

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

On the use of a low-cost embedded system for face detection and

recognition

Ramiro Aleksey Sandoval Avakimova

Vanessa Fernanda Camino Guerra

Ingeniería en Sistemas

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniería en Sistemas

Quito, 4 de mayo de 2020

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

On the use of a low-cost embedded system for face detection and face

recognition

Vanessa Fernanda Camino Guerra

Nombre del profesor, Título académico Noel Pérez Pérez, Ph.D

Quito, 4 de mayo de 2020

3

DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica

de Educación Superior.

Nombres y apellidos: Ramiro Aleksey Sandoval Avakimova

Código: 00130256

Cédula de identidad: 1719116145

Lugar y fecha: Quito, mayo de 2020

Nombres y apellidos: Vanessa Fernanda Camino Guerra

Código: 00130814

Cédula de identidad: 1722822721

Lugar y fecha: Quito, mayo de 2020

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

Este documento explora la viabilidad de usar componentes disponibles comercialmente para

implementar un sistema embebido de bajo costo como el núcleo de un sistema de detección y

reconocimiento facial. El sistema está compuesto por un módulo de cámara para Raspberry Pi

y un Raspberry Pi B+, potenciado por un Intel Neural Compute Stick 2. Cuatro modelos de

aprendizaje supervisado fueron implementados en el sistema embebido para el reconocimiento

facial bajo diferentes condiciones con el objetivo de determinar las limitaciones y capacidades

del sistema, y las mejores condiciones de funcionamiento. Los mejores resultados fueron

obtenidos usando el algoritmo del Perceptron Multicapa (MLP), cuando el individuo se

encontraba a una distancia entre 0.3 a 1 metros de la cámara, el factor de iluminación en el

rango de 115 a 130 lux y la rotación horizontal de la cara entre -5° a +5°.

Palabras clave: detección facial, reconocimiento facial, sistema embebido, Raspberry

pi 3 b+, Intel neural stick 2, Caffe, OpenFace.

6

ABSTRACT

This paper explores the feasibility of using commercially available off-the-shelf components

to implement a low-cost embedded system as the core of a facial detection and recognition

system. The system is composed of a Raspberry Pi camera module and a Raspberry Pi B+

enhanced by an Intel Neural Compute Stick 2. Four supervised learning models were

implemented on the embedded system for face recognition under different conditions to

determine the limitations and capabilities of the system, and the best operational conditions.

Best results were achieved when using a Multilayer Perceptron (MLP) algorithm and the

distance of the subject to the camera was between 0.3 to 1 meters, the illumination factor in the

range from 115 to 130 lux and the horizontal face rotation between -5° to +5°.

Keywords: face detection, face recognition, embedded system, Raspberry pi 3 b+, Intel

neural stick 2, Caffe, OpenFace.

7

TABLE OF CONTENTS

1. Introduction 10

2. Related work 12

3. Proposed embedded system 14

3.1 Hardware . 14

3.2 Third-party source code . 14

4. Methodology 16

4.1 Face database . 16

4.2 Model configuration . 16

4.2.1 Image preprocessing. 17

4.2.2 Model training. 17

4.2.3 Real time detection and recognition. 18

4.3 Validation metrics . 19

5. Results and discussion 20

5.1 Training . 20

5.2 Effectiveness of the proposed system . 20

5.2.1 Distance analysis. 22

5.2.2 Illumination analysis. 22

5.2.3 Horizontal face rotation analysis. 23

5.2.4 Face accessories analysis. 23

5.3 Limitations . 24

6. Conclusions and future work 26

7. References 27

8

TABLE INDEX

Table 1 Accuracy and ROC-AUC metrics for the training stage for different su-

pervised learning algorithms . 20

Table 2 Real-time average confidence of recognition (%) vs Distance (m) under

different algorithms . 22

Table 3 Real-time average confidence of recognition (%) vs Frontal Illumination

(lx). under different algorithms . 23

Table 4 Real-time average confidence of recognition (%) vs Horizontal Face Ro-

tation (deg.) under different algorithms . 24

Table 5 Average FPS perceived and average accuracy under ideal conditions be-

tween Desktop and the Embedded System with and without Intel Neural Stick

2 under the SVM algorithm . 25

9

FIGURE INDEX

Figure 1 Proposed embedded system . 14

Figure 2 Block diagram of the system . 16

Figure 3 Example of a successful real-time recognition of an individual (labeled

as RS) under the MLP algorithm at different distances (0.3, 0.5, 1.0 and 2.0

meters from the camera) . 19

Figure 4 Example of a successful real-time recognition of two individuals at the

same time (labeled as RS and VC, respectively) under the SVM algorithm . . . 21

Figure 5 A comparison of real-time performance between algorithms under dif-

ferent distance from camera, illumination conditions and horizontal face rotation 21

