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RESUMEN 

Los microbiomas son esenciales para el desarrollo y crecimiento de las plantas. Les 

brinda resistencia en contra de patógenos, promueve el crecimiento vegetal y mejora la 

tolerancia a estrés por condiciones ambientales. Literatura previa reporta que la microbiota 

proveniente de suelos nativos de las plantas nativas, como ancestros de cultivos modernos, es 

más diverso y brinda mejores beneficios a estas. Por lo tanto, identificar qué tipo de 

microorganismos promueven estas funciones es relevante para la creación de agricultura 

sostenible en el futuro, con énfasis según la FAO en disminuir la cantidad de pesticidas y 

fertilizantes artificiales.  

En este trabajo se realizó una revisión de literatura sobre microbiomas vegetales, 

direccionada al conocimiento sobre microbiomas de tomates, o de las Solanaceas en general. 

También, se investigó la germinación del tomate nativo Solanum pimpinellifolium y el tomate 

moderno Solanum lycopersicum var. Moneymaker bajo condiciones controladas del 

invernadero, en tratamientos con suelos agrícolas y nativos recolectados en las provincias 

Pichincha, El Oro y Loja en Ecuador. Las muestras de suelos fueron sometidas a análisis 

fisicoquímicos, para determinar el estado nutricional de cada suelo de interés. Además, la 

identificación y diversidad de microorganismos se dio mediante el secuenciamiento del ADN 

de muestras provenientes de Loja, Ecuador. A partir del secuenciamiento, múltiples 

herramientas bioinformáticas fueron utilizadas para poder caracterizar la diversidad 

taxonómica asociada con las raíces de tomates nativos en su hábitat natural.  

Respecto a los microorganismos benéficos, factores edáficos y el genotipo del tomate 

fueron los componentes principales que influyen la comunidad microbiana. Se encontró una 

distinción clara entre los microbiomas del suelo testigo y la rizosfera del tomate nativo Solanum 

pimpinellifolium. En la rizosfera, Enterobacteriaceae formaron el núcleo del microbioma, 

mientras que las Erwiniaceae complementaron al microbioma satélite, pero únicamente en 

suelos nativos. Suelos agrícolas tuvieron mayor contenido de nutrientes a excepción del suelo 

nativo de Paltas, mientras que el suelo nativo usado para un estudio de germinación tuvo más 

nutrientes que el agrícola. Se concluyó que el genotipo de tomate significativamente influye en 

la germinación en suelos nativos; siendo S. lycopersicum var. Moneymaker con el mayor 

número de germinaciones en suelos nativos. Además, una etapa de reactivación de suelo con 

S. lycopersicum var. Moneymaker, resultó en una menor germinación para S. pimpinellifolium 

posteriormente sembrado en este, evidenciando posiblemente un efecto en la germinación por 

el reclutamiento inicial del microbioma por S. lycopersicum var. Moneymaker.  

Este estudio es parte de un mejor conocimiento de la interacción de microorganismos y 

plantas, para determinar cómo microorganismos benéficos de suelos nativos podrían ser 

beneficiosos para una agricultura sostenible en el futuro.  

 

Palabras Clave: Microbioma, tomate, Ecuador, rizosfera, suelos nativos, región andina, 

germinación, 16S ARNr, diversidad taxonómica, domesticación. 
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ABSTRACT 

Microbiomes are essential for plant development and growth. They provide resistance 

against pathogens, promote plant growth, and improve stress tolerance towards environmental 

conditions. Previous literature reported that the microbiota of native soils associated with native 

plants, which are the ancestors of modern crops, is more diverse and confers higher benefits to 

the host plant. Therefore, identifying what type of microorganisms promote these beneficial 

functions are relevant for the creation of sustainable agriculture in the future, which according 

to the FAO must rely on less input of pesticides and artificial fertilizers.  

In this work, a literature review on plant microbiomes was performed, directed towards 

the knowledge on microbiomes associated with tomato, or to the Solanaceae in general. 

Furthermore, the germination of the native tomato Solanum pimpinellifolium and the modern 

tomato Solanum lycopersicum var. Moneymaker was investigated under greenhouse 

conditions, cultivated in agricultural and native soils collected in the provinces of Pichincha, 

El Oro, and Loja (Ecuador). Soil samples were subjected to a physical-chemical analysis to 

determine the nutritional status of each soil. Moreover, the identification and diversity of 

microorganisms were determined through DNA sequencing of soil samples from Loja, 

Ecuador. Based on the sequencing data, a variety of bioinformatic tools were used to 

characterize the taxonomic diversity of bacteria associated with the roots of native tomatoes in 

their natural habitat.  

Regarding beneficial microorganisms, prevailing soil factors and tomato genotype were 

found to be the main drivers of the microbiome composition. A clear distinction was found 

between the microbiomes of bulk soil and the rhizosphere of native tomato Solanum 

pimpinellifolium. In the rhizosphere, Enterobacteriaceae formed the core microbiome, while 

Erwiniaceae were only found in native soils, where they complemented the satellite 

microbiome.  

Agricultural soils had a higher nutrient content except for the native soil of Paltas, while 

the native soil used for a germination study with native and modern tomatoes had more 

nutrients than the agricultural soil. Results showed that the tomato genotype is of significant 

influence on the germination of tomato seeds in native soils, as S. lycopersicum var. 

Moneymaker showed the highest germinations in native soils. Moreover, an initial soil 

activation phase with S. lycopersicum var. Moneymaker was followed by a lower germination 

success for S. pimpinellifolium, showing evidence of a possible effect on germination by the 

recruited microbiome of S. lycopersicum var. Moneymaker. 

This study is part of a better understanding of the interaction of microorganisms and 

plants to determine how beneficial microorganisms as inhabitants of native soils could be of 

benefit to a more sustainable agriculture in the future.  

 

Keywords: Microbiome, tomato, Ecuador, rhizosphere, native soils, Andes region, 

germination, 16S rRNA, taxonomic diversity, domestication. 
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1. INTRODUCTION 

Microorganisms have established associations with plants since they colonized the 

land. The establishment of microbial communities associated with an individual plant and its 

specific organs has been reported to optimize the individual’s health status (Connor et al. 2018). 

When an alteration occurs in the normal microbiota, this commonly has negative consequences 

for the plant’s health (Brugman et al. 2018). These health impacts emphasize the importance 

of understanding the interactions of plants with its microbiota. Defining the function of these 

interactions and underlying factors that influence microbiota or microbiome assembly, can help 

us understand how plants benefit from these associations with microorganisms (Compant et al. 

2019). According to Cordovez et al. (2019), assembly of the microbial community is governed 

by the type of soil, the interaction between prevailing microbes, the plant’s genotype, and plant 

exudates. Moreover, Sasse et al. (2018) reported that plant exudates shape the microbial 

communities of it, and how these vary according to the genotype of the plant and abiotic 

stresses it encounters. In lettuce, soil type significantly influenced the rhizosphere microbiome 

(Schreiter et al. 2014).  

Interestingly, Kwak et al. (2018) highlighted the role of native microbiota in protecting 

the plant against pathogens. Tomato varieties, normally susceptible to the pathogenic fungus 

Fusarium oxysporum, once grown on native soil showed partial resistance against this pathogen 

(Chialva et al. 2018). Pérez et al. (2016) investigated the effects of plant domestication on the 

associations between microorganisms and modern cultivars. Domesticated plants have a lower 

self-support production system and a higher dependency on anthropogenic factors compared 

to their wild relatives. In general, domestication has led to the loss of various resistance traits, 

possibly by exposure to modern agricultural practices and as a result of modern plant breeding 

which focused more on production traits under perfect high-input farm conditions (Chen et al. 

2015).  
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Plant microbiomes not only help protecting plants from pathogens. Compant et al. 

