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RESUMEN 

La búsqueda de nuevas formas de transporte es un tema relevante en la investigación ingenieril 
actual. Las personas están cambiando sus patrones de consumo hacia formas de transporte más 
sostenibles y limpias. Con esto en mente, la Asociación Americana de Ingenieros Mecánicos 
propone un concurso regional anual para la construcción de un vehículo de tracción humana. 
Se ha propuesto representar a la USFQ en el concurso del 2020 en la universidad UNAM. Este 
tipo de vehículo es una solución apropiada para viajes de distancias intermedias en áreas 
urbanas. Por esto, el siguiente trabajo detalla la etapa de diseño del primer prototipo 
desarrollado por la universidad. Esté cubre temas como la descripción del problema y análisis 
del mismo, metodologías de selección, el diseño del concepto, el diseño de detalle, 
simulaciones de elementos finitos de componentes críticos, y plan de pruebas y de 
manufactura. El diseño elegido fue el de una bicicleta semi reclinada con dos llantas frontales 
hecha de acero estructural ASTM A500.  Se decidió sacrificar el peso del vehículo al usar un 
acero común fácil de encontrar en el país para reducir el presupuesto de prototipaje del vehículo 
y mejorar sus propiedades de mecanizado. Los componentes externos seleccionados para este 
vehículo son Shimano. El trabajo futuro se relaciona al plan de manufactura y pruebas para 
futuras optimizaciones del diseño.  

 

Palabras clave: Vehículo de Tracción Humana, ASME, Análisis de Elementos Finitos, Diseño 
Mecánico, Sistema de Dirección, Chasis, Sistema de Tracción 
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ABSTRACT 

Nobel alternatives for transportation has been a trending topic within engineering research.  
People is shifting to cleaner and sustainable ways to transport. Within this effort, the American 
Society of Mechanical Engineers proposes annually a regional contest to develop a Human 
Powered Vehicle.  We have proposed to represent USFQ in the 2020 contest in UNAM 
university. This type of vehicle seems to be an appropriate solution for mid-distance travel and 
daily commutes in urban areas. Therefore, the following paper details the design stage of the 
first prototype developed. It covers the problem’s framing and analysis, selection 
methodologies, concept design, detail design, finite element analysis of its critical components, 
manufacturing, and testing plans. The design choice was a tadpole semi-recumbent bike made 
of ASTM A500 structural steel. It was decided to sacrifice the vehicle’s weight by using 
common structural steel alloy to reduce prototyping budget and gain manufacturing easiness. 
Shimano external components were selected to be used in this trike. Future work will be related 
to manufacture and test this design for later optimizations.  
 

Key Words: Human Powered Vehicle, ASME, Finite Element Analysis, Mechanical Design, 
Direction System, Chassis, Drivetrain 
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INTRODUCTION  

The following senior project consists in the development of a Human Powered 

Vehicle to compete in the annual HPVC (Human Powered Vehicle Challenge) contest 

organized by ASME LATAM in Mexico. A human powered vehicle can be defined as a 

vehicle whose sole power input is human generated. The relevance of this project regards 

sustainable transportation alternatives for urban areas. Therefore, this vehicle must fit a 

single average Ecuadorian male and female rider for commuting and daily use in an urban area 

and be safe enough to ride at medium speeds. Within the most important 

design parameters considered were weight, manufacturability, production cost and 

ergonomics. With this consideration, we have decided to develop a structural steel semi-

recumbent tadpole trike with rear power transmission.   

The vehicle designed was divided into three subassemblies. The powertrain or 

transmission is concerned in the component selection for appropriate power transmission from 

the user to the rear wheel. The structural or chassis subassembly design the main structure of 

the vehicle. Its job is to give an efficient and lightweight support for the functional 

subassemblies. The direction or drivetrain subassembly regards the vehicle maneuverability. 

In the following document, a detail explanation of the design process for each 

subassembly is presented. Shimano components of medium tier were selected due to price and 

performance. For the chassis, three different round tube profiles were selected to achieve 

lightweight and stiff characteristics. A track rod mechanism was selected to control the vehicle. 

The benchmark for a first-generation prototype was reached in this design.  The expected 

prototyping cost will be around $1800.  
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Regarding manufacturing, it is expected to start the construction of the prototype as 

soon the sanitary emergency is over. Once the vehicle is built, the test plan presented below 

should be executed. This will assist the team on validating the design and understanding better 

loading scenarios. Information on the vehicle stress conditions and stiffness will help to 

optimize the design for future iterations. 

For future work, the team should focus on reducing the vehicles weight and improving 

its stiffness. Also, iterating to achieve maximum user comfort will be crucial for the project 

success in the market. This should include the implementation of weather protection systems, 

IoT and E-bike modularity, and night drive lights.   

 

Problem Statement 

According to the ASME HPVC rulebook, the objective of the contest is to apply sound 

engineering principles towards the development of practical, efficient, and sustainable human-

powered vehicles. Global warming and increasing pollution levels have shifted research into 

sustainable ways of transportation. Also, rising traffic in rural areas due to daily commute made 

them bet on different transportation techniques such bicycles. European cities such Amsterdam 

and Copenhagen are good examples of this transition. Also, share riding platforms, such Uber, 

have presented its own solution to this issue. Uber Bike and Bird are apps that offer alternative 

transportation methods to address mobility issues and traffic in big rural areas. The problem 

that these solutions have in common is that bicycles, and other human powered vehicles 

proposed, were not designed to share lanes with cars and they are not safe to use in traffic. 

Although some cities may have the budget to invest in the construction for specific lanes for 

bicycles, that is not the case for Ecuador. Therefore, the necessity of developing an alternative 

transportation way for daily use in rural areas that is environmentally friendly and safe to use.  
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This vehicle shall win the ASME E-Fest 2020. It should provide reliable year-round 

single-person transportation in an uneven urban area. Expected usage includes personal 

transport, commuting, shopping, and recreation. The operator must be provided reasonable 

protection against the elements, and vehicle maintenance should be minimized. The vehicle 

should be comfortable, easy to operate and easy to propel. Expected environmental conditions 

are wind and sunlight within temperatures from 5 to 25 °C. The vehicle should be safe to drive 

at night and comfortable to ride in hilly areas.    

 

In-use purposes and market  

To provide clean, cheap, and efficient personal transportation for typical daily tasks in an urban 

area.   

 

Unintended uses  

• Operating in rough terrain  

• Operate in heavy weather conditions  

 

Special feature  

• Light system for safety when riding in the night  

• Cargo space for daily tasks.   

• Interactivity vehicle-user through IoT.  

• Parking lock included  

• Reduce maintenance and no exposed dynamic components   
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Competitor  

• Public and private motorized transportation  

• Regular bicycles available in the market  

• Kratos EAFIT previous winner of HPVC ASME E-Fest 

 

Service environment  

Region: The vehicle should provide comfortable and safe transport in temperate climates in 

urban areas day and night.   

Road Surface: The vehicle shall be operable without significant service or life penalty on road 

surfaces ranging from smooth asphalt, concrete, stone pavement and broken asphalt.   

Weather: The vehicle shall be operable in rain, wind, and slush. It should be corrosion 

resistance to ride in wet conditions.   

Temperature: The vehicle should be safe and operable in temperature ranging from 5 to 30 

Celsius.  

 

Safety  

Hazards: There should be no hazards such sharp edges, open tubes, or pinch-points that could 

harm the operator in normal vehicle operations.   

Crashworthiness: The vehicle shall be able to sustain a head-on collision from 1.3 m/s with no 

permanent deformation. Vehicle fairings should withstand normal handling of the 

vehicle, including a person leaning of the fairing.  
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Problem Specification 

Objective: To design, build, and test an innovative, efficient, practical, and sustainable Human 

Powered Vehicle (HPV).   

 

Requirement List: The requirement list is found in the rule book of ASME 2020 HPVC 

competition.   

 

Design Constrains  

Must  

1. The vehicle must be able to fit a single driver of height up to 1.85 meters.   

2. The vehicle should weigh less than 25 kg.   

3. The vehicle should cost to prototype less than 1500 USD.   

4. The vehicle size should be less than 2.5 meters L, 1.5-meter W, and 1.5-meter H.   

5. The vehicle must have a minimum turning radio of 8 meters.   

6. The vehicle must be able to drive 30 meters on a straight line at a speed of 5-8 km/h on a flat 

paved road.   

7. The vehicle must be able to make a 3 second full stop without external intervention.   

8. The vehicle must have a minimum clearance from the ground of 0.10 meters.   

9. The vehicle must have space to paste two stickers of dimensions 35x30 cm.   

10. The vehicle must be easy to access for an average Ecuadorian user.  

11. The vehicle must have a Roll Over Protection device that keeps the driver away from the floor 

at all circumstances.   

a. It must hold a 2670 N load at 12 degrees from the vertical axis.   

b. It must hold a 1330 N horizontal load applied at shoulder height.   

12. The vehicle must have a safety harness of minimum 4 points with safety certification.   
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13. The vehicle must be free of sharp edges, and all internal gear should not contact the user at any 

circumstance.   

14. The vehicle must have storing space enough to fit a box of 13x8x15 inches.   

15. The vehicle must reach 40 km/h within 10 seconds.  

16. The vehicle must be able to full stop from 25 km/h within 6 meters.   

17. The vehicle must have any form of automatic control.   

18. The vehicle must be able to fit in a pits area of 2.6x4.9 meters with full maintenance team and 

equipment.   

19. The vehicle must be able to drive up a slope of 5% and drive down a 7% slope with average 

human power and safety conditions.   

20. The vehicle must be able to give maintenance by a single person.   

21. The vehicle should follow the minimum aesthetic requirements presented by the marketing 

team.  

 

Maybes  

1. The vehicle should have a drag coefficient of less than 0.25.   

2. The vehicle should provide protection from rain, wind, and sunlight to the user.   

3. The vehicle may have a trailer linkage of 2in ID.   

4. The vehicle may be able to support a second passenger.  

5. The vehicle may have an Automatic Braking System (ABS)  

6. The vehicle may have a Generative Breaking System.   

7. The vehicle may have an electric motor to aid transportation in Cumbayá.   

8. The vehicle may have an automatic lock system.   

9. The vehicle may have an audio Bluetooth system upgrade capability.   
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Constrains  

1. Security  

2. User comfort  

3. Price  

4. Manufacturing time  

5. Aesthetics  

6. Feedback to the user  

7. IoT Upgrade Capability  

8. Maintenance easiness  

9. Modularity  

10. Monitorability  

11. Environmentally friendly  

12. Efficiency  

 

State of the Art 

Human Powered Vehicles will become a novel, trending solution for urban mobility in 

the new century. With the appearance of E-Bikes as an environmentally friendly, non-

expensive solution for travelling medium distances, some developed cities have adapted their 

policies to be more biking friendly.  Moreover, information technologies rising from the 5G 

industry will create new opportunities for transportation technologies connected to the grid. 