10

1. INTRODUCTION

Face detection and recognition can be considered well-known topics as they have been

studied for several years. Different robust computer vision algorithms or techniques have been

proposed in order to provide better levels of accuracy while being computationally effective.

As a consequence, there is a plethora of options to be considered when a face detection and

recognition system must be designed from scratch. According to Yang et al. (2002) face

detection tackles different challenges regarding to pose, presence or absence of structural

components, facial expressions, occlusion, image orientation and image conditions.

On the other hand, as mentioned by Ehsan et al. (2015), image processing and

computer vision algorithms are generally computation and data intensive in nature. In this

regard, a face detection and recognition system should be able to strike a trade-off between the

effectiveness and the cost. Thus, the choice of a certain computer vision algorithm based on

the available hardware do not represent a trivial exercise at all.

Nowadays, face detection and recognition are used in different comprehensive

systems. For instance, door access control, surveillance and suspect detection, face-based

bio-metrics, wearables for law enforcement, among others (Mahmood et al., 2017).

These systems try to use the latest advances in computer vision and artificial

intelligence while minimizing the cost. According to the state-of-the-art, embedded systems

are the preferred option to implement face detection and recognition procedures. An

embedded system should include sufficient enough computational resources required to

execute computer vision algorithms at an affordable cost.

In the present work, the embedded-based face detection and recognition concept is

further analysed to determine limitations when using off-the-shelf components to maintain the

overall price of the low-cost solution. Regarding face detection, convolutional architecture for

fast feature embedding (Caffe) framework (Jia et al., 2014) is used. This framework includes a

face detector that provides a better performance in comparison with traditional face detection

algorithms such as Viola-Jones (Granger et al., 2017). Regarding the use of artificial

intelligence techniques to carry out face recognition, most of proposals follow an off-the-shelf

based approach.

11

In traditional systems, the embedded system is in charge of capturing the image,

detecting the face, performing a pre-processing and finally executing the feature extraction

process. In the next step, the extracted features are sent to a remote server to perform the

recognition process. Although this approach leverages the computational power of remote

servers, the communication channel between the embedded system and the remote server

represents a single point of failure. If the channel is unavailable, the system is unable to

identify a person. Besides, the delay that the communication channel adds might restrict the

real-time responsiveness of the face recognition process. In this sense, an Intel compute neural

stick was used in our approach to provide additional computational resources that a

comprehensive embedded system requires. On the other hand, the single point of failure is

suppressed and the real-time responsiveness of the system is guaranteed.

Apart from the particularities of the architecture of the proposed embedded system,

this work presents an strategy to evaluate and chose multiple face recognition classifiers

trained under several hyper-parameters and a set of experimental analysis that test the limits of

such classifiers under different distance, illumination and face rotations conditions. In

particular, traditional well-known classification algorithms were tested, i.e., support vector

machines (SVM), artificial neural networks (ANN), k-nearest neighbors (KNN), and random

forest (RF). An exhaustive search strategy was used to select optimum hyper-parameters and

the best models were tested and ported to the embedded system. Accuracy and area under the

receiver operating characteristic curve (AUC) were used for the evaluation.

The remainder of the article is structured as follows. In section 2, the state of the art is

analyzed and the particular features of the proposed approach are remarked. In section 3, the

components of the proposed embedded system are described. In section 4, the methodology

employed to build the detection and recognition system is introduced. To better understand

this approach and to validate this proposal, several tests with the corresponding analysis are

presented in section 5. Finally, the conclusions of the paper and future works are reported (see

section 6).

12

2. RELATED WORK

Several works propose the use of embedded systems to implement face detection and

recognition procedures due to the low cost associated with them. For instance, Sajjad et al.