(2019) reported that the plant microbiome, promotes growth, immunity against pathogens, and 

abiotic stress tolerance, both below and aboveground Still, most of the underlying mechanisms 

involved in plant-microbiome interactions are not clear. Beneficial services provided by the 

microbiome derive from many mechanisms, for instance by improving the bioavailability of 

nutrients, antagonism to pathogens, and by producing plant growth promoting compounds 

(Hartman and Tringe, 2019). These compounds can be phytohormones (auxins, cytokinins, and 

others), enzymes, antibiotic, and antifungal compounds (Egamberdieva et al. 2017). 

One way to understand the functionality of the microbiome is through high-throughput 

sequencing technologies (Cordovez et al. 2019). In this investigation, 16S rRNA sequencing 

was performed, providing data that allow microbial community profiling (Franzosa et al. 2015). 

Reads obtained by sequencing need to be quality checked, clustered, and classified before post-

analysis. Typically, 16S rRNA sequencing is classified by SILVA database, quality checked 

by Dada2/Deblur/QIIME, and clustered into OTUs. However, clustering by ASVs improves 

sensitivity and specificity. Therefore, errors are corrected compared to OTUs (Fricker, 

Podlesny, and Fricke, 2019). Thus, sequencing results in an enormous quantity of data, which 

needs to be analyzed accordingly. It is important to emphasize the importance of bioinformatics 

pipelines to analyze these big data and to functionally understand microbial communities. 

Microbiomes not only have a bright side; they also have a dark one, as microbiomes 

involve both beneficial and pathogenic microbes. Pathogens are known to release effectors, 

which are proteins that for instance modulate the release of nutrients from the plants by 

manipulating their metabolism in the pathogen’s benefit (Fatima and Senthil‐Kumar, 2015). 

Moreover, Snelders et al. (2018) described effectors as secreted molecules which not only 

affect the plant’s physiology but also influences the local microbiome. Within the microbiome, 

microorganisms compete amongst themselves, and pathogens need to defend themselves from 
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antimicrobial components by degrading them or secreting toxic compounds to outcompete 

other microbes. Both commensal and pathogenic microbes share specific strategies to evade 

innate plant immunity, as plants sometimes have problems distinguishing beneficial microbes 

from pathogenic ones (Hacquard et al. 2017). Teixera et al. (2019) reported that both beneficial 

and pathogenic bacteria developed strategies to suppress the innate immune response of plants. 

On the one hand, the microbiome plays a vital role in conferring immunity to the host plant, 

but the plant’s immunity influences its microbiome assembly on the other hand.   

The main source of microorganisms for this assembly is the soil, which has been 

reported as the ecosystem with the highest micro-biodiversity on earth. Soil microorganisms 

enter through the rhizosphere, the intimate zone surrounding plant roots, and migrate to other 

regions of the plant to colonize their specific niche (Hunter, 2016). Toju, Okayasu, and 

Notaguchi (2019) recently reported that the difference in soil treatments was the main 

contributor to microbiome variances in the leaves of grafted tomato plants, followed by the 

rootstock genotype. The rhizosphere microbiome is not only important for plant health and 

nutrition. It may also have direct and indirect effects on plant community structure (Philippot 

et al. 2013). The rhizosphere microbiome composition is reported to differ between plant 

species mainly due to soil conditions, but it is suggested that core microbiomes might be shared 

by many different plant species (Fitzpatrick et al. 2018). Core microbiomes are important for 

plant fitness, but a microbial taxon in lower abundance (satellite) could act as a driver for 

essential functions as well (Compant et al. 2019). An additional concept within the microbiome 

field is “keystone taxa”. These taxa, irrelevant of their abundance inside the community, can 

drive microbiome composition and functioning; individually or as a group (Banerjee, 

Schlaeppi, and van der Heijden, 2018).  

The microbiome is not the only factor that influences a plant’s health status and growth. 

The specific composition and characteristics of the soil too. Soil provides services to plants 



13 

 

such as nutrient cycling, water dynamics, and support (Hatfield et al. 2017). Without these 

services, plants and their associated microorganisms would not be able to grow and 

successfully reproduce. There are many factors that govern these services, but within the scope 

of this research project, the prevailing nutrient status of the soils of interest is the most 

important one. Natural nutrient status involves the bioavailability of nutrients and the ability 

of the soils to store them in excess (Hewitt, 2004). For the release and storage of soil 

macronutrients and micronutrients, specific processes such as dissolution-precipitation and 

adsorption-desorption must occur (Singh and Schulze, 2015). One way to measure this is 

through cation exchange capacity (CEC), for which the pH of the soil is important (Jones and 

Jacobsen, 2005). In general, 14 to 17 elements are listed to be essential for plant development. 

Some are needed in great quantities (for example nitrogen and phosphorus), while others are 

required in smaller con (like iron) (Grusak et al. 2016; Singh and Schulze, 2015). However, 

soil microorganisms influence the uptake of nutrients by plants, either directly or within 

symbiotic relationships which emphasizes the importance of the microbiome for plant 

development (Morgan and Connolly, 2013). 

Within the nightshade family Solanaceae, its genus Solanum contains the section 

Lycopersicon including both the domesticated tomato, Solanum lycopersicum, and several wild 

tomatoes like Solanum pimpinellifolium (also commonly known in Ecuador as “tomatillo”). 

The habitat of these wild tomatoes is on the west side of the Andes in the desert ore semi-desert 

environments (Knapp and Peralta, 2016). Its habitat has a broad range, as it can also be found 

in dry areas on sea level, for example the endemic tomato of the Galápagos Islands, Solanum 

cheesmaniae. On the other hand, Solanum lycopersicum nowadays has a worldwide 

distribution. This process occurred due to the domestication of the tomato. According to Blanca 

et al. (2012), pre-domestication of S. pimpinellifolium occurred in the Andean region which 

resulted in S. lycopersicum var. cerasiforme. S. lycopersicum var. cerasiforme was then taken 
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to Mesoamerica where another part of the domestication process occurred, which finally 

resulted in S. lycopersicum var. lycopersicum. Because of its popularity, the Spaniards later 

distributed this domesticated tomato all over the world.  

The current study revolves around tomatoes and their soil microbiomes. As a positive 

result of the domestication process, the modern tomato S. lycopersicum currently produces 

significantly larger, highly nutritious fruits compared to its native relatives. But modern 

tomatoes have become highly dependent on human intervention to be able to grow and to 

artificially protect them from plagues and diseases. Blanca et al. (2015) reported a higher 

overall genetic diversity within populations of native tomato Solanum pimpinellifolium, and 

landrace (Solanum lycopersicum var. cerasiforme), compared to modern tomatoes (Solanum 

lycopersicum var. lycopersicum). On the other hand, S. lycopersicum var. lycopersicum 

showed to have a higher frequency of six loci related specifically to fruit characteristics. This 

higher frequency of selected genes for fruit characteristics has a trade-off; a possible loss of 

traits associated with genes close to the selected gene to be maintained in the coming 

generations of the plant by selective sweep (Perez-Jaramillo et al. 2016).  Modern tomatoes not 

only show a reduction in gene diversity compared to their native ancestors, but also a reduced 

communication of soil microbes associated with modern plants.  For example, modern 

agricultural soils with monocultures of rice consistently led to a less diverse soil microbiome. 

Therefore, seedling vigor was negatively impacted, and even increased greenhouse emissions 

by the soil microbiome were observed (Edwards et al. 2019). One way to mitigate the 

consequences of this trade-off of the domestication of S. lycopersicum could be to generate 

hybrid varieties between modern tomatoes and their closest native ancestral species, S. 

pimpinellifolium, as this could potentially re-introduce important genetic resistance traits 

(Sharma et al. 2008).  
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This study focused on the effect of agricultural and native soils on the germination of 

tomatoes. Additionally, the microbiome of Solanum pimpinellifolium’s rhizosphere and bulk 

soil grown on native soil was investigated. The objectives of this study were to characterize the 

bulk soil and rhizosphere, therefore, determine which aspects of it have a beneficial impact on 

different genotypes of tomato. These aspects involved identifying microbial taxa of the soil, 

and the composition of the soil. Moreover, a study of the effect of soil type on the germination 

of Solanum lycopersicum var. Moneymaker and Solanum pimpinellifolium was conducted. 