This paper will explore why Human Powered Vehicles will be important in the future for 

human transportation analyzing E-Bikes and current trends in non-motorized transportation 

systems.   

Human Powered Vehicles assisted with E-Bike technologies are the future of 

transportation. According to Hung & Lin, some countries will ban fossil fuel motorized 

vehicles by 2040 because of its GHG emissions. Also, this is sustained by the fact that in the 
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last 10 years E-bikes usage have increased in more than 100 times (Hung & Lim, 2020). This 

fast adoption of this transportation method is due to its size, it is small and traverse a variety 

of grounds. They also allow people to avoid traffic jams, and they do not have mayor legal 

restrictions in the cities (Hung & Lim, 2020). Nonetheless, pollution of these kind of vehicle 

can also be significant due to its product life cycle and well-to-wheel emissions. To avoid this 

last type of pollution, driver should be willing to drive in temperature bellow 10 C. Human 

Powered Vehicles can address this issue giving better weather isolation than E-Bikes to drivers. 

There exist three different types of E-Bikes: pure E-Bikes, Powered-assistance, and mixed. 

The pure ones do not require pedaling, the Powered-assisted aid the cycles pedaling according 

to the load exert, and the mixed ones do a fusion of both previous types. For H.P.V, the 

powered isolation modeled seem to be the more optimal. Although there are no major 

regulations, the power-size of electric motors is restricted to less than 750W in Unite States 

and 250W in Europe, India, and Japan.   

On the other hand, Smart Cities will create opportunities for new ways of 

transportation. These are cities where 5G communication technologies allows interactivity 

between city planners, users, and products. This will allow better communication and 

transportation efficiently, but it will also require major improvements in transportation 

products. For the year, 2050 it is predicted that more than 70% of population will live in urban 

areas. A clear example in the bicycle fleet in Copenhagen with GPS and a tablet in the 

handlebar. The idea is to implement big data in this transportation technology. The issues are 

the privacy lost that this kind of technologies cause (Frauke, 2016).   

Because of these coming changes in urban planning and environment concerns, Human 

Powered Vehicle well designed can be the perfect breach between comfort transportation, 

efficiency, and sustainability. Although, a lot of studies are yet to be done in muscle 

performance and comfort in this kind of vehicles.  
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Design Concepts & Selections 

Design Constrains  

To select the adequate design alternatives for our Human Powered Vehicle, the following 

constrains have been define based on its relevance to the project.   

 

Cost 

The monetary cost of pursuing the design alternative. This includes cost of raw materials, 

manufacturing and assembling.  

 

Manufacturability 

The easiness of the materials and parts to be manufactured. As college students we do not have 

access to expensive, complicated manufacturing techniques. 

 

Weight 

The overall extra weight the alternative will add to the prototype. This is important because we 

are pursuing a lightweight, efficient human powered vehicle.   

 

Efficiency 

The efficiency of transferring torque from the cracks to the wheel.  

 

Maintenance 

The level of maintenance that will be required of the questioned alternative is selected. It is 

important to be quick in repairments and troubleshooting during the race.  
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Durability 

The resistance of the alternatives to wear off. This is important due to the long lifetime 

requirement of our vehicle.   

 

Stability 

The stability of the selected alternative. This is important because we want to accomplish to 

design a vehicle easy to operate at low speeds.   

 

Benefit to the user (BtU) 

The added value that the alternatives will give to the end of user of the vehicle. We want to 

design a product practical for urban daily transport.   

 

Comfort 

The level of comfort that the alternative will bring to the user. This is important for a product 

design perspective.   

 

Topics  

Materials  

The materials to be considered are: Steel 1018, Steel 4130, Aluminum and Bamboo.  

 

Traction  

The traction systems to be considered are: FWD (Front Wheel Drive), SRWD (Simple Rear 

Wheel Drive), AWD (All Wheel Drive) and CRWD (Complex Chain Rear Wheel Drive).  
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Direction  

The direction systems to be considered are: FWS (Front Wheel Steering), RWS (Rear Wheel 

Steering) and AWS (All Wheel Steering).  

 

Automatic Control  

The automatic control Systems to be considered are: Safety Brake, Automatic Gear Change, 

Slope Assist and Electric Engine with Energy Regeneration System.  

 

Chassis Configuration  

The chassis configuration to be considered are: Tadpole, Delta, and Quad.  

 

Interface  

The interface systems to be considered are: Steering Levers, Steering Wheel, and Handlebar. 

 

Analysis  

The tables used in the analysis of the different options can be found in Appendix A. 

Materials 

For the materials analysis, the main constrains selected were cost, manufacturability, 

weight, and endurance. These together sum up the most important criteria that a material 

should have in order to be considered for chassis design.    

• Steel AISI 1018: This is the most common inexpensive steel. It is easy to manufacture and 

weld.  It is more heavy than other alloys such aluminum, but similar in weight to low alloy 

steels such 4130. The biggest drawbacks are the tendency to corrode and its relatively high 

density (M. Archibald, 2016).   
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• Steel AISI 4130: This is a higher quality steel for frames that use a chromium-molybdenum 

steel. It has higher strength, good weldability. However, this is harder to obtain in the 

country. There are a variety of different tube diameters of this material. It has high tensile 

strength, but it is harder to bend although it is possible for smaller diameters. During 

welding it is important to avoid fast cooling of this material because it can become brittle. 

It is harder to process, and just a little more expensive than AISI 1018 (M. Archibald, 

2016).   

• Aluminum Alloys: This are more expensive than steel alloys although they have a smaller 

density. It is harder to manufactured, and its mechanical properties are lower than alloy 

steels (M. Archibald, 2016).    

• Bamboo: This is a non-metallic material for structures. It has inferior mechanical properties 

than metallic components, however it has a comparable price with low-carbon steels and 

significant lower density. Bamboo can have high performance with relative low cost (M. 

Archibald, 2016). It has a less manufacturing freedom than steel.    

 

The selection chart is in Appendix A. It is important to mentioned than lower prices, 

low density, high manufacturability, and high durability are consider beneficial for the project. 

Automatic Control 

The automatic control component of our product is key for our senior project. We have 

determined that a Safety Brake, Automatic Gear shifts, Slope Assist and Electric Engine with 

Energy Regeneration System. Our design constrains for these are price, manufacturability, 

maintenance, weight, and user benefit.    

• Safety brake: This option refers to a parking automatic brake controlled by an interface that 

secures the vehicle in public places when it is not in use. This is a low cost, easy to 

implement control solution. It is also easy to give maintenance, and it can be lightweight.   
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Figure 1 Safety Brake Example 
 

• Automatic gear shift: This technology has been developed in a high level by Shimano, and 

it has proof to be extremely useful in avoiding wear-off of components. This has a more 

complex implementation, but it is also lightweight in comparison.   

 
Figure 2 Automatic shifting 

  
 

• Electric Engine with Energy Regeneration System: This is by far the most useful but more 

complex solution. Studies on E-Bikes have shown the wide application of pedaling 

assisting motors. The implementation is more complex, and it add more weight to the 

system. However, when it is charge, it significantly benefits the rider.   
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Figure 3 Electric engine with energy regeneration system (Taris Keiper, 2020) 

  
 

  
• Slope assistance: This solution is useful for stating pedaling in slopes. It is a mechanism 

that slowly releases the brakes, so the bicycle does not roll down before getting enough 

torque. This implies an intermedium level implementation, and not too much extra 

weight.   

 

Figure 4 Slope Assistant Sketch (Archibald, 2016) 
 

The weighted matrix of selection is in Appendix A. 
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Traction  

For the traction analysis, the criteria Cost, Manufacturability, Maintenance, Durability, 

Weight, and Efficiency where considered. These all evaluate the optimal system to be able to 

transmit power from the vehicle pedals to the wheels.  

• FWD: The Front Wheel Drive is seemingly simple traction system, in which a chain is 

used to transmit power form the pedals to the front axle or wheel(s). Its benefits are 

that it takes less space than other systems, requires less components and has a relatively 

simple distribution due to the proximity of the front axle to the pedals, with little chance 

of other vehicle components interrupting the chain path. Its downside is that its 

implementation is complicated depending on the suspension that is being used, as well 

as the possibility of a frontal directional system. These could make an FWD a complex 

matter to design, produce, assemble, and maintain. It can cause understeer.  

 

Figure 5 Front Wheel Drive 
 

• SRWD: The Simple Rear Wheel Drive consists of a simple distribution of power from 

the pedals to the rear axle or wheel(s). It is characterized by its long, single chain that 

is distributed along the bottom of the chassis with the help of tension and chain 

direction mechanisms. Its benefits are relative to the FWD, but with a longer chain but 
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a simple setup. The downside would be that a longer chain is more exposed to damage 

and derailing. This also means more weight, as well as the challenges of setting up the 

inclination changes along the chassis.  

 

Figure 6 Simple Rear Wheel Drive 
 

• AWD: The All-Wheel Drive is the most complex possibility, with a system of chains 

providing power to every wheel in the vehicle. While it has the most potential torque 

(depending on the final design), and more overland uses, the AWD has so many 

delicate components and difficulties in assembly so it is not a common design choice 

among the ASME competitors.  
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Figure 7 All Wheel Drive 
 

• CRWD: The Complex Chain Rear Wheel Drive has a similar configuration to the 

SRWD, but instead of being a single chain, it is composed of two chains connected by 

a gear or disk. The benefits of this system would be to avoid the complex changes in 

inclination for the chain and adding the possibility of including a velocity change for 

the chains (if the gears that connect them are of different diameters). The downside of 

the system is that it becomes prone to malfunction under high stress and prolonged 

usage, as well as a slightly more complex design and development.  

 

Figure 8 Complex Chain Wheel Drive (Archibald, 2016) 
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Direction 

For the direction analysis, the criteria Cost, Manufacturability, Weight, 

Maintenance, and Stability where considered. These all evaluate the optimal system to be able 

to transmit force from the driver arm to steer the vehicle.  

• FWS: The Front Wheel Steer is seemingly simple steer system; two arms and four attachment 

points are used to transmit force from the driver to the front wheels. Its benefits are that it takes 

less space than other systems, requires less components and has a relatively simple distribution 

due to the proximity of the front axle to the driver arms, with little chance of other vehicle 

components interrupting the steering arms travel. Its downside is that it is not the most efficient 

way to steer the vehicle.  

  

 
Figure 9 Front Wheel Steer (Ihsen, 2019) 

  
• RWS: The Rear Wheel Steer is a bit more complicated to build and design, two arms and two 

attachment points are used to transmit force from the driver to the front wheels. Its benefits are 

that it takes less space on the front axle than other systems, but requires more components and 

has a complex distribution due to the proximity of the rear axle to the driver arms, it has a 

bigger chance of other vehicle components interrupting the steering arms travel and the steering 

angle of the rear tire would be quite small, and produces a hover-craft like handling with too 

much oversteer.  
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Figure 10 Hovercraft Rear Steering 
 

• AWS: The All-Wheel steering is the most complex possibility, with a system of arms providing 

force to every wheel in the vehicle. While it has the most precise steering capability, and more 

low speed uses, the AWS has so many delicate components and difficulties in assembly, so it 

is not a common design choice among the ASME competitors.  