(2019) propose a facial expression recognition framework for law-enforcement services. The

framework uses a Raspberry Pi and follows a cloud-assisted approach. Regarding the

methodology, Viola-Jones is used as face detector and fast rotated BRIEF (ORB) descriptor is

used for features extraction. Then, the feature vector is sent to an SVM-based multi-classifier

for face recognition. Although Viola-Jones provides effective results, Granger et al. (2017)

state that Caffe framework provides a region convolutional neural network (R-CNN) based

face detector that outperforms Viola-Jones. On the other hand, as mentioned earlier, the

cloud-assisted approach represents a single point of failure that might restricts the real-time

responsiveness of the system.

A real-time emotional state detection using a Field-programmable gate array (FPGA)

is proposed by Turabzadeh et al. (2017). A uniform local binary patterns (LBP) algorithm is

used for image feature extraction. LBP is in charge of providing a single features vector that

describes the entire image. Regarding the classification, KNN regression algorithm is used.

Although LBP performs well under high illumination variability, the accuracy might be

worsened due to features redundancy. On the other hand, while it is true that an FPGA is able

to provide a better performance, the flexibility to use different open source image processing

and machine learning applications is restricted.

Chen et al. (2016) propose a low-cost face recognition system. Extended LBP,

principal component analysis (PCA) and sparse representation (SRC) are used for face

recognition while Viola-Jones is used as face detector. Regarding SRC, Zhang et al. (2015)

state that the effectiveness and efficiency of sparse representation methods cannot perfectly

meet the requirements of real-world applications. Random corruptions, varying illumination,

outliers, occlusion and complex backgrounds might restrict the robustness and performance of

SRC.

A computer network based face detection and recognition system is proposed by

Wazwaz et al. (2018). Raspberry Pi executes the boosted cascade of simple features (BCOSF)

13

algorithm (Viola-Jones) as face detector. In order to perform face detection and recognition, a

cluster of remote servers executes the local binary pattern histograms (LBPH) algorithm. It

should be noted that the reliability as well as the real-time responsiveness of the system rely

on the computer network.

14

3. PROPOSED EMBEDDED SYSTEM

With the aim of providing an unified detection and recognition system, an embedded

platform that integrates specific hardware and third-party libraries, is proposed as depicted in

Fig. 1. Besides, a light-software layer has been developed in order to manage the different

hardware and software components. The functional parts of the proposed system are

explained next.

Intel Neural
 Stick 2

Raspberry Pi 3 B+Raspberry Camera
Module v2

Source Code & Open Source Libraries
Figure 1

Proposed embedded system

3.1 Hardware

The embedded system is composed of a Raspberry Pi 3 B+ and an Intel Neural Stick 2

(INCS2) (Corporation, n.d.). The INCS2 is a dedicated deep neural network hardware

accelerator for computer vision and AI inference. The Raspberry is equipped with a

Cortex-A53 (ARMv8) 64-bit processor and 1GB of SDRAM (Foundation, n.d.-b). A 8 MP

camera module is connected to the CSI Camera Port of the Raspberry Pi (Foundation, n.d.-a).

The latest available version of Raspbian is used as the Operating System on the Raspberry.

3.2 Third-party source code

In order to create appropriate data structures as well as to train, evaluate and generate

different face recognition algorithms, several open source Python libraries are incorporated.

15

For instance: scikit-learn v0.22.1: a simple and efficient open source library for data analysis

(Pedregosa et al., 2011). Opencv-python v4.1.2.30: a library containing prebuilt opencv

packages (Itseez, 2015). Pickle: implements binary protocols for serializing and de-serializing

Python object structures (Van Rossum & Drake, 2009). Caffe precompiled Face Detector:

(Convolutional Architecture for Fast Feature Embedding) is a deep learning framework (Jia

et al., 2014). OpenFace precompiled embedder: an implementation of face recognition with

deep neural networks (Amos et al., 2016).

16

4. METHODOLOGY

4.1 Face database

The face database used in training and experimental evaluation is composed of 450

images. The database includes thirty images per individual from fifteen different individuals.

Photos were taken at the same place, under artificial light, with a white background. The face

database was created using a Logitech C920 full HD camera connected to a laptop PC. The

camera was placed at a height of 1.20 m from the ground and 1.0 m away from the individual.

