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RESUMEN 

La nutrición vegetal ha sido estudiada por décadas, y su principal enfoque yace en 

entender las funciones de los elementos químicos que son necesarios para el crecimiento 

y desarrollo vegetal. El azufre es un macroelemento esencial para la supervivencia de las 

plantas, ya que desempeña una variedad de roles estructurales y fisiológicos dentro de las 

mismas. En los años 80, se logró establecer una conexión definitiva entre el azufre y la 

defensa vegetal, y dado que la deficiencia nutricional de azufre parecía aumentar la 

incidencia de enfermedad en los cultivos, se acuñó el término Resistencia Inducida por 

Azufre (SIR, por sus siglas en inglés). La Resistencia Sistémica Adquirida (SAR, por sus 

siglas en inglés) es una respuesta inmune innata de las plantas mediada por la hormona 

vegetal ácido salicílico (AS), y se conoce que el metabolismo del azufre interactúa con 

las rutas de defensa relacionada al AS mediante compuestos como la cisteína y el 

glutatión. Existen contradicciones en cuanto al efecto real que tiene el estrés nutricional 

de azufre en la activación de genes de defensa relacionados al AS tales como el gen PR1, 

pues se han reportado casos en los que la deficiencia de azufre promueve la expresión de 

estos genes mientras que el exceso promueve su supresión, y viceversa. Tampoco existe 

suficiente información acerca de los cambios en los reservorios de compuestos sulfurados 

dentro de la célula cuando existe estrés nutricional de azufre y como estos impactan la 

expresión de genes de defensa mediados por el AS. En el presente estudio se trabajó en 

la estandarización del sistema reportero GUS con Arabidopsis thaliana PR1::GUS para 

determinar el efecto que el estrés nutricional de azufre tiene sobre la expresión del gen 

PR1. Paralelamente, se trabajó en la estandarización de métodos de detección de sulfato, 

cisteína, y especies reactivas de oxígeno en tejido de Arabidopsis thaliana. Se demostró 

que la deficiencia nutricional de azufre promueve la expresión del gen PR1, mientras que 

el exceso suprime su expresión. Si bien los resultados obtenidos no replican por completo 

lo reportado por otros autores, se espera que el análisis planteado acerca del rol del 

glutatión en la activación o supresión del gen PR1 aporte al entendimiento del efecto del 

estrés nutricional de azufre sobre la defensa vegetal. Por otro lado, en este estudio se logró 

la estandarización de los métodos para la determinación de sulfato y especies reactivas de 

oxigeno, mientras que no se logró realizar la determinación de cisteína en extractos de 

proteína vegetal. Se anticipa que la utilización de las metodologías estandarizadas 

proveerá información novedosa acerca de los reservorios de compuestos sulfurados 

dentro de la célula, ampliando así el entendimiento del rol del azufre en la defensa vegetal.  

Palabras clave: azufre, SAR, SIR, ácido salicílico, sulfato, cisteína, ROS 
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ABSTRACT 

Plant nutrition has been studied for decades, and its focus lies on understanding the role 

of the chemical elements that are necessary for plant growth and development. Sulphur 

is an essential macronutrient for plant survival, because it has structural and functional 

roles inside plants. In the 80’s, a connection was established between sulphur and plant 

defense, and given that sulphur deficiency seemed to increase disease incidence in crops, 

the term Sulphur Induced Resistance (SIR) was coined. Systemic Acquired Resistance 

(SAR) is an innate immune response found in plants, which is mediated by the plant 

hormone salicylic acid (SA), and it is known that sulphur metabolism interacts with the 

defense routes related to SA via compounds like cysteine or glutathione. Contradictions 

exist regarding the real effect that sulphur nutritional stress has over the expression of 

defense genes related to SA, such as PR1. Some studies have reported that sulphur 

deficiency promotes the expression of PR1 and sulphur excess suppresses its expression, 

while other authors report the exact opposite. Information is also scarce in relation to the 

changes in the pool of sulphur containing compounds inside the cell whilst the plant is 

undergoing sulphur nutritional stress, and how this can affect the expression of defense 

genes related to SA. In the present study, it was aimed to standardize the GUS reporter 

system using Arabidopsis thaliana PR1::GUS in order to determine the effect that sulphur 

stress has over the expression of the PR1 gene. Parallel to this, the standardization of 

methods for the detection of sulphate, cysteine, and reactive oxygen species in 

Arabidopsis thaliana tissue was carried out. The results show that sulphur deficiency 

promotes the expression of the PR1 gene, while sulphur excess prompts its suppression. 

While it was evident that it was not possible to fully replicate the results reported in other 

publications, it is expected that the proposed analysis regarding the role of glutathione in 

the activation or suppression of the PR1 gene contributed to the understanding of the 

effect that sulphur stress has on plant defense. On the other hand, the standardization of 

protocols for the detection of sulphate and reactive oxygen species in A. thaliana tissue 

proved to be successful, while it was not possible to determine cysteine on plant protein 

extracts. It is anticipated that the use of the standardized protocols will yield novel 

information about the pool of sulphur-containing compounds, thus increasing the 

knowledge of sulphur’s role in plant defense.   

Key words: sulphur, SAR, SIR, salicylic acid, sulphate, cysteine, ROS 
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1 INTRODUCTION 

1.1 Sulphur and nutrition  

Plant nutrition has been studied for decades, and its focus lies on understanding the 

function of chemical elements and compounds that are necessary for plant growth and 

metabolism. Essential elements are those which plants cannot complete their life cycles 

without, and/or constitute some essential metabolite for plant functioning (Marschner, 

2012). Nutrients have been classified in two main categories: macronutrients and 

micronutrients. Macronutrients are needed in relatively big amounts for plant 

development, and include nitrogen, carbon, oxygen, hydrogen, phosphorus, potassium, 

calcium, magnesium, and sulphur (Allen & Pilbeam, 2007). On the other hand, 

micronutrients are needed in minimum amounts to ensure plant development, and include 

nickel, iron, chloride, boride, manganese, zinc, copper, and molybdenum (Allen & 

Pilbeam, 2007).  

Sulphur is a macronutrient that has several functions in plants, in both structural 

and functional aspects, and it is of great importance to many intracellular processes that 

take place in plant metabolism, despite being the least abundant macronutrient. Sulphur 

is essential for the construction of the amino acid cysteine and some vitamins, and it is 

involved in the correct functioning of the electron transport chain and chloroplasts 

(Maruyama-Nakashita, Inoue, Watanabe-Takahashi, Yamaya, & Takahashi, 2003). In the 

latter, sulphur forms conjugates with iron that make up part of the electron transport that 

takes place during photosynthesis, therefore, sulphur is directly linked to glucose 

production in plants (Saito, 2004). Sulphur aids in the process of nitrogen fixation in 

legumes, and it is also involved in the process of synthetizing amino acids from nitrate 

(Saito, 2004).  
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1.2 Sulphur and defense  

Plants’ sessile nature has pressured them to evolve several defense mechanisms and 

strategies to defend themselves from disease, some of which are quite complex. The two 

main mechanisms for plant defense consist in the formation of physical barriers or the 

synthesis of natural defense molecules (Datnoff, Elmer, & Huber, 2007). Physical barriers 

essentially consist in the formation of thick cell walls that do not allow pathogens to enter 

the plant; nitrogen and calcium have proven to be the most important nutrients for this 

mechanism. In contrast, the production of defense molecules is based on the generation 

of compounds that attack pathogens once they have already entered the plant, therefore 

stopping the pathogen from proliferating internally. Sulphur and nitrogen are the two 

elements of most importance to produce these antimicrobial compounds. For instance, 

phytoalexins and isothiocyanates are two kinds of sulphur-containing molecules that play 

an important role in plant defense, for it has been proven that they have antimicrobial 

activity, mainly against fungal pathogens (Saito, 2004). 

During the 1970’s, sulphur was considered a contaminant, since it was the main 

contributor for the formation of acid rains. Sulphur mainly came from industrial sources 

and it represented a great concern for many environmentalist parties. There was no 

discussion regarding sulphur’s role as a contaminant, but it also happened to indirectly 

fertilize soils, since part of the sulphur that emanated from industrial plants made its way 

to the soil, and then it could be used by crops as a nutrient (Bloem, Haneklaus, & Schung, 

2015). During the 1980’s, environmental reforms to reduce pollution came into action 

and accomplished their goal to reduce sulphur emissions coming from factories. Short 

time later, an increased disease incidence was reported on several crops, mainly on plants 

from the Brassicaceae family (cabbage, beet, canola, etc.) which have a higher nutritional 

demand of sulphur in comparison with other plants. Studies were conducted and, for the 
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first time, a connection was established between sulphur levels and disease incidence. It 

was in that moment that the term SIR (sulphur induced resistance) was coined (Bloem, 

Haneklaus, & Schung, 2015). From that point on, considerable progress has been made 

in order to elucidate the role that sulphur plays in the defense mechanisms of plants. 