 

Figure 11 All Wheel Steering (Moog, 2018) 
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Configuration  

The configuration refers to the chassis type that will be used for the main body of the 

vehicle. It is assumed that a recumbent system will always be used. A bicycle system is 

not considered because of its complete lack of stability. The criteria applied to this analysis 

are Cost, Manufacturability, Weight, and Stability.  

• Tadpole: A tadpole design refers to the configuration with two wheels on a front axle and one 

wheel on a rear axle. This is the most widely used configuration in competitions.  

  

 

Figure 12 Tadpole Concept (Mahmood, 2015) 
  

• Delta: The delta design is made up of one wheel in the front axle and two wheels in the rear 

axle. This is similar to the tadpole but has a different weight distribution.  
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Figure 13 Delta Concept (Mustain, 2019) 
  

  
• Quad: The Quad configuration is composed of two wheels on the front axle and two wheels 

on the rear axle. It is not commonly used due to its increased weight.  

  

 

Figure 14 Quad Concept (Hinsenkamp, 2017) 
  

 Interface  
The interface refers to the steering type that will be used for the main body of the 

vehicle. It is assumed that the driver comfort will be on play. The criteria applied to this 

analysis are Cost, Manufacturability, Comfort, and Weight.  
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• Handlebar: A handlebar refers to a bicycle like input on the direction, using a main 

center steering column and a handlebar, located between the driver legs.  

 
Figure 15 Handlebar (De Silvestri, 2019) 

  
• Steering Levers: The steering levers refers to two levers located on the side of the 

driver, where the vehicle could be steered with one or two of the levers, the driver will 

not have any problem with the legs or with the knees. This is the most widely used 

configuration in competitions.  

 

Figure 16 Steering Levers (Mahmood, 2015) 
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• Steering Wheel: A steering wheel refers to a car or go-kart like input on the direction, 

using a main center steering column and a steering wheel, located between the driver 

legs.  

  

 
 

Figure 17 Steering Wheel (Laaribi, 2019) 
  

Project Management 

Budget  

The initial budget for the project consists of 300 USD, provided 

by USFQ’s Department of Mechanical Engineering. Presumably, the cost of developing the 

whole project is estimated around 1800 USD which is why a cash injection from the team 

members will eventually be necessary. That course of action will be evaluated further and 

implemented when needed once the initial budget starts to deplete. A detail analysis of our 

budget can be found in the Appendix B.  The graph below shows the percentage of the total 

weight for each subsystem in the design. The structural subsystems require only 11% of the 

total budget, and the powertrain subsystem requires 59% of the overall budget. 
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Figure 18 Ilalo's Budget Distribution Within Subsystems.  

The biggest percentage of the prototype’s budget is allocated to the 
powertrain components 

  
Schedule   

The detailed timeframes for the project are detailed in the annexed Gantt Diagram. It 

includes information regarding the time expectations for research, the design 

and manufacturing of the different foreseen prototypes, simulations, and evaluations, as well 

as the preparation for the ASME competition. These dates were modified because of the 

Covid-19 Pandemic subject to modification in relation to the project progress, project 

changes, evaluations, and general market landscape.  
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Engineering Standards 

 
Table 1  Engineering Standards 

Standard  Detail  Cost  

ISO 4210-2:2015  
Cycles — Safety requirements for bicycles — Part 2: Requirements 

for city and trekking, young adult, mountain and racing bicycles   $       141,55   

ISO 4210-3:2014  
Cycles — Safety requirements for bicycles — Part 3: Common test 

methods   $          59,49   

ISO 4210-4:2014  
Cycles — Safety requirements for bicycles — Part 4: Braking test 

methods   $       141,55   

ISO 4210-5:2014  
Cycles — Safety requirements for bicycles — Part 5: Steering test 

methods   $          90,26   

ISO 4210-6:2015  
Cycles — Safety requirements for bicycles — Part 6: Frame and 

fork test methods   $       121,04   

ISO 4210-8:2014  
Cycles — Safety requirements for bicycles — Part 8: Pedal and 

drive system test methods   $          59,49   

ISO 6695:2015  
Cycles — Pedal axle and crank assembly with square end fitting — 

Assembly dimensions   $          38,98   

ISO 6692:1981  Cycles — Marking of cycle components   $          38,98   

ISO 10230:1990  Cycles — Splined hub and sprocket — Mating dimensions   $          38,98   

ISO 6697:1994  Cycles — Hubs and freewheels — Assembly dimensions   $          38,98   

     $       769,30   
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The standard ISO 4210-2:2015 is applied on the safety test section of the vehicle, the main 

concern to be covered with this standard is the main frame rigidity and safety.  

The standard ISO 4210-3:2014 is applied on the common test methods of: brakes, steering 

system, pedal, and drive system.  

The standard ISO 6695:2015 is applied on the assembly of the pedal axle and crank using a 

square end fitting.  

The standard ISO 6692:1981 is applied on the main design to know all the components 

needed to build a bicycle  

The standard ISO 10230:1990 is applied on the design of the direction component, hubs.  

The standard ISO 6697:1994 is applied is applied on the design of the freewheels and hubs.  
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MATERIALS AND METHODS 

Material and Component Selection 

The materials selection was explored in a previous section.   

Gearing  

The Gear Development is the main factor to consider when selecting a gearing setup. 

It represents the distance in meters that a vehicle can advance during a single revolution from 

the powered wheel. Complex gear combinations create the possibility of having several 

different gear developments, each suited to different tasks. Parting from this factor, a relative 

coherence of the system can be analyzed, as well as the different speed ranges in each gear 

configuration. The purpose of these computations is to evaluate the gearing information to 

ensure optimal performance for the proposed needs of the HPV. The results of this study aim 

to prove that the chosen transmission components are viable for the performance objectives of 

the project.  

 

Sketch 

 

Figure 19 ISO Tire Size Interpretation (Archibald, 2016) 
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Assumptions/Data 

All the data used in this section is based upon several assumptions. A 

regular performance is implied, meaning that the cadence would be constant. Cadence values, 

where taken from the literature review made on the subject (from papers from previous 

competitors from other universities, as well as ASME literature on the subject). The chosen 

components are the set of the Shimano Alivio M4000 Series.  

• Tire Section Width = 54 [mm]  

• Bead Seat Diameter = 559 [mm]  

• Nominal Cadence = 90 [rpm]  

• Maximum Cadence = 135 [rpm]  

• Minimum Cadence = 50 [rpm]  

• 3 Chainring sizes (FC-M4050) 

o 40 teeth  

o 30 teeth  

o 22 teeth  

• 9 Freewheel Cogs (CS-HG400-9) 

o 25 teeth  

o 23 teeth  

o 21 teeth  

o 19 teeth  

o 17 teeth  

o 15 teeth  

o 13 teeth  

o 12 teeth  

o 11 teeth  
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Development 

Since there are 27 different gearing combinations, all the calculations were made using 

the power of MATLAB. The gear development was obtained using the following expressions, 

obtained from the Overview of Human-Powered Vehicles (M. Archibald, 2016).  

𝐺𝐺 =
𝑁𝑁𝐶𝐶𝐶𝐶
𝑁𝑁𝑤𝑤

× 𝐷𝐷 × 𝜋𝜋 

𝐷𝐷 =
𝐵𝐵𝐵𝐵𝐵𝐵 + (2 × 𝑆𝑆𝑆𝑆)

1000
 

Where:  

G = Gear Development [m] 

D = Wheel Outer Diameter [m] 

NCH = Teeth on the Chainring 

Nw = Teeth on the rear wheel cog 

BSD = Band Sent Diameter [mm] 

SW = Tire Section Width [mm] 

 

By combining the obtained gear developments with the cadence values (which express 

minimum, maximum, and nominal RPM’s at which the vehicle operates), the speed ranges for 

each gear can be found:  

𝑉𝑉 =
𝐺𝐺 × 𝐶𝐶𝐶𝐶𝐶𝐶

60
 

Where:  

V = Speed [m/s] 

Cad = Cadence Value [rev/min] 
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Solution 

 
Figure 20 Gearing Information 

 

The obtained gearing values represents the whole gear development range in meters. 

On the lowest gear, the vehicle will advance 1.8 meters per wheel revolution, while on the 

highest gear the values increase to 7.6 meters. This means that, according to the literature, the 

gearing range chosen is suitable for a wide variety of applications, from steep hills with heavy 

loads, to high speeds or downhill runs (M. Archibald, 2016). The Gears matrix shows detailed 

information on the development on each combination, categorized as high, mid and low gears 

according to the 3 main chainrings.  
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Figure 21 Equivalent Gearing Developments. 

Distributions show no noticeable effort spikes when changing gears 
  

The graph (Figure 21) shows a logarithmic layout of the gear development for all the 

combinations. This helps visualize and compare the different combinations. Each mark on the 

graph represents a specific gearing combination. Since most of the gears show a similar spacing 

between them, it can be assumed that there will not be any noticeable effort spikes when 

changing gears, which is good for the comfort of the driver. It is also relevant to point out that 

there are some seemingly unnecessary gearing combinations since several ones share a similar 

development. The benefit of having them is that they allow for a smoother gearing transition, 

even though they do not provide any significant case gain.  

 

 
Figure 22 Speed Ranges for Each Gear. 

 Maximum possible speed of 17 [m/s]  
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The graph on figure 22 demonstrates all the tentative speed ranges for each gear, on the 

three different cadence values assumed. All the red lines represent the Low Gears, the green 

ones correspond to the Mid Gears, while the blue ones provide information on the High Gears. 

It is important to clarify that even though the maximum speed shown would be of about 17 

[m/s] (almost 60 km/h), these calculations are only tentative. They do not take into 

consideration the drive train efficiency, or other important values such as the vehicle weight 

and other potential losses. The actual achieved speeds will be considerably lower, but this first 

calculation gives a good analysis on the behavior of the gearing, the relation between different 

gearing combinations. Even assuming a 75% final efficiency (usually recumbent tadpole 

tricycles have a drivetrain efficiency of around 90%), the maximum speed with this gearing 

choice would be over 45 [km/h], which is a desired outcome.   

These results prove that the gearing development and range provided by the chosen 

components are right in the desired values, which will provide a decent balance between 

comfort for the user and a good performance in varied situations. Therefore, the chosen 

components are valid to accomplish the project’s objectives.  
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Design for Manufacturing 

Manufacturing Pan 

 

Figure 23 Design for manufacturing 
 

A full-size version of the diagram can be found on ANNEX-B 
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Assembly 

The assembly of the vehicle is to be done by the team members, following the steps 

assigned by the manufacturing plan, as well as the detailed assembly instructions included with 

each of the drivetrain components, which will be bought externally. To ensure there is a perfect 

fit of the welded joints in the chassis, within the set tolerances and without the tubes bending, 

a frame will be used to keep the tubes in place securely throughout the welding process. 