Before conducting the experiment and identification of the microbial taxa, a literature review 

was performed to get acquainted with the information so far on plant microbiomes. To be able 

to answer the research questions, we performed an experiment of soil treatments on the 

germination of Solanum lycopersicum var. Moneymaker and Solanum pimpinellifolium, under 

controlled greenhouse conditions. Soils used for the experiment came from Cayambe 

(Pichincha), Zapotillo (Loja), and Arenillas (El Oro). Additionally, a physical-chemical 

analysis of all soils used in the experiment was done, as well as a characterization of the 

microbial taxa (16S rRNA sequencing) of Solanum pimpinellifolium’s rhizosphere and bulk 

soil grown on native and agricultural soils of Loja. Finally, we propose a back to the roots 

framework where we learn from tomatoes as they are grown on their native soils and apply the 

gained knowledge to take advantage of the beneficial associations of tomatoes with its 

microbes, that overall improve the health and resistance of the plant.  
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2. MATERIALS AND METHODS 

2.1.  Literature review 

 To narrow down the total number of articles in the initial search step, articles about 

“soil type and/or plant genotype”, and “impact of microorganisms in plants” were found via 

search engine Google Scholar. Our criteria for the selection of studies related to soil type and 

plant genotype were the following: Studies had to relate to soil type (native and domesticated) 

and/or plant genotype impact on plant-microbiome interactions. Studies on plants had to be 

performed in a controlled environment. Our criteria for the selection of studies related to the 

impact of microorganisms on plants were: Microorganisms had to be inoculated onto plant 

tissues, plants were grown under controlled conditions, and the presence of control groups was 

mandatory. The collection of publications that matched our criteria served to create two 

literature overview tables: One table lists the publications which focused specifically on the 

impact of plant-microorganisms on the type of soil and host genotype. A second table listed 

publications with described the effects of inoculation of certain microorganisms with members 

of the family Solanaceae, primarily with different tomato species or varieties.  

 A search on Dimensions (http://dimensions.ai) was performed using combinations of 

search terms “plant AND microbiome”, and “tomato AND microbiome”, to evaluate the total 

number of research articles that are publicly available until 2020. Specific criteria used in 

Dimensions were: “Closed OR All OA OR Gold OR Green, Accepted & Submitted OR Green, 

Published” in the open access category, and “Article” as type of publication. With the collected 

information of the articles published per year which matched the specific criteria, an additional 

graph was created to observe the trends in the total number of articles published over the last 

years in the research topic of the current study.  

2.2. Experiment 1: Seed germination of modern and native tomatoes in agricultural 
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and native soils 

2.2.1. Soil sample collection. 

 In the south of Ecuador, in the provinces of Loja (Zapotillo) and El Oro (Arenillas), 

soils were collected from previously described habitats of native tomato S. pimpinellifolium 

(Morales Palacio et al. 2014). Based on personal comments of local people referring to a 

possible natural disease-suppressive soil, a third natural soil was collected in the province of 

Pichincha (Cayambe), although this location is not considered part of the native habitat of S 

pimpinellifolium. In the proximity of all natural and native soil collection sites, three additional 

modern agricultural soils were collected at farm sites. All soils were transported to the 

greenhouse facilities at Universidad San Francisco de Quito, at its campus in Cumbaya. Soils 

were dried for 7 days, sieved (2mm mesh size), and stored at room temperature for further 

processing. 

2.2.2. Soil sample collection for physical-chemical analysis. 

 A subsample of all 6 soils was sent to the laboratory Eurofins Agro Ecuador (Cayambe) 

specialized at in-depth physical-chemical soil analysis, which included measurements of 

macronutrients and micronutrients, pH, soil conductivity, organic matter content, organic 

carbon content, and soil texture. 

2.2.3. Experimental design – germination experiment under greenhouse 

conditions.  

 A tomato seed germination experiment was performed at the USFQ greenhouse 

facilities, under natural light conditions (12h light/12h darkness). The climate chamber was 

temperature controlled to guarantee a minimum temperature of 22ºC. For each of the soil 

collection sites, 16 pots were filled with 350g of the sieved native soil, and 16 pots were filled 

with equal amounts of the sieved agricultural soil. For each location and type of soils 

(agricultural or natural), seeds of either modern tomato S. lycopersicum var. Moneymaker 
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(commercial market) or native tomato S. pimpinellifolium (kindly provided by the National 

Germplasm Bank at the Universidad Nacional de Loja) were sown. The experimental design 

consisted of 8 pots for each type of tomato in each soil: 4 pots were a control group and the 

other 4 an exchange group (Figure 7). Prior to the germination experiment, a reactivation step 

was included to revive the microbiological activity of the dried soils. Control groups were pots 

seeded with the tomato genotype studied in the real experiment, while exchange groups were 

pots initially seeded with the opposite tomato genotype than the one studied in the real 

experiment. This prior reactivation step took 4-5 weeks. Plants and roots were removed from 

the pots. In the control pots, three seeds from the same tomato genotype were sown in the same 

pot, whereas three seeds from the opposite genotype were sown in the exchange pots. At the 

beginning of this second round of the experiment, pots were irrigated with 10% of their weight 

in water, and pots were randomized. Tomato seed germination were monitored and watered 

every 2-3 days. Seeds were considered as germinated when the cotyledon surged above the 

soil’s surface. 

2.2.4. Statistical analysis – seed germination data. 

 Soil and tomato genotype (including exchange groups) were selected factors for the 

germination time of either the first seed or the total number of seeds germinated as a dependent 

variable. A 2-way ANOVA was performed for each dependent variable. Soil type had 2 levels 

(agricultural and native) and plant type 4 levels (S. lycopersicum var. Moneymaker; S. 

pimpinellifolium; S. lycopersicum var. Moneymaker first then S. pimpinellifolium; S. 

pimpinellifolium first, then S. lycopersicum var. Moneymaker). These last 2 levels were 

exchange groups present in each type of plant for all soils. Verification for ANOVA 

assumptions being fulfilled was done; normality test on residuals was done by Anderson-

Darling and equal variances by Levene. If normality assumption was not fulfilled, even after a 

Box-cox transformation, but equal variances without transformation were accomplished, 
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Kruskal-Wallis and Dunn tests were performed. Tukey pairwise comparison was used on 

models which fulfilled ANOVA assumptions to determine significant mean differences among 

the various treatments. α value for all tests was 0.05. 

2.3. Experiment 2: Microbiome analysis of S. pimpinellifolium in native soils 

2.3.1. Rhizosphere and bulk soil collection. 

 The rhizosphere from roots of native tomato Solanum pimpinellifolium was sampled at 

Calvas, Palta, and Zapotillo, in the Southern Province of Loja, Ecuador (Figure 2). Tomato 

plants growing in different disturbed and undisturbed habitats along farm fences, in between 

corn crops, or close to riverbanks or springs, were GPS referenced, photographed, and a general 

description of the habitat was taken. On one side of the plant, the roots were dug up and roots 

with soil aggregates attached were removed and placed into 50 mL Falcon tubes. Each tube 

received 4 mL of Life Guard Soil Preservation Solution (Qiagen, USA). Tubes were stored in 

a mobile cooler and brought to the laboratory the same day. In addition to the rhizosphere 

sample, 4 g of bulk soil in the proximity of the same tomato plant was sampled and mixed with 

4 ml of Life Guard Soil Preservation Solution and stored in the cooler. In the laboratory, root 

samples were vortexed to retrieve the soil aggregates. Roots were removed from the tubes, and 

the remaining rhizosphere soil suspensions and the bulk soil suspensions were stored at -20 ºC 

until further processing. 

