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RESUMEN 

 
El consumo de energía se ha convertido en una métrica crítica en el diseño de 

circuitos integrados (IC). La tecnología STT-MRAM tiene características para superar las 
limitaciones de consumo de energía y arquitectónicas de los sistemas informáticos 
convirtiéndose en un candidato potencial en la aplicación de memorias y lógica de baja 
velocidad y alta potencia.  

Esta tesis presenta un estudio del rendimiento y la escalabilidad del voltaje de una 
matriz STT-MRAM de 128 x 128 basada en uniones de túnel magnético simple (MTJ) y 
doble (DMTJ) con anisotropía magnética perpendicular (PMA). Se presenta un análisis 
exhaustivo para diferentes configuraciones de la celda de bits híbrida CMOS / MTJ donde 
se considera las variaciones tóxicas y de proceso. Además, el entorno de simulación 
incluye dos tipos de modelos, el modelo compacto que establece el comportamiento 
MTJ y el modelo MOS para transistores. 

 El análisis de los diferentes nodos tecnológicos, y en particular para el doble MTJ, 
muestra resultados significativos en los nodos tecnológicos más escalados. 

 
 
Palabras Clave: STT-MRAM, MTJ, DMTJ, anisotropía magnética perpendicular, 

variaciones tóxicas, celda de bits híbrida. 
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ABSTRACT 

 

 

Energy consumption has become a critical metric in integrated circuit design (IC). 
The STT-MRAM technology has characteristics to overcome the energy consumption 
and architectural limitations of computer systems, becoming a potential candidate in 
the application of low speed and high power memories and logic.  

This thesis presents a study of the performance and voltage scalability of a 128 x 
128 STT-MRAM matrix based on single (MTJ) and double (DMTJ) magnetic tunnel 
junctions with perpendicular magnetic anisotropy (PMA). An exhaustive analysis is 
presented for different configurations of the CMOS / MTJ hybrid bit cell where toxic and 
process variations are considered. In addition, the simulation environment includes two 
types of models, the compact model that establishes the MTJ behavior and the MOS 
model for transistors.  

The analysis of the different technological nodes, and in particular for the double 
MTJ, shows significant results in the most scaled technological nodes. 
 

 

Key Words: STT-MRAM, MTJ, DMTJ, perpendicular magnetic anisotropy, toxic 
variations, hybrid bit cell. 
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1 INTRODUCTION. 

1.1 Volatile and non-Volatile memories 

The current design of an integrated circuit considers a classic memory hierarchy 

built with silicon-based devices such as DRAM and SRAM. In Figure 1, we can see the 

classical memory hierarchy where DRAM memory is used at the lowest levels, such as 

RAM and secondary memory. On the other hand, we have SRAM memories in the cache 

levels. As they approach the core, the memories have a higher speed and the volume 

decreases. When they are far from the core, the volume increases and the speed 

decreases. 

DRAM memory is volatile and densely dense due to the configuration of a bit cell 

consisting of a serially connected transistor and capacitor. To store data needs 

continuous power source, otherwise the data is lost. In addition, due to the high density 

of DRAM memory, the power dissipation is high. On the other hand, the SRAM memory 

has a flip-flop cell and two access transistors. This memory does not require permanent 

updates to store data, has a low power dissipation, high speed and is very reliable. 

 

Fig 1: Conventional memory hierarchy [1] 
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The use of multicore processors has been on the rise in recent years, where high 

memory capacity is a requirement in complex applications. In addition, running multiple 

applications in parallel requires a high-performance memory system. Therefore, to 

address obstacles, you need to redesign the memory hierarchy to improve the overall 

performance of your systems. Flash memories like NAND and NOR show good prospects 

on SRAM and DRAM due to their non-volatility. On the one hand, NOR has high latencies 

for writing and erasing, on the other hand NAND memories have a very high latency in 

comparison of DRAM. This is why we need to work intensively on emerging non-volatile 

memories. 

The new non-volatile memory technology differs in terms of materials and 

switching mechanism. First, for non-volatile memory materials we have ferroelectric 

dielectrics, ferroelectric metals, transition metal oxides and carbon materials. As for 

switching mechanisms, these include quantum mechanics phenomena, ion reactions, 

phase transition and molecular reconfiguration. On the other hand, there are new 

technologies such as the PCM (phase change memory) structure, which consists of a 

non-volatile memory element and an access device allowing 1-bit storage. In these 

phase-change materials, they show smaller-sized phase transition characteristics, high 

crystalline temperature, low thermal conductivity, and improved strength. 

An example of emerging non-volatile memories following an electrical approach 

is ReRAM. This works according to the principle of conductivity of the dielectric material. 

A dielectric becomes conductive through the formation of filaments when a current is 

passed to a sufficiently high voltage. The broken and reformed filament represents a 

high and low resistance, respectively. The two-terminal storage device consists of a 

metal oxide inserted between two electrodes. On the other hand, we have the magnetic 
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approach where MRAM (magnetoresistance RAM) memories have presented favorable 

characteristics such as low power and high-speed operation, high density, long data 

storage time and easy integration with CMOS process. 

MRAM, if low in the phenomenon of ST (Spin Torque), demonstrate great 

potential to solve problems that do not have other memory technologies. STs are 

classified as "spin-transfer torque" (STT) and "spin-orbit torque" (SOT). The latter, the 

SOT-MRAM architecture is energy efficient and has faster access to writing by optimizing 

the independent writing path. Another memory model is the DW-MRAM based on 

Domain Wall (DW) with two additional layers on the sides of the free layer, which 

improves write performance with respect to the STT. 

In general, several emerging non-volatile memory technologies were mention. 

These memory technologies provide performance, maturity, and scalability. STT-MRAM-

based memories and its SOT-MRAM and DW-MRAM improvements have become rivals 

for the next generation of non-volatile memories, thanks to its high density, strength 

and improved retention.[1] 

1.2 Comparison Of Memories Technologies. 
 

The non-volatile memories described at the beginning of this chapter present 

advantages and challenges. ReRAM has the highest integration density due to the1T 

memory structure. The main advantages of ReRAM are low storage consumption and high 

performance. The ReRAM is simple in structure, has a low cost and is of higher density, 

has versatile materials, structures and behaviors. Forward, the scalability of the ReRAM 

is better than PCM and STT-MRAM. 

The most emerging non-volatile memory is STT-MRAM and is due to its best 

performance. Still, the problems with STT-MRAM are reliability and the thermal balance 
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BEOL (back-end-of-line). There is solved with the optimization of separate read and write 

paths as they present the SOT-MRAM and DW-MRAM; thus, improving reliability through 

the optimization of reading paths Separate / writing. On the other hand, PCM and ReRAM 

memory is better scalable than STT-MRAM. STT-MRAM has a better switching 

mechanism than other memories, so faster than writing and reading. In terms of power, 

PCM, STT-MRAM and ReRAM have a high, moderate and low write dissipation. STT-

MRAM has better retention, strength and variability than other memories. 
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Table 1: Comparison between emerging memories. 

 

 

  EMERGENCY MEMORY CONSOLIDATED MEMORY 

  SOT_MRAM STT_RAM PCMS RRAM DRAM FlashNAND 

Non-Volatile Yes Yes Yes Yes Non Yes 

Resistance High (5x10e10) High (10-e12) Media (10-e8) Low (10-e6) High (10-e15) Low (10-e5) 

Product the last 

technology node (nm) 
- 40 nm 20 nm 130 nm  - 15nm 

Cell size (cell size F²) - Media (6-12) - Media (6-12) Small (6-10) Very Small (4) 

latency in reading (nm) very fast (0.21ns) Fast (10-20 ns) Fast (50-100ns) Media (250 ns) very fast (ns) Slow (100.00 ns) 

Energy consumption 300 (pJ) media (50pJ/bit) Media Media (6 nJ/bit) Low Very High 

Price 2016 ($/Gb) - 
High ($200 - 
$3000/Gb) 

Low (<$0.5/Gb) High ($100/Gb) Low (<$1/Gb) Very low(<$0.05/Gb) 

Suppliers - Everspin Intel / Micron Adesto Micron, SK Hynix 
Samsung, Toshiba, 

Intel 
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According to the memory application, there is a higher or lesser consumption market, 

which means that a hard disk or NAND memory is required to back up the information. On 

the other hand, for fast services where data is used for a short time, you need a fast 

memory like SRAM and stable as DRAM. In fact, the goal is to look for a possible 

replacement of SRAM or DRAM due to scaling. We have potential features with 

magnetoresistance memories (MRAM) where STT-MRAM and SOT-MRAM have low energy 

consumption and speed improvements according to Table 1. 