For instance, studies have been made in several crops in order to further understand 

the SIR phenomenon; these crops include canola, maize, tomato, cotton, potato, and some 

others. The vast majority of results suggest that at higher levels of sulphur, resistance to 

disease increases, with both necrotrophic and biotrophic pathogens (Bloem, Haneklaus, 

& Schung, 2015). These findings seem to corroborate the initial hypothesis surrounding 

SIR, in which the indirect fertilization of the soil with higher levels of sulphur coming 

from industrial sources seemed to increase plant resistance to disease. Interestingly, 

opposite results have been reported by Criollo and Gonzales in 2013 and 2015, 

respectively. Both studies conducted trials using Arabidopsis thaliana, in which 

nutritional treatments with complete sulphur deficiency caused the activation of 

pathogenesis-related genes (PR-genes). Furthermore, Criollo (2013) showed that A. 

thaliana resisted the infection of the hemibiotrophic pathogen Pseudomonas syringae 

when treated with a nutritional diet with complete absence of sulphur. These 

contradictions reveal that the phenomenon of SIR is not as straight forward as initially 

believed, and that further studies are necessary to fully understand the role of sulphur in 

plant defense.  

1.3 Systemic Acquired Resistance (SAR) 

A cornerstone of plant defense is the systemic acquired resistance (SAR), which is 

an innate immune response against pathogens found in plants. This type of response takes 

place when a plant is exposed to a pathogen that it has been exposed before (Durrant & 

Dong, 2004). Despite that most infections in plants tend to be localized, SAR is an 
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organism-wide response and it is of vital importance for the plant’s capacity to defend 

itself, as well as recover from a past infection. SAR is considered a broad-spectrum 

immune response, since it is efficient for a vast array of pathogens, mainly (but not 

restricted to) necrotrophic organisms (Durrant & Dong, 2004). The cellular mechanisms 

that control SAR have been studied in recent years, and some of the cellular and genetic 

components involved have been understood (Maleck, et al., 2000). Plants use pattern-

recognizing receptors (PRRs) to identify microbial structures with conserved 

characteristics that trigger an immune response (Maleck, et al., 2000). SAR is also related 

to the expression of pathogenesis-related genes, which produce pathogenesis-related (PR) 

proteins. These proteins are active components of plant defense, because some act as 

antimicrobial molecules, and others act as signaling molecules that regulate immune 

response in the plant (Durrant & Dong, 2004).  

The plant hormone salicylic acid (SA) is a phenolic hormone that is involved in 

several metabolic processes in plants. It has been found that SA plays a role in plant 

growth, photosynthesis, nutrient uptake from soil, transpiration, and plant defense (Vlot, 

Dempsey, & Klessig, 2009). Salicylic acid is directly related to SAR, since it promotes 

the expression of PR genes, and therefore, the production of PR proteins (Tripathi, 

Raikhy, & Kumar, 2019). The accumulation of salicylic acid is required in order for SAR 

to take place, which is corroborated by previous studies that have determined that SA 

increases in the site of infection, as well as systemically, when a plant is undergoing 

infection (van Loon, 2016). A derivative of SA of volatile nature, methyl salicylate, acts 

as a plant pheromone, which warns nearby plants of pathogens, prompting them to 

activate their immune response (Shulaev, Silverman, & Raskin, 1997). 
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1.4 The Link between Sulphur Metabolism and SAR 

Sulphur enters the plant in the form of sulphate (SO4 
2-), which is then converted 

into adenosinephosphosulphate (APS) with the help of ATP. APS then converts into 

sulphite (SO3 
2-), and then into sulphur (S2-). Sulphur then reacts with O-acetylserine 

(OAS) to form the amino acid cysteine (Bloem, Haneklaus, & Schung, 2015). Cysteine 

is at the heart of sulphur metabolism in plants, because it is a building block of proteins 

and the main precursor for all sulphur-containing compounds inside the plant. These 

compounds include isothiocyanates, glucosinolates, phytoalexins, hydrogen sulphide 

(H2S), and glutathione (Bloem, Haneklaus, & Schung, 2015). It has been proven that 

cysteine homeostasis is essential for plant immunity, and an adequate concentration of 

this amino acid in the cell is vital to initiate and regulate defense mechanisms inside the 

plant (Alvarez, Bermudez, Romero, Gotor, & Garcia, 2012).  

Sulphur metabolism inside plants is directly linked with salicylic acid, and therefore 

with SAR. It is known that PR-proteins are rich in cysteine content, and therefore cysteine 

is of vital importance for the deployment of SAR. As previously mentioned, SA promotes 

de expression of PR-genes, so an accumulation of SA would require a sufficient 

concentration of cysteine in order to produce the PR-proteins involved in SAR. If a 

cysteine deficiency were to take place, SAR would be directly affected by the lack of 

building blocks for PR-proteins (Alvarez, Bermudez, Romero, Gotor, & Garcia, 2012). 

Glutathione is also a key component in plant defense, because it acts as a redox buffer 

inside the cell. Glutathione can be found in two ways inside the cell, as GSH (reduced) 

or GSSG (oxidized), and it oscillates between these two states depending on the oxidative 

stress inside the cell (Leustek, Martin, Bick, & Davies, 2000). Here, SA comes into play 

once again, since it has the ability to increase the amount of reactive oxygen species 

(ROS) inside the cell by binding to peroxidases and inhibiting their activity, which then 
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causes a rise in the oxidative stress inside the cell (Dzhavakhiya, Ozeretskovskaya, & 

Zinovyeva, 2007).  It is clear that sulphur and plant defense are connected, but there is 

still not enough information regarding the cellular mechanics that control this interaction. 

As previously addressed, there are contradictory findings regarding the role of sulphur in 

plant defense, so it is necessary to conduct further studies that analyze how the pool of 

sulphur-containing molecules inside the cell behaves at different dietary levels of sulphur, 

and then establish a clear connection with SA and SAR that will explain the SIR 

phenomenon.  

1.5 Methods for Sulphur Metabolism Analysis 

Throughout the process of studying plant defense and sulphur metabolism, several 

techniques have been developed to study the metabolic intermediates of those cellular 

mechanisms, including sulphate, cysteine, ROS, and PR-proteins. Sulphate is usually 

determined utilizing analytical chemistry methods, including ICP-AES, ion 

chromatography, and turbidimetric analysis. The first two are methods of high precision, 

often used in specialized laboratories of analysis when detecting compounds even in trace 

amounts and, because of their precision and sensibility, tend to be more expensive than 

other detection methods (Coskun, 2016). On the other hand, turbidimetric determination 

of sulphate is based on the utilization of barium chloride (BaCl2), which forms insoluble 

crystals upon reacting with sulphate, and then the turbidity of the solution can be analyzed 

(Verma, 1977). In regard to cysteine determination, chromatography and colorimetric 

analysis are the norm (Friedman, Krull, & Cavins, 1970). The latter is based on a simple 

but very specific reaction of ninhydrin with cysteine at a low pH, which yields a bright 

pink color, and can then be analyzed in a spectrophotometer (Gaitonde, 1967). Reactive 

oxygen species (ROS) can be easily determined in a fluorometric assay, utilizing 2’,7’ –

dichlorofluorescin diacetate (DCFDA), which forms a fluorescent compound after being 
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oxidized by ROS (Da, et al., 2019). Lastly, PR-gene expression and PR-proteins can also 

be analyzed in several ways. RT-PCR and qPCR are methods commonly utilized to detect 

gene expression qualitatively and quantitatively, respectively, and therefore, they provide 

information regarding the activation of defense mechanisms in the plant under specific 

conditions. The GUS reporter system is another way to detect gene expression, which is 

characterized by its simplicity and rapidness; this method will be explained in greater 

detail in following sections of this text. It is common to carry out this type of analyses in 

model organisms, which are well characterized and provide a solid foundation for the 

generation of new knowledge that can be extrapolated into particular organisms later on, 

such as the case of Arabidopsis thaliana.  

1.6 Arabidopsis thaliana 

Arabidopsis thaliana is a small plant native to Eurasia that belongs to the 

Brassicaceae family, which also includes plants such as mustard and cabbage (Hoffmann, 

2002). A. thaliana’s leaves form a characteristic rosette on the base of the plant, and its 

flowers grow from the center of the rosette up to 25cm high. The leaves of this plant are 

green, occasionally with a purple tinge around the edges, and they are 1.5 to 5 cm in 

length. Each individual plant has the ability to produce thousands of seeds, which are 

contained inside pods and are very small and light, so they can be easily dispersed through 

the environment. A. thaliana is a plant of rapid growth, its life cycle is completed in a 

total of six weeks from germination up to the production of seeds, and it has the ability to 

grow in rocky, sandy, and calcareous soils, often as a pioneer plant (Mitchell-Olds, 2001). 

Due to its ease of dispersion and speed of growth, A. thaliana is regarded as a weed plant, 

but since it is not a strong competitor for nutrients, it is not a plant of concern for 

agricultural practices (Mitchell-Olds, 2001).  
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All the characteristics mentioned above make Arabidopsis thaliana a perfect 

candidate for laboratory work, and that is why it has become one of the most important 

model organism for the fundamental investigation of molecular biology and genetics in 

plants. A. thaliana grows easily under controlled conditions, including Petri dishes, pots, 

hydroponic culture, and greenhouses; and it requires little space for its growth.  A. 

thaliana’s genetic construction is relatively simple, consisting of 135 megabases arranged 

in five separate chromosomes of diploid nature (Coelho, et al., 2007). In addition to this, 

A. thaliana’s metabolic pathways are also well described and studied, which has led to 

many important discoveries regarding topics like plant immunity, growth, and 

development (Durvasula, et al., 2017). The extensive use that has been given to A. 

thaliana has yielded a wide variety of well-characterized mutants, which have been useful 

to study the function and regulation of several genes inside the plant.    