2.3.2. Soil sample collection for physical-chemical analysis. 

 Soil samples (0.7-1 kg) from agricultural and native origin were collected in Zapotillo, 

Calvas, and Paltas in Loja. The agricultural soils were sampled at corn farms, whereas the 

native soils were sampled from natural bank rivers nearby the farm sites. All locations were 

selected because of the presence of individuals of Solanum pimpinellifolium. Collected soil 

samples were stored in a mobile cooler and brought to the laboratory the same day. Soil samples 
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were dried and sieved before sending them to a specialized laboratory for subsequent physical-

chemical soil analysis as described in chapter 2.2.2. (Eurofins Agro Ecuador, Cayambe). 

2.3.3. Molecular analysis – soil microbiome native tomato S. pimpinellifolium. 

2.3.3.1. Soil DNA extraction. 

 Total DNA was extracted from the rhizosphere and bulk soil solutions, following the 

manufacturer’s protocol from the DNeasy Power Soil Kit (QIAGEN, 2017). Extraction 

consisted of an initial cell lysis step by mechanical and chemical disruption of the cells. Other 

solutions were added to neutralize potential PCR inhibitors present in the soil samples. DNA 

was captured by a silica membrane through a spin column. DNA was washed and stored at -

20ºC.  

2.3.3.2. 16S rRNA high-throughput sequencing. 

 DNA extractions from collected rhizosphere and soil samples were sent to Baseclear, a 

laboratory specialized in sequencing of microbiome DNA (Leiden, The Netherlands). 

Sequencing was performed through an Illumina MiSeq platform and the construction of single-

end reads was done in-house by Baseclear. 16S regions v3-v4 were sequenced for bacteria 

(primers 341F and 805R). Reads were generated into FASTQ read sequence files and the final 

quality assessment processed by Baseclear before they were sent to us as final results of the 

sequencing runs. 

2.3.3.3. 16S rRNA bioinformatic analysis. 

FASTQ files were processed by Dada2 (1.12) to obtain an amplicon sequence variant 

(ASV) table. This ASV table was used to assign taxonomies with the Silva rRNA database 

(v138). ASV tables were further processed in R studio with the phyloseq R package (v. 1.30.0), 

to obtain a NMDS graph and a relative abundance bar plot. Relative abundance was calculated 

for the top 50 top ASV until a level of either bacterial family or bacterial phylum. 
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3. RESULTS 

3.1. Literature review 

3.1.1. Trends in plant and tomato microbiome research. 

A literature search by Dimensions resulted in a total of 55,276 articles related to plant 

microbiomes in general, published between 1970 until April 2, 2020. A total number of 5,586 

scientific articles specifically reported their results related to the tomato microbiome (since 

1992). As can be observed in Figure 1, the overall interest in these topics has been growing 

since 2011, with 2019 as the year with most articles published on both topics. Furthermore, it 

is interesting that this year, already 5,485 articles on plant microbiome and 657 publications 

on the tomato microbiome have been published until April 2 of 2020. It is worth highlighting 

that the trend of articles published each year is lower prior to its next year. Thus, 2020 may 

exceed 2019 based on the trend of published articles on these topics.  

3.1.2. Prior studies on soil/microorganism and plant interactions. 

Five studies on the influence of the soil type on plants and two studies which 

investigated the influence of plant genotype were analyzed (Table 1). These studies showed a 

significant impact on the type of soil to a broad range of plants. Outcomes were a variation in 

microbiome community composition (comparison between native and domesticated soils), 

identification of edaphic factors as drivers of microbiome assemblage, and resistant native soils 

gave partial protection, for instance, to Fusarium oxysporum (Chialva et al. 2018). In one case, 

domesticated soil showed to have negative consequences on the overall plant performance. 

Regarding plant genotype: genotype, in a small but significant way seemed to contribute to the 

microbiome assembly. Moreover, wild ancestral plants, in comparison to their domesticated 

modern family members, showed to have differences in morphology and physiology, which 

may be contributed to shifts in their native microbiome. 



22 

 

A separate table (Table 2) lists seven studies of inoculated bacterial or fungal strains on 

tomato, and one study on potato. These studies reported an increase in dry weight/length of 

shoot or roots, as well as a protection against pathogens. In another study, inoculation with 

Trichoderma longibrachiatum MK1 increased the transcription of genes related to plant 

defense and growth. Finally, one study reported an enhancement of salinity stress tolerance 

thanks to the presence of the beneficial bacteria. 

3.2. Experiment 1: seed germination of modern and native tomatoes in agricultural 

and native soils 

3.2.1. Physical-chemical soil properties. 

Physical-chemical analysis of soils collected in Loja, El Oro, and near Cayambe (Table 

3-a) showed Loja’s agricultural soil had a neutral pH, in comparison to the native soil which 

was slightly acidic. Organic matter percentage was higher in native soil. A trend can be seen 

when the increase of organic matter is correlated to total nitrogen, sulphur, calcium, potassium, 

sodium content, C/N, and C/S. C/N ratios were similar among soils, but considerably different 

for C/S ratios. Native soil resulted to have a higher content of macronutrients (except for 

phosphorus and magnesium) and certain micronutrients compared to the agricultural soil. It is 

worth highlighting that both soils were low on nutrients according to agricultural threshold 

values. Regarding micronutrients, the quantities of copper and cobalt were similar for both 

soils. Additionally, zinc and manganese content were (much) higher in native soils, while iron, 

boron, and molybdenum were higher in the agricultural soil. Results on the texture of both soils 

indicated a partially sandy loam texture, but the major texture was sandy in both soils. 

As for Cayambe’s soils, its native soil also had a higher content of macronutrients 

(except for phosphorus), but lower in micronutrients. Agricultural soil had a higher content of 

micronutrients, except for manganese, copper, and molybdenum. The latter two nutrients had 

the same content in both soil types. Manganese had a higher content in the native soil. Results 
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for the soils collected in El Oro showed most nutrient quantities were equal in agricultural and 

the native soil. Only levels of nitrogen, magnesium, sodium, iron, and cobalt were higher in 

the native soil. In conclusion, Cayambe was the richest in nutrients, followed by the soils from 

Loja. El Oro showed the lowest nutrient levels. 

3.2.2. Tomato seed germination in native and agricultural soils from Loja. 

Figure 3 shows the results of the germination experiment of seeds of modern tomato S. 

lycopersicum var. Moneymaker and native tomato S. pimpinellifolium grown in native and 

agricultural soils under controlled conditions in the greenhouse (Details chapter 2.2.3). 

Focusing on the germination time of the tomatoes in the soils of Loja, an initial ANOVA did 

not comply with the normality test (p <0.05) but showed equal variances (p=0.056). A 

subsequent BoX-cox transformation was realized, but the data did not follow a normal 

distribution either. A Kruskal-Wallis test (p=0.45) revealed no significance among treatments, 

meaning that all treatments had similar effects on the germination time of the tomato seeds. 

To test possible differences in the total amount of germinated seeds between treatment, 

another ANOVA was performed. This time, variances turned out to be equal (p=0.299) but did 

not fulfill the criteria of a normal distribution (p <0.05). A Kruskal-Wallis test was performed 

for each factor. The total amount of seeds germinated for the tomato genotype and/or exchange 

groups resulted to be significantly different. Consequently, a second ANOVA was realized for 

all tomato genotypes (including exchange groups) in each soil: ANOVA assumptions in the 

agricultural soil were fulfilled, and a subsequent Tukey pairwise comparison test (95% interval 

confidence) was performed. This test revealed that S. pimpinellifolium had a significantly 

different impact on the seed germination than activating the soil with S. lycopersicum var. 

Moneymaker. This activation step negatively affected the germination of S. pimpinellifolium. 

Equal trends were observed in the native soil, but this difference was not significant. In the 
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native soil of Loja, the germination of S. lycopersicum var. Moneymaker was significantly 

higher compared to the germination of S. pimpinellifolium (Dunn’s test: p=0.017).  