 

Cost 

The cost of each component is detailed in the Budget section in Annex B. The total cost 

of the project, taking into account all the materials and work needed is 1742.84 $. To reduce 

costs, external manufacturing help was not used for the plan. 

 

Maintenance 

The steps and factors to take into account regarding the maintenance of the vehicle and 

its components is detailed in the Maintenance and Operation Manual.  

 

Life Cycle Assessment 

The life cycle of the vehicle begins with the purchase of its components and materials. 

All the drivetrain components will come from external manufacturers (Shimano) as brand new. 

The tubes will also be brand new (no recycled products to ensure initial quality), as well as the 

plaques that will be used to manufacture parts such as the brake calipers. The anticorrosive 

paint layer that will be applied to most parts of the vehicle, as well as the quality workmanship 

and procedures, the high-quality drivetrain components and the properties of the used materials 

will help extend the product’s normal life cycle. It is expected that the vehicle could be 
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operational for 15 years as long as all the instructions detailed in the Maintenance and 

Operation Manual were followed accordingly, and the vehicle was not involved in major 

crashes, or unexpected abuse. After the product has spent its expected usability, the life cycle 

continues in the treatment of the components. The whole chassis and the parts in the direction 

system can be easily recycled in steel manufacturing plants, the driver seat can be used in 

different products, and the drivetrain components can be reused for other products or recycled 

through Shimano’s waste project. The only part that would not be easy or safe to recycle would 

be the seat belt, which would go to waste. 
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RESULTS AND DISCUSSION 

Design Report 

The following section will explore in detail the engineering analysis performed to 

design the human powered vehicle. The design was divided into three main subsystems: 

transmission, direction, and chassis. The former includes the structural analysis of the 

vehicle’s body and design subcomponents. It also takes in consideration the proper mounts 

required to assembly the other subsystems. The direction subsystems focus on driving and 

maneuverability of the vehicle. It includes all the direction subcomponents design, wheels, and 

user interface. Last, the transmission subsystems focus on how to proper power the vehicle. It 

includes the component selection, chain path, and braking systems. The following studies were 

performed under each subsystem. The in-depth engineering analysis can be found in the 

Appendix A. 

  
Table 2 Engineering Analysis Plan 

Plan of Engineering Analysis 

Chassis  Direction  Transmission  

Preliminary FEA to size 

chassis frame and material  

Ackerman design calculations  Component validity analysis  

Detail Component design  Track rod analysis  Crank FEA 

Detail Component FEA  - - 

FEA Validation   - - 

Weld Design   - - 
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Figure 24 show the vehicle final design appearance and figure 25 shows the main 

design dimensions.   

 

 

 

 

 

 

Figure 24 Ilalo Prototype Final Render 
 

 

Figure 25 HPV Basic linear dimensions.  
The overall dimensions of the vehicle are 2110 [mm] x 1412 [mm] x 1232 [mm] 
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Prototype Test Plan 

This plan was designed to validate the Ilalo HPV performance respect to its design 

parameters. Also, it will assist in gaining insights of several performance aspects regarding 

weight, size, user comfort, and power efficiency for future iterations of the design.   

Minimum Required Instrumentation:   

• Measuring tape  

• Weight   

• 3 axis Strain gages in the critical components of the vehicle.  

• Video recording device  

• Tachometer placed in the rear wheel and crankset.   

• DAQ  

Next, a table that summarizes the test planned to be performed once the vehicle is built. 

 

 

 

Table 3 Summary of the test planification 

 

  

Test Method for Validation
Weight the prototyp Weight less than 25 kg
Measure prototype dimensions Less than 2.5m L * 1.5m W * 1.5m H
Measure vehicle clearance from the ground The vehicle should be able to ride above a 10cm tall obstacle
Measure vehicle cargo space Able to fit a 13x8x15 inches rectangular box
Measure vehicle's critical component stress and strain Use straingages for data adquisition
User comfort User's Satisfaction Survey
User power imput Measure power imput in the cranckset 
Acceleration test 100m sprint race
Braking test Breaking distance less than 6m from 25km/h
Turning test 3.0 and 6.0 turning radios at 5km/h
Vehicle stability Travel 30m in a straignt line at 5 & 8 km/h
Roll Over 2670 N @12° from the vertical Deformation less than 5cm
Roll Over 1330N Horizontal Load Deformation less than 3.8cm
Overal Roll Over Performance The tallest rider should not touch the exterior of the vehicle
Field of View The field of view needs to be at least 180 °
Parking break The parking break should not yield at slopes from -7% to 5%

Prototype Test Plan 
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1. Geometric validation  

a. The vehicle will be weight using a car scale to compare with the design 

specification.    

b. The vehicle will be measured to compared with the design specifications.   

c. The vehicle clearance respect from the ground will be measured.   

d. The vehicle’s cargo space will be measured to cross checked with the design 

specification.   

e. The vehicle’s stress distribution in frame members under all the experiments 

will be study for the critical components determined during the manufacturing 

stage by the team. This will assist in reducing weight in future iterations 

and gaining insights in the real load the vehicle will be exposed. This will be use 

by the CAE engineers in the team to improve the concepts design.   

2. General performance  

a. The vehicle will be tested by different riders of different body mass, height, 

gender, and age. Vehicle speed and torque will be measured to study 

the performance of the prototype under different scenarios. All this test will be 

performed in the same flat testing location to reduce the 

experiment error. Annotation on overall user comfort, first impressions on the 

prototype, and comments should be recorded for a qualitative analysis of the 

vehicle.   

b. Acceleration test will be conducted to understand the top acceleration reachable 

with the prototype. A male a women rider will be instructed to sprint the vehicle 

from rest for 100m. Final speed and time will be measured. This study will be 

performed 10 times under different days so muscular fatigue will be minimum.   
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3. Performance Safety Requirements  

a. The vehicle’s breaking performance will be tested on a flat surface.  The 

breaking distance must be 6.0 m or less, starting at a speed of 25 km/h and ending 

at 0 km/h. 10 tests will be necessary to show a real value of the breaking distance.  

i.The same test under wet surface conditions will be performed to revise 

the vehicles performance under rainy conditions.   

b. The vehicle´s steering performance will be tested on a flat surface 

and with a turning radius of 3.0 m and 6.0 m at a constant speed of 5 km/h. 10 tests 

will be necessary to show a real value of the steering performance and driver 

feedback.  

c. The vehicle´s stability performance will be tested on a flat surface. The vehicle 

should travel 30.0 m in a straight line at a speed of 5 km/h to 8 km/h. 10 tests will 

be necessary to show a real value of straight-line stability.  

4. Rollover Protection System.  

a. The top load strength of the vehicle will be tested on the lab, placing a 2670 

N load in the top of the roll bar, this load will be directed downward at an angle of 

12° from the vertical towards the rear of the vehicle. The roll bar will be accepted 

if: there is no plastic deformation, delamination or fracture, the maximum elastic 

deformation accepted is 5.1 cm, and that deformation shall not touch any part of 

the driver´s body.  

b. The side load strength of the vehicle will be tested on the lab, placing a 1330 N 

load in the side of the roll bar at shoulder height, and the reactant force to the 

harness or to the seat. The roll bar will be accepted if: There is no plastic 

deformation, delamination or fracture, the maximum elastic deformation accepted 

is 3.8 cm, and that deformation shall not touch any part of the driver´s body.  
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c. To test the effectiveness of the roll over protection system, the vehicle will lay 

on its side and will be inverted as well with the driver inside, with the safety helmet 

and harness adequately secured, once the vehicle is laying on its side and its 

inverted the driver should not touch the ground with any part of the body.  

5. Field of View  

a. The vehicle should provide the driver a horizontal FOV (Field Of View) of at 

least 180° wide. This will be tested placing color tapes around the vehicle according 

to the different angles.  

6. Parking brake  

a. The electric parking brake will be tested on different slope grades from -7% to 

5%. The vehicle will be parked properly, and the parking brake will be activated. 

The test will verify the stability of the brake for different loading scenarios of the 

vehicle.   
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Safety Through Design 

Table 4 Risk Analysis 
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Following the risk analysis, the higher potential risk and solutions are explained below:   

VNG-001: DEPLETED BUDGET  

The most important single aspect of our project for developing the first prototypes is 

budget. Therefore, depleting out Budget before being able to rise what is needed to keep with 

the project is within our higher risks. The solution propose to this issue has two main 

components. The first stage is to assembly a team with the sole purpose of rising funds. The 

second is setting personal funds as an emergency in case our budget exhausts.    

VNG-005: NOT FOLLOWING THE SCHEDULE  

Due to the limited time and resources of the project, delays in the vehicle development respect 

to what was planned can affect all the main objectives. The plan we propose to diminish the 

risk of this scenario is to carefully plan for possible delays ahead of time. This will allow us to 

have a small margin of time to correct stuff before it starts going off.    

VNG-011: ISSUES WITH DIRECTION COMPONENTS  

Because of the complexity and the quantity of components and factor to 

consider computing the direction design, we decided to omit little aspects that we did not 

consider relevant for our design. The calculations are going to be performed using Fusion 

360, hand calculations and MATLAB. A preliminary analysis is required to size dimensions 

of our vehicle to our design parameters, for example the minimum 8 meters turn radius. 
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Results, discussion, and conclusions 

The vehicle’s design is compared with the user requirements for the Ilalo prototype. 

These were shown in the first sections of this report. Due to the design intention for infinite 

life, the vehicle will be able to provide year-round single person transportations in an urban 

area. Because of the fabric and cargo space provided, the vehicle is also suitable for 

commuting, shopping, and recreations. The vehicle is designed to be easy to propel and 

operate. However, this needs to be tested in the future stages of the project. We managed 

to achieve the benchmark standard for ASME vehicle in this iteration regarding size and 

weight.  

Following with the chassis design, a material with lower density can be considered for 

future iterations. The structure has the lowest percentage of the budget which will allow to 

allocate some monetary resources to design for a higher performance material such as 

Aluminum or alloyed steels. Reducing the overall width of the vehicle to less than 1200 [mm] 

should be considered as well. This would allow the vehicle to use the bike lanes in the Quito 

Metropolitan District.   

Because the structural analysis of the chassis was done using FEA, a strong test plan is 

required to prove the design and guarantee minimum safety standards. ANSYS proved to be 

powerful enough for our necessities, but the node limitation present has been an issue when 

trying to develop a more accurate model. SimSolid is more computationally efficient than 

ANSYS, but it presents issues when importing complicated geometry. Overall, a combination 

of both software applications is a good tool to validate the FEA before physical tests.   