 

Fig 2:  Market applications of NV memories  [2] 
 

Panasonic and SMIC have selected RRAM, while major companies such as (TSMC, 

GF, and Samsung) propose STT-MRAM in 2017-2018 and ST Microelectronics has selected 

PCM for the 28 nm node in 2020. However, many key manufacturers, including Renessa’s, 

Infineon, Texas Instruments, Micro Chip and Cypress are not officially elected. Given the 

trend towards STT-MRAM among manufacturers, STT-MRAM is expected to get over the 

integrated market in2021. However, due to its low cost, RRAM/PCM could take a larger 

market share. 



18 
 

1.3 Spintronics-Based Memory 
 

During the construction of transistors and other nanoscale-sized devices, 

processors and memory become so dense that infinitesimal currents combine producing a 

high-energy consumption and heat dissipation. Moreover, the quantum effects that were 

insignificant are now very remarkable. Spintronic devices use the third property of 

electrons spin. For this purpose, magnetic materials are used in spintronic devices to store 

information, provide non-volatility and provide resistance that cannot be compared with 

other memory technologies. Using the natural spin of electron spin allows the ability to 

control the movement of electrons, thus helping to do things such as writing and reading 

information. 

 

Fig 3:  1 GB STT-MRAM (Spin-transfer Torque MRAM) [3] 

 

It is important to note that MRAM devices have the magnetoresistive giant (GMR) 

effect that was discovered in the late 1980s by two European scientists from the University of 

Paris-South. They saw very large resistance changes of 6% and 50% on experiments at low 

temperatures and in the presence of very high magnetic fields. Thus, the GMR is the variation 

of electrical resistance in response to an applied magnetic field. In addition, the application 
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of a magnetic field, the multilayer implies a significant reduction in the electrical resistance of 

the multilayer. 

1.4 Generations Overview of MRAM Technology 
 

MRAM technology can be classified according to the switching method used to write data. 

Generally, the first generation of MRAM includes methods based on magnetic fields to 

program the array, and words memory cells. Toggle MRAM is the only first-generation mass 

production MRAM.   The field change represents an unlimited writing resistance, so 

reversing the magnetization of the free layer with a magnetic field does not produce wear 

effects.  The disadvantage of this technology to scale the size of the smaller cells, due to 

some factors such as the size of the switching currents and the complex geometry of the 

memory cell. 

The second generation of MRAM uses the STT effect to program the matrix. STT switching 

is achieved with magnetic tunnel junction devices (MTJs) that have magnetization in the 

plane or perpendicular to the plane. Commercial production of the STT-MRAM device in 

the plane, which began in 2015 with a storage capacity of 64 MB, and in 2016 its 

production, grew with a storage capacity 256 MB. [4] 

The third generation MRAM studies physical phenomena, including: voltage-controlled 

anisotropy (VCA), voltage controlled magnetism (VCM), Hall effect (SHE) and spin orbit 

torque switching (SOT). Reliability issues such as wear, and drift parameters should be 

better understood for practical VCM devices. In fact, these new devices should be 

implemented in a three-terminal [5] cell configuration that is not compatible with [6] high-

density memory array.  [4] 
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1.5 Working Stage Of MRAM Circuits 
 

The latter sub-section shows some notable demonstrations of working circuits, illustrating 

the rapid progress in the development of technology over the past 15 years. 

In 2000, Scheuerlein reported the functionality of a field-switched MRAM circuit using 

AlOx-based MTJ devices and Stoner-Wolfarth-type writing circuits. The basic read and write 

function was demonstrated in a 1 kb memory array with write pulses that were too short 

of 2.5 ns and with a read operation that was too short of 10 ns, using a double-cell read 

configuration.[7] 

Durlam and col. describes the first Toggle MRAM circuit in 2003, a fully functional 4Mb 

circuit with 1T1MTJ architecture and AlOx-based MTO devices, indicating the effectiveness 

of writing to solve the problem of high writing error rates. The free-switching layer consists 

of a three-layer stack of synthetic antiferromagnetic (SAF) where the magnetic moments 

of the upper and lower layers are almost balanced. The magnetization direction of the 

ferromagnetic substrate 1 (FM) relative to the fixed FM layer determines the resistance 

state of the bit [8]. This circuit is designed to be a product, but not a demonstration, with 

an exclusive local bit line array architecture, a cell size of 1.55𝑚𝑚2, asynchronous 

compatibility with 16-bit SRAM interface, and read loop times and symmetric writing less 

than 25 ns. This chip was introduced as a commercial product in 2006 and is manufactured 

today by Everspin Technologies, Inc.  [9] 

Significant results are obtained from several STT-MRAM demonstration circuits, using 

MgO-based MTJ devices. Starting with a 4KB test device in 2005, they include[10]: a 2 MB 

circuit and device data in 2007[11], Give stadistic array integrated da 4 KB con 70 × 210 bit 
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𝑛𝑚2[12] and devices with perpendicular magnetization in 2008, array[13] integrated with 

54 nm CMOS technology, 4 KB MRAM array with perpendicular bit switching in 2010.[14] 

The first STT-MRAM product, announced in 2012, is a 64 Mb STT-MRAM circuit, the chip is 

manufactured with MTJ devices with floor-to-plan anisotropy in a cell with a transistor and 

an MTJ, integrated with 90 nm CMOS technology and introduced in a standard BGA DDR3 

JEDEC. This chip is compatible with the available DDR3 memory controllers and has been 

market end by Ever spin Technologies, Inc. in 2015[4]. On the other hand, in 2014, we 

provide data on the performance of an 8 Mb STT-MRAM demonstration chip with high-

energy barrier for storing information bits compatible with automotive applications and 

MTJ devices that tolerate high required processing temperatures for integrated memory. 

Although CMOS circuits have 90 nm technology, the MTJ uses devices as small in diameter 

as 45 nm, demonstrating reliable switching with short pulses like 2ns in a cell architecture 

with a transistor and an MTJ. [4] 

2 Spin Transfer Torque MRAM (STT-MRAM) 

One of the limitations of MRAM technology in the switching field is the difficulty of 

maintaining minimum error rates and high data retention when scaling MTJ devices. The 

effects affect the write current, error rates, and loss of data retention time. Because of 

these two disadvantages of scalability, the industry decides to switch from alternating to 

STT switching for technology nodes less than 90 nm. [4] 

2.1 The Magnetic Tunnel Junction MTJ. (Storage Device) 

The elementary device in an MRAM memory is the MTJ. An MTJ consists of a ferromagnetic 

layer that stores information (also called a "free" layer), a tunnel layer (usually AlOx or more 

commonly, MgO) and a ferromagnetic reference layer (also called a "fixed" layer). Within 
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the MTJ (Magnetic Tunnel Junction) two very important physical phenomena are generated 

for reading and writing in a memory cell, the first effect is the Tunneling Magneto-

Resistance Ratio (TMR), and the second effect is magnetic anisotropy (PMA).  To 

understand these two phenomena, it is important to consider the principle of the 

magnetoresistance effect.  