Figure 4 shows the results of the germination of S. lycopersicum var. Moneymaker and 

S. pimpinellifolium on native and agricultural soils collected in Cayambe and El Oro. In 

general, similar tendencies as for the soils of Loja were observed in soils of the other two 

regions. Moneymaker had the highest total number of seeds germinated. Interestingly, in the 

agricultural soil of Cayambe, it also resulted in a faster germination in comparison to other 

treatments. Both modern and native tomato seeds grown on different locations showed a small 

difference for their total seeds germinated in either soil type. As for germination per location, 

the soils collected in El Oro resulted in the lowest germination for S. pimpinellifolium, and the 

soils of Cayambe and Loja resulted in similar, higher germination rates (soils of Cayambe being 

the highest of all). Interestingly, soil type (native and agricultural) showed very similar 

performances for each tomato genotype of all three sample locations. 

3.3. Experiment 2: microbiome analysis of native tomato S. pimpinellifolium in soils of 

Loja  

3.3.1. Physical-chemical soil properties of native and agricultural soils in Loja. 

Physical-chemical analysis of soils collected at six locations in the Southern province 

of Loja (Table 3-b), showed Calvas’ agricultural soil had the highest pH value (7.5), while the 

agricultural soil from Zapotillo had the lowest pH (5.7). As a trend, pH values of native soils 

were higher than agricultural soils, except for the soils from Calvas. Moreover, all soils, except 

the agricultural soil of Zapotillo (acid), were close to a neutral pH value. Agricultural soils 

resulted to possess a higher percentage of organic matter and organic carbon (except Paltas’ 

native soil, which had the highest % of all). A trend can be seen in native soils when the increase 

of organic matter is correlated to total nitrogen, calcium, boron content, whereas in agricultural 

soils it only correlated to silicon and calcium content. In general, agricultural soils had a 
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considerably higher content of macronutrients compared to native soils, except for the native 

soil collected near Paltas. As for micronutrients, native soils had a higher content of zinc and 

iron in comparison to agricultural soils, with again the exception for Paltas, as its agricultural 

soil had a higher content in comparison to its native soil. Copper and molybdenum content in 

all soil samples were lower than the detection limit as established by the laboratory. The 

remaining micronutrients showed high variances for all soil sampling sites. Thus, no general 

pattern was established for the type of soil. It is worth highlighting that most soils exceeded 

the minimum threshold values as established by Eurofins Agro Ecuador to perform agriculture. 

As for ratios, C/N ratio of all soils was similar, except the native soil of Zapotillo. Only the 

native soil of Paltas was similar to the agricultural soil of Zapotillo. Contrastingly, C/S ratios 

considerably varied among soils, only the ratios of agricultural soils from Zapotillo and Paltas 

were similar. As for soil texture, the major texture in all soils, except Calvas (silt), was sandy. 

Most soils had a sandy clay loam texture component as well (except Calvas).   

3.3.2. 16S rRNA analysis of native and agricultural soils in Loja. 

Characterization of the rhizosphere and bulk soil microbiome of native tomato S. 

pimpinellifolium in its native habitat of the province of Loja was performed. Figure 5 shows 

the results of a Non-Metric Multidimensional Calculation (NMDS), which revealed a clear 

difference between the microbiomes in bulk soils and the rhizosphere of S. pimpinellifolium at 

all sampling locations. Regarding soil type (agricultural vs. native soils), no difference was 

observed. However, when each soil was analyzed individually, differences in local 

microbiomes were revealed within each site. Rhizosphere samples collected in native soils at 

Calvas and Zapotillo were the most similar among all soils of interest.  

 As shown in Figure 6, there is a clear difference between bacterial communities living 

close to the roots of native tomatoes, compared to microbial communities in the nearby soils 

(away from tomato roots). Figure 6b clearly shows that Proteobacteria dominated in the 
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rhizosphere communities, while Firmicutes were the most abundant phylum in the microbiome 

of the bulk soil samples.  In general, the native tomato rhizosphere samples showed a higher 

relative abundance compared to the bulk soil (except Paltas soil), which in other words 

indicates enrichment of the microbial communities in the rhizosphere, compared to the local 

bulk soil. Moreover, within the bulk soil samples, the ones collected in native soils resulted in 

a higher relative microbial abundance compared to the bulk soils collected at the farm sites, 

with Calvas as the only exception. The native soil collected in Calvas had a low abundance of 

bacteria in its bulk soil but was enriched in the rhizosphere. In contrast, within the rhizosphere 

samples, agricultural soils resulted to possess a higher relative abundance than native soils 

(again Paltas soil proved to be the exception). On the family level, Enterobacteriaceae 

dominated in the tomato rhizosphere, while Bacillaceae dominated in the bulk soil samples of 

Loja (Figure 6c and 6d). 

As for the rhizosphere microbiomes, Enterobacteriaceae seemed to construct the core 

microbiome in all sample locations. Families which were identified to be part of the satellite 

microbiomes were Erwiniaceae, Sphingomonadaceae, Yersiniaceae, and Bacillacea. 

Specifically, Yersiniaceae was only present in Zapotillo’s native soil, which was the only soil 

that was dominated by this family. Sphingomonadaceae were present only in low abundance 

for Paltas’ agricultural and native soils. Paltas’ native soil was the only one to harbor 

Bacillaceae (although in low abundance). Erwiniaceae was present in low abundance only in 

the rhizosphere of tomatoes sampled in all native soils. It is worth noting that the core 

microbiome abundance was highly reduced in both soils collected in Palta. 

Regarding Bulk soil, the core microbiome among all locations was dominated by 

Bacillaceae, whereas Planococcaceae and Rubrobacteriaceae were identified to form part of 

the satellite microbiome. Planococcaceae were present in Calvas’ agricultural soil and Paltas’ 

native soil, however in low abundance. Rubrobacteriaceae (in low abundance as well) was 
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present in agricultural soils of Calvas and Paltas. In general, a variation of taxon abundance 

was found among soil sites. What is clearly visible in all the sample locations, is the different 

microbiomes between the rhizosphere and bulk soil.    
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4. DISCUSSION 

 In general, local soil characteristics are an important factor to influence the rhizosphere 

microbiome. To determine the edaphic factors of the agricultural and native soils collected, 

subsamples of all soils were shipped to a specialized laboratory for a physical-chemical soil 

analysis. The pH values and general soil textures of all samples were within the range desirable 

for the growth of native tomato cultivation S. pimpinellifolium (Plants For A Future, 2020). 

The overall acidic pH levels of the native soils of Zapotillo and Calvas, and the agricultural 

soil collected in Paltas, could explain their relatively low content of nitrogen, phosphorus, 

boron, and molybdenum (United States Department of Agriculture, 2011). Although the 

agricultural soil of Zapotillo resulted in the lowest pH of all samples, the macronutrient content 

was higher than its native soil. Overall, the agricultural soils of Calvas and Zapotillo showed 

higher nutrients contents than their native soils, whereas the opposite results were observed in 

Paltas, where the native soil was richer in nutrients. A possible reason why agricultural soils of 

Loja tend towards being more nutritious, might be the application of fertilizers and other 

agricultural practices to make the soil more arable. The most plausible cause was soil 

amendment as samples were collected after corn harvesting. For example, the high difference 

in calcium soil stocks between agricultural and native soils (Table 3) could be due to liming. 

Liming generally improves Ca, Mg, and P content (Fageria and Moreira, 2011). Although 

agricultural soil’ parameters are generally higher as reported by other studies, most soil 

parameters of the agricultural and native soils of interest in Loja resulted to be within the 

desired range for agricultural practices. The Organization of American States in collaboration 

with the government of Ecuador stated that although soils in Loja, in general, were low in 

phosphorus, with a medium level of organic matter and nitrogen, and of variable texture. These 

soils could be used for agriculture (1994).  
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 A reason why the native soil in Paltas resulted to have a higher content of nutrients 

compared to the other two native soils of Zapotillo and Calvas, could be due to the difference 

in organic matter content. Forest soils, like the native soil collection site in Paltas, contain more 

organic carbon than any other type of soil (Boyle and Powers, 2013). Soil organic carbon is the 

major constituent of soil organic matter (European Soil Data Centre, 2020). Moreover, soil 

organic matter is correlated with a higher nutrient storage capacity (Brady, 2016). Furthermore, 

the native soil sampling site near was located at the foot of a shrubland slope. In general, the 

foot of a slope is considered to be a site where nutrients accumulate, due to erosion and run-off 

(Bo-Jie et al. 2004).  