For Computer Aided Design we used two different CAD tools. Autodesk Fusion 360 

proved to be great for team projects because of its cloud storing capacity and collaboration 

capabilities. Furthermore, it is completely user-friendly and easy to iterate upon. However, for 
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more technical applications such as welding design and frame technical drawings, it is not so 

powerful. SolidWorks proved to be a better tool for this application. Overall, SolidWorks 

technical drawing module is more profound, powerful and detailed than Fusion 360’s, and it 

is better for high-level applications. However, Fusion 360 is better for prototyping. The FEA 

module of both CAD tools is not reliable for most of the complex geometries of the vehicle. 

To use a specialized tool for the structural analysis is recommended.   

Concluding, a design for a good year-round single person 

transportation alternative was presented. Although this prototype still requires much work for 

being commercially feasible, it is a good concept in a vehicle type that will play a major role 

in urban transportation in the future.  

 

Future Work 

Future work related to this design consists in the manufacturing and testing 

stage. Furthermore, it should focus in reducing the overall weight of future iterations. We are 

holding back to start the manufacturing stage due to the global pandemic, but it is expected to 

resume with manufacturing once the health issues are no longer a major risk. After 

manufacturing, the prototype test plan should be implemented to validate the design for 

performance and safety regulations.   

The test stage will be of great interest for the project because it will give us insights of 

the actual loads the vehicle is subjected to. Therefore, this would help the future iterations in 

the design for reducing weight and improving the overall performance of the vehicle. Because 

ergonomics represents a grey area in our design engineering, the test stage will help us achieve 

a better understanding human comfort. This aspect of design will be implemented later in 

future iterations.  
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Once the test stage of this prototyping is finished, the team should go back to the 

drawing table to improve the overall structure design, enhance performance and add other key 

features that were not implemented in this design because of time and resource limitations. 

These future features might include the automation of some vehicle’s components, the 

implementation of energy recovery mechanisms, E-bike modularity, weather protection 

mechanisms and street-legal night driving lights.  

Additional engineering studies are part of the programed future development of the 

design. A vibration analysis for the chassis, direction and drivetrain components will be a core 

aspect of future designs. This would help understand the long-term structural performance and 

resistance to fatigue, in order to extend the product life cycle. 
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APPENDIXES 

Appendix A - Engineering drawings and detailed calculations  

Drawing List 
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Assembly Drawings 
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Chassis Drawings 
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Direction System Drawings 
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Engineering Analysis 

Crank FEA 

This section deals with the study of the critical loading cases of the crank used in the 

transmission system. Since it is one of the parts that will be a constant subject of abuse and is 

the key area where the power goes into the vehicle, an in-depth analysis of the behavior of the 

crank was considered necessary. The objective of the study is to evaluate the stress distribution 

of the crank during an average rotation. This is to identify the angle at which it will receive the 

most impact. This will be considered the critical position for the crank, which will then be used 

in a critical load case to analyze the stress behavior of the crank at its maximum possible abuse 

conditions and ensure the safety of the design. The part used, according to our design 

specifications, is the Shimano Alivio FC-M4050, which is made from aluminum. The figure 

26 shows the CAD model used in Autodesk Fusion 360 to perform the finite element analysis. 

 

Figure 26 Shimano Alivio FC-M4050 
 
 

Schematic, assumptions, and data 

The following diagram (figure 27) shows the basic decomposition of the force applied 

to the crank during pedaling into the radial and tangential components. The layout is in two 

dimensions to simplify the dynamic analysis, which can be done on account of the pedaling 

mostly acting on two directions. The changes in the magnitude and direction of the pedaling 

force during the rotation of the crank will be reflected on variations in the magnitudes and 

proportions of these component forces.  



 92 

       

Figure 27 Decomposition of force in the rotation (Höchtl, 2010) 
 

 

Figure 28 Distribution of pedaling force along the rotation (Höchtl, 2010) 
 

Figure 28 shows how the general force vector changes in magnitude and direction along 

the pedaling cycle. This study uses data from Hötcht’s dedicated study to the pedaling force 

distribution during a normal cycle (pedaling force of 500 N, which is average recreational 

pedaling), extracted from their results, which provide information for the tangential and radial 

components during the whole rotation. Figure 29 presents a graph regarding details on this 

information, where it is particularly noteworthy that the forces do not show a symmetrical 

pedaling pattern, which limits the possible simplifications (this graph was created with the data 

extracted from Hötcht’s study). Therefore, to find out in what part of the rotation do the 

combination of these forces translate to the bigger stress load on the crank, a finite elements 

simulation was made for every 15 degrees of rotation. Out of these 25 simulations, the one 

with the highest Von Mises stress was the critical pedaling position. The ratio between both 
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force components on this angle can be used to maintain the same vectoral direction of the 

pedaling force, with any desired magnitude, while still keeping the critical effect on the crank 

in relation to other parts of the rotation. Therefore, a critical pedaling force of 1400 [N] was 

applied using this ratio to separate into the corresponding tangential and radial components 

without losing the proportion of the vector, to evaluate the most critical scenario for the crank. 

This force was cited in Archibald’s book as the maximum pedaling output that an elite athlete 

can provide, representing the highest level of abuse that the crank would face. (Archibald, 

2016) 

 

Figure 29 Adaption of the tangential and radial force along the rotation (Höchtl, 2010) 
  

 

Loading Cases and Boundary Conditions 

 The tangential and radial components of the pedaling force were used in two kinds of 

load cases, both of which have been extensively used of previous studies in order to evaluate 

the most critical result possible. In one case, denominated Direct, the forces are applied directly 

into the internal surface of the hole in the crank where the pedal would be inserted. The second 

case, denominated Pedal, has remote forces with a 5 [cm] elevation (the point in space where 

the centroid of the pedal would be located) applied to the same surface as the previous case. 

This offset has the purpose of emulating the torque that the pedal would produce on the crank 

during the pedaling, leading to a more accurate simulation. Both load cases are used because 

the research done on the subject proves that they both have their degrees of credibility in 
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accordance to the involved biomechanics. By comparing the results of both cases, the results 

of the critical pedaling position can be corroborated. Both cases use the same boundary 

condition: a fixed support in all directions located in the interior face of the hole that joins the 

crank with the rest of the transmission. Figure 30 shows how the force in the Pedal load case 

was applied from different points of view. (Tiku, 2019) 

 

Figure 30 Pedaling force application 
 

Mesh 

 The mesh was generated automatically by Fusion 360’s software from the CAD’s 

geometry. The elements used were tetrahedral with a parabolic order generation that efficiently 

adapts to the complex geometry of the crank. To ensure the meshing convergence, four levels 

of element sizes were tested. The software uses a percentage system to identify the average 

size of elements in the mesh, based on the size of the smallest surfaces on the CAD, in which 

the smaller the percentage, the finer the mesh. The tested meshes were on the order of 7% 

(33705 elements), 5% (38464 elements), 3% (42374 elements) and 1% (141838 elements). The 

change in the Von Mises stress result in the critical point was used as the comparison point to 

determine the validity of the mesh convergence. Adaptive Mesh Refinement, a software tool 

that helps ensure that the mesh does converge, was always used. The results showed that in all 

cases, the values had a small variation within their order of magnitude (decimals of 

megapascals), which means that the mesh was valid for the study. Only the 7% mesh had a 



 95 

slightly higher variation (1.7 [MPa]) in relation to the rest, so for the remainder of the study, a 

5% mesh was used. This size represents a good balance between performance and validity of 

results. The following figures show the different levels of mesh tested for convergence. 

 
Figure 31 7% proportional mesh 

 

 

Figure 32  5% proportional mesh 
 

 

Figure 33 3% proportional mesh 
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Figure 34 1% proportional mesh 
 

Results 

 As described previously, 25 studies with two load cases where made to analyze the 

behavior of the crank during the rotation cycle. The following results show the maximum Von 

Mises stress for each of the 25 positions, for both case studies. Figure 35 shows these results 

in a polar graph to appreciate visually how the maximum stress varies during the 360 degrees 

of rotation. The vertical axis stands for the maximum Von Mises stress obtained [MPa], with 

the outer values representing a higher stress. This graph is particularly useful to understand the 

asymmetrical behavior of the crank during pedaling, and to easily find the critical angles of 

pedaling. 

 

Figure 35 Maximum stress polar graph.  
The maximum stress is located in the rotation angle of 105°, and the graph shows an 

asymmetrical distribution of stress along the rotation. 
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Clearly, the results show that the crank undergoes a maximum stress when its rotation 

is at 105 degrees. Therefore, using the logic described previously, the critical load of 1400 

[N] was applied using the force component conditions and proportions corresponding to the 

105 degrees of rotation for a critical study, using the Pedal load case, since it yielded the 

highest stress results. This simulation is shown in figure 36, which exposes the stress 

distribution in the crank, where the maximum Von Mises stress was of 150.5 [MPa]. 

Considering that aluminum has a yield strength of 275 [MPa], it can be said that the crank 

has a safety factor of 1.8 on its most critical scenario. Therefore, the design is appropriate for 

our product since it barely fits into our proposed minimum safety factor. It is relevant to 

consider that this safety factor will only be active when an elite athlete works under 

maximum capabilities, and only during that specific moment in the pedaling rotation. This 

means that under normal conditions, the crank will never reach such a high stress and will 

never fail, and even under high elite performance, during most of the rotation the crank will 

not receive enough abuse to match these results (since our previous results prove that the 

stress distribution is asymmetrical). 

 

 

Figure 36 Von Mises stress distribution on a critical scenario.  
The maximum stress was 150.5 [MPa] with a safety factor of 1.8 
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The maximum stress concentrator is in the internal area of the fixed face, in contact 

with the stripped geometry used to attach the rest of the transmission components. Due to the 

presented geometry, the fact that the stress concentrator was located here was expected. A 

close up of this stress concentrator is seen in figure 37. 

 

Figure 37 Stress concentrator in a critical scenario. 
 The stress concentrator is located in the stripped geometry 

 

It is also of interest to appreciate the amount of deformation that the crank would suffer 

during the critical scenario. According to the results shown in figure 38, the maximum 

general displacement would be of 0.76 [mm]. This means that the deformation on the crank 

would be so small that the human eye would not be able to appreciate it, resulting in no 

possible changes or effects that could affect the pedaling performance or safety. The figure 

enhances the displacement just for graphical purposes and is not to scale, and the expected 

effect of the pedaling torque can be seen slightly twisting the crank. Again, this is only for 

graphical purposes, since if the actual displacement was shown, the change would not be 

noticeable. 

It is also of interest to appreciate the amount of deformation that the crank would 

suffer during the critical scenario. According to the results shown in figure 38, the maximum 

general displacement would be of 0.76 [mm]. This means that the deformation on the crank 

would be so small that the human eye would not be able to appreciate it, resulting in no 

possible changes or effects that could affect the pedaling performance or safety. The figure 

enhances the displacement just for graphical purposes and is not to scale, and the expected 
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effect of the pedaling torque can be seen slightly twisting the crank. Again, this is only for 

graphical purposes, since if the actual displacement was shown, the change would not be 

noticeable. 