Photos were saved in 720x720 pixels size. Participants were asked to do different facial

expressions and to look at the camera from different angles while they were sitting.

4.2 Model configuration

A block diagram of the system’s software operation is shown in Fig. 2. Image

pre-processing for training and training itself was not done in the embedded system. The

training process and the face detection and recognition procedures performed by the proposed

system are described next.

Caffe face
detector Face Detected?

OpenFace
embedding

model

Intel NCS 2

Raspberry PI 3 B+

Camera
Module

Frame
Resize frame
to 600x600 px

Generate blob
image 300x300 px

Extract face
position and crop

at boundaries

Generate blob
image 96x96 px

Recognizing
Algorithms

(SVM, MLP,
KNN, RF)

Prediction

Image

Identity
Caffe face
detector

Face
Detected?

OpenFace
embedding

model

Intel NCS 2

yes

no

End

Figure 2

Block diagram of the system

17

4.2.1 Image preprocessing.

Each image is resized to 600x600 pixels. After the resizing process, using the Deep

Neural Network OpenCV library (DNN), a 300x300 pixels blob image is obtained. This blob

image is processed by a precompiled face detector provided by Caffe Framework and for

model training. Caffe’s precompiled model is selected as it is fast and effective face detector

that relies on a Region Convolution Neural Network (R-CNN) (Jia et al., 2014). After the face

detection procedure, the dimensions and position of the region of interest are stored. This

region is cropped at boundaries and resized to 96x96 pixels. This image is then used as input

for a precompiled embedding model provided by OpenFace. This embedding model combines

dlib’s real-time pose estimator and OpenCV’s affine transformation to standardize the

alignment of the outer eyes and nose for all images and to obtain a 128-dimension

representation of the image (Amos et al., 2016). The described image representation

methodology is used to train the different recognition algorithms during the test and real-time

implementation.

4.2.2 Model training.

Four supervised learning algorithms were evaluated. For the experimental evaluation,

the sklearn’s implementation of SVM, Multilayer Perceptron (MLP), KNN and RF algorithms

is used. Training and test sets are generated from the embedded images by using the K-fold

cross validation (Anguita et al., 2012) methodology. A grid search (GS) (Syarif et al., 2016)

customized implementation is used to find the best hyper-parameters for the evaluated

algorithms. GS exhaustively tries multiple combinations of hyper-parameters by performing

cross product between an user-provided list of parameters. Then, prediction results are

compared between the generated models. At the end, GS returns the list of hyper-parameters

from the best performer model.

SVM (Yu & Kim, 2012) is a supervised learning algorithm capable of performing

binary and non lineal classification. In this case, the non lineal implementation is used to map

the possible outputs, represented by hyper-planes, to a high-dimensional feature space.

Unseen input images are classified in one of the possible hyper-planes. Possible tunable

18

hyper-parameters in the sklearn’s implementation that were explored are: the kernel,

regularization parameter C, and gamma.

MLP (Noriega, 2005) is a class of feed forward neural network that uses

back-propagation for training. When the input is processed, the error of the output and the

expected output is measured using the least minimum squares technique. The weights of the

network are recalculated to minimize the error. Possible tunable hyper-parameters in the

sklearn’s implementation that were explored are: the hidden layer sizes, activation function,

solver and the learning rate.

KNN (Cover & Hart, 1967) is a supervised learning algorithm used for classification

or regression. At the training stage, feature vectors and its corresponding label are stored.

When an unseen sample is tested, classification is done by placing the sample’s vector in the

feature space and assigning the predominant label of its k nearest neighbors. Nearest

neighbors are selected by following a weight assignment, usually the Euclidean distance.

Possible tunable hyper-parameters in the sklearn’s implementation that were explored are:

number of neighbors k and weight calculation methodology.

RF (Breiman, 2001) is a classification algorithm based on the exploration of multiple

generated Decision Trees (DTs), that work as an ensamble. During training, random samples

are selected to train the DTs. Predictions for unseen samples are obtained by averaging the

result obtained from each DT. Possible tunable hyper-parameters in the sklearn’s

implementation that were explored are: number of DTs n, function to measure splits criterion

and methodology to determine the maximum number of features for each tree split max_split.