 Levels of total organic matter content in native soils correlate with the quantities of 

nitrogen, boron, and the C/S ratios. Other influences of local nutrient concentrations in the soils 

are land use, weathering of rocks and soils, precipitation, application of synthetic fertilizers, or 

animal manure (Shand, 2007; Efretuei, 2016; Han et al. 2017). The different geographic 

locations in Loja, the altitude differences or the variance in land use (Table 4), could explain 

the smaller differences we observed in the macro and micronutrient concentrations in soil 

sample sites (Thompson et al. 2005).  

 Results of the physical-chemical analysis from the native and agricultural soils 

collected for the germination study showed that native soils had a higher content of nutrients, 

except for Cayambe’s native soil. A possible reason is soil erosion by agricultural practices, 

leaving the soil exposed to rain and water: washing away soil nutrients (Parikh and James, 

2012). As for Cayambe’s agricultural soil, agricultural practices to make the soil more arable 

could have been preceded the moment of soil collection. 

Regarding soil textures, the major soil texture of all soils resulted to be sandy with clay, except 

for the soils of Calvas, where the textures were mostly silty. Allard et al. (2016) associated 

sand and silt content as factors that influenced shifts in the rhizobacterial community of 
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tomatoes. If variation of the rhizosphere bacterial community is based solely on sand and silt 

content, a higher content of silt and lower levels of sand could explain the increase in 

Enterobacteriaceae abundance (seen also in their study, though not significant).  

 In general, water activity, low content of nitrogen and phosphorus have proven to be 

factors that influence soil microbial communities’ composition, and the root microbiome of 

plants (Hartman and Tringe, 2019). These factors and their interactions could explain the 

different microbial compositions as observed in the results of the 16S rRNA analysis. In this 

study, the rhizosphere and bulk soil samples of the agricultural soils of Calvas, Zapotillo, and 

the native soil of Paltas revealed a higher content of nitrogen and phosphorus than their 

counterparts. These similar trends could also be observed for the bacterial abundance, as they 

were also higher than their counterparts, which might demonstrate how differences in edaphic 

factors of agricultural and native soils drive microbiome composition. The exception to this 

was Zapotillo’s agricultural bulk soil bacterial abundance, its native soil had a higher 

abundance and lower nutrients contents.  In this context, it is important to mention iron. Iron 

was deficient only in the soils collected in Paltas. Interestingly, these soils had a much lower 

abundance of Enterobacteriaceae. As iron is one of the essential metal ions for many cellular 

processes (Porcheron et al. 2013), it is possible that the low content of iron in these soils may 

have impacted more Enterobacteriaceaeas. This family is known for having a variety of 

mechanisms to specifically sequester iron (Carpenter and Payne, 2014). Moreover, 

Enterobacteriaceae are interesting as on the one hand they are known in biocontrol applications 

as plant growth bacteria, as they can fix nitrogen and solubilize phosphorus, but on the other 

hand, some species are known to act as plant pathogens (Jha et al. 2011). It is therefore 

important to analyze the sequences generated in this study on the species level as well so that 

the microbiome community members in these native soils can be identified on the species level. 

This might reveal functional information on the species that were encountered. 
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 Not only are the soil edaphic factors influencing the rhizosphere microbiome, plants 

themselves too. Cordovez et al. (2019) highlighted several studies on how the plant’s genotype, 

plant exudates, and specific interactions between microorganisms select for the microbial 

community. This could explain why proteobacteria dominated the rhizosphere soil sample, and 

firmicutes dominated the bulk soil samples. This result is recently confirmed by Cheng et al. 

(2020), who have reported proteobacteria as the major constituent phylum in 11 varieties of S. 

lycopersicum grown on natural fields.  

 The interaction by certain microorganisms to others, independent of their abundances 

in the microbiome, could also be a factor in the variances observed in the microbiome 

composition across all samples. Banerjee, Schlaeppi, and van der Heijden (2020) reported that 

keystone taxa influence microbiome structure, independent of their abundance. Keystone taxa 

could explain why Zapotillo’s agricultural bulk soil (higher concentration of nutrients) had a 

lower bacterial abundance than its native soil (lower concentration of nutrients).  

 Interestingly, the rhizosphere of S. pimpinellifolium showed higher bacterial 

abundances compared to the bulk soil samples. According to Berlanas et al. (2019), the 

rhizosphere is more nutritious than bulk soil given that plants release rhizodeposits (nutrients 

and others), while bulk soil is mostly oligotrophic. Thus, the rhizosphere could have been more 

abundant in bacteria in response to the release of nutrients and exudates from the tomatoes. 

The core microbiome for the rhizosphere samples was formed by Enterobacteriaceae. Lee et 

al. (2019) have also reported Enterobacteriaceae as part of the tomato core microbiome 

(relative abundance higher than 60%) which were cultivated at different geographical 

locations. It is possible Enterobacteriaceae enrichment and selection in the rhizosphere of S. 

pimpinellifolium may be due to improving its fitness. Compant et al. (2019) have reported that 

core microbiomes are selected by plants due to improving their fitness. On the other side, 

Erwiniaceae was a satellite microbiome of the rhizosphere found only in all native soils of 
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Loja. The same argument could be applied to this observation. Jousset et al. (2017) have 

reported the local abundance of taxons present in certain habitats are important for key 

ecological processes and provide protection against pathogens in plants, as they stimulate the 

plant immune system. Therefore, Erwiniaceae could be providing beneficial functions to S. 

pimpinellifolium. Within this family, genera like Erwinia and Pantoea have species that are 

known plant pathogens, but other species have been reported to be associated with plant and 

boost plant growth (Palmer et al. 2018).  

  Sphingomonadaceae were found only in soils collected near Paltas, although in low 

abundances. Certain species of this family are known for being plant pathogens, plant growth 

bacteria, and antagonist to pathogens (Glaeser and Kämpfer, 2014). It could be that 

Sphingomonadaceae had a higher abundance in the soils with lower abundances of 

Enterobacteriaceae due to antagonistic effects. Roy et al. (2019) reported almost a non-existent 

abundance of Sphingomonadaceae (0.66%) in S. lycopersicum rhizosphere and reported 

Enterobacteriaceae as the highest abundant (94.6%). Another result of the current study was 

that Yersiniaceae were found only in the rhizosphere from Zapotillo’s agricultural soil. 

Previously published information on the Serratia clade indicated its beneficial influence plants. 

Multiple species of Serratia are known as plant growth bacteria (Caneschi et al. 2019).  

 Regarding bulk soil, Bacillaceae formed the core microbiome. Bacillaceae are widely 

distributed across nature. They can be found in different habitats and is therefore considered 

asrobust bacteria. This family acts as a biofertilizer, participates in the nitrogen/carbon cycle, 

and promotes plant’s health (Mandic-Mulec, Stefanic, and van Elsas, 2018). Satellite 

microbiomes contained Rubrobacteriaceae and Planococcaceae, which are also found in 

different locations and soil types. Most genera from Planococcaceae have optimal growth 

when pH values are higher than 7 (Shivaji, Srinivas, and Reddy, 2014). Soils with a pH higher 

than 7 were the only ones to show an abundance of Planococcaceae. No literature was found 
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to describe a relevant function to the soil or plants by neither Planococcaceae, nor 

Rubrobacteriaceae. Most species of Rubrobacteriaceae can be found in high temperature 

environments, others in church walls, and even in a marine sponge (Norman, King, and Friesen, 

2017).   

 Results of the NMDS analysis revealed no difference between the microbiomes of the 

agricultural and native soils between bulk soil and rhizosphere (Figure 5). However, if 

considered individually, differences between soils can be observed. The most plausible reason 

for not observing a clear difference could be due to location sampling of agricultural soils. 

Samples were collected at the outside border of farm fields, not in the center of an agricultural 

field. The only soil sampling site in the center of an agricultural field was at Calvas.  