MRAM is based on magnetic tunnel junction (MTJ) devices, where the simplest is called 

single barrier MTJ (SMTJ). The SMTJ has a non-magnetic spacer inserted between two 

ferromagnetic layers. This spacer is an oxide barrier. The magnetization of one layer is fixed 

and the other is free. The magnetic polarization in the free layer can be changed when a 

current is applied in the device. There are two possible states, minimum resistance (logical 

state "1" or anti-parallel) and maximum (logical state "0" or parallel). The TMR STT cell 

contains an MTJ (magnetic tunnel junction) and a MOS transistor called cell 1T-1MTJ. (WL) 

is connected to the transistor port to access the information stored in the MTJ. (BL) and the 

source line (SL) are connected to the Free Layer MTJ and the transistor source terminal, 

respectively. Magnetic anisotropy depends on geometry and is classified into two 

categories: flat magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA). 

2.1.1 Magnetoresistance Effect 
 

This phenomenon was discovered in the 1980s where there is a change in the electrical 

resistance of a material in the presence of an applied external electric field [3]. This 

phenomenon focuses on the behavior and properties of the magnet due to external 

influences. If we think of a simple magnet, it is understood that the electrons in a magnet 

have a spin state (with a north and south direction). We can see in figure 4 that these 

electron spin states can change by rotating the poles of the magnet. You need a reference 

point to know the appropriate state of the electron. 
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Fig 4:  two configurations of the magnet: (a) south - north, (b) north - south where the black layer 
represents the poles. 

A magnet has two zones that most strongly manifest the North Pole attraction and the 

south magnetic pole figure 5. This phenomenon is related to the high and low resistance in 

a ferromagnetic material. Then, you can use it in the implementation of electrical circuits 

figure 6. Basically it is said that it presents a low resistance when the 2 magnets are 

attracted to the opposite poles, but if we change the position of one of the magnets and 

encounter the same poles there is a repulsion between them, to this the high resistance is 

related. Thus, these effects occur in ferromagnetic materials, which are used for the 

development of new MRA memory technologies. 

 

Fig 5: (a) NS-NS configuration: magnetic attraction is felt. (b) NS-SN configuration: there is a 
magnetic repulsion 
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Fig 6: (a) Low resistance and (b) high resistance 

 

2.1.2 Overview of the Conventional Structure of Magneto-Resistance Tunnel Junction 

(MTJ)  
 

The MTJ structure can be classified by the type of insulation. In figure 7, we can see a classic 

MTJ structure consisting of two ferromagnetic layers and an insulating layer. The first is the 

fixed layer (PL): also called as the necessary reference layer when you want to change the 

state of the electronic rotation, a next layer is the insulator defines the type of 

magnetoresistance structure. 

In an MTJ structure, we use an insulator (oxide), this device is a TMR. Unlike, if we use a 

non-magnetic metal these devices is giant magnetoresistance (GMR). In addition, both 

configurations are related to the effects of quantum mechanics. Another layer present in 

the MTJ structure is the free layer (FL) that provides the rotation configuration as Parallel 

(P) or Anti-Parallel (AP). In summary, PL and FL function as a polarizer and analyzer 

respectively as electrons cross a thin oxide tunnel barrier, which is commonly used. 
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Fig 7: MTJ base configuration 

 

MTJ can be switched between two stable states. When the free layer that the pinned layer 

is magnetically aligned, the configuration is called a "parallel" state (P) and when the free 

layer and the pinned layer are magnetically misaligned, the configuration is called a state 

(AP).[15] 

When the MTJ is in the P state, the density of similar spin states around EF (Fermi Energy) 

is very high in ferromagnetic layers. Conversely, the density of spin states around EF (Fermi 

energy) in the ferromagnetic layers is very low when the MTJ is in AP state. Therefore, MTJ 

is low in state P and high in AP state. This difference is called "tunneling magnetoresistance 

ratio" (or TMR), which is given by:[15] 

 

𝑇𝑀𝑅 =
𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
                                                                       (2.1) 

 

Where 𝑅𝐴𝑃𝑅𝑃 and represent respectively the high and low resistance of MTJ, which 

corresponds to the stable states of Antiparallelo or Parallel. By increasing the MR, the 

better the MTJ and the better differentiation between states. 

Previously we have seen two different types of structures: GMR and TMR. Between these 

two, the most appropriate structure is the TMR which has an MR greater than 100% [16]. 
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However, having a high MR is not enough due to the different problems that this structure 

must overcome to achieve a good performance in the design of the circuit. 

 

 

Fig 8: Energy and spin configuration [17]. The degrees represent the angle between the 
magnetization PL and the magnetization FL. 

 

Figure 8 clearly shows how you can change the rotation status. This change of status is due 

to the crossing of an EB energy barrier. In addition, the energy is the same in the parallel 

state and in the anti-parallel state (EB (0°) - EB (180°)), but it is not always true due to the 

presence of high-order effects. When the MTJ is subject to high-order effects, the energy 

barrier is the minimum energy between EB (0°) and EB (180°). 

2.1.3 Perpendicular Magnetic Anisotropy (PMA)  

 

There are two technologies for applications in STT-MRAM memory, those of MTJ magnetic 

layers with PMA and those of the magnetic layer in MTJ with IMA, PMA have perpendicular 

magnetizations at the plane of the magnetic layers. MTJ technology with IMA anisotropy in 

which magnetic layers have magnetizations that are located on the in plane of the magnetic 

layers. If we talk about structure figure 9, we can see that the IMA has a larger area than 
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the PMA, so, to achieve a high integration density and a low critical switching current 

(improving writing efficiency), PMA is used. 

The combination of the CoFeB-MgO-based magnetic tunnel with perpendicular anisotropy 

(p-MTJ) shows high potential for use in spintronic-based integrated circuits and 

magnetoresistive random access memories of spin transfer. In this paper, we examine the 

development of p-MTJ using the CoFeB-MgO and double CoFeB-MgO single interface 

structures. The performance improvement is subject to the addition of metal roofing layers 

in the MTJ, which present a positive improvement in the device's characteristics. The 

addition of layers of hedging complicates the production process, the price increases by 

orders of magnitude compared to the memory devices of typical consumer applications. 

 

Fig 9: In-plane magnetic anisotropy "(IMA) and" perpendicular magnetic anisotropy "(PMA). It is 
shown that the IMA has Lx> Ly while PMA has a circular section that makes it suitable for 
integration. [17] 

 

A device with P-MTJ perpendicular technology can be created using an FL and a PL, where 

high temperatures and a high current flowing in the direction of the PL create a large field 

from the PL and can modify the quantum properties of the FL. As a result, it may present 

an unwanted change in the storage of information. To solve this problem, two alternate 

PLs are built in the direction anti-parallel and positioned after the FL. This technology with 
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two PLs is an alternative structure that was published two years ago. However, regardless 

of the topology of the structure, to overcome the different stability problems in variability 

or reliability, the manufacturing process is the most important and is becoming very 

complex. Today, to build a MTJ is built with about 15-20 layers (some of these layers are of 

a few atoms).[18] 

2.1.4 Write and Read in MJT 

The most important operations of a memory are reading and writing, it is essential to know 

each of these operations to relate to the MTJ device and how it relates to the memory 

elements. Figure 10 shows the typical resistive behavior of an MTJ device in which two 

logical states (high-strength states and low-strength states) are well defined.  Then, in the 

reading operation a low polarization voltage is applied and considering the resistance 

value. Due to the ferromagnetic material, there is no relaxation of the material that causes 

a drift of resistance that can affect the storage of data [19]. The MTJ device has no such 

effect, so the states always remain the same and the memory lifetime is highly reliable.

  

 

Fig 10:  Read operation that checks the resistance of the low voltage device. [19] 
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Instead, the write operation uses the spin transfer pair (spin state change). A current 

flowing through the device has two possibilities. The first possibility is checked when a 

current circulates and passes through the device without changing the rotation state and a 

second possibility is checked when a current circulates and is compared to the critical 

current and can change the rotation state. This change is based on the spin impulse 

transfer, which is explained in detail below. However, hysteresis is shown in the writing 

operation in figure 11. 