1.7 GUS Reporter System  

The GUS reporter system is a histochemical technique that allows for the evaluation 

of gene expression in a qualitative or quantitative fashion. This technique utilizes the E. 

coli gene uidA as a reporter gene; this gene codes for enzyme β-glucoronidase, which is 

a hydrolase that can catalyze the cleavage of β-glucoronides, and in the process forms an 

easily detectable compound (Jefferson, Burgess, & Hirsh, 1986). The most common 

compound used in this type of reporter gene assays is 5-bromo-4-chloro-3-indolyl 

glucuronide (X-Gluc), which reacts with β-glucoronidase and yields a blue precipitate 

that indicates that enzyme activity is taking place in the analyzed tissue. The reaction that 

takes place breaks down X-Gluc into glucoronic acid and an indoxyl derivative (chloro-

bromoindigo), that then undergoes an oxidative dimerization to produce the insoluble and 

blue colored compound (dichloro-dibromoindigo) (Karcher, 2002).   
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With the help of recombinant DNA techniques, a vast array of transgenic lines of 

Arabidopsis thaliana have been obtained. In relation with the GUS reporter system, the 

common practice relies on replacing the original promoter of the uidA gene with the 

promoter of a particular gene of interest, yielding a chimeric gene that is then inserted 

inside the plant (Karcher, 2002). This will enable the identification of transcriptional 

activity of the promoter of the gene that is being studied, because if the enzyme is being 

produced, the plants will turn blue after the application of the chromogenic substrate. 

Examples of transgenic lines of A. thaliana are PG15 (CaMV35S::GUS) and PR1::GUS. 

The PG15 line has the CaMV 35S promoter inserted before the uidA gene. The CaMV 

35S is a strong promoter isolated from the Cauliflower Mosaic Virus (CaMV) which is 

known to be of constitutive expression throughout the plant. This means that A. thaliana 

PG15 expresses β-glucoronidase in all of its tissues regardless of the growth conditions, 

and therefore, it can be used as the positive control for the GUS reporter assay (Jefferson, 

Kavanagh, & Bevan, 1987). On the other hand, the PR1::GUS line contains the PR1 

promoter before the uidA gene, which will be expressed only under certain conditions. 

Given that the PR1 gene is a marker for salicylic acid and also a component of plant 

defense, its detection via the GUS system provides information about the state of the SA 

metabolic pathways and defense mechanisms inside the plant (Shapiro & Zhang, 2001). 

It is important to mention that the function of PR1 has just recently been known to be a 

sterol binding protein in plant cells, and it shows the action of an antimicrobial protein 

(Gamir, et al., 2017) 

In order to further elucidate the mechanisms that govern SIR and the true relationship 

between sulphur nutritional stress and the activation of the plant’s defense mechanisms it 

is necessary to study the metabolites involved in those processes, and determine how each 

of them changes when the plant is subjected to specific conditions. Considering that the 



21 

 

analysis of particular compounds and metabolic intermediaries inside plants is a very 

specific and delicate task, it is mandatory to establish robust and standardized protocols 

that allow for a proper determination of each molecule of interest (Montgomery, 2017). 

Simultaneously, it is crucial to determine the conditions in which PR-genes are expressed 

when the plant is exposed to a diet with sulphur deficiency or excess in order to make 

sense of the apparent contradictions that are reported in the literature. That is why the 

main objectives of this work are to standardize protocols for the determination of 

sulphate, cysteine, and ROS in plant tissue, and using the GUS reporter system to 

determine the conditions in which the PR1 gene (marker for SA) is expressed when 

exposing the Arabidopsis thaliana mutant PR1::GUS to different nutritional stresses of 

sulphur.  
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2 JUSTIFICATION 

For hundreds of years, agriculture has relied upon soil fertilization practices to 

promote and maximize crop production around the world (Roberts, 2009). This has led 

to the current state of agricultural production worldwide, but in present day, it has become 

of great importance to optimize soil fertility and production in order to catch up with the 

rapidly increasing global population. Each macro and micronutrient plays an essential 

part in plant growth and development, because they all serve specific functions in the 

plant, whether it is a structural and/or functional role (Marschner, 2012). It is necessary 

to have all nutrients present in the right proportions in the soil in order to avoid 

deficiencies or toxicity in crops (Marschner, 2012). The study and understanding of the 

SIR phenomenon and the intracellular process that govern the interactions between plant 

defense and sulphur metabolism could lead to the development of specialized fertilization 

techniques that optimize the nutrient ratio in the soil, promoting growth and strengthening 

plant defense (Bloem, Haneklaus, & Schung, 2015). This could also signify the reduction 

of commonly overused agrochemicals, which can have detrimental effects on the 

environment and human health (Roberts, 2009). In order to properly study the cellular 

processes and interactions between plant defense and sulphur metabolism, standardized 

protocols should be designed in order to gather useful information regarding the state of 

the intermediary compounds of sulphur metabolism that are related to plant defense. 
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3 OBJECTIVES 

3.1 General Objective 

 Standardize the use of the GUS reporter system and different methodologies for 

the quantification of sulphur containing compounds in order to evaluate the effect 

of sulphur nutritional stress on the defense pathways related to salicylic acid in 

Arabidopsis thaliana 

3.2 Specific objectives 

 Cultivate Arabidopsis thaliana lines PR1::GUS, Col-0 and PG15 in vitro and in 

sand. 

 Determine the effect of salicylic acid over the expression of the PR1 gene in 

relation to treatments with sulphur excess and deficiency via the GUS reporter 

system. 

 Standardize quantification protocols for products of sulphur metabolism and 

salicylic acid pathway such as cysteine, sulphate, and ROS present in A. thaliana 

leaf tissue. 
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4 AREA OF STUDY  

In the present study, Arabidopsis thaliana PR1::GUS and Col-0 seeds were utilized. 

The PR1::GUS line is a mutant of A. thaliana modified with the PR1 promoter inserted 

before the uidA gene of E. coli. A. thaliana Col-0 is the wild ecotype of this organism. 

The Agrobiotechnology and Food Biotechnology Laboratory of USFQ and Utrecht 

University provided all seeds. This investigation was realized in the Agrobiotechnology 

and Food Biotechnology Laboratory of USFQ and in Utrecht University. The 

turbidimetric determination of sulphate and the fluorescent measurement of ROS were 

done in the LIA-USFQ, and the CENBIO-UTE facilities, respectively. 
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5 MATERIALS  

5.1 Arabidopsis thaliana in vitro culture 

 Nylon stockings  

 3cm diameter plasticized PVC tubes 

 Murashige-Skoog (MS) Medium 

 Arabidopsis thaliana Col-0 seeds 

 Plastic wrap 

 Plastic zip ties  

 Rey Biofood Square food container 0.28L 

 Autoclave 

 Micropipettes  

 Sodium hypochlorite (NaOCl) 5% (Clorox) 

 Distilled water 

 Heathrow Vortexer 

 Laminar flow cabinet  

 Centrifuge 

5.2 Arabidopsis thaliana sand culture 

 Six-well plates for cellular culture 

 Washed and autoclaved river sand 

 MS Medium  

 Arabidopsis thaliana Col-0 seeds 

 Arabidopsis thaliana PR1::GUS seeds 

5.3 Sulphur nutritional stress treatments 

 Sulphur deficient MS medium 
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 Sulphur excess MS medium  

 Sigma Salicylic Acid 

 Distilled water 

 Tween 80 

 Air brush kit aerograph model EW-110 

 Gast DOA-P704-AA Vacuum pump 

5.4 GUS Reporter System 

 Disodium phosphate (Na2HPO4) 

 Monosodium phosphate (NaH2PO4) 

 EDTA 

 Sigma Triton X-100 

 Sigma N,N-Dimethylformamide 

 Duchefa Biochemie X-GlcA 

5.5 Sulphate Determination 

 Loba Chemie nitric acid 69% 

 Sigma D-Sorbitol 

 Distilled water  

 Barium chloride (BaCl2) 

 50 ml Falcon tubes  

 10 ml glass pipette  

 Sodium sulphate 

 Thermofisher spectrophotometer  

 Concentrated hydrochloric acid  
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5.6 Protein extraction 

 EDTA 

 Tris-HCl 

 Sigma Sodium lauryl sulphate (SDS) 

 Sigma B-mercaptoethanol  

 Distilled water 

 Thermofisher Stdrd DryBath 

 Ethanol 96% 

 1.5 ml Eppendorf tubes 

 Explants of A. thaliana Col-0 

 Liquid nitrogen 

 MP 4mm Glass Beads 

5.7 Protein quantification 

 Bradford reagent 

 96-well reading plate 

 Sirio S ELISA plate reader 

5.8 Cysteine determination 

 Glacial acetic acid  

 Loba Chemie orthophosporic acid  

 Loba Chemie ninhydrin  

 Loba Chemie L-Cysteine hydrochloride (monohydrate) 98.5% 

 Distilled water 

 Thermal cycler  

 PCR 96 well plates  
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 Jenway 7305 Spectrophotometer  

 Multichannel micropipette  

 Protein extracts of A. thaliana Col-0 

5.9 ROS determination 

 DCFDA 

 Biotek Cytation 5 

 Hydrogen peroxide  

 Distilled water  

 MS medium 

 Sulphur deficient MS medium 

 Sulphur excess MS medium  

 96-well black plate for fluorescence analysis 

 Arabidopsis thaliana Col-0 grown in vitro  
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6 METHODS 

6.1 Arabidopsis thaliana in vitro culture 

For the culture of A. thaliana in vitro, MS medium was prepared, and 30ml of the 

medium were poured into Rey Biofood Square food containers. In order to prepare a 

matrix in which the seeds of A. thaliana could grow, plasticized PVC tubes of 3cm in 

diameter were cut into rings of 0.5cm in height. Squares of nylon stockings were cut out 

and stretched over the PVC rings in such a way that the seeds would not fall through, yet 

leaving enough space for the seeds to germinate and the roots to pass through. The nylon 

cloths were secured around the PVC tube utilizing plastic zip ties. One PVC ring with 

nylon cloth was put inside every food container with the nylon cloth facing outward. Each 

container was then covered with aluminum foil, and autoclaved for 20 minutes at 121°C.   