 The results of Experiment 1 related to the germination of modern and native tomatoes 

in native and agricultural soils, showed no significant differences among soil types, but seeds 

of modern tomato S. lycopersicum var. Moneymaker had a significantly higher number of total 

seeds germinated in comparison to the native tomato S. pimpinellifolium. A possible 

explanation is the seed vigor of S. lycopersicum var. Moneymaker, as its seeds are bigger and 

had a more uniform size. Khan et al. (2012) reported a correlation of seed size and seedling 

establishment, but in germination characteristics, it was not consistent for tomato (Solanum 

lycopersicum cv. Moneymaker x Solanum pimpinellifolium). They also found that most of the 

alleles which had a positive effect on seedling traits were present in S. lycopersicum var. 

Moneymaker. Furthermore, Peñaloza, and Durán (2015) reported that this correlation and 

further developed composition, genetics, and metabolism may be contributing to this effect. 

Thus, it is possible that S. lycopersicum var. Moneymaker may have better alleles for seedling 

traits due to the plant breeding selection process that led to this variety. On the other hand, 

larger seeds have a higher germination rate in other species due to higher nutrient storage in 

these seeds (Chacon, Bustamante, and Henriquez, 1998; van Mölken et al. 2005). Another 
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possible reason is storage conditions. Seeds of S. lycopersicum var. Moneymaker were 

obtained from a commercial distributor. Commercial seeds must comply with quality standards 

in order to be sold. On the other hand, S. pimpinellifolium was obtained through the national 

germplasm bank at the UNL in Loja, whose storage conditions of these seeds are unknown.  

 As seeds can recruit microorganisms and confer horizontal transmission of these 

(Nelson et al. 2018), exchange groups were performed to investigate the recruitment of 

microorganisms by initial seed affected germination of seeds planted in the second rounds of 

Experiment 1. Agricultural soil initially seeded with S. lycopersicum var. Moneymaker and 

then with S. pimpinellifolium gave a significantly lower total number of germinated seeds of S. 

pimpinellifolium. Other exchange groups did not show significant differences in germination. 

Based on the low macronutrient content of the agricultural soils, seed germination could have 

been more dependent on a possible symbiosis with microorganisms. Repas et al. (2017) 

reported this dependency by a symbiotic fungus to increase the germination speed and rate of 

tomato on nutrient poor oily soils in comparison to control treatments. It is possible that the 

recruited microorganisms for S. lycopersicum var. Moneymaker in the activation phase of the 

soil created a negative soil feedback for subsequent germination of S. pimpinellifolium in the 

second round of the experiment. As species are more distantly related, negative soil feedback 

becomes stronger (Bukowski, Schittko, and Petermann, 2018). However, negative soil 

feedback can occur even in plants in monocultures of the same species (Xue, Bezemer, and 

Berendse, 2018). Thus, negative soil feedback could have even occurred in these closely related 

species of tomato. However, plant soil feedbacks are complex to study and are still 

unpredictable (De Long et al. 2019). This could explain why a significant negative or positive 

plant-soil feedback could not be observed in other exchange groups. 
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5. CONCLUSIONS 

This work is one of the first of its kind to use a multidisciplinary approach to explore the 

rhizosphere microbiome of native tomato Solanum pimpinellifolium in its native soils in the 

south of Ecuador. S. pimpinellifolium’s core rhizosphere microbiome was formed by 

Enterobacteriaceae. This family has been known to be beneficial for the plant, although some 

species are pathogenic. As for satellite microbiomes, Erwiniaceae was present only in the 

tomato’s rhizosphere in native soils. It is possible this family may have been selected by the 

tomato for improving its fitness on undisturbed soil. No clear taxonomic distinction of 

agricultural and native soil microbiomes could be observed, possibly due to location sampling 

of agricultural soils. However, a clear difference was observed between bulk soil and tomato’s 

rhizosphere microbiome, where the rhizosphere had a bigger bacterial abundance. This might 

demonstrate how plants and keystone taxa can select certain taxons and enrich them. A 

variation in microbiome among soils of distinct locations and land use history shows how 

important edaphic factors are. Furthermore, it reinforces the idea that they are drivers of 

microbial community assembly. Soils whose nutrients content were high, specifically in 

nitrogen and phosphorus, correlated with the highest bacterial abundance.  It is worth 

highlighting how important the microbiome of a plant is for its germination, especially in soils 

with nutrient deficiencies. The microbiome is not the only key player during the germination 

process, also the plant’s genotype, and soil edaphic factors as well. Modern tomato Solanum 

lycopersicum var. Moneymaker proved to have a higher germination in total number of seeds, 

compared to the native tomato Solanum pimpinellifolium. This might be a result of the plant 

breeding selection process that led to the variety Moneymaker, which now possesses alleles 

with positive effects on seed vigor. But more research is required in this field to understand the 

roles and the function of the microbial community in plants on agricultural and in native soil.   
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7. TABLES 

Table 1. Outcomes of studies on type of soil and host genotype 

 

Studies on the impact of native and agricultural soils or plant genotype on different plant 

species. 

 

  

 

 

Plant Outcome Author(s) 

Soybean 

Firmicutes enriched in rhizosphere grown on 

agricultural soil while Bacteroidetes on native soil. 

Soybean genotype slightly tunes soybean rhizosphere 

microbiome assembly  

Liu et al. (2019) 

Rice 

Domestication through monoculturing creates changes 

in microbiome composition. Uncultivated soils and 

domesticated soils rhizosphere were significantly 

different.  Soil domestication had negative 

consequences for plant performance  

Edwards et al. 

(2019) 

Annual crops 

In broad terms, domestication has made majority of 

the annual crops less resistant to herbivores, due to 

changes in morphological traits and loss of 

metabolites toxic for herbivores 

Chen, Gols, and 

Benrey, (2015) 

Tomato 

Tomatoes susceptible to Fusarium oxysporum when 

grown in resistant/conducive native soils in 

comparison to control substrate elicited stress and 

defense responses. Resistant native soils partially 

protected the tomato in comparison to the conducive 

soil 

Chialva et al. (2018) 

Modern 

cultivars 

Higher abundance of Bacteroidetes on/in the roots of 

wild common bean. Changes in root architecture, root 

exudation, and plant physiology comparing 

domesticated plants and their wild parts. These 

changes could explain the shift of microbiomes of 

wild and domesticated plants 

Pérez-Jaramillo, 

Mendes, and 

Raaijmakers, (2018) 

Tomato 

Edaphic factors drove rhizobacterial assemblage, not 

fertilizer or organic/synthetic soil amendments. 

Factors such as soil texture (silt and sand content) and 

water activity 

Allard et al. (2016) 

Barley 

Host genotype drives in a small, but significant way 

the stratification of root and rhizosphere microbiota. 

Genotypes tested were wild, landrace, and 

domesticated barley 

Bulgarelli et al. 

(2015) 
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Table 2. Outcomes of inoculated strains on tomatoes and others 

Plant Strain Outcome Author(s) 

Wild 

Tomato 

Sphingomonas sp. 

LK11 

Wild type tomatoes had a significant 

increase in root and shoot length under 

non saline conditions. GOT-3 tomatoes 

only had in root length. Under salinity 

stress LK11 significantly improved 

growth on both tomatoes type, possibly 

by expression of glutathione-related 

genes 

Abdul et al. 

(2017) 

Tomato 

and mung 

bean 

Bacillus cereus and 

Klebsiella variicola  

B. cereus inoculated on tomato 

significantly increased shoot length. K. 

variicola/B. cereus inoculated on mug 

bean significantly increased dry weight 

and shoot length. Inoculations had 

significantly increased mineral uptake in 

both plants 

Saqib et al. 