 

Fig 11:  Writing operation that checks the resistance of the device. [19] 

 

2.1.5 Structure Spin-Transfer Torque (STT). 

Several models were made and tested during the development of MRAM devices. One of 

these models is based on the transition from one state to another induced by an H magnetic 

field; this state change is called field-induced magnetization switching (FIMS) [6]. To 

generate this magnetic field a current must circulate through a conductor, the change takes 

place with the appropriate current value. That is, due to the high number of cables and 

interconnections (growing due to scaling) near the MTJ, unwanted switching may occur. 
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Therefore, FIMS is no longer considered and to cover scalability issues the STT structure 

has been developed. 

STT technology is focused on another type of switching. The difference between STT and 

FIMS is that STT is based on GMR or TMR, where the orientation of the spin rotation is 

changed by the magnetic field generated by a current flowing through an electrical 

conductor. In contrast, STT uses polarized current per rotation to change the magnetization 

state [20]. In this model, it is considered a stream of electrons from the PL to the FL. In 

addition, the ferromagnetic material corresponding to the PL has a strong polarization that 

can change the state of electronic rotation. After, the electrons create a tunnel through the 

material barrier and a pair is produced in FL magnetization causing the alignment of FL 

magnetization, m, with PL magnetization, MP. Conversely, if the electrons travel from FL to 

PL, the electrons will try to align with m. Figure 12 shows a possible state change based on 

the direction of an applied current. 

 

 

Fig 12: Physical structure MTJ considering the current direction and the corresponding switching 
state. [21] 

After much analysis, it was concluded that magnetization occurs in the FL. To discuss the 

details of how STT-MRAM works, you need to introduce the way the spin-transfer pair 
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determines switching. The magnetization dynamics of any magnetic layer can be described 

by the Landau- Lifshitz-Gilbert equation (LLG): [17] 

𝜕𝒎

𝜕𝑡
= −|𝛾0|𝒎𝑥𝒉𝒆𝒇𝒇+∝ (𝒎𝑥

𝜕𝒎

𝜕𝑡
) + 𝑺𝑻𝑻                                   (2.2) 

Where m is a unit vector that describes the direction of the magnetization of the mono 

domain, 𝛾0 is the electronic spin-magnetic ratio and ∝ is Gilbert's damping factor. An 

effective magnetic field, HEFF, models the forces acting on the single domain. The solution 

of the equation is complex for the fact of working in the micro-magnetic field, avoiding a 

series of differential and integral mathematical development, the expression (2) is literally 

exposed. In the field of simulation, MTJ modelling is based on a micro magnetic analysis or 

a compact analytical model, which will be explained; these patterns are described in the 

following equation: 

𝜕𝑚

𝜕𝑡
= −𝑚 × [ℎ𝑒𝑓𝑓 − 𝛼

𝑑𝑚

𝑑𝜏
− 𝛽

𝑚×𝑚𝑝

1+𝑐𝑝𝑚.𝑚𝑝
] ℎ𝑡ℎ                                 (2.3) 

Where it represents the magnetization of 𝑚𝑝 the PL,  γ0𝑀𝑆the  time is𝑀𝑆ℎ𝑡ℎ the saturation 

magnetization, it is the density of normalized injected current, it is the thermal field in which  

it  describes a white Gaussian noise, √
2 ∝ 𝐾𝐵𝑇

𝜇0𝑀𝑆
2⁄  is the intensity of thermal 

fluctuations, is the permeability to the vacuum  𝜇0T is the temperature, 𝐾𝐵 is the constant 

of Boltzmann, 𝑉𝐹𝐿 it is the volume of the free layer and cp = 𝜂2 is the description of the 

asymmetry of the pair of rotation, is the spin polarization factor. However, it is important 

to consider the influence of temperature. The temperature is always present and directly 

affects the MTJ switching time constant when changing the reference angle between the 

PL and FL magnetization. [22] 
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2.2 Comparation between MTJ Single and Double. 
 

There are improvements in STT-MRAM devices, in reference to its structure, the first is 

known as single barrier MTJ (SB) and a second MTJ structure with double barrier (DB). Until 

now, there was talk of a single MTJ barrier. The single barrier device consists of an FL and 

a PL, from the direction that the current takes we can change it from the P state to the AP 

state or from the state AP to the state P. On the other hand, two fixed layers, the top fixed 

layer (𝑃𝐿𝑇) and the bottom fixed layer (𝑃𝐿𝐵), includes two layers of oxide (the upper oxide 

layer and the bottom oxide layer) and an FL that constitutes the MTJ double barrier 

configuration. The fixed layers are oriented in the opposite direction from each other, thus 

exploiting the torque force as the electrons flow through the device. In addition, an SB or 

DB structure is always regarded as a two-state device associated with low strength and high 

resistance as discussed earlier the typical SB and DB MTJ parts are shown in the figure 13. 

[22] 

  

Fig 13: Various implementations of STT-MRAM cells (a) MTJ single barrier (b) dual barrier MTJ [23] 

 

The MTJ-SB and MTJ-DB structure have the same principle of operation. Considering the 

structure of the DB, the incident electrons that are oriented in the same direction as the 
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anchored layer can pierce the oxide wall by creating a tunnel through the first oxide. Then, 

FL, which is in the opposite direction to the PLT, will develop a pair to change the rotation 

state to another state. In this rotation, change the electrons will be favored by the PLB, 

with this action the torque is stronger and causes a switch with greater speed, that is, less 

current will be needed to make the change. Therefore, the main feature of MTJ-DB is to 

work at low switching currents. Also, in the case of the MTJ-SB structure, the transition 

from P to AP is too slow as electrons enter from the FL, so we have low polarization 

efficiency. While in the case of DB there are fixed layers in the upper and lower terminals, 

where electrons will always have the presence of an PL regardless of the direction in which 

they take the electrons. Another advantage is the use of a low voltage source for these 

structures; it can be considered a low-power solution. Still, the problem is related to 

managing high write currents either for MTJ-DB structures or for MTJ-SB. 

2.3 STT-MRAM 
 

We have several types of configuration: lower fixed (also called standard configuration - 

SC) and a second higher fixed configuration (also called reverse configuration - RC) as 

shown in (figure 15 a). To access the MTJ structure, you need an access transistor by 

applying a VDD voltage on the transistor port. If we consider the write operation, the word 

line of a cell of type N (WLn) will be loaded to VDD then, a current will circulate between 

the bit line (BL) and the source line (SL). In the previous chapter, we mentioned that read 

and write operations to a TT-MRAM memory are not decoupled, these two operations 

occupy the same path. That is, it degrades the source (VGS < VDD) during one of the 

operations when the current is driven by the transistor from the source-line (SL) to the bit-

line (BL). 
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Fig 14: The storage device in the MRAM memory cell is the junction of the magnetic tunnel. The 
memory cell consists of an access transistor and the connected storage device. [15] 

 

 

                                          1T1MJT-RC                                             1T1MJT-SC 

(a) 

 

 

                                             2T1MJT- RC                                             2TMJT-SC 

(b) 

Fig 15: (a) 1T1MTJ-RC and 1T1MTJ-SC. (b) Two RC transistors (2T1MTJ-RC) and SC (2T1MTJ-SC). 