Arabidopsis thaliana Col-0 seed were sterilized using a liquid disinfection protocol. 

A sodium hypochlorite solution 2.5% with 1-2 drops of tween 80 was prepared, and 1ml 

of the solution was added to a 1.5ml Eppendorf tube along with A. thaliana seeds. The 

tubes were vortexed for 10 minutes and then spinned in a centrifuge. Then, inside the 

laminar flow cabinet, the sodium hypochlorite solution was removed, and 1ml of sterile 

distilled water was added. The seeds were rinsed in water five times. After the last rinse, 

the seeds were left in water and allowed to rest for 4-5 days at 4°C to break dormancy 

(Park, Kwak, Oh, Kim, & Kang, 2009). The sterile seeds were distributed in the plastic 

containers on top of the nylon cloth utilizing a 20-200µl micropipette. The containers 

were covered with plastic wrap and secured with a rubber band. The seeds were grown at 

20°C, under white led lights with a 12-hour photoperiod.  
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6.2 Arabidopsis thaliana sand culture 

For the culture of A. thaliana on sand, river sand was thoroughly washed with water 

and then autoclaved for 20 minutes at 121°C. The sand was then spread out on a tray and 

allowed to dry. Then, the sand was distributed in 6-well plates for cellular culture, making 

sure that the sand filled half of the capacity of each individual well. Liquid MS medium 

was prepared, and it was distributed in all wells, using enough medium to wet all the sand 

in each well. In separate plates, A. thaliana Col-0 and PR1::GUS were sprinkled over the 

sand in each well. Each plate was covered with its lid, and then left to rest for 4-5 days at 

4°C. The seeds were grown at 20°C, under white led lights with a 12-hour photoperiod. 

The liquid in each well was replenished as needed in order to avoid the plants from drying 

out.  

6.3 Sulphur nutritional stress treatments 

For the different sulphur nutritional stress treatments, MS medium and modified 

versions of the MS medium were prepared. One of the modified mediums was completely 

deficient with sulphur, while the other had a 4-fold excess in sulphur in comparison with 

the standard MS medium. A salicylic acid 10 mM solution was prepared by dissolving 

0.207 g of salicylic acid in 5 ml of ethanol and then completed to 150 ml with distilled 

water. Afterwards, 1 ml of the 10 mM was diluted to 20 ml to achieve a final concentration 

of 0.5 mM, and 2-3 drops of tween 80 were added. A mock solution was prepared to 

maintain the same alcohol:water ratio without the addition of salicylic acid. Two batches 

of treatments were prepared, both containing treatments with sulphur deficiency, MS, and 

sulphur excess, but one was treated with salicylic acid while the other was treated with 

the mock solution.  

The plants grown in sand were used for these treatments. The first step was to rinse 

the sand in each well to remove all the nutrients. This was done by utilizing distilled water 
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and a Pasteur pipette, rinsing the sand several times until its conductivity dropped below 

200µS. Then, an airbrush was used to spray the plants with the salicylic acid or mock 

solution accordingly. The excess liquid remaining from the spraying was removed with a 

Pasteur pipette. Up next, each type of medium was distributed in two of the six wells of 

each plate, making sure that there was enough liquid to barely cover the sand in each well. 

The plants were left uncovered, at room temperature on the bench top overnight.  

6.4 GUS Reporter System 

Solutions of disodium phosphate (Na2HPO4) 1M and monosodium phosphate 

(NaH2PO4) 1M were prepared. Then, 34.2 ml and 15.8 ml of each solution respectively 

were mixed to yield 50ml of NaPi 1M solution. A solution of EDTA 0.25M pH: 8 was 

also prepared. In order to prepare the X-Gluc solution, 50 ml of the NaPi solution, 20 ml 

of the EDTA solution, and 5 ml of Triton X-100 were combined, and then diluted to 500 

ml with distilled water. Finally, 250 mg of X-GlcA were dissolved in 12 ml of  N,N-

Dimethylformamide, which were then added to the final solution. The X-Gluc solution 

was stored at -4°C.  

After the sulphur nutritional treatments, PR1::GUS plants were placed in a 24-well 

plate, with 4-5 plants per well. Next, 1 ml of the X-Gluc solution was added to each well. 

The plates were put inside a glass vacuum desiccator, which was attached to a vacuum 

pump, and they were left at -15 Bar for 1 hour. Afterwards, the plates were covered with 

their lids, sealed with parafilm, and left in an incubator at 37°C for 2-3 days. After 

incubation, the X-Gluc solution was removed and the plants were discolored with 96% 

ethanol.  
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6.5 Sulphate Determination by Turbidimetry 

To determine sulphate in plant tissue, a turbidimetric method was used. Solutions 

of HCl 6M and 70% sorbitol were both prepared to carry out the procedure. A calibration 

curve was obtained by preparing sulphate standards of sodium sulphate ranging from 0 

ppm to 50 ppm of sulphate concentration. 10 ml of each standard were placed in a 50 ml 

Falcon tube, followed by 1 ml of HCl 6M, and then 5 ml of the sorbitol solution. 

Approximately 1 g of barium chloride was added to each tube, and then vigorously 

shaken. Each tube was left to rest for at least 5 minutes, and then the samples were 

analyzed in a turbidimeter at 470nm (Verma, 1977). All of the standards were analyzed 

by duplicate. The mean of the measurements of each standard was used to construct the 

calibration curve.  

For the analysis of sulphate from plant tissue, the first step was weighing the 

samples, followed by an acid digestion of the explants. This was done by submerging the 

samples either in 2 ml of 69% nitric acid or 2 ml of 69% nitric acid + 1 ml of hydrogen 

peroxide and letting them rest for 24 hours (Huang, 2004). Each extract was then carefully 

diluted to 25 ml with distilled water. In order to determine the recovery index of this 

method with the reagents used in the acid digestions, samples with a concentration of 30 

ppm of sulphate were prepared with the same proportions of nitric acid and peroxide used 

in the analysis of plant tissue. Then, 10 ml aliquots of all samples were used to determine 

sulphate with the same procedure as the standards. Finally, calculations were made to 

determine the amount of sulphate in the initial mass of plant tissue. The following 

equation was developed to determine the concentration of sulphate in plant tissue: 

𝑆𝑂4 𝑖𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 [
𝑛𝑚𝑜𝑙 𝑜𝑓 𝑆𝑂4

𝑚𝑔 𝐹𝑊
] = 
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𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
 ×  

100

 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 [%]
 × 

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 [𝐿]

𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑚𝑔]
×

106

𝑆𝑂4 𝑀𝑊 
 

Equation 1. Calculation of sulphate concentration in fresh weight of A. thaliana 

6.6 Protein extraction 

In order to determine cysteine, a prior protein extraction is required (Krueger, et al., 

2009). Five different methods of extraction were conducted. The first method utilized an 

extraction buffer with the following reagents and concentrations: 0.1M EDTA pH:8, 

0.12M Tris-HCl, pH:6.8, 4% w/v SDS, and 10% v/v β-ME. Plant samples in the range of 

0.1-0.2 g were put inside a 1.5 ml Eppendorf tube alongside four 4mm glass beads, and 

then submerged in liquid nitrogen until frozen. The tubes were then vortexed until a paste 

was formed inside the tube. The samples were freezed in liquid nitrogen and vortexed 

again. Lastly, 1 ml of the extraction buffer was added to the tubes. The samples were then 

boiled for 10 minutes (Tsugama, Liu, & Takano, 2011). The second and third methods 

used only distilled water or ethanol for the extraction (Carrillo, 2011). Explants in the 

range of 0.1-0.2 g were subjected to the same freezing and vortexing procedure described 

for the previous method. Then, 1ml of distilled water or 96% ethanol was added 

accordingly to each tube. The samples were then boiled for 30 minutes. The fourth 

method of extraction consisted of a three-step process with a mixture of water/ethanol. 

The samples were weighed, frozen and vortexed as described for the previous methods. 

Then, 1ml of 80% ethanol was added to the tube, and it was boiled for 30 minutes; this 

was done twice, collecting the extracts in a separate tube. The third time, 1 ml of 50% 

ethanol was added, and the sample boiled for another 30 minutes. The extract was 
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removed once again and added to the previous extracts to yield a final volume of 3 ml in 

a proportion of 70:30 ethanol:water (Cross, et al., 2006). The last method of extraction 

started with the same freezing and vortexing than the previous methods. Then, 1 ml of 

40% ethanol was added to the tube, and then it was left overnight at 4°C (Carillo, et al., 

2008). All tubes were centrifuged and the supernatant was used for protein and cysteine 

determination.  