4.2.3 Real time detection and recognition.

The model generated in the PC was exported using the pickle library, which dumps the

whole python object to a file. This file was then used to import the model into the embedded

system using the same library.

Once the model is imported to the Raspberry, OpenCV library is used to specify the

Intel Neural Compute Stick 2 as the default backend.The Stick executes the preprocessing

methodology for every frame captured by the camera in real-time. Then, this preprocessed

frame is delivered to the active learning algorithm. Finally, by using the built-in functions of

19

the implemented algorithm, an output label is assigned to the face area in real-time as shown

in Fig 3. This label contains the recognized face id and the corresponding confidence level.

Figure 3

Example of a successful real-time recognition of an individual (labeled as RS) under the MLP

algorithm at different distances (0.3, 0.5, 1.0 and 2.0 meters from the camera)

4.3 Validation metrics

Validation metrics are obtained by comparing the output generated from perceiving an

individual by the camera at different conditions in terms of distance, lighting and rotation

conditions to the expected result. The output label and level of confidence are obtained from

sending the image to the trained model and predicting the output with the built-in functions in

the sklearn’s library for each algorithm. The results obtained are shown in Tables 2, 3 and 4

and Fig. 5.

20

5. RESULTS AND DISCUSSION

5.1 Training

The list of hyper-parameters from the best performer models, with their respective

accuracy results as well as ROC-AUC metrics, obtained during the training stage are shown in

Table 1.

Table 1

Accuracy and ROC-AUC metrics for the training stage for different supervised learning

algorithms

Algorithm Best Hyper-parameters
Test Set

Score (%)

ROC-AUC

Score (%)

SVM ’C’: 100.0, ’gamma’: ’auto’, ’kernel’: ’rbf’ 89 97

MLP ’hidden_layer_sizes’: (100,), ’activation’: ’relu’, ’solver’: ’adam’ 91 100

KNN ’n_neighbors’: 13, ’weights’: ’distance’ 79 91

RF ’n_estimators’: 500, ’criterion’: ’entropy’, ’max_features’: ’log2’ 89 95

5.2 Effectiveness of the proposed system

An example of how the system works is shown in Fig. 3, the system is also capable of

performing multiple individual face detection and recognition as shown in Fig. 4. These

images show how the system detects the face, wraps it within a red rectangle and shows an

output label with the level of confidence for the recognition and the amount of illumination

perceived on the face region. However, the performance of this system is bounded to

illumination conditions, face rotations and the distance of the individual from the camera, as

analysed next. The average results obtained from the results of 30 recognizing tests using

different MLCs on two individuals at different distances, lightning conditions and horizontal

face rotations are highlighted in Tables 2, 3, and 4.

21

Figure 4

Example of a successful real-time recognition of two individuals at the same time (labeled as

RS and VC, respectively) under the SVM algorithm

Figure 5

A comparison of real-time performance between algorithms under different distance from

camera, illumination conditions and horizontal face rotation

22

5.2.1 Distance analysis.

The recognition system was tested for different distances (between 0.3 to 3 m) to

determine the best range of operation (see Fig. 5 and Table 2). The system was unable to

detect faces when individuals are at a distance greater than or equal to 3.0 m. Effectiveness of

recognition decreases as the distance between the test subject and the camera increases. Best

recognition results were obtained when the test subject was between 0.3 to 1.5 m away from

the camera.

Table 2

Real-time average confidence of recognition (%) vs Distance (m) under different algorithms

Distance from

Camera (m)

SVM Average

Confidence (%)

MLP Average

Confidence (%)

KNN Average

Confidence (%)

RF Average

Confidence (%)

0.3 74.08 72.70 79.17 31.50

0.5 67.02 82.32 64.83 43.02

1.0 53.51 96.57 82.73 22.63

1.5 41.52 78.31 81.47 16.22

2.0 37.53 76.28 81.23 12.78

2.5 Not Detected Not Detected 42.68 Wrong Output

3.0 Not Detected Not Detected Not Detected Not Detected

5.2.2 Illumination analysis.

Here, illumination limitations for the system are tested. A frontal artificial light was

placed at different intensities at the recommended distance of 0.5 m from the camera.

