature than respiration (Pinsky et al., 2019). As it 

happens for  E. lucunter, the distribution and abundance of pencil urchins E. galapagensis 

should be limited by thermal sensitivity of different factors, such as adult temperature 

tolerances, temperatures needed for growth, spawning, larval settlement and juvenile survival. 

This study gives an insight in adult pencil urchins temperature tolerance. Regarding respiration 

rates, thermal optima of urchin populations in Galápagos are considerably higher than the 

average local temperature in which they are settled. This suggests that E. galapagensis could 

still cope with increasing temperatures; maintaining a high prevalence in the Galápagos 

ecosystems. In a scenario were ocean temperature increases in the Galápagos archipelago 

(Solomon et al., 2007 states a rise by 1-3°C during the 21st century), it would be expected a 

shift in primary productivity of the ecosystems in the different bioregions, triggering changes 

in fish and benthic fauna assemblages. Ecosystems of cold sites would start to resemble the 

ones at warmer sites, and warmer sites could turn unbearable for the current Galápagos fauna. 

The high thermal optimums of pencil urchin populations can make them one of the fewer 

species that would still be present in the Archipelago. Demographic explosion of urchins can 

alter the shallow subtidal ecosystem (Ruttenberg, 2001; Edgar et al., 2010) strengthening the 

top-down effect of urchins on macroalgal assemblages, resulting in increased urchin barrens 

(Brandt and Guarderas, 2002; Carr and Bruno, 2013) and possibly in loss of existing algae beds 

(Przeslawski et al., 2008).  

Ectothermic individuals and populations can acclimate to new local thermal conditions 

through different mechanisms. Changes in thermal regime trigger these mechanisms for 

urchins to be in constant acclimatization to cope with their local thermal conditions, suggesting 

a highly adaptive physiology through high plasticity of individuals. Seeking thermal refugia 

may represent a challenge for marine species, increasing their vulnerability to higher ocean 

temperatures (Pinsky et al., 2019). However, the high mobility of this urchin species allows for 

them to have a behavioral thermoregulation: it eases access to different microclimates by 
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moving to deeper parts of the ocean or to protected-shaded regions. To individual levels, 

marine organisms’ thermal studies at harsh environments have shown a strong selection 

pressure for a high thermal tolerance in the population (Edney, 1961; Wolcott, 1973; Newel 

and Branch, 1980). Even though our results suggest that populations are adapted to thermal 

conditions and that the ability to acclimatize is a primary factor to dictate vulnerability of the 

species to the rising temperatures (Stillman, 2003; Somero, 2010; Tomanek, 2010; Huey et al., 

2012; Botero et al., 2015; Gunderson and Stillman, 2015), TPCs showed that Galápagos urchin 

populations are vulnerable to the increasing temperature: populations whose graphs have 

steeper slopes at each side of the Top peak are considered as most sensitive because a small 

change in temperature causes them to quickly move from optimal to suboptimal conditions 

(Silbiger et al., 2019). Bartolomé population experienced a steep drop in respiration rates short 

after reaching its thermal optimum (Figure 4). Similarly, this was found for the Cabo Douglas 

population, were respiration quickly increased after a small change in temperature, showing 

the close proximity of this population’s thermal optimum to the ambient temperature of the 

site.  

As many studies of thermal sensitivity have been conducted in organisms comparing 

its performance in a latitudinal range (review of Gunderson and Stillman, 2015; Pinsky et al., 

2019), this is one of the few doing it in the same geographical position but across a highly 

variable temperature gradient, such as the one provided by the Galápagos archipelago. 

Modelling TPCs for a multiple species and representatives from functional groups can help to 

better predict responses to temperature at an ecosystem level (Silbiger et al., 2019). 

Understanding rates of performance as a function of temperature and thermal sensitivity of not 

only the pencil urchin but of multiple species of Galápagos is essential for projecting the future 

of its ecosystems and for giving an insight of population dynamics of different communities as 

the ocean critically warms. 
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Figures 

 

 
 

Figure 1. Map of study sites in the Galápagos archipelago. Blue dots indicate high upwelling 

sites and red dots indicate low upwelling sites. 
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Figure 2. (A) Acrylic respirometry chamber of 620 ml capacity. 1. Temperature probe; 2. 

Fiber-optic oxygen probe; 3. Magnetic stir bar. (B) Respirometry setup for individual-specific 

thermal sensitivity measurements. Diagram source: Australian Institute for Marine Science. 
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Figure 3. Thermal optima for each urchin population, according to their location with different 

upwelling regimes: sites marked with red dots are low upwelling sites, those with blue, high 

upwelling sites. First row of temperature values (top) above each plot represent the means of 

temperatures from each site measured from March to August 2018 with a HOBO temperature 

logger. Because logistical reasons, a logger was not deployed at Cabo Douglas, making 

temperature data unavailable for this site. Second row of values (down) are the SSTs recorded 

at each site the day of urchin collection. 
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Figure 4. Thermal performance curves of log (x+1) respiration rates (μmol O2 cm-2hr-1) from 

urchin populations at different locations. Top panel: sites with low upwelling, bottom panel: 

sites with high upwelling. Each dot represents one individual of Eucidaris galapagensis. Each 

graph shows the changes of the respiration rates at different temperatures. Colored-line regions 

indicate the temperature range where respiration data was collected. Peaks in the graphs show 

the temperature at which oxygen consumption was the highest. 
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