All five methods of extraction were also conducted utilizing fortified solutions with 

a cysteine concentration of 0.6 mM. This was done with the intention of determining if 

cysteine could be detected on the protein extracts, and discard any possible interference 

in the measurement from the extraction media or plant contents.  

6.7 Protein quantification 

For protein quantification, the Bradford protein assay was employed (Bradford, 

1976). 25µL of each extract was put inside an individual well in a 96-well plate, followed 

by 100µL of Bradford reagent. The plate was incubated in the dark at room temperature 

for 25 minutes and then read in the Sirio S ELISA plate reader at 620 nm (Bradford, 

1976). Each sample was measured twice. Protein concentration was determined utilizing 

a standard curve provided by José Alvarez, professor of Chemical Engineering in at 

USFQ, which was realized in the Agrobiotechnology and Food Biotechnology 

Laboratory of USFQ (Appendix 1).  

6.8 Cysteine determination 

Cysteine was determined utilizing a modified version of the colorimetric method 

proposed by Gaitonde in 1967. A ninhydrin solution was prepared by adding 250 mg of 

ninhydrin to 6 ml of acetic acid and 4 ml of 0.6M phosphoric acid. A calibration curve 

was obtained by preparing standards with known cysteine mass utilizing cysteine 
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hydrochloride, ranging from 0.01 to 0.08 µmol of cysteine. The method was adapted to 

be realized in a thermal cycler instead of boiling the samples in a water or dry bath. Using 

a multichannel micropipette, 50 µl of each cysteine standard were added to a well of a 

96-well PCR plate, followed by 50 µl of acetic acid, and 50 µl of the ninhydrin solution. 

Each standard was replicated 8 times. The plate was then introduced in the thermal cycler, 

under a program designed to boil the standards at 95°C for 10 minutes. Each sample was 

then diluted in 2 ml of 96% ethanol, and its absorbance at 560 nm was measured. The 

mean of the eight replicates of all standards was used to construct the calibration curve. 

The same procedure was followed to determine the cysteine concentration from the 

different protein extracts.  

6.9 ROS determination 

For the fluorescent determination of ROS, a working solution with the following 

reagents and concentrations was prepared: 20µM DCFDA, 1/10 MS medium, and 0.1% 

Tween 80. Arabidopsis thaliana Col-0 grown in vitro were used for this analysis. 2-3 

plants were put into separate wells of a 24-well plate. Different groups of plants were 

treated for 5 minutes with MS medium, sulphur deficient medium, sulphur excess 

medium, or salicylic acid 0.5 M accordingly. After their respective treatments, plants 

were transferred to clean 24-well plates, and 3 ml of the working solution was added to 

each well. Another group of plants was mechanically damaged using tweezers and 

immediately submerged in 3 ml of working solution.  The plates were incubated in the 

dark for 30 minutes at room temperature. After incubation, 200 µl of each sample was 

loaded four times into individual wells of a 96-well black plate for fluorescence analysis. 

Fluorescence was measured in a Biotek Cytation 5 fluorometer, with an excitation at 488 

nm and emission at 525 nm. The remaining leaves were separated into 2 ml tubes, dried 

in an oven, and weighed.  
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6.10 Statistical analysis  

The calibration curves modeled for the methods of turbidimetric sulphate 

determination and colorimetric cysteine determination were obtained in Microsoft Office 

Excel. The analysis for the results of protein extraction consisted of a one-way ANOVA 

and Tukey pairwise comparisons, both of which were done in Minitab 17. Lastly, the 

analysis of the results of fluorescent ROS determination consisted of a Welch’s test and 

Games-Howell pairwise comparisons, which were also conducted in Minitab 17.  
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7 RESULTS 

7.1 In vitro culture of Arabidopsis thaliana 

The nature of the different nutritional experiments conducted in this study 

demanded a modified version of in vitro culture that allowed an easy way to transfer 

plants from one medium to another. The conventional method of in vitro culture proved 

to be inefficient in this regard, since every plant had to be removed from the growth 

medium and transferred to the nutritional assay individually. The proposed method of 

culture with PVC rings and nylon stockings as a matrix was successful, because it 

simplified the transfer procedure from one medium to the other. 

 

Figure 1. Arabidopsis thaliana Col-0 grown in vitro over a nylon cloth matrix 

Figure 1 shows the growth of A. thaliana Col-0 in vitro with the designed system of 

plasticized PVC rings and nylon cloth as a support matrix. The PVC tube kept its integrity 

after autoclaving, and the nylon cloth allowed the seeds to germinate.  

7.2 Arabidopsis thaliana sand culture 

The culture of A. thaliana in sand utilizing plastic plates normally used for cellular 

culture also proved to be successful. This method of culture made it easier to treat the 

plants with their respective nutritional diet without the need of transferring them from one 

vessel to another. The main appeal of this method is that healthy plants can be cultured 

without the use of a surface sterilization protocol, thus reducing the number of plants lost 

to infection, while also reducing the time needed to set up a batch of A. thaliana.  
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Figure 2. Arabidopsis thaliana PR1::GUS grown on river sand 

Figure 2 shows the growth of A. thaliana PR1::GUS in a 6-well plate for cellular culture, 

with river sand and liquid MS medium as substrate. 

7.3 Sulphur nutritional stress treatments and GUS Reporter System 

In this analysis, the GUS reporter system allowed for easy detection of PR1 

expression inside the PR1::GUS plants. If the analyzed plant tissue stain blue after the 

addition of the chromogenic substrate X-Gluc, it can be inferred that PR1 expression is 

being promoted by the particular treatment that they were subjected to.  
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Figure 3. GUS stain after the application of sulphur treatments and salicylic acid (SA) 

in A. thaliana reporter lines PR1::GUS and PG15  

Figure 3 shows the results of the sulphur treatments in A. thaliana. In the PR1::GUS 

reporter line, blue colored leaves indicates the expression of the PR1 gene. Plants treated 

with the standard MS concentration of sulphur without SA did not show expression of the 

PR1 gene. Plants treated with the standard MS concentration of sulphate plus SA showed 

expression of the PR1 gene as expected (Shapiro & Zhang, 2001). Sulphur deficiency 

weakly promoted the activation of PR1, while sulphur excess did not promote the 

expression of PR1. Since A. thaliana PG15 is under constitutive expression of the uidA 

gene it should always turn blue when X-Gluc is added. For this reason, PG15 plants were 

used as a control to determine if the GUS staining assays were working correctly 

(Jefferson, Kavanagh, & Bevan, 1987).  
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7.4 Sulphate determination by turbidimetry 

Sulphate is the main form of sulphur that plants assimilate from the soil into their 

cells, which is the first step in sulphur metabolism that then leads to the formation of all 

the other sulphur-containing compounds found in the cell (Bloem, Haneklaus, & Schung, 

2015). If the shifts in concentration of specific products inside sulphur metabolism want 

to be analyzed, it is crucial to be able to determine how amount of sulphate in the plant is 

affected by the different nutritional stresses. Sulphate is commonly determined by a 

turbidimetric method that utilizes barium chloride (BaCl2), which, upon reacting with 

sulphate, forms insoluble barium sulphate (BaSO4) crystals, thus increasing the turbidity 

of the solution (Verma, 1977). To utilize this method, obtaining a calibration curve is 

necessary, because it will allow for the determination of sulphate in unknown samples 

based on the readings for standards with known concentrations of sulphate (Verma, 

1977).  

 

Figure 4. Calibration curve for the turbidimetric determination of sulphate 
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Figure 4 shows the calibration curve obtained for the turbidimetric determination of 

sulphate in plant tissue. The equation obtained was y = 0,0054x, with an 

R² = 0.9902, which indicates that the data have an appropriate fit and explain the 

variability of the model. 

It is not common for a quantification procedure to be able to detect all of the target 

compound in a sample. The percentage of compound detected in relation to the real 

concentration in the sample is known as the recovery index. The recovery index of the 

determination of sulphate for both digestion protocols was calculated. 

Table 1. Calculation of the recovery index for sulphate determination with two types of 

digested samples 

 

Table 1 shows the calculation of the recovery index for sulphate determination. 

Samples with a known concentration of sulphate were prepared and analyzed. The means 

of the measurements were compared against the real concentration and the recovery index 

was calculated. Samples digested only with nitric acid yielded a recovery index of 93%, 

which falls inside of the expected recovery for this method (Verma, 1977). The recovery 

index of samples with nitric acid + peroxide yielded a much lower recovery index of 51%. 

After determining the recovery index, sulphate was determined in A. thaliana plants 

grown in vitro. Samples of different mass were digested and then subjected to the 

determination protocol. 

 

Method SO4 in sample  

(ppm) 

Mean of SO4 determination  

(ppm) 

Recovery 

(%) 

Nitric acid 30 27.91 93.03 

Nitric acid + 

peroxide 30 15.49 51.62 
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Table 2. Sulphate determination in A. thaliana samples grown in vitro 

Sample Digestion method 

Fresh 

weight 

(mg) 

Mean of SO4 detected in sample 

(ppm)  

nmol 

SO4/mgFW 

1 Nitric acid 27.50 0.019 34.77 

2 Nitric acid 57.50 0.0335 30.41 

3 

Nitric acid + 

peroxide 35.60 0.0125 33.20 

4 

Nitric acid + 

peroxide 40.20 0.031 37.19 

   Mean 33.89 

   Standard Deviation 2.84 

   Coefficient of variation 8.38% 

 

Table 2 shows the results of sulphate determination in tissue of A. thaliana. 