Illumination, in lux, was measured by calculating the pixel intensities in the face detected

region. According to Table 3, when illumination was greater than 150 lux, the prediction was

no longer accurate and it also affected face detection. Better recognition results were obtained

when illumination conditions were between 115 and 130 lux (see Fig. 5).

23

Table 3

Real-time average confidence of recognition (%) vs Frontal Illumination (lx). under different

algorithms

Frontal

Illumination (lx)

SVM Average

Confidence (%)

MLP Average

Confidence (%)

KNN Average

Confidence (%)

RF Average

Confidence (%)

85 56 77.7 40.98 38.92

105 59 97.3 55.19 45.33

115 61 98.1 41.1 44.02

125 71.5 78.0 61.25 31.46

135 61.5 Wrong Output 80.12 30.25

145 53.0 Wrong Output 50.74 18.31

155 Wrong Output Wrong Output 47.85 16.79

5.2.3 Horizontal face rotation analysis.

Horizontal facial rotations were also considered to evaluate the system. Facial

rotations were done at the recommended distance of 0.5 m from the camera and with artificial

lightning conditions of 115 lux. Horizontal face rotations were measured by drawing on the

wall points representing different rotations, in degrees, from the center position. Test subjects

were asked to align their nose with each wall point at a time. As shown in Table 4, the level of

confidence of the recognition tends to decrease as the rotation increases. Also, the system was

only able to detect faces when the face rotation angle was less than 45 degrees from center

position. A frontal approach or a rotation between -5 or 5 degrees is therefore recommended

to obtain better results (see Fig. 5).

5.2.4 Face accessories analysis.

The system was unable to recognize correctly after changes in face accessories. For

example, at the recommended ranges described above, if someone wore glasses at the moment

of creating the database and then, the person stops wearing them, the subject was no longer

24

Table 4

Real-time average confidence of recognition (%) vs Horizontal Face Rotation (deg.) under

different algorithms

Horizontal Face

Rotation (deg.)

SVM Average

Confidence (%)

MLP Average

Confidence (%)

KNN Average

Confidence (%)

RF Average

Confidence (%)

+0 76.6 92.17 59.68 45.33

-5 62.5 83.52 58.82 35.72

+5 61 82.74 39.25 34.55

-22 48.3 81.67 43.62 Wrong Output

+22 40.7 85.12 40.65 Wrong Output

-45 Wrong Output Wrong Output 23.12 Wrong Output

+45 Wrong Output Wrong Output 29.77 Wrong Output

recognizable by the system. This also applies to the use of sunglasses. Other accessories were

not explored.

The embedded system perceives about 2.11 frames per second (FPS) on average

between algorithms. FPS in this system means how many times the whole image

preprocessing, detection and recognition can be done for each second. For comparison, the

same code was executed on a desktop class computer and the embedded system without the

INCS2 under ideal conditions. The desktop system perceived 11.7 FPS on average and the

Raspberry without the INCS2 1.89 FPS. That represents an increase in frames processed per

second of 11.64% when the INCS2 is used. Since the model in both the Raspberry and the

desktop are the same, there is no statistical difference in the output labels and level of

confidence obtained between systems, for comparison refer to Table 5.

5.3 Limitations

Factors such as distance from the camera, illumination conditions, rotation of the face,

and face accessories changes affect the recognition accuracy. Therefore, there are specific and

recommended working ranges for each of the described factors. The size of the trained model

25

Table 5

Average FPS perceived and average accuracy under ideal conditions between Desktop and

the Embedded System with and without Intel Neural Stick 2 under the SVM algorithm

Metric Desktop Raspberry PI 3 B+

With INCS2 Without INCS2

FPS 11.73 2.11 1.89

Confidence (%) 74.32 74.06 74.24

increases with the number of images used in the training phase and the number of individuals

to recognize. As described in the Hardware subsections, the Raspberry 3 B+ has only 1 GB of

RAM, so it relies on memory swapping to be able to recognize in real time, downgrading the

performance. Another important aspect is that the hardware interface and bus speeds of the

Raspberry limits the FPS perceived by the camera, also downgrading the performance. It’s

worth to mention that the embedded camera resolution is not good enough to identify

individuals at long range.