Unfortunately, when the voltage source degrades causes an effect, this is the reduction of 

the write Iwriting current. Because the degeneration of the voltage source in the bit cell is 

included in figure 16, if we pay attention to a DB-MTJ structure, RC is considered when the 
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TP is attached to BL and SC when BP is attached to BL. In figure 16, because of the current 

address, we observe that the source terminal becomes the transistor terminal that is 

connected to the MTJ. To reduce, control, and tolerate the effect of source degeneration, 

a two transistors configuration is performed as shown in (figure 15 b). Therefore, there are 

four types of configurations in which each represents an STT-MRAM bit cell. [21] 

 

Fig 16: Cases of degeneration at source for SB and DB MTJ. The arrow represents the flow of 
electrons from SL to BL. [24] 

The figure 16 shows an illustration of the MRAM architecture. Arrays of multiple MRAM 

cells form a memory device. A typical MRAM cell has a transistor and a magnetoresistance 

element, very similar to a DRAM, which contains a transistor and a capacitor. While the 

charge stored in the capacitor of a DRAM defines its memory state, the strength of the 

existing element determines states 1 and 0. For each MRAM cell a transistor is required, 

since the absolute difference between resistances, therefore, the two-state tensions are 

not high enough to work without a transistor. In addition, the transistor also provides the 

current required for the write operation.[25] 
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Fig 17: Scheme of a matrix of MRAM cells in a typical memory architecture. Each frame represents 
a cell that typically includes a transistor and a magnetic tunnel junction element. [25] 

 

We need a column decoder (for BL and SL) and a row decoder (for WL). The WL controls N 

cells, so you need a write controller to have a good signal response speed. Remembering 

the 1T1MTJ and 2T1MTJ projects, in the case of 2T, we will have two WLs, which means 

that we must consider two buffers for each cell. To make a read, WL is attached to Vdd and 

a current read is generated to circulate in the bit cell. So, if we want to detect a voltage, a 

voltage drops (V-drop) is generated between BL and SL.𝑉𝑑𝑟𝑜𝑝. To know the state of the bit 

cell currently, a detection amplifier (SA) is used. SA will compare 𝑉𝑑𝑟𝑜𝑝 e 𝑉𝑅𝐸𝐹 giving a state 

AP ("1") When 𝑉𝑑𝑟𝑜𝑝> 𝑉𝑅𝐸𝐹 and a state P ("0") When 𝑉𝑑𝑟𝑜𝑝<𝑉𝑅𝐸𝐹. [21] 

3 CMOS / MTJ Hibrid Memory Design 

 

In this section, we will focus on the analysis and simulation methodologies for an STT-

MRAM memory. We will cite an approach used to know the behavior of an MTJ structure, 

it is necessary to be clear about the behavior since it is a requirement to understand the 
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simulation of MTJ circuits. In addition, this document includes a brief description of the 

simulation structure. Finally, we will compare the single barrier to the double MTJ barrier. 

3.1 Simulation Methodology 
 

From this section we will talk only about simulations, the devices with their different nodes 

will be simulated in the Cadence software® - Virtuoso®. To get reliable simulation results, 

we'll look for different approaches to getting a simulation with reliable data. There are 

methodologies based or built with Verilog-A code.  However, only one of these 

methodologies is used because of the lower computational load that shows the simulation. 

3.1.1 MTJ Circuit Approach 

The goal of the circuit approach of an MJT structure is to build a hybrid circuit design 

between the CMOS and MTJ technologies. In this approach, FinFET technology is 

considered not to glide, as the first step is to have as a basis the FinFET model or a Monte 

Carlo statistic available in doping; for this basic template, you can change parameters, such 

as finger number, length. Therefore, this basic model (FinFET model) is associated with a 

compact model for MTJ, which has code written in Verilog-A. Simulation results are a 

function of critical switching currents, and the statistical distribution of MTJ switching time 

in both switching transitions is used as input to a table-based MTJ model (LUT) developed 

in Verilog-A, which is incorporated into the Virtuous Cadence environment to perform 

electrical simulations of CMOS/MTJ circuits under testing. The Verilog-A code also includes 

the effect of changes related to the manufacturing process𝑡𝑠 of the MTJ structure in terms 

of oxide thickness variability (𝑡𝑜𝑥), FL thickness (𝑡𝐹𝐿) and TMR ratio [26]. Being a Verilog-A 

programming code, you can also change different parameters and size of the MTJ device 

such as physical size, temperature characteristics, and resistance of the magnetic device. 
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Still, by combining these two models, FinFET and MTJ, we can achieve hybrid circuit design 

simulation. This process is crucial when it is necessary to introduce a different model of an 

MTJ structure because to date it is not commercially available, that is, there are no business 

models. When we want to use a tunnel FET, it happens that there is no simulation to enter 

it commercially. 

3.1.2 Compact Analytical Model  

 

The use of compact macro spin models involves the use of tools in the design of advanced 

circuits; these compact models are used for modeling in the magnetization dynamics of the 

STT-MTJ structure. These models are implemented based on an equivalent electrical 

circuit, consisting of integrated electrical devices or formulas with a high degree of 

simplified complexity. Switching time probability statistics (tS) are critical to modeling 

proper process behavior in switching. In general, any analytical model based on the 

structure of macro spin takes advantage of a simplified description of the probability 

distribution function (PDF) of the tS for the rapid change regime assuming a function of 

normal probability distribution.  

The following illustration shows in detail a complete block diagram of the compact 

analytical model. It is a generic block, valid for MTJ-SB and MTJ-DB configurations. The only 

difference in configurations is the block called "Resistance and TMR that depends on the 

inclination" and the "Analytic formulation". This model estimates five effects that mainly 

affect the switching phenomenon of an MTJ device. These effects are the transformations 

of the MTJ process, another effect is the asymmetry of the pair when there is a switch in 

the device, a subsequent effect is the temperature connection, it is considered as an effect 

heating or the and as the latest voltage-dependent effect due to the perpendicular 
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magnetic anisotropic effect. The most important parameter among all parts under repair 

is switching in the process, which includes a statistical switching model divided into two 

regimens, the first regimen called thermal activation and the second regime called rapid 

switching. The first regimen is for injected currents (IMTJ) below the critical current (Ic) and 

follows the Nèel-Brown model. This current is intended as the one needed to read the data. 

Conversely, for the write operation, currents that are higher than the critical current are 

required, an extended analytical formulation is used. [21] 

  

Fig 18: Analytical description of the compact model block [27] 

 

Statistical distribution of each of the AP-P transitions or vice versa is provided by the 

compact model. In addition, this model can distinguish a deterministic and stochastic 

behavior when the initial magnetization performs a first rotation of the magnetic angle, in 

this way a deterministic simulation for MTJ switching is possible [28]. Until now, the 

analytical formulation for rapid switching is regulated for currents slightly higher than the 

critical current; however, there is no model that can describe the region between the 

thermal activation regime and the rapid switching regime. [21] 
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3.2 Validation of the Model 
 

SB and DB structures make use of compact models, because it is the best option to get the 

appropriate response to the behavior of the STT-MRAM switching activity. To validate the 

model, a comparison is made between the two micro magnetic simulations and analytical 

predictions. Once validated, the simulation and comfort of each MTJ-SB and MTJ-DB device 

are indicated. For validation purposes, it is performed for certain physical parameter values 

of MTJ. Next, the MTJ parameters used for MTJ are indicated. [28] 

Two validations are presented to validate the model. The first validation refers to the 

resistance model and TMR by comparing it with the experimental data presented in [43]. 

The second validation is based on the comparison with the STT switching analytical model 

that works with a micro magnetic solver. Remember that there are two MTJ-SB and MTJ-

DB models, that is, it means that each device must be validated. As a demonstration 

example, we will validate the MTJ-DB template. Figure 19 shows the first validation making 

the following parameters valid: tox, t = 0,80 nm, tox, b = 0,75 nm, a polarization voltage 

for TMR VH = 0,5 V, TMRT (0) = 140%, TMRB (0) = 70%, a higher RAT than the 

resistance area product = 100 Ω, μm2 and a lower RAB of the resistance area= 50 Ω · μm2. 

[28] [21] 

  

Fig 19: Validation of the resistance model and TMR with respect to experimental data [21] 
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On the other hand, to validate the STT-DB switching model, Figure 20 explains it with three 

different Radius MTJs (r = 12 nm, r = 10 nm e r = 7 nm). In addition, the following 

parameters are considered: A saturation magnetization Ms = 106 A/m, α = 0,03, Ku = 

1,1×106 J/𝑚3,thickness of the free layer tFL= 1.2 nm, η = 0,67. We can see that the 

moments follow the results of the micromagnetic solver. [21] [28] 

  

Fig 20: Validation of data for a DB-MTJ with average value (μ), standard deviation (σ) and 
asymmetry (inclination) of the switching time as a function of the current density MTJ [28]. Three 
dimensions considered: (a) r = 12 nm, (b) r = 10 nm and (c) r = 7 nm 

 

3.3 Simulation structure and CMOS / MTJ parameters 
 

This section established the simulation methodology and how to validate the MTJ-SB and 

MTJ-DB. Now the hybrid CMOS/MTJ parameters used for analysis and the simulation 

framework are shown, which will be used in the rest of this Document. 