 

Figure 38 Displacement distribution on a critical scenario.  
Maximum general displacement of 0.76 [mm] on critical scenario. 

 

Chassis Analysis 

Loading Cases 

The objective of this section is to explore all the different loading conditions relevant 

to the performance of this Human Powered Vehicle. Without understanding all the different 

loading cases at which the vehicle can perform, a proper chassis design cannot be develop. 

This scenario includes the static loads at different grade conditions, maximum acceleration, 

maximum braking, turning and Low Speed crash simulations. Once this are fully understood 

theoretically, the vehicle may be designed. However, a proper experiment should be performed 

with the first prototype to validate and improve the design.   

 



 100 

Problem Definition 

The full vehicle weight, including all its structural and dynamic components, is 

expected to be 25 kg. The minimum turning radius is assumed to be 3 meters. The vehicle 

should make a complete stop from 25 km/h within no more than 6 meters. The driver weight 

is assumed to be 75 kg. The vehicle will go uphill and downhill in slopes of 15%. 

 

Assumptions 

The assumptions where based on an exhaustive literature review of design reports of 

universities that had participated in previous HPVC contests and (M. Archibald, 2016), a 

Human Powered Vehicle design book.   

• Vehicle Mass (m) = 25 [kg]   

• Wheelbase (L) = 1.2 [m]   

• Center of Mass position   

o b = 0.45 [m]   

o h = 0.50 [m]   

• Grades from -15% to 15%   

• Rolling Resistance Coefficient = 0.005   

• Power Input = 200 [W] (M. Archibald, 2016)  

• Target Cruise Speed = 30 [km/h] at level   

• Drive wheel diameter = 0.6604 [m]   

• Turning radius = 3 [m]   

• Aerodynamic Cross-Sectional Area = 1.08 [m2] 

• Aerodynamic Drag Coefficient = 0.5   

• Braking Velocity = 7 [m/s]   
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• Braking distance = 6 [m]    

• Static Friction Coefficient = 0.75   

• Drive Wheel Coefficient = 0.9   

• Perfect Welding in joints  

 

Static Load & Vertical Drop 

This scenario helps understanding the most basic condition of the chassis design which 

is sustaining the driver’s weight and his own. This study is performed for grades ranging from 

-15% to 15%. This is important because it helps understand how the center of mass placement 

affects the weight distribution of the vehicle for the rear and front wheels.   

 

The weight distribution for the different grades for the rear and front axis is shown in 

figure 25. This solution was computed in MATLAB using the code presented in the annexes.   

 

Figure 39 Static Loads Under Different Slope Grades.  
Shows the effect of the slope in the vehicle rear and front wheel loading.  
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As it is shown in figure 40, the maximum static rear load happens at the maximum 

slope over 650 [N], and the maximum front load happens at the minimum slope around 425 

[N]. Therefore, the critical component for this scenario is the rear axis.   

The vertical drop scenario will be performed in the FEA software to simulated fatigue 

and vibrations wear-out on the chassis without knowing the actual loads. This study is 

performed only for a complete vertical drop out assuming an acceleration of 3 G’s.   

 

Constant Speed  

The constant speed scenario is performed to understand the effect of the Human 

Powered Vehicle design on the power inputs requirements. This includes effects on surface 

friction, rolling resistance, and aerodynamic drag. The computation of this scenario is shown 

below for different grades. Figure 40 shows the input requirement for different grades to 

maintain a constant speed of 30 [km/h]. 

 

Figure 40 Traction Force Steady State Slopes.  
The power input required to sustain a 30 [km/h] constant speed for different grade. This 

speed can only be sustained by a human for grades up to 5%.  
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This study shows that keeping steady state velocity of 30 [km/h] with human power 

input is impossible for grades bigger than 5%. According to (M. Archibald, 2016), the 

maximum human power input for an athlete is around 400 [W]. However, for small slopes and 

level conditions the power input require fall within the possible range. Therefore, the vehicle 

will be able to operate at 30 [km/h] under human power. Once the design stage is finished, the 

assumptions should be revised to verify the vehicle performance and iterate.  

 

Maximum Acceleration  

The maximum acceleration scenario is important to understand the maximum traction 

force the vehicle might experience in the case of extreme torque from the user. This depends 

on the ground conditions, geometry and physical characteristics of the vehicle, and user power 

input.   

 

Figure 41 illustrates how these two functions interact. At first, the ground 

characteristics determine the maximum traction force. Then, the human input determines the 

actual power input assuming perfect power transmission.  The maximum possible force for 

this condition is 735 [N].   
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Figure 41 Max Acceleration Force Study. 
 Maximum acceleration force feasible at level ground is below 750 [N].  

 

Moreover, figure 41 shows the effect of the maximum power input in the maximum 

vehicle acceleration near to 1 G. This is important when designing the vehicle chassis to 

verify that the structure will be able to support the longitudinal loads of the chain and 

transmission gears. The acceleration use for the chassis study will be 7.5 [m/s2].   

.  

Figure 42 Max Vehicle Acceleration Study.  
Maximum acceleration is 7.5 [m/s2] 
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Maximum braking 

The maximum braking study, as the maximum acceleration study, is important to 

understand the maximum load applied longitudinally to the vehicle. The maximum braking 

force and braking acceleration is computed. This will be useful when designing for the wheel 

hubs and chassis supports. 

 

 

The computation performed by MATLAB suggest a maximum acceleration force for 

pitch over of 1.5 Gs and for sliding of 0.75 Gs. Therefore, the study for braking will be using 

a deacceleration of 0.75 Gs.   

 

Turning 

The turning scenario is crucial for the chassis design. It requires the chassis to be stiff 

enough so proper turning radius can be achieved at a given speed. This load case is also 

important because it is the only one at which axial loads are consider for the chassis design due 

to centripetal acceleration. Using (M. Archibald, 2016), the following equations were derived 

to compute the centripetal force and turning forces in the front and rear wheel.   

 

The study was performed for different turning velocities to understand the ranges at 

which turning was possible. A velocity of 5 [m/s] was selected. Figure 29 & 30 shows the 
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computations results given an average rear wheel turning reaction force of 500 [N] and a front 

wheel turning reaction force of 450 [N].   

 
Figure 43 Front Wheel Turning Reaction Force. 

 Average front wheel turning reaction force is 450 [N] 
 

 
Figure 44 Rear Wheel Turning Reaction Force. 

 Average rear wheel turning reaction force is 500 [N]  
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Finally, the centripetal force for turning at level ground was computed to understand 

the final load to add to this load scenario. Figure 45 shows this result. 

 
Figure 45 Centripetal Force for Different Turning Velocities.  

Maximum turning velocity around 5 [m/s].  
   

 With the loads computed in this section, the load cases simulations are prepared to 

analyze the design concept for the chassis. Moreover, other load cases were added to the FEA 

simulations related to low speed front crushes and vibrations wear out of the vehicles frame. 

The fully developed chassis design process is presented in the next section.   

 

Chassis Design 

The design of the chassis was guided using chapter 13 of (M. Archibald, 2016) on 

frame analysis. The design methodology consists of defining the mechanical properties of the 

material to be used and the failure criteria. Then, using a Finite Element Analysis Package the 

chassis concept is analyzed. The design objective is to achieve a minimum safety factor of 1.5 
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for regular load scenarios. With the FEA results, the chassis design will be revised and iterated 

until design objectives are achieve for all the different load scenarios.   

 

Mechanical Properties and Failure Criteria 

The material selected for the chassis was steel AISI 1018. It was found that the most 

similar steel to AISI 1018 available in the Ecuadorian market in round profiles is steel ASTM 

A500. Its mechanical properties are ultimate strength (Sut) 354 [MPa] and yield strength (Sy) 

250 [MPa]. Two failure criteria were selected for the chassis design.   

For static failure, the minimum deformation energy criterium was selected:   

 

For fatigue analysis the criteria selected was the modified Goodman:  

 

Where, (Se) is the materials endurance limit. The constant values were computed 

using (Budynas & Nisbett, 1394).   

 

A MATLAB script was generated to facilitate quick iteration. The Se of the material for ¾ [in] 

tubes of 1.5 [mm] thickness is 170 [MPa].   
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Chassis Concept 

The challenge when developing the chassis is designing for manufacturing. The CAD 

workflow was to select a profile available in Ecuador and design for its joints, so workshop 

drawings are easy to prepare. Figure 33 shows the different subassemblies designed for 

manufacturing of the HPV chassis. The FEA will aid selecting the correct profiles to avoid 

oversizing of the frame and reduce the overall vehicle weight.    

 
Figure 46 First Chassis Concept 

   
 

 

Preliminary Finite Element Analysis 

Following the chassis concept selected, an exhaustive FEA study was performed for 

different loading scenarios to select the structural steel tube size to be used and the proper 

wireframe configuration. The following load cases were selected based on (M. Archibald, 

2016).   
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1. Drop test: This is the go/no-go for chassis design. It is designed to test 

fatigue endurance of unknown loads in the vehicle. It takes in consideration vehicle, 

driver and cargo weight. Also, it is set up for 3 G’s downward acceleration to simulate 

the drop. Proper constrains need to be set up.   

2. Frontal Crash: Taken from (Archibald, 2016) a load of 2000 N frontal through the x-

axis was studied.   

3. Frontal crash wheel: Same as the previous case but the frontal x-axis force is applied 

on a single wheel.   

4. Maximum Acceleration: Maximum load in the chassis due to riders’ input and ground 

interaction.  Maximum torque input by pedaling is 1400N and maximum tension in the 

chain is 2.5kN.  

5. Maximum braking: Maximum braking forced applied to both front wheels of 7.5ms-

2.   

6. Maximum turning: Maximum centripetal acceleration case of 0.75Gs.    

7. Roll Bar vertical: A roll-over study set-up by ASME HPVC 2020 contest rules.   

8. Roll Bar Horizontal: A roll-over study set-up by ASME HPVC 2020 contest rules.   

9. Back Crash: Study like the frontal crash scenario but to simulate a rear impact.   

 

The software selected to perform this study was ANSYS due to simplicity and node 

availability in the student’s version. Other packages such as Abaqus only allow a thousand 

nodes in the students’ version while ANSYS allow for 32 000 nodes in the student’s 

version. The same mesh that uses beam elements was used for all the load cases shown 

below. To account for errors in the roll bar bend tube for the Roll Bar load cases a pipe 

assumption in Ansys was used to account for cross sectional area deformation.   
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Figure 47 FEA Set-up.   
9 Different load cases were analyzed for testing the chassis concept.
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Table 5 Preliminary FEA Results.  

Two critical load scenarios were found: Max Acceleration and Back Crash.  

 

 

 

Figure 48 FEA Critical Scenario Display.  
Critical component is the joint between the tensors support and the frontal frame of the vehicle. 

 

The FEA yield 2 load cases with a minimum factor of safety below the target value. 