Equation 1 was used to determine the concentration of sulphate in tissue. Adjusting the 

obtained measurements to the weight of each sample and recovery index of each method 

yielded similar final concentrations of sulphate for all samples. All mathematical 

adjustments needed for this calculation are already included in Equation 1.  

7.5 Cysteine determination, protein extraction and quantification 

Cysteine is at the heart of sulphur metabolism, since the synthesis of majority of 

the sulphur containing compounds uses cysteine as a precursor (Bloem, Haneklaus, & 

Schung, 2015). In order to properly analyze cysteine in plant tissue, it is necessary to 

carry out a protein extraction procedure, and the extracts can be used for cysteine 

quantification. There are numerous protocols for protein extraction, ranging from 

complex extraction buffers to minimalist ones. For this reason, five different methods of 

protein extraction were tested: protein extraction buffer, alcohol-only, water-only, alcohol 

+ water, and cold extraction. 
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Figure 5. Boxplot of the concentration of protein after four methods of extraction 

Figure 5 shows a boxplot of the protein concentrations for each extraction method. 

The graph shows that the extraction with the protein buffer has a higher extraction 

capacity than the other four methods. The means of protein concentration were: extraction 

buffer 0.305 mg/ml, alcohol only extraction 0.161 mg/ml, cold extraction 0.09160 mg/ml, 

water only extraction 0.05057 mg/ml, and water + alcohol extraction 0.04960 mg/ml. 

This indicates that all methods allowed for the extraction of protein to some degree.  
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Figure 6. Four in one chart for the ANOVA of protein extraction 

Figure 6 shows the four in one chart displayed in Minitab 17 along with the 

analysis of variance for protein extraction. All of the ANOVA assumptions were met 

(normality, independence, and equal variances) (Devore, 2008).  

 

Figure 7. Minitab output for the ANOVA of protein extraction 

Figure 7 shows the ANOVA table displayed in Minitab 17 for the analysis of 

protein extraction. The ANOVA table shows a p value <0.05 which indicates that at least 

one of the means of protein concentration was significantly different. The model summary 

presents an R2 of 97.64%, which suggests that the variability observed in the response 

data is correctly explained by the model obtained (Devore, 2008).  
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Figure 8. Tukey simultaneous comparisons for the means of protein concentration of the 

five methods of extraction 

 

Figure 9. Minitab output for the groupings of Tukey pairwise comparisons for the four 

methods of extraction 

Figure 8 and Figure 9 show the outputs of Minitab 17 for the Tukey pairwise 

comparisons of the means for each method of extraction. These results show that the mean 

of protein concentration for the buffer extraction is significantly different than the other 

four methods. The mean of protein concentration for the alcohol only extraction is 

significantly higher than the three remaining methods. The cold and water-only 
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extractions are statistically the same. Lastly, the water + ethanol extraction is statistically 

equal to the water-only extraction. 

After protein extraction, a colorimetric method utilizing ninhydrin was used to 

determine cysteine content in the extracts. This method is based on the specific reaction 

that takes place between ninhydrin and cysteine at low pH, which yields a pink product 

that can be detected by colorimetry (Gaitonde, 1967). In order to utilize this method, a 

calibration curve had to be obtained, which will enable the determination of cysteine in 

an unknown sample based on the readings of standards with known masses of cysteine 

(Gaitonde, 1967).  

 

Figure 10. Calibration curve for the colorimetric determination of cysteine 

Figure 10 shows the calibration curve obtained for the colorimetric determination of 

cysteine. The equation obtained was an y = 3,5711x + 0,01, with  

R² = 0,9963, which indicates that the data have an appropriate fit and explain the 

variability of the model. 
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Figure 11. Protein extracts of the four methods of extraction with their respective 

cysteine control 

Figure 11 shows the protein extracts used for the determination of cysteine in plant 

tissue: a) alcohol, b) water, c) alcohol + water, d) cold extraction. The tube on the right 

of all samples is a cysteine control ran parallel with the samples. It was not possible to 

determine the amount of cysteine in the extracts, since none of the samples turned pink 

similar to the control, which suggests that the reaction did not take place. Furthermore, 

detection of cysteine with the ninhydrin protocol yielded a reading of 0 µmol of cysteine 

in all samples.  

7.6 ROS determination 

The determination of ROS in relation to different nutritional sulphur stresses is of 

particular importance, since ROS are the link between the SA pathway and sulphur 

metabolism (Bloem, Haneklaus, & Schung, 2015). The most common protocol to 

determine ROS is utilizing the method of DCFDA, which is a molecule that becomes 

fluorescent when oxidized by ROS (Da, et al., 2019). Different assays were conducted in 

this study in order to determine the effect that sulphur nutritional stress has on the 

production of ROS. Plants treated with standard MS medium were used as a negative 

control, since optimal conditions should not show signs of increased ROS in the plants. 

a b 

c d 
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On the other hand, mechanically damaged plants were used as a positive control, for it is 

known that physical damage causes the production and accumulation of ROS inside the 

cell (Mittler, Vanderauwera, Gollery, & Van Breusegem, 2004).  

 

Figure 12. Interval plot of ROS determination for the five different treatments 

Figure 12 shows an interval plot of the ROS determination for the five different 

treatments. The graph shows that the mechanically damaged plants produced a higher 

amount of ROS than the other four groups of plants. All the plants subjected to nutritional 

treatments (MS, SA, +S, and –S) where analyzed for ROS after 5 minutes in treatment. 

Damaged plants were analyzed for ROS immediately after inflicting mechanical damage. 

The means of each treatment were: Damaged 18947 RFU/mgDW, SA 3190 RFU/mgDW, 

MS 2314 RFU/mgDW, +S 1081 RFU/mgDW, and -S 695 RFU/mgDW. 
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Figure 13. Four in one chart for the ANOVA of ROS determination 

Figure 13 shows the four in one chart displayed in Minitab 17 along with the 

analysis of variance for ROS determination. The ANOVA assumptions were not met in 

this case. The data follow a normal distribution and are independent, but they do not show 

equal variances (Devore, 2008). 

 

Figure 14. Minitab output for Welch's test of ROS determination 

Figure 14 shows the Welch’s test table displayed in Minitab 17 for the analysis of 

ROS determination. The table indicates that at least one of the means of ROS detection 

was significantly different (p<0.05) (Devore, 2008). The model summary presents an R2 

of 96.33%, which suggests that the variability observed in the response data was correctly 

explained by the model obtained (Devore, 2008). 

 



50 

 

 

Figure 15. Games-Howell comparisons for the means of ROS determination of the five 

treatments 

 

Figure 16. Minitab output for the groupings of Games-Howell pairwise comparisons for 

the five treatments 

Figure 15 and Figure 16 show the outputs of Minitab 17 for the Games-Howell 

pairwise comparisons of the means for each group of plants. These results show that the 

damaged plants produced a significantly higher amount of ROS compared to the other 

four groups. All the other groups were statistically equal.  
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8 DISCUSSION 

8.1 In vitro culture of Arabidopsis thaliana 

The culture of A. thaliana utilizing PVC rings and nylon stockings proves to be 

easy and affordable. Similar protocols have been developed for other types of in vitro 

experiments, in which commercial nylon meshes are used as a matrix over the culture 

medium (Crombez, et al., 2016; Johnson, et al., 2011). In contrast, the method proposed 

in this study utilized nylon stockings, which are readily available everywhere and are 

quite inexpensive, and yet perform perfectly in order to let the seeds germinate (Figure 

1). The plasticized PVC also performed well in setting up this culture system, since it 

resisted the autoclaving process. Other plastics were tested to make the rings, including 

polystyrene (from plastic Petri dishes) and polypropylene (from Falcon tubes), but they 

were not suited for this purpose since they deformed during autoclaving. This method of 

in vitro culture will prove to be of great use in the future when making experiments with 

different nutritional diets and plant hormones, since the ring can be easily removed from 

the medium while causing very little damage to the roots of the plants.  

8.2 Arabidopsis thaliana sand culture 

The proposed method for culture of A. thaliana on sand also proved an easy and 

practical way to work in batches for the different nutritional assays that were conducted 

(Figure 2). This method has some advantages and disadvantages in comparison with in 

vitro culture. Firstly, sand culture does not require the use of agar substrates that tend to 

be expensive, which are necessary when working in vitro (Davis, Hall, Millar, Darrah, & 

Davis, 2009). Also, the seeds do not have to go through a process of surface sterilization 

(Davis, Hall, Millar, Darrah, & Davis, 2009), so sand culture also reduces the time 

required to set up a batch of A. thaliana plants. It is also convenient to be able to subject 

the plants to their respective nutritional treatments in the same well, without having to do 
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any sort of transfer; the sand can be easily rinsed and medium can be replaced, all in the 

same container. Lastly, the application of plant hormone (in this case the salicylic acid 

solution) can be easily done with an airbrush, which ensures an even coating over the 

plants. The downside with this method of sand culture is that it is difficult to maintain 

even and steady conditions of humidity in each well, which is not the case with in vitro 

culture. It is necessary to check the plants regularly, since the medium evaporates quite 

rapidly, and it must be replenished constantly so the plants do not dry out. Removing the 

excess condensation on the lids of the plates is also important, since the risk of fungal 

contamination was reduced. Overall, this seems to be an appropriate and useful method 

to carry out nutritional studies in plants like A. thaliana. 