3.3.1 CMOS / MTJ Parameters 
 

As you can see in the following table 3, the main parameters that characterize an MTJ-SB 

and MJT-DB are tabulated. These parameters must match the node we want to analyze, in 

this case, we will look at the CMOS technology node at 28 nm, the coincidence parameter 

is the MTJ radius, we choose r plus 14 nm. In addition, current and thermal stability have 
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been adjusted according to experimental data [29]; In addition, a percentage variability is 

included for different parameters; these variations are included in the compact MTJ model. 

Parameters 
SB / DB 

Description 
Value 

Unit 
28 nm 

MS* Saturation magnetization 1000 × 103 A/m 

α* Magnetic damping 
0.05 

— 

R* MTJ radius 14 nm 

ku* Uniaxial anisotropy constant 8.8×105 J/m3 

A*( σ/µ) MTJ surface (variability) 6.16×10-16 (5%) m2 

Δ* Thermal stability 59.14 — 

tOX (σ/µ) SMTJ oxide thickness (variability)  0.85 (1%) nm 

tOX,T (σ/µ)  DMTJ Top oxide thickness (variability) 0.85 (1%) nm 

tOX,B (σ/µ) 
DMTJ Bottom oxide thickness 

(variability) 
0.65 (1%) nm 

tFL*(σ/µ) 
SMTJ & DMTJ free layer thickness 

(variability) 
1.2 (1%) nm 

RA SMTJ resistance-area product 5.0 Ω ∙ µm2 

RAt 
DMTJ resistance-area product of top 

barrier 
5.0 Ω ∙ µm2 

RAb 
DMTJ resistance-area product of bottom 

barrier 
 1.0 Ω ∙ µm2 

Rp SMTJ resistance in P state 8.12 kΩ 

Rap SMTJ resistance in AP state at 0V 20.3 kΩ 

R0 DMTJ resistance in P state at 0V 8.97 kΩ 

R1 DMTJ resistance in AP state at 0V 20.6 kΩ 

TMR*(σ/µ) 
SMTJ TMR ratio (variability) 150% (3%)  — 

DMTJ TMR ratio (variability) 130% (3%)  — 

|Ic0(P→AP)| SMTJ P→AP critical current 40.2 µA 

|Ic0(AP→P)| SMTJ AP→P critical current 15.3 µA 

|Ic0(P↔AP)| DMTJ P↔AP critical current 11.8 µA 

 
Table 2: These data were entered based on the experimental data reported on [29] 
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Now, we will look at the CMOS technology node at 24nm and 20nm. In addition, current 

and thermal stability have been adjusted according to experimental data [29]. 

Parameters 
SB / DB 

Description 
Value 

Unit 
24 nm 

MS* Saturation magnetization 1000 × 103 A/m 

α* Magnetic damping 0.05 — 

R* MTJ radius 12 nm 

ku* Uniaxial anisotropy constant 9.3×105 J/m3 

A*( σ/µ) MTJ surface (variability) 4.52×10-16 (5%) m2 

Δ* Thermal stability 51.21 — 

tOX (σ/µ) SMTJ oxide thickness (variability) 0.85 (1%) nm 

tOX,T (σ/µ) DMTJ Top oxide thickness (variability) 0.85 (1%) nm 

tOX,B (σ/µ) 
DMTJ Bottom oxide thickness 

(variability) 0.65 (1%) 
nm 

tFL*(σ/µ) 
SMTJ & DMTJ free layer thickness 

(variability) 1.2 (1%) 
nm 

RA SMTJ resistance-area product 5.0 Ω ∙ µm2 

RAt 
DMTJ resistance-area product of top 

barrier 5.0 
Ω ∙ µm2 

RAb 
DMTJ resistance-area product of 

bottom barrier 1.0 
Ω ∙ µm2 

Rp SMTJ resistance in P state 11.1 kΩ 

Rap SMTJ resistance in AP state at 0V 27.6 kΩ 

R0 DMTJ resistance in P state at 0V 12,2 kΩ 

R1 DMTJ resistance in AP state at 0V 28,1 kΩ 

TMR*(σ/µ) 
SMTJ TMR ratio (variability) 150% (3%) — 

DMTJ TMR ratio (variability) 130% (3%) — 

|Ic0(P→AP)| SMTJ P→AP critical current 31.34 µA 

|Ic0(AP→P)| SMTJ AP→P critical current 11.92 µA 

|Ic0(P↔AP)| DMTJ P↔AP critical current 8.64 µA 

 
Table 3: These data were enter based on experimental data reported on [30] 
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Parameters 
 SB / DB 

Description 
Value 

Unit 
20 nm 

MS* Saturation magnetization 1000 × 103 A/m 

α* Magnetic damping 0.05 — 

R* MTJ radius 10 nm 

ku* Uniaxial anisotropy constant 1.01×105 J/m3 

A*( σ/µ) MTJ surface (variability) 3.14×10-16 (5%) m2 

Δ* Thermal stability 44.41 — 

tOX (σ/µ) SMTJ oxide thickness (variability) 0.85 (1%) nm 

tOX,T (σ/µ)  DMTJ Top oxide thickness (variability) 0.85 (1%) nm 

tOX,B (σ/µ) 
DMTJ Bottom oxide thickness 

(variability) 0.65 (1%) 
nm 

tFL*(σ/µ) 
SMTJ & DMTJ free layer thickness 

(variability) 1.2 (1%) 
nm 

RA SMTJ resistance-area product 5.0 Ω ∙ µm2 

RAt 
DMTJ resistance-area product of top 

barrier 5.0 
Ω ∙ µm2 

RAb 
DMTJ resistance-area product of bottom 

barrier 1.0 
Ω ∙ µm2 

Rp SMTJ resistance in P state 15.9 kΩ 

Rap SMTJ resistance in AP state at 0V 39.8 kΩ 

R0 DMTJ resistance in P state at 0V 17.6 kΩ 

R1 DMTJ resistance in AP state at 0V 40.5 kΩ 

TMR*(σ/µ) 
SMTJ TMR ratio (variability) 150% (3%) — 

DMTJ TMR ratio (variability) 130% (3%) — 

|Ic0(P→AP)| SMTJ P→AP critical current 22.35 µA 

|Ic0(AP→P)| SMTJ AP→P critical current 8.5 µA 

|Ic0(P↔AP)| DMTJ P↔AP critical current 6.16 µA 

 

Table 4: These data were enter based on experimental data reported on [30] 

 

The node to use CMOS technology is the one available in the software that is a FinFET. 

Table 5 shows the important FinFET parameters used regardless of the device we use, 

which can be NMOS or PMOS. In the case of values 𝑛𝑓𝑖𝑛 o m, are used for the entire 

analysis. On the other hand, 𝑛𝑓 is the only parameter that varies in simulations. That is, the 

transistor area and consequently the cell area will change. [21] 
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Parameters Description Value Unit 

L Gate length 28, 24, 20 nm 

nfin** Number of fins for Finger 2 -- 

nf* Finger number 1 -- 

M Multiplier - number of parallel MOS devices 1 -- 

*It corresponds to the width of each finger and is expressed in whole units. 
** Corresponds to the finger number of the ports presented in the circuit 
 

Table 5: FinFET parameters used for the access transistor in the memory cells  [21]. 

As we get the parameters of our hybrid model, as a next step is to establish the STT-MRAM 

design parameters. In general, when measuring the area of the bit cell, the size of MTJ does 

not matter, in fact the area is limited by the size of the transistor or the pitch of the metal 

[41]. Design parameters are used to calculate the minimum size of the technology function 

(F).  