(2020) 

Tomato 

and lulo 

 diazotrophic/N-

scavenging bacteria 

Inoculated tomatoes and lulus with 

strains belonging to Rhizobium sp., 

Cupriavidus sp., and Pseudomonas sp. 

had a significant correlation with 

root/shoot dry weight, biomass 

accumulation increasement 

Zuluaga et 

al. (2020) 

Tomato 
Trichoderma 

longibrachiatum MK1 

In vitro grown tomato plantlets 

inoculated with MK1 increased 

transcription of genes associated to cell 

wall reinforcement, ROS scavenging, 

defense, protein synthesis and 

localization. Authors suggest these 

mechanisms activate induced systematic 

resistance to pathogens and plant growth 

De Palma et 

al. (2016) 

Tomato 
Endophytic bacteria 

of desert cactus 

"B. megaterium RR10, B. 

amyloliquefaciens CBa_RA37, E. 

cloacae CEc_LGR7, and K. pneumoniae 

CKp-RR19 significantly enhanced the 

germination and the subsequent root and 

shoot elongation of tomato in 

greenhouse conditions" 

Eke et al. 

(2019) 

Tomato 

Pseudomonas 

syringae pathovar 

tomato (Pst) and field 

grown tomato leaves 

phyllosphere 

Inoculated tomatos’ leaves with 

phyllosphere provided protection against 

Pst. A significant lower density of Pst 

was found on treated leaves. Protection 

was dose dependent  

Berg and 

Koskella 

(2018) 
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Tomato  

Pseudomonas sp. 

consortia and 

Ralstonia 

solanacearum 

Inoculated Pseudomonas sp. consortia in 

roots reduced pathogen abundance and 

disease incidence. Effects were 

dependent in Pseudomonas richness 

Hu et al. 

(2016) 

Potato 

9 Pseudomonas 

strains from roots and 

rhizosphere of field 

grown potato 

consortia and 

Phytophthora 

infestans 

Inoculated potato leaves with 

Pseudomonas strains inhibited mycelial 

growth and zoospore release of 

Phytophthora infestans. Some strains 

individually and others in combination 

gave protective effects  

De Vrieze et 

al. (2018) 

Studies on different species or varieties of tomato and potato inoculated with a consortium of 

microorganisms or induvial strains.   
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Table 3. Chemical and physical analysis of different locations within Loja 

 (b) Experiment 2: Microbiome Analysis 
(a) Experiment 1: 

Germination 

Parameter 

 

 

Target 

Value 

Unit 
Calvas 

agrícola 

Calvas 

nativo 

Zapotillo 

agrícola 

Zapotillo 

nativo 

Paltas 

agricola 

Paltas 

nativo 

Loja 

agricola 

Loja 

nativo 

Total N stock 2850-4000 kgh N/ha 7250 3230 4600 1920 2970 8390 2410 3670 

C/N ratio 13-17 - 11 13 12 8 10 12 13 15 

N-suppling capacity 95-145 kgh N/ha 130 50 75 40 55 140 35 50 

S-plant available 20-30 kgh S/ha 18 8 21 15 11 18 175 23 

Total S stock 570-915 kgh S/ha 1265 540 1150 665 670 1350 450 500 

C/S ratio 50-75 - 66 75 48 24 45 76 70 113 

S-supplying 

capacity 

20-30 
kgh S/ha 19 7 21 15 13 18 7 3 

P-plant available 3.7-6.6 kgh P/ha 1.1 <0.9 6.1 10.8 <0.9 2.4 2.1 2 

P-soil stock 385-535 kgh P/ha 405 125 490 420 90 285 330 135 

K-plant available 200-310 kgh K/ha 165 165 100 80 75 200 130 240 

K-soil stock 335-470 kgh K/ha 470 320 425 280 910 115 225 245 

Ca-plant available 205-480 kgh Ca/ha 315 25 25 25 280 20 170 25 

Ca-soil stock 5330-7995 kgh Ca/ha 17955 12360 14320 8485 14515 14430 4585 4620 

Mg-plant available 375-470 kgh Mg/ha 530 850 900 1300 1660 560 910 1140 

Mg-soil stock 230-495 kgh Mg/ha 1470 190 955 1245 2305 795 800 790 

Fe-plant available 
7140-

12840 
 g Fe/ha    7470 9310 10200 15670 6200 <5380 <6140 <5810 

Zn-plant available 1430-2140  g Zn/ha    <280 610 420 490 440 <270 <300 430 
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Mn-plant available 
9130-

14270 
 g Mn/ha    <730 1570 3480 3250 1220 1020 3550 12980 

Cu-plant available 115-185  g Cu/ha    <60 <60 <65 <65 <60 <55 <65 70 

B-plant available 285-430  g B/ha    1245 315 540 520 335 1275 940 890 

Mo-plant available 290-14270  g Mo/ha    <10 <10 <10 <10 <10 <10 10 <10 

Acidity (pH) - -  7.5 6.6 5.7 6.6 6.6 7.2 7.1 6.3 

C-organic - % 3 1.4 1.8 0.5 1 3.8 1.1 2 

Organic matter - % 5.9 4.6 3.2 2.5 4.6 7.5 3.4 5.4 

Soil texture 

- 

-  
Silty 

Clay 
Loam 

Sandy 

Clay 

Loam 

Sandy 

Loam 

Sandy 

Clay 

Loam 

Sandy 

Clay 

Loam 

Sandy 

loam 

Sandy 

loam 

Nutrient quantities and other edaphic factors of each soil used in this study. Target value is the range established by Eurofins Agro Ecuador 

(Cayambe) for agricultural use.
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Table 4. Site-soil type by sample code 

Sample_code Site Soil Type Location Altitude  Land use 

BZ1 Bulk soil Agricultural Zapotillo 172 masl Maize 

BC3 Bulk soil Agricultural Calvas 1169 masl Maize and 

Yucca 

RZ1 Rhizosphere Agricultural Zapotillo 172 masl Maize 

RC3 Rhizosphere Agricultural Calvas 1169 masl Maize and 

Yucca 

BZ6 Bulk soil Native Zapotillo 231 masl Riverbank 

RZ6 Rhizosphere Native Zapotillo 231 masl Riverbank 

BP7 Bulk soil Agricultural Paltas 966 masl Maize and 

Peanut 

RP7 Rhizosphere Agricultural Paltas 966 masl Maize and 

Peanut 

BC8 Bulk soil Native Calvas 1196 masl Natural 

Vegetation 

RC8 Rhizosphere Native Calvas 1196 masl Natural 

Vegetation 

BP11 Bulk soil Native Paltas 999 masl Dry Forest 

RP11 Rhizosphere Native Paltas 999 masl Dry Forest 

Altitude and land use of each type of soil per location.    
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8. FIGURES 

 
Figure 1. Trends on plant and tomato microbiome. Number of articles published per year about 

plant and tomato microbiome.  

 

 
Figure 2. Map of soil samples collected. Geographical locations of soils sampled for 

microbiome analysis of S. pimpinellifolium (left). Geographical locations of soils sampled for 

germination experiment (right). Each location had a sample of native and agricultural soil.  
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Figure 3. Boxplot of total seed germination in all soil treatments. Visualization of number of 

seeds germinated in soil treatments.  
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Figure 4. Germination over time of tomato on different soils. Seeds germinated of   Solanum pimpinellifolium and Solanum lycopersicum var. 

Moneymaker with their exchange groups per day in agricultural and native soils of different locations of Ecuador. 
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Figure 5. Multivariate analysis of soil type-site. Visualization of data by soil type and site 

grouped. Type of soil with site attributed to the codes can be found on Table 4. 

 

 
Figure 6. Relative abundance graphs of microbiome by soil type and location. Colors represent 

a given taxon in the graph. Type of soil with site attributed to the codes on X axis can be found 

on Table 4. a) Phylum relative abundance by agricultural and native soil in rhizosphere and 

bulk soil. b) Phylum relative abundance by site in rhizosphere and bulk soil. c) Family relative 

abundance by agricultural and native soil in rhizosphere and bulk soil. d) Family relative 

abundance by site in rhizosphere and bulk soil. 
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Figure 7. Seed germination experiment design. Layout of conditions and soil treatments done 

to Solanum pimpinellifolium and Solanum lycopersicum var. Moneymaker. 