8.3 Sulphur nutritional stress treatments and GUS Reporter System 

The GUS reporter system was utilized to assess the expression of the PR1 gene as 

promoted by different conditions of sulphur dietary stress and salicylic acid application. 

The A. thaliana plants cultivated on sand were subjected to different conditions of sulphur 

nutritional stress, and then were analyzed for the expression of the PR1 gene. It is 

appropriate to mention that the GUS reporter system assesses the activity of the PR1 

promoter, which is reflected in the production of β-glucoronidase, and not the expression 

of PR1 per se. Nevertheless, the presence of β-glucoronidase and the blue staining of the 

plant tissue is generally interpreted as expression of the gene of interest (Karcher, 2002).  

There were three control groups of plants which were used to validate the results observed 

in this assay. Plants subjected to the standard sulphur concentration of the MS medium 

should not show an expression of the PR1 gene, while plants subjected to the standard 

sulphur concentration but treated with SA should turn blue indicating the expression of 

the PR1 gene (Shapiro & Zhang, 2001). The third control group were A. thaliana PG15 

plants, which have the uidA gene inserted after the CaMV 35S promoter, which is a 
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promoter of constitutive expression in plants. This means that the PG15 line should 

always turn blue, regardless of the conditions (Jefferson, Kavanagh, & Bevan, 1987); this 

is used as a control to determine that the staining process is taking place correctly. The 

three control groups showed the correct pattern of coloring in the assays realized (Figure 

3).  

Regrettably, the results obtained in relation to the sulphur treatments were not as 

evident as those reported by Gonzales and Criollo in 2015 and 2013, respectively. It has 

not been possible to fully replicate the results obtained in those studies, so it is clear that 

there are some conditions that are not being established exactly like the other authors, 

which difficults witnessing a more uniform expression of PR1 when subjecting the 

PR1::GUS plants to sulphur deficiency. Nevertheless, it is clear to see that the expression 

of the PR1 gene is more pronounced in the plants treated with sulphur deficiency (with 

or without SA) than in the plants treated with sulphur excess (with or without SA) (Figure 

3). An explanation for this phenomenon requires the integration and analysis of several 

cellular mechanisms that regulate plant defense. It has been established that nutritional 

stress promotes the production and accumulation of ROS inside the cell (Cakmak, 2005), 

and it is also known that ROS promote the biosynthesis of salicylic acid as well as the 

expression of the PR1 gene (Dzhavakhiya, Ozeretskovskaya, & Zinovyeva, 2007). SA 

and ROS work in a positive feedback loop, in which both promote the accumulation of 

each other inside the cell, which causes a shift in the redox potential due to the increased 

amount of ROS (Mittler, Vanderauwera, Gollery, & Van Breusegem, 2004). This causes 

a change in the protein NPR1, which shifts from its oligomeric form to its active 

monomeric form. The monomeric PR1 then translocates to the nucleus, where it acts as a 

co-activator of the PR1 gene by enhancing the binding of TGA transcriptional factors to 
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SA-responsive promoter elements in the DNA (Pieterse, Leon-Reyes, Van der Ent, & 

Van Wees, 2009).  

Negative feedback for salicylic acid signaling comes from two primary sources, 

which are NPR1 and glutathione (GSH) (Shah, 2003; Herrera, Salinas, & Holuigue, 

2015). If a plant accumulates high amounts of SA, levels of glutathione increase in order 

to mitigate the oxidative stress and suppress SA signaling (Herrera, Salinas, & Holuigue, 

2015). In the case of a sulphur deficiency, the plant’s cysteine pool will greatly reduce, 

and thus, it would not be able to synthesize new GSH (Wirtz, Droux, & Hell, 2004; 

Hasanuzzaman, Nahar, Islam, & Fujita, 2017). This means that the plant does not have 

the means to control the positive feedback loop that exists between SA and ROS, hence 

the expression of the PR1 gene when treated with a sulphur deficiency (with or without 

SA). On the other hand, when the plants are subjected to an excess of sulphur in their diet, 

they are able to produce enough GSH to control the positive feedback loop of SA and 

ROS. It has been demonstrated that at higher sulphur concentrations, the cysteine pool 

inside the cell increases as long as there is enough O-acetylserine in the cell to carry out 

the reaction (Wirtz, Droux, & Hell, 2004). This implies that the excess of sulphur (with 

or without SA) will enable the plant to produce enough GSH to regulate the redox state 

of the cell to a degree in which the expression of PR1 is greatly reduced. Still, it is 

necessary to find the proper conditions in which sulphur deficiency decisively promotes 

the expression of the PR1 gene, and then the determination of the intermediary products 

of sulphur metabolism will provide valuable information as to what processes are taking 

place inside the cells of the plant.  

8.4 Sulphate determination by turbidimetry 

It is well known that the two main ways to determine sulphate concentration are ion 

chromatography and turbidimetric methods with barium chloride. Clearly, the 
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turbidimetric method has the advantage of being less expensive, and it does not need 

overly specialized equipment. Nevertheless, several roadblocks were met when 

standardizing the method for the determination of sulphate. Initially, a turbidimetric 

method optimized for the determination of sulphate in water was utilized (Rossum & 

Villarruz, 1961). In addition, different methods of extraction of sulphate were tested. 

Lyophilized and fresh tissue were frozen, ground, and mixed with distilled water, and 

then analyzed with the aforementioned method. The results obtained with the water 

analysis protocol were not satisfactory, since the measurements were extremely variable, 

and did not seem to be coherent. This may have been due to different factors, including 

that the working solution of that method was not designed to be used with plant extracts. 

Also, the barium sulphate crystals that form during the analysis are highly insoluble and 

precipitate quickly. Since the method for water analysis did not have any sort of stabilizer 

to keep the crystals evenly dispersed throughout the solution, the samples had to be 

processed in small batches, because if a sample was left to rest for more than five minutes, 

precipitation of the crystals affected the reading. It was also possible that the extraction 

methods were not good enough to draw out most of the sulphate from the tissue, which 

resulted in the uneven measurements observed with this method.  

In order to make sure to extract all the sulphate form the plant tissue analyzed, an 

acid digestion protocol was adopted, which is common when realizing elemental analysis 

of the sort. A turbidimetric method specialized in the detection of sulphate from acid 

digestion extracts was adopted as well (Verma, 1977). This method has the particularity 

of using a 70% sorbitol solution as an added stabilizer, which promotes an even 

distribution of the barium sulphate crystals throughout the solution. The calibration curve 

obtained for this method clearly shows that the procedure is fit to determine sulphate 

concentration, since it shows high precision in its readings (Figure 4). The R2 obtained 
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for the calibration curve is 0.9902, which indicates that the data is well fitted to the 

regression line. This also indicates that the variability observed in the response data 

(absorbance) is explained by the modeled curve (Montgomery, 2017). A high R2 is a good 

indicator that precise predictions will be made when new samples are analyzed with this 

method (Montgomery, 2017). 

In relation to the recovery index obtained for the turbidimetric determination of 

sulphate, the different methods of acid digestion yielded vastly different results. The 

samples prepared with 2 ml of nitric acid and diluted to 25 ml with 30 ppm of sulphate 

showed a recovery of 93% (Table 1). This recovery index falls in the acceptable range of 

recovery determined for most analytical chemistry procedures, and it reaches the levels 

of recovery described for this particular technique (Ravisankar, Navya, Pravallika, & Sri, 

2015; Verma, 1977). The opposite is true for the samples prepared with nitric acid and 

hydrogen peroxide, which have a low recovery index (51%) (Table 1). Therefore, acid 

digestion with nitric acid only seems to be better suited for sulphate determination with 

the proposed method. Regarding the determination of sulphate in plant tissue, the results 

obtained demonstrated that the method is able to quantify sulphur in plants in a consistent 

manner. A single batch of plants was used for sulphate quantification since it was desired 

to assess if the readings were consistent within a homogeneous group of plants. Different 

increments of plant mass were used to make the determinations, and it was expected to 

obtain a similar concentration of sulphur in tissue after adjusting the readings of each 

sample with its initial mass. The results show that the method employed did in fact detect 

similar concentrations of sulphur in the tissue of the plants analyzed. The inter-assay 

coefficient of variation for this method is of 8.38%, which is acceptable, since values 

<10% for this parameter tend to be the standard (Reed, Lynn, & Meade, 2002). This 

assures that the quantifications made with this method are reliable and replicable, 
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therefore validating its use in future experiments. Nevertheless, it would be appropriate 

to further perfect this protocol in order to reduce the coefficient of variation to a value 

lesser that 5%, since this will guarantee that small differences can be detected in the 

tissues analyzed.  

8.5 Cysteine determination, protein extraction and quantification 

The modified protocol for determination of cysteine proposed in this study, based 

on Gaitonde’s method (1967), seems to be a practical and efficient way to determine 

cysteine from a large group of samples simultaneously, while also reducing the amount 

of reagents needed to do the measurements. The proposed methodology reduces the 

reaction volume from 1.5 ml to 150 µl, while maintaining the same proportions of the 

reagents to ensure that the proper reaction takes place. In addition, the use of 96-well PCR 

plates, along with the multichannel micropipette speeds up the procedure, while reducing 

the variability that would arise from preparing a large number of samples by hand. 