This critical scenario were the back crash and the maximum acceleration case. Strain energy 

computations show the stiffness of the model and are consider appropriate for the simulation. 

It was decided to consider this in the detail design stage of the project. The solution proposed 

Simulation Component Maximum Stress [Mpa] Strain Energy [J] Safety Factor
Drop Test Horizontal Frame 50 0.022 3.4

Frontal Crash Front Tensor Joint 150 0.18 1.9
Frontal Crash Wheel Horizontal Bar Joint 150 0.15 1.9

Max Acceleration Front Tensor Joint 155 0.176 1.1
Max Front Braking Front Hub Joint 95.5 0.112 1.8

Max Turning Horizontal Bar Joint 17.3 0.002 9.8
Roll Bar Vertical Roll Bar 20.2 0.024 8.4

Roll Bar Horizontal Roll Bar Joint 69.7 0.04 2.4
Back Crash Roll Bar Joint 113.9 0.15 1.5

Critical Components
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will be to reinforce these joints with a specialized component. Overall, the chassis concept was 

approved to enter de detail design stage. 

 

Figure 49 Final Chassis Design Concept.  
This picture shows the chain pad and main features of the concept.  

 

Within the next steps are the detail FEA study and the weld design 

for critical components.   

 

Detailed Design 

The following section explores the process of using the chassis concept as a base for 

the detail design stage. This will consider the development of the required parts that will allow 

the chassis to mount the required transmission components manufactured by Shimano and 

the respective safety requirements such seat and seatbelt. The following table shows the 

required external components for the proper functionality of the vehicle.   
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Table 6 Ilalo External Components Selection 

 

Each of the components required have different standard mounts depending on the 

manufacturer. Therefore, the best components that will fit our application and manufacturing 

abilities were selected. Then, the mounts were designed.   

The bottom braked in a bicycle is the component responsible of the free rotation of the 

crankset. There are different standards to mount bottom brackets. The principal ones are press 

fit and threaded shells. The threaded shell bottom bracket standard was selected due to its 

easiness of manufacturing. This consist of either a 68/73mm long shell with 1.37in x 

24TPI left-handed thread in the drive size and right-handed in the non-drive side. The crankset 

was selected to fit in the bottom bracket type selected. This information can easily be found in 

Shimano’s product web page.   
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Figure 50 Bottom Bracket Mount.  

The drive side thread is shown (1.37in x 24TPI left-handed) 
  

A hydraulic brake system was selected over the regular braking system to achieve a 

better year-round performance. In the initial research, it was found that cable disk brakes 

performance reduces with riding time due to riders’ fatigue. Hydraulic brakes solve this 

issue. The disk size is available in 3 dimensions: 160, 180 and 200mm diameters. For the 

front wheels, a 160 mm disk was selected due to the smaller size of the front wheel. For the 

rear wheel, a 180mm disk was selected because of geometry interference and to increase 

braking power. Moreover, there are different types of mount for disk brakes. The post mount 

standard was chosen because it is easily available in the market. A 27.5in rear wheel was 

selected to increase the vehicle maximum speed without selecting a more expensive set of 

cassettes. 24in wheels were selected for the front to increase the vehicle’s maneuverability.   
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Figure 51 Rear Wheel Caliper Mount 

  
 

The shortest available front hubs were selected to reduce torque generate by the reaction 

force of the ground with the wheel in the hub. Also, it needs to have a center locked mechanism 

for the disk brake. The rear free hub was selected for a quick release technology. This will 

make easier vehicles maintenance. The rear wheel hub has an O.L.D (Over locknut 

Dimension) standard for mountain bikes of 135mm. The fork dropout needs to be at least 5mm 

thick for its proper mount with a dropout diameter of 10mm.   

 
Figure 52 Rear Wheel Right & Left Dropouts 

 

The rear wheel derailleur was design for the Shimano Direct Link technology by reverse 

engineering a mountain bike available. The front derailleur was selected to use Shimano 
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E2 Direct Mount with a bottom bracket mount. This significantly simplified the bottom bracket 

mount design.   

The seat was designed by reverse engineering other recumbent bike seats available in 

the market. This is designed to be manufactured using glass fiber due to its low density. Rubber 

paths under the seat are used to reduce the vibrations transmitted from the chassis to the rider. 

Moreover, the seat mounts were place by using the FIA suggested mount positions for a 4-

points seat belt.   

 
Figure 53 Seat Design in context with the full assembly.  

  
 

The final detail design of the chassis is shown below. Because of the results of the final 

FEA simulation, 3 different tube profiles were selected for this design: 1in 2mm 

thickness, 0.75in 2mm thickness, and 1.25 1.5mm thickness. This were strategically placed to 

reduce the stress and strain of the frame. Also, this design includes all the proper mounts for 

the required components such as seat belt mounts, seat mounts, caliper mounts, free hub 

mounts and bottom bracket mount.   
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Figure 54 Final Chassis Design 

  
 

Finite Elements Study 

The Finite Element study was the most challenging task in the development of this 

design because of its importance to the performance of the vehicle and software limitations. 

Several finite elements packages were considered for this study, but ANSYS 

and SolidSims were used.   

At the beginning, Inventor and Fusion 360 finite elements modules were tried. 

However, the limitations on mesh control proved this software not useful for our scenario. The 

problem relies on the tube notches required for the proper welding and assembly of the chassis. 

This induces several stress concentrations and contact points. When these features are not 

properly meshed, the computational error is considerable.   

Then, Abaqus and Ansys were explored. The limitation with ABAQUS is the node 

limitations in the student version. For a complex model, to do a mesh convergence analysis of 

the plot is not plausible. ANSYS, whoever, allows up to 32000 nodes in the student version. 
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Nonetheless, the number of nodes is not enough for doing a full body analysis of the body. 

Therefore, simplifications must be made. A combination of shell and beam elements were used 

to achieved this.  

 

Figure 55 Final Chassis Mesh (9332 elements)  
 

 

Figure 56 Mesh Independence Identification.  
Mesh independence is identified in over 9000 elements.  
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Once the model was simplified, the set of 8 different load cases explain in the 

preliminary FEA section were run to understand the behavior of the detail chassis model. The 

most critical load scenario proved to be the drop test. This scenario was used to do the mesh 

convergence analysis. Then, the same mesh was applied to the remaining load scenarios. The 

following table shows the results of these set of simulations.   

Table 7 ANSYS chassis FEA Analysis.  
Two critical design scenarios were found in the Drop Test and Back Crash studies.  

 

Although the simulation does not predict any security factors below 1. There were 

found two critical security factors just above one. This result can be consequence of the model 

simplification for being able to run the analysis in ANSYS. Beam elements are not a great 

simplification for short tubes and do not simulate properly the geometric effects of the joints. 

For this effect, shell elements or solid elements would have been better, but it will have 

caused to exceed the node numbers allowed by ANSYS student version. It is expected that the 

beam and shell element simplification will have computed an overestimate stress for the 

model. Also, the strain energy for the maximum acceleration case was significantly improved. 

This will give a better performance to the vehicle in power transmission.  

Because of the two critical loading cases found with ANSYS, another simulation 

packaged was used to validate the design. SimSolid meshless method should be less 

Simulation Component Max Tension [Mpa] Strain Energy [J] Safety Factor
Drop Test Horizontal Bar 166.6 0.023 1.0

Frontal Crash Frontal Frame 247.88 0.018 1.2
Max Acceleration Frontal Frame 223.85 0.036 1.3
Max Front Braking MF 67.9 0.004 2.5

Max Turning MF Joint w/ Horizontal 65.733 0.006 2.6
Roll Bar Vertical Roll Bar 220.6 0.084 1.3

Roll Bar Horizontal Cargo Space Bar 126.2 0.000 2.3
Back Crash Main Frame 280.2 0.070 1.0

Critical Components 02
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conservative, therefore it should compute a lower, more realistic, stress distribution of the 

model.  The problem with this software is that it is still new in the market and the 

mathematical model that it uses to solve its simulations is not common knowledge yet.  

 
Figure 57  SimSolid Drop Test Result.  

The maximum Von Mises Stress is 92.7 [MPa] 
 

 

Figure 58  SimSolid Back Crash Load Case Simulation. 
Maximum Von Mises Stress is 170.2 MPa. 



 

122 
 

122 

The meshless method of computed a significantly lower stress that the one predicted by 

ANSYS. Both critical simulations were run, vertical drop and back crash, and it was found that 

the ANSYS error is consistent in about 40%.  This yields safety factor of 1.8 and 1.7, 

respectively. Therefore, we are confident that the chassis design will perform as expected in 

real life conditions. Nonetheless, a significant amount of time in the test stage of this product 

development should focus in determining the actual loads the vehicle will be under.  

Finally, with the beam results of ANSYS, the boundary conditions for the most critical 

component, the fork dropout, were found. This was used to do an independent FEA analysis of 

the component. The fork dropout is responsible for supporting more than 50% of the vehicle 

weight plus acceleration loads. The FEA analysis in ANSYS was used to find the critical 

loading scenario for this component which is the drop out load case. The boundary conditions 

computed from this scenario were imputed into the analysis of the fork dropout in SimSolid. 

The result of this simulations is shown below, and we are confident that the component will 

not fail under the expected circumstances with a fatigue safety factor for infinite life of 1.1.   

 
Figure 59 Rear Wheel Dropout FEA Analysis. 

 Maximum Von Mises Stress is 162.9 MPa 
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Finally, the brake mount support was analyzed to validate its detailed design. The 

simulated scenario was full braking only with the rear brake at 0.75G. The maximum Von 

Mises Stress was 262 MPa. This means a safety factor of 1.1 for this extreme braking condition.  

 

Figure 60 Caliper Mount FEA. 
Maximum Von Mises Stress is 262.23 [MPa]. 

 

Weld Analysis 

Finally, the critical joint weld analysis was performed to assure the vehicle will not fail 

in the weld. This analysis was performed using Shrigley’s weld design method. The critical 

joint is the connection from the rear wheel dropouts with the chassis tubes. A simplification of 

the scenario is shown below. 
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Figure 61 Critical Weld Scenario Simplification Sketch 
 

The assumptions for this study are:  

• Perfect 2mm thickness circular cross section, 1in tube  

• Not significant material properties change in the manufacturing  

• Electrode material AWS E60xx  

• Base material ASTM A500  

• No bending or torsional loads  

• Uniform distribution of the stress with the contact surface  

• FN = 2765 [N]   &    FS=36 [N] 

• h = 2 [mm] 

Using the AISC norm from table 9.4 in Shrigley’s, the maximum allowed stress in 

the weld is 116 MPa. This weld analysis was done for fatigue infinite life using the drop 

test criterium. Therefore, the stress in the weld is given by:   
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Where Kfs is the stress concentration factors, F’s  is the effective shear load in the weld, 

h is the fillet welt dimension and l is the length of the weld. 