3.3.2 Simulation Structure. 
 

All simulations are based on the compact analytical model described in the previous 

sections. With this model, the designed memory is transformed into a deterministic and 

statistical model, in which process variations are represented using Monte Carlo 

simulations. Process variations for MTJ are included in the analytical model written in 

Verilog-A, while in the case of FinFET, the foundry provides statistical models. 
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Fig 21: General workflow for the analysis of STT-MRAM writing independently if it is MJT-SB or MJT-
DB. 

Write and read operations can be performed on memory. For the write operation, it is 

described by a data stream shown in Figure 23. Let's start with the four-cell bit 

configurations studied above as part of a transient analysis, we choose the optimal setting 

to look for the working point where the energy is optimal. Then, by scaling Vdd you can 

find the optimal configuration where the minimum power point is located. In fact, the 

entire process is performed using an MTJ-SB or MTJ-DB. 

All simulations that were performed implicitly contain data such as energy, delay, area of a 

device, in fact, we will use 3 different nodes, these are 20nm, 24nm, 28nm, which are 

available in the Cadence software, the operation is analyzed only in different nodes with 

different structures, resulting in energy and delay results. 

4 STT-MRAM Analysis 
 

In this last chapter, we will run the simulations of the 4 devices described in order to 

provide the main results of the thesis. As mentioned in the previous chapter, the 

technology of the nodes is taken from the foundry, in this case we will take 3 different 

nodes, these are 20nm, 24nm, and 28 nm, and a different true  -A code for each node for 
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the MTJ device. For these 4 nodes, four 1T1MTJ-RC, 1T1MTJ-SC, 2T1MTJ-RC, and 2T1MTJ-

SC configurations are scanned. It is important to remember that the critical current of SB 

and DB is considered very high, considering the STT-MRAM memory in a very pessimistic 

case. The result of the simulations of the 4 devices is made for the writing mode, and the 

optimal curve between energy and delay will be verified. In this way, it is possible to 

understand which structure is the best and which has the lowest energy consumption. 

4.1 STT-MRAM Writing Analysis .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

The write analysis is divided into two parts. The first analysis is carried out by varying the 

integration capacity, expressed in area units in 𝐹2. Starting with a nominal simulation and 

Monte Carlo, the results are layered. It should be noted that SMTJ has low performance 

when using small transistors. On the contrary, we see that 2T configurations, and in general 

the DMTJ, perform better than we expected. 

4.1.1 Initial Considerations and Preliminary Analysis 
 

The memory under test is a topology of a memory array of 128 to 128. In our case for 

simulation, a single-bit cell is built with buffer lines and peripheral capabilities for each line 

(WL, BL and SL). In the MJT block shown in the example in figure 25, terminal T1 represents 

the PL, terminal 2 represents the FL, and the terminal called "State" allows us to know the 

status of the MTJ. In addition, capacity values depend on the number of fingers (nf) access 

transistor. Therefore, by increasing the bit cell area, capacity will also increase, and the 

suburbs will see greater capacity. [21] 

In circuit design, the first step is capacity design. Having a 128x128-bit memory block, we 

know that peripherals like WL have a load of 128 transistors, in the same way that SL has a 

load of 128 terminals. It is true that two transistors are used in the 2T configuration, but in 

the end, each transistor has the same load, 128 WL and 128 SL. All capacity values are 
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tabulated, in the case of 1T and 2T structures obtained from test transistors (that is, 20nm, 

24nm, and 28nm nodes), pre-terminate FinFET values should be considered for these 

capacity values. They are tabulated in Table 5 of the previous section. In the case of 

1T1MTJ-RC and 1T1MTJ-SC the capabilities are the same and are obtained as 𝐶𝑤 =

(𝐶𝑔𝑠 + 𝐶𝑔𝑑) × 128, 𝐶𝑠𝐿 = (𝐶𝑠𝑑 + 𝐶𝑠𝑔) × 128 e 𝐶𝐵𝐿 = 𝐶𝑆𝐿 10⁄ , Not knowing the capacitive 

effect𝐶𝐵𝐿 MTJ structure, with simulation criteria a decade has been reduced based on the 

value 𝐶𝑠𝐿. On the other hand, for design in 2T configurations are of the shape𝐶𝑊𝐿𝑛 =

(𝐶𝑔𝑠𝑛 + 𝐶𝑔𝑑𝑛) × 128, 𝐶𝑊𝐿𝑝 = (𝐶𝑔𝑠𝑝 + 𝐶𝑔𝑑𝑝) × 128, 𝐶𝑠𝐿 = 2(𝐶𝑠𝑑 + 𝐶𝑠𝑔) × 128 e 𝐶𝐵𝐿 =

𝐶𝑆𝐿 10⁄ . In the bit cell design does not include buffs, since we will use the deflectors 

available in the lab or in the case in the CADENCE software, that is, we do not know the 

capacity values. In general, according to other projects, you may notice that the SL buffer 

is less strong than drive (half) than the WL buffer; That is, it is because CSL capacity is almost 

half of the CWL. Finally, the BL buffer is generally 10 times smaller than the SL buffer. [21] 

 

Table 6: Capacitance values extracted from the 28nm transistor for 1T NMOS 

  

 

Table 7: Capacitance values extracted from the 28 nm transistor for 2T NMOS and PMOS 
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Table 8: Capacitance values extracted from the 24 nm transistor for 1T NMOS 

 

 

Table 9:  Capacitance values extracted from the 24 nm transistor for 2T NMOS and PMOS 

 

 

Table 10: Capacitance values extracted from the 20 nm transistor for 1T NMOS 

 

 

Table 11: Capacitance values extracted from the 20 nm transistor for 2T NMOS and PMOS 
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Fig 22: Simulation scheme of a STT-MRAM 128 × 128 structure that uses the 1T1MTJ-RC, 1T1MTJ-
SC bit cell for 28nm, 24nm and 20nm nodes. 

 

 

 

Fig 23: Simulation scheme of a STT-MRAM 128 × 128 structure that uses the 2T1MTJ-RC bit cell, 
2T1MTJ-SC for 28nm, 24nm and 20nm nodes. 
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Now let's consider the energy calculation. For this, the peripheral circuit, that is, the 

buffers, is considered. For example, when we finish the write operation, we access a row 

within the array 128 x 128 STT-MRAM, if we consider 3 Lines like WL, SL, and BL. The energy 

on the WL line is the sum of all the MTJs presented on the line (considering that all 128 are 

active). In contrast, for SL and BL lines that contain the transient signal, which travels 

through the access line to the bit cell considering all the energy of the SL and BL buffers; in 

other words, all the energy of the lines is needed to write to the bit cell. 

Prior to the writing study, a pre-analysis is carried out to understand the general behavior 

of the MTJ. In Table 3 we can see that the SB and DB structures have the same values as FL 

and PL (referring to PL in the case of DB) and that the results for SB structure will not be 

presented. Therefore, the parameter that varies in this pre-analysis is the PL (𝑡𝑜𝑥,𝑏) DB, 

which is shown in figure 26. This curve gives us information about the TMR, and you can 

see that the TMR changes by changing the (𝑡𝑜𝑥,𝑏) this means that one barrier is more 

resistive than the other and changing the𝑡𝑜𝑥,𝑏, the total strength of the MTJ is changing, 

that is, while (𝑡𝑜𝑥,𝑏) TMR is reduced, and vice versa. This allows for an increase in the 

current. Therefore, you can say that the DB can be adjusted by varying the smaller oxide 

layer. In fact, we cannot overcome the conditions, because a collapse of the MTJ can occur; 

however, this goes beyond the scope of our analysis. 
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Fig 24: TMR vs. tox,b  DB MTJ. [21] 

 

4.1.2 Writing Deterministic Analysis 
 

The analysis follows the flowchart presented in figure 24. The purpose is to vary the 

integration density with the number of fingers, which translates into cell area units (𝐹2). 