Another advantage is that the thermal cycler allows an easy and safe way to boil the 

samples. This proved to be an issue in preliminary tests when the reactions were heated 

in a dry bath, because the plastic tubes popped open and the contents of the reaction were 

spilled. The calibration curve obtained with this method (Figure 10) also yielded a high 

R2 (0.9963), which implies that the method is fit to make precise determinations of the 

mass of cysteine in a sample, similar to the interpretation for the sulphate calibration 

curve.    

Sadly, it was not possible to make cysteine determination from plant extracts. None 

of the extract samples turned pink as they should have in order to make the determination. 

Several hypotheses were analyzed as to why it was not possible to make the determination 

on the samples. In the first extraction method utilizing a more complex extraction buffer, 

it was believed that at least one of the components in the buffer was interfering with the 
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reaction of ninhydrin with cysteine, so the simpler extraction methods were tried out. 

Still, it was not possible to make cysteine determinations in any of the other four methods 

of extraction (alcohol, water, water + alcohol, and cold extraction). To make sure that the 

extraction protocols used were in fact extracting protein from the samples, the Bradford 

assay was used to determine protein concentration on the extracts (Figure 5) (Bradford, 

1976). An ANOVA was used to determine if there was any difference on the extraction 

yield with each method (Figure 6; Figure 7). It was finally determined that all of the 

methods of extraction worked to some degree, but the method of extraction using only 

alcohol yielded a significantly higher protein extraction than all the other methods (Figure 

8). This proved that the protein extraction methods were in fact extracting protein, so the 

determination of cysteine could not be performed due to some other factor.  

Then, the possibility that the amount of cysteine in the samples was so low that the 

reaction could not take place was also contemplated. In order to analyze this, fortified 

solutions with cysteine were prepared, and those were used to extract protein from plant 

tissue. A control was run parallel to the samples to determine that cysteine was not 

affected by any of the steps in the extraction procedures. Figure 11 shows the results after 

the extraction with fortified solutions, in which the reaction took place in all of the 

controls, but not in any of the extracts. The extracts should have turned at least as pink as 

the controls, which suggests that some component of the plant extract is interfering with 

the reaction. Other studies that perform cysteine determinations for plant protein extracts 

perform a desalinization step prior to the determination of cysteine (Krueger, et al., 2009). 

This step is most likely to remove anions from the extract, but nevertheless, the purpose 

of this step is unclear as to which specific element or compound is being removed in order 

for the reaction of ninhydrin and cysteine to take place.  
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8.6 ROS determination 

The fluorescent determination of ROS yielded interesting results in regard to the 

effects of the different treatments that were applied to the plants. It is well known that 

perception of stresses (biotic and abiotic) causes the production of ROS inside the cell of 

the plant (Mittler, Vanderauwera, Gollery, & Van Breusegem, 2004). Figure 12 clearly 

shows that subjecting the plants to mechanical damage greatly increases the production 

of ROS. Even though the mean of ROS accumulation in the plants treated with salicylic 

acid is similar to the MS, -S, and +S nutritional treatments, the dispersion of the data is 

much greater, since some of the measurements within this group showed high 

concentrations of ROS in the tissue. This is to be expected, since hormonal perception 

inside the plant causes the accumulation of ROS, like is the case with salicylic acid 

(Mittler, Vanderauwera, Gollery, & Van Breusegem, 2004; Vlot, Dempsey, & Klessig, 

2009). SA has the ability to bind specifically to catalase enzymes, which are part of the 

ROS scavenging mechanisms inside the cell. In turn, this causes the accumulation of 

ROS, like hydrogen peroxide, inside the cell (Dzhavakhiya, Ozeretskovskaya, & 

Zinovyeva, 2007). Concerning the sulphur nutritional treatments, the three treatments did 

not seem to cause an increase in ROS concentration inside the cell.  

At this stage, it is not possible to draw conclusions as to the effect that sulphur 

nutritional stress has on the accumulation of ROS. ROS regulation inside plants is 

characterized by sudden spikes in concentration followed by drastic reductions controlled 

by the ROS scavenging mechanisms inside the cell (Mittler, Vanderauwera, Gollery, & 

Van Breusegem, 2004). It is possible that the five-minute period that the plants were left 

submerged in their respective treatments was too long, and the spike of ROS 

accumulation was missed for the determination, especially when considering that 

nutritional stress is known to promote ROS accumulation (Cakmak, 2005). This may be 
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argued in comparison to the high accumulation of ROS evidenced in the mechanically 

damaged plants, which were treated and immediately submerged in the working solution. 

It would be appropriate to realize a series of determinations within a specific time limit 

to assess if there is indeed an accumulation of ROS inside the cells caused by the sulphur 

stress treatments.   

It is noteworthy to mention that a conventional ANOVA could not be performed to 

analyze the measurement of ROS, since the ANOVA assumptions were not met (Figure 

13). Equal variances were not obtained for the sample groups in this analysis, so Welch’s 

test was used to determine if the means of ROS concentration of the treatments were 

significantly different (Figure 14). Welch’s tests is a variation of Student’s t-test, with the 

difference that it can be used to compare samples with unequal variances or sample sizes 

(Devore, 2008), so it was an appropriate test to analyze the ROS determination data. After 

determining that at least one of the means was significantly different, Games-Howell 

comparisons were used to determine that the mean of ROS concentration in the 

mechanically damaged plants was indeed significantly higher than all the other groups 

(Figure 15; Figure 16). 
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9 CONCLUSIONS  

1) In relation to the culture of A. thaliana, results were obtained for the two proposed 

methods of culture. Both in vitro and sand culture proved to be easy and effective 

ways to grow A. thaliana that facilitate the realization of the sulphur stress treatments, 

so the objectives of cultivating different lines of A. thaliana in sand and/or in vitro 

were accomplished.  

2) It was possible to partially observe the effect that SA and sulphur stress have over the 

expression of PR1. Sulphur deficiency seems to activate the expression of PR1, while 

sulphur excess does not activate PR1.  

3) Regarding determination of sulphate, physical methods of lysis and extraction of 

sulphate (freezing and milling), as well as the turbidimetric protocol optimized for 

water samples proved to be inadequate for the analysis of sulphate in plant tissue. 

Acid digestion of the plant samples coupled with the turbidimetric protocol proposed 

by Verma in 1977 appear to be a precise and convenient way to measure sulphate in 

plant tissue.  

4) Cysteine determination in plant protein extracts was not possible, despite 

demonstrating that the protein extraction protocols analyzed were working correctly. 

It seems to be the case that some component inside the plant is released during protein 

extraction, and is interfering with the reaction of ninhydrin with cysteine.  

5) The fluorescent measurement of ROS with DCFDA showed to be an appropriate 

procedure to determine the accumulation of ROS in plant tissue, as demonstrated by 

the positive (damaged plants) and negative (MS treatment) controls. Nevertheless, it 

is not yet possible to determine if sulphur stress has a significant impact on the 

accumulation of ROS. Since ROS accumulation is transient in nature (Mittler, 

Vanderauwera, Gollery, & Van Breusegem, 2004), the waiting period utilized during 
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the application of nutritional treatments could have masked the real readings, 

generating misleading results.  
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10 RECOMMENDATIONS  

1) The use of the proposed methods of A. thaliana are recommended for future 

experiments regarding nutritional stress, since they provide a way to subject several 

plants to the same treatment uniformly.  

2) In order to get the best out of the proposed culture systems, it is advisable to use fresh 

seeds obtained from healthy plants (e.g. free of fungal infection), since this will reduce 

the risk of persistent contamination, especially when working in vitro. Using fresh 

seeds is also recommended, since they germinated more quickly and evenly in both 

culture systems in comparison to older seeds (2 years old).  

3) It is recommended to carry out the nutritional stress treatments under different 

conditions of light, temperature, and humidity to accurately determine the specific set 

of conditions in which PR1 is expressed by sulphur deficiency. In order to speed up 

this process, it would be wise to have a constant supply of seeds at disposal; a small 

group of seeds from every batch should be destined exclusively for seed production.  

4) For sulphate determination, it is recommended to use an acid digestion protocol that 

uses 2 ml 69% nitric acid only, and then dilute it to 25 ml. This will ensure that the 

barium chloride dissolves during the assay, so the reaction with sulphate ions takes 

place.  

5) For cysteine determination, it is recommended to carry out the desalinization step of 

the protein extracts described in similar studies where Gaitonde’s method to 

determine cysteine was used. (Krueger, et al., 2009). This step could not be realized 

due to the unavailability of desalinization columns, since it was impossible to get them 

on time for the completion of this work.  

6) In a practical sense, it would be ideal to utilize chromatographic analysis to determine 

both sulphate and cysteine in plant tissue, because of the technique’s sensibility and 
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precision (Coskun, 2016). Still, the economic cost of this type of analysis may 

outweigh its convenience.  

7) For ROS determination, it is necessary to conduct further assays that monitor the 

accumulation of ROS within a limited time window when subjecting plants to sulphur 

nutritional stress. This will help answer the remaining question if in fact sulphur 

nutritional stress activates ROS, and if that is the case, how rapidly and intensely.  
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12 APPENDIX 

 

Appendix 1. BSA calibration curve for protein determination in plant extracts using the 

Bradford Assay 