26

6. CONCLUSIONS AND FUTURE WORK

In this work, the performance of a proposed embedded system as the core of a facial

recognition system is evaluated. Recommended operation ranges were determined for this

system and are detailed next. The best range of operation for this system was between 0.3 to 1

m. For the illumination factor, the recommended range is between 115 and 130 lux, while the

system was only capable of detecting horizontal face rotation between -5 to +5. Best real-time

results were obtained under the MLP algorithm. The performance of the system is better when

it is tested under similar conditions to those had when capturing the training photos. It is

recommended to create the face database in similar operation distance, lightning conditions

and facial rotations to the final use area. In general, results and performance obtained under

optimal distance, face rotations and lighting were good despite the computational limitations

of this low-cost system.

As part of our future work, another face database will be constructed in which multiple

conditions of lightning, facial expressions and distances for each of the subjects will be taken

into consideration. Finally, more powerful systems that can be bought for a similar price (this

system can be acquired for about $150,00 USD), such as the ODROID-N2 or the new

Raspberry Pi 4 B should be interesting hardware to test as the core of the facial detection and

recognition system. We expect that as new hardware with more computational power come

available the hardware limitations reported in this study will be overcome.

27

7. REFERENCES

Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). Openface: A general-purpose face

recognition library with mobile applications (tech. rep.). CMU-CS-16-118, CMU

School of Computer Science.

Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., & Ridella, S. (2012). The’k’in k-fold cross

validation., In Esann.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Chen, Y.-P., Chen, Q.-H., Chou, K.-Y., & Wu, R.-H. (2016). Low-cost face recognition system

based on extended local binary pattern, In 2016 international automatic control

conference (cacs). IEEE.

Corporation, I. (n.d.). Intel R© neural compute stick 2 (intel R© ncs2).

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on

information theory, 13(1), 21–27.

Ehsan, S., Clark, A. F., Rehman, N. U., & McDonald-Maier, K. D. (2015). Integral images:

Efficient algorithms for their computation and storage in resource-constrained

embedded vision systems. Sensors, 15(7), 16804–16830.

Foundation, R. P. (n.d.-a). Raspberry camera module v2.

Foundation, R. P. (n.d.-b). Raspberry pi 3 model b+.

Granger, E., Kiran, M., Blais-Morin, L.-A., Et al. (2017). A comparison of cnn-based face

and head detectors for real-time video surveillance applications, In 2017 seventh

international conference on image processing theory, tools and applications (ipta).

IEEE.

Itseez. (2015). Open source computer vision library.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., &

Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding, In

Proceedings of the 22nd acm international conference on multimedia, Orlando,

Florida, USA, Association for Computing Machinery.

https://doi.org/10.1145/2647868.2654889

https://doi.org/10.1145/2647868.2654889

28

Mahmood, Z., Muhammad, N., Bibi, N., & Ali, T. (2017). A review on state-of-the-art face

recognition approaches. Fractals, 25(02), 1750025.

Noriega, L. (2005). Multilayer perceptron tutorial. School of Computing. Staffordshire

University.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12, 2825–2830.

Sajjad, M., Nasir, M., Ullah, F. U. M., Muhammad, K., Sangaiah, A. K., & Baik, S. W. (2019).

Raspberry pi assisted facial expression recognition framework for smart security in

law-enforcement services. Information Sciences, 479, 416–431.

Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). Svm parameter optimization using grid

search and genetic algorithm to improve classification performance. Telkomnika,

14(4), 1502.

Turabzadeh, S., Meng, H., Swash, R. M., Pleva, M., & Juhar, J. (2017). Real-time emotional

state detection from facial expression on embedded devices, In 2017 seventh

international conference on innovative computing technology (intech). IEEE.

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. Scotts Valley, CA,

CreateSpace.

Wazwaz, A. A., Herbawi, A. O., Teeti, M. J., & Hmeed, S. Y. (2018). Raspberry pi and

computers-based face detection and recognition system, In 2018 4th international

conference on computer and technology applications (iccta). IEEE.

Yang, M.-H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE

Transactions on pattern analysis and machine intelligence, 24(1), 34–58.

Yu, H., & Kim, S. (2012). Svm tutorial-classification, regression and ranking. Handbook of

Natural computing, 1, 479–506.

Zhang, Z., Xu, Y., Yang, J., Li, X., & Zhang, D. (2015). A survey of sparse representation:

Algorithms and applications. IEEE access, 3, 490–530.