The simulation starts deterministically where the current can be obtained while the 

integration density is variable. In the figure 25, we can see the results of the different 

structures or models described in the previous chapters. When analyzing a chart, you can 

get valid information as incorrect if we do not have analysis criteria. In this simulation the 

best criterion we can see, refers to the SB structure, it can be concluded that it does not 

have a good performance for small transistors, that is, the performance decreases for a 

small number of fingers. In addition, it can be concluded that 2T1MTJ configurations show 

better performance than 1T1MTJ configurations. 

The problem with the high writing currents of the STT-MRAM must be checked. In fact, one 

possible way to mitigate this issue is to use a DMTJ, which makes a faster change. On the 

other hand, the DMTJ is compared with the SMTJ in the performance and scalability 
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analysis for a 128 x 128 ST-MRAM matrix with the corresponding peripheral capabilities 

and buffer lines. 

 

 

Fig 25: Current Report Iwrite/Ic0 vs. Cellular Area (F2) of the results of the nominal analysis. (a) 
1T1MTJ-SC, (b) 2T1MTJ-SC, (c) 1T1MTJ-RC and (d) 2T1MTJ-RC for 28nm 

 

Depending on the placement of PL or PLT by bit line (BL), bit cells can be categorized in 

reverse configuration (RC) or originally (SC). On the other hand, the FinFETs used have a 

channel length equal to the diameter of MTJ for 28 nm. FinFET = ϕMTJ = 28 nm. In this 

section, we analyze the performance of the STT-MRAM array for the possible bit cell 

configurations mentioned in the last section. The analysis is performed for all technology 

nodes, the first node analyzed is 28nm, considering the write performance with a nominal 

VDD = 0.8 V. With these results, we know that the current is proportional to the area. In 

addition, the device with double DB structure starts with two or three times the critical 

current, confirming one of the problems mentioned in the previous chapters, which is the 
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presence of high writing currents. Finally, for SB and DB structures, many parallel 

simulations were made to this deterministic or transient analysis. The current increases 

when the oxide decreases and the TMR shown in the preliminary analysis improves 

performance and, as a result, the bit cell improves. Now, we have the current bitcell for the 

different topologies and considering a write error rate (WER) of 1×10-7. 

  

Fig 26: Result of the nominal Energy and Delay Analysis. (a)-(b) switching delay (ts-wc) vs. Cellular 
area (F2) for SMTJ end DMTJ respectively, (c)-(d) average energy (Eavg) vs. Cellular area  (F2)  (MEP) 
for SMTJ end DMTJ for 28nm. 

 
Now, for each current value, corresponds a certain cell area, then the switching delay or 

the cell switching time (ts) is calculated for different configurations and with the help of 

the current previously calculated with respect critical current SB or DB, we'll know which 

configurations will write and which won't. For the calculation of 𝑡𝑠 an external calculation 

is performed, where with a MATLAB script the ts is calculated for AP - P and P - AP 

transitions. The script runs a CDF switching time, which indicates the error of switching 

probability. Keep in mind that 𝑡𝑠 is calculated for AP - P and P - AP transitions, so at this 

point you need to consider the maximum delay between these two. This maximum delay 

is considered the worst case 𝑡𝑠−𝑤𝑐. 



55 
 

Finally, the average energy is calculated for the largest delay (the worst case) in a WER = 

1 × 10-7 between the two transitions (AP - P e P - AP) and the results are obtained from 

the simulation, are in the figure 26 c-d. Calculated average energy considers STT-RAM 

peripherals. With these results, we can achieve the most optimal configuration in terms of 

energy. According to the charts, the best configurations are 2T1MTJ-RC and 2T1MTJ-SC for 

SB and DB. At this stage, the dimension defines how it fixes the ability to integrate memory. 

If we analyze the optimal energy point for single barrier (SB) and double barrier (DB) cases 

by choosing a certain area we will notice which structure is best, in our case in the simple 

barrier structure (SB) the optimal energy point is in a cell area 140𝐹2. If we do the same 

analysis for a double barrier structure (DB) the optimal energy point is in a cell in area 81𝐹2. 

In the case of SB does not fit for maximum integration capacity. During performance 

analysis, it was considered the technology node at 28 nm. In the next section, we present 

the results for 20 nm, 24 nm, and 28 nm technology, and the voltage scalability of the STT-

MRAM considering Monte Carlo simulations. 

4.1.3 Write Scalability 
 

When we analyzed performance for 2T1MTJ-RC structures or configurations for SB and 

2T1MTJ-SC for DB for the write operation, we achieved optimal energy and performance 

results, now we do a voltage and technology scaling to analyze write scalability. In figure 

27, we can see the results of writing the scalability for MTJ-SB and DMTJ-DB as we scale 

from 28 nm to 20 nm, the calculated MEP is in a smaller region. If we look at the results 

figure (27 a), the capacity of the 28 nm area of the SMTJ changes from143 F2 a 112 F2. In 

fact, the structure that offers significant energy savings is the DMTJ compared to the SMTJ. 

Table II provides a summary of write performance when resizing the voltage and 

technology node. If we only analyze the 28 nm node with reference to the region, we see 
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that the DMTJ has a saving in the write operation of about 70% compared to the SMTJ, in 

addition, we can see greater energy savings when we reduce from 28 nm to 20 nm in a of 

the two structures, that is, that between the technologies there is an energy saving of about 

54%, we will always notice better performance. 

 

Fig 27: (a) Delay between energy and SMTJ and (b) Delay between energy and DMJ for technological 
nodes 20 nm, 24 nm and 28 nm and capacity of the area. The minimum energy point (MEP) is a 
green star and all points correspond to 1000 MC samples. 

 

 

Table 12: Write and read performance for STT-MRAM DE 128 X 128 arrays for 28nm, 24nm, y 20nm 
nodes. 
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For 3 different nodes we performed the write operation, where we tabulated variables 

such as area, minimum energy point, delay and energy consumption, when we reduce the 

node, we have a substantial reduction in energy when we write the memory There is a 

energy reduction when we change technology, SMTJ to DMTJ. If we pay attention to the 

nodes of 24nm and 20nm, the areas are the same, but the energy reduction in the SMTJ 

write mode varies from 126. 1 fJ to 96. 9 fJ, even if we compare DMTJ with an area of 80 

𝐹2 between the 28nm and 20nm nodes reduce the energy from 66.4 fJ to 30.7fJ, in fact the 

delay in writing does not have greater variability, it is still a quick access memory. 
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Conclusions 

 

In the design of state-of-the-art devices, they have a high energy consumption due to 

scaling. These devices have effects of loss, reliability and variability. The high density of a 

chip translates to the area that uses a memory, resulting in a high dissipation of power. This 

energy consumption is a concern, in fact, there are metrics in new projects that focus on 

reducing power. In addition, research into new memory technologies such as MRAM 

presents potential projects to contain technological problems. By looking for new 

technologies, you get positive results by creating potential devices, such as STT-MRAM, 

which combines CMOS technology, achieving compatibility in semiconductor production. 

STT-MRAM memory was characterized in terms of write performance for three technology 

nodes (28nm, 24nm and 20nm) in which information was obtained considering parameters 

such as speed (delay), energy, and occupation of the area. According to the 

characterization in writing and considering only the structure of the simple SB barrier, when 

you change the integration capability, you conclude that it cannot be written in small 

transistors or for certain configurations, especially for 1T1MTJ cases. In the dual barrier 

structure DB has better writing performance and is due to low critical currents. Therefore, 

by resizing the area, the MEP resizes the critical current from 3 to 4 times. It concludes that 

SB and DB structures maintain the best energy terms. The 2TRC adapts better in SB due to 

the different critical currents in the two transitions, while the dominant factor of why 2TSC 

is better in the DB are the different resistances. Finally, when the tOX Decreases, the current 

Increases and the TMR it's getting better, as well as the structure MTJ. 

When a node is reduced, regardless of structure, a substantial reduction in energy 

consumption is verified. Now, if we look at different memory structures STT-MRAM such 
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as the DB dual barrier structure, not if you see a reduction in delay, but energy consumption 

decreases considerably. If we combine the reduction of a node with area scaling, the 

savings are large in write operations. 
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