 

This gives a safety factor of 7.7. This is considered good for our design because there 

is no member of our manufacturing team certified in welding. Therefore, a high security factor 

will account for possible human error.   

 

Direction Design  

The design of the steering system was guided using chapter 10 and 11 of Design of 

Human-Powered Vehicles. The design methodology consists of defining the steering system 

to be used and the dimensions. Then, using a MATLAB code the steering dimensions were 

determine. This selection objective is to achieve a desire function to the steering angles of the 

wheels at different speeds and turning radius.  

 

Definitions and Nomenclature 

As a tadpole tricycle model was selected, several data are taken. The wheelbase L is the 

distance from the front axle to the rear axle. The CG, center of gravity, is located at a height h 

above the ground and a B distance from the rear axle. The caster angle is formed between the 

vertical pivot axis of the direction.  The kingpin angle is the projected angle between the 

steering axis and a vertical plane. The camber angle is the inclination of the wheel plane from 

a vertical plane. Wheel track is the horizontal distance between the tire contact patches. The 

kinematic track is the horizontal distance between the intersection of the wheel axis and the 

steering axis.  
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Figure 62 Side definition of the vehicle terms 
 

 

Figure 63  Front definition of the vehicle terms (Archibald, 2016) 

 

Low Speed Cornering 

At low speeds cornering, no lateral force is involved, so the wheels should roll with no 

slipping on the pavement, multi-track vehicles as a difference of single-track vehicles do not 

lean while turning.  

For a Tadpole design vehicle, where two wheels are being steered, the inside and 

outside angles differ to prevent slip, understeer, and oversteer. The offset of the wheels 

determines the inside and outside angles, so the inside wheel should have a larger steer angle 

than the outside one. These angles are determined by  
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Figure 64 Ackerman Steering Angle for Tadpole Design (Archibald, 2016) 

 

Steering Mechanism 

There are a couple of steering mechanisms such as: Track rod, Six-bar linkage, and rack 

and pinion. All these systems are only precise for to scenario cases of, neutral steer when the 

wheels are straight, and one with a small turn radius. At the other scenarios, the angles are not 

the ideal ones. The deviation is acknowledged as steering error, this error can be minimized by 

using a well-designed steering system mechanism. The bigger error occurs at larger steer angle, 

small turning radius.   
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Figure 65 Track Rod Mechanism Neutral Steer (Archibald, 2016) 

  
 

 

Figure 66 Track Rod Mechanism 30 degrees Steer (Archibald, 2016) 
 

A track rod steering system is a mechanism with two steering arms connected to a track 

rod, for a first iteration a track rod system is the appropriate, because it is simple, has a good 

Ackerman compensation, and admits toe adjustments. In the track rod system both wheels will 

steer together, sharing the same Ackerman angles. A different steering linkage to control 

wheels turning. The track rod is commonly placed behind the axle.  
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Figure 67  Track Rod Parameters (Archibald, 2016) 
 

For determine the correct neutral steering angle, and the track rod arm, is that the neutral 

steering angle, the steering arm length must intersect the vehicle´s center line at one third of its 

wheelbase, from the rear axle. This provides a mechanism with smaller errors, the neutral steer 

angle is determined by   

 

This angle is considered as a good and appropriated starting point. However, more 

variables need to be considered for dimension and weight changes of the rider, so it is 

recommended an adjustable mechanism. This will allow to tune the mechanism after a few 

tests. If the kinematic track and kingpin location are known parameters, then the steering arm 

length and neutral steer angle, are the only two parameters required.  

The sensitivity of track rod depends on how the steering arms are connected. The 

steering bars are connected to the kingpins in the vehicle. This connection was made with the 
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purpose to have a better steering feeling. When the length of the steering arms is longer, the 

driver will have a better steering feeling.  

 

Kinematic Analysis of Steering Mechanisms 

A MATLAB code was developed to analyze the Ackerman and Track-rod mechanism. 

The purpose of the code is to determine the adequate inside and outside steer angle, δi,o, and 

corresponding steering arm angle, θo. These were calculated for a range of turning radius, 

starting with the minimum turning radius of the vehicle, which is 2 m. The outside wheel arm 

is calculated based on the mechanism kinematics, and then evaluated for each position. The 

values will be compared with the correct angles corresponding to δi. Two figures that represent 

the steering accuracy will be presented.  

The mean square error of steering provides an index for the whole turning radius. This 

is a criterion that will be used for optimization and is determined by:  

 

The maximum deviation of the inside wheel from the one required for Ackerman 

steering is an index that shows the worst deviation from true steering, which is determined by:  

 

Where θo is the outside wheel steering arm angle, θo,true is the theorical required angle, 

and θo,true  is the angle achieved in the real world by the mechanism.  

Optimally the deviation should be located under one degree. The program will report 

the max deviation with the critical turning radius.  
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Figure 68 Kinematic Diagram of Steering Mechanism. 
 1200 [mm] Track-Rod length. 

 

 

 

Figure 69 Track Rod Steering Angle Error.  
Maximum steering angle error: -2º at 2 [m].  

Minimum steering angle error: 0.5 º at 3.8 [m]. 
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Figure 70 Track Rod Steering Angle.  
The desire and actual function are similar, which means the selected 

system dimensions are correct. 
 

Code Output 

ACKERMAN STEERING ERROR    

VEHICLE:  ILALO   

WHEELBASE:  1200.00 mm   

TRACK:      1200.00 mm   

TYPE OF STEERING MECHANISM:  TRACK ROD   

TRACK ARM LENGTH:        103.000 mm   

STEERING ARM CENTERS:    1200.000 mm   

TRACK ROD LENGTH:        1080.964 mm   

NEUTRAL STEER ANGLE:      144.7 deg   
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MEAN SQUARE ERROR = 0.1855 deg^2   

MAX POS DEVIATION = 0.47 deg AT RADIUS = 3.86 m   

MAX NEG DEVIATION = -1.69 deg AT RADIUS = 2.00 m  

 

Lateral Load Transfer and Rollover Threshold 

The lateral forces that acts on a vehicle in a high-speed turn produce a moment. This 

moment tends to shift the vehicle towards the outside of the turn. The inertial force acts through 

the center of gravity at a specified height from the ground. Tire forces acts at ground level, so 

a moment is caused. The lateral load transferred t to the outside wheel is proportional to the 

ratio between the wheelbase and the wheel track, h/t. The lateral acceleration will be 

represented in G´s, at a specific point the weight of the inside wheel will be zero, this will cause 

the vehicle to roll over, or capsizing. Rollover threshold is the point at which the inside wheel 

weight will be zero, and it is determined by:  

 

Sometimes, a vehicle rollover threshold can be different, due to road irregularities, 

causing an early rollover. 

 

Longitudinal Load Transfer and Pitch Over Threshold 

During braking, the rollover threshold is increased for tadpole vehicles. The opposite 

occurs for acceleration, but human-powered vehicles are most likely to achieve a greater 

braking deceleration.  
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Shifting vertical load from the rear/front axle to the front/rear, happens during braking 

and heavy acceleration. The pitch over threshold is like the rollover threshold. It is the 

condition in which the vertical load on one axle just becomes zero. Only pitch over due to 

braking is important for human-powered vehicles, where it is possible to lift the rear wheel off 

the ground while braking. This can be a real hazard on vehicles with high and forward centers 

of gravity like tadpole vehicles.  

  The pitch over threshold due to braking can be calculated by summing moments on the 

front wheel patch. The result is given by:  

 

Understeer Gradient 

The steering angle usually changes with lateral acceleration during high speed turns. 

Considering a steady-state high-speed turn, the tires must maintain a force that is equal to the 

vehicle mass times the lateral acceleration, or m∗ax. This is accomplished with the combination 

of camber and slip forces.  

As speed keep increasing and the vehicle is traveling a constant radius turn, the lateral 

acceleration increases as . Tires should sustain a steadily increase on side loads. If 

the slip angle on an axle increases, the change in lateral load on each axle is unbalanced and a 

steering angle correction is required. The handle arm may need to be turned into or out of the 

turn. If the handle arm must be turned into the turn as speed increases, the vehicle is said to 

have understeer. If the handle arm must be turned out of the turn as speed increases, the vehicle 

is said to have oversteer.   
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While the vehicle experiences a high-speed turn, the steering angle δ is different than 

the Ackerman angle. This deviation depends on the lateral acceleration. The steering angle 

depends on the Ackerman angle and the front and rear slip angles:  

 

 

Knowing that the understeer gradient, K, is determined:  

 

If the value of K is positive, the vehicle experiences understeer, and if the value of K is 

negative the vehicle experiences oversteer.  



 

136 
 

136 

 

Figure 71  High Speed Cornering Parameters (Archibald, 2016) 
 

It is important to use cornering tire properties, Mark Archibald, presents a table with 

the main values.  

              Table 8 Cornering Tire Properties (Archibald, 2016) 

 

As the first model will be manufactured using unspecified tires the Properties chosen are:  

  
A=0.2532 

  
B=0.000211 
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  The rear axle is not affected by lateral load transfer, and the axle stiffness is simply the 

stiffness of the tire. The front axle does experience lateral load transfer, and the stiffness is 

given. Substituting each equation in the general formula for understeer gradient, we have:  

 

A MATLAB code was developed to determine the high-speed forces and understeer 

gradient of the vehicle. The minimum turning radius used for these calculations is four meters 

because the ASME HPV challenge determined a minimum turning radius of eight meters. Thus, 

we worked with a half radius turning circle as a safety factor.  

 

          Figure 72 Understeer Gradient.  
The speed limit to travel from understeer to oversteer is 6 [m/s]. 

 

In the figure, we can see that the vehicle will experience understeer above 6 m/s, and 

below 6 m/s will experience oversteer. 6m/s is approximately 21.6 km/h.  
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Figure 73  Steer Angle vs Speed and Rollover Threshold.  
The steer angle varies at different speeds. 

 

In the figure we can see how the rollover threshold is critical at a 4.2 m/s speed, which 

is 15.12 km/h, the blue and green line shows the inside and outside wheel angle, we can 

appreciate that are straight lines, so we can determine that the system is well designed. 

 

Figure 74  Lateral Acceleration vs Speed.  
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The critical threshold is a speed of 4.2 [m/s] and 0.4495 G of acceleration.  
Code Output 

TRICYCLE HANDLING EVALUATION   

VEHICLE:       ILALO   

TYPE OF TRIKE: TADPOLE   

TOTAL MASS:   100.00 kg   

WHEELBASE:    1.200 m   

TRACK:        1.200 m   

CG HEIGHT:    0.500 m   

CG LOCATION:  0.450 m   

STATIC WEIGHT FRACTION, REAR:     62.5 %   

ROLLOVER THRESHOLD:               0.450 G's   

BRAKE PITCHOVER THRESHOLD:        1.500 G's   

ACCELERATION PITCHOVER THRESHOLD: 0.900 G's  

 

Six-bar steering 

 A six-bar steering system was considered as a possible new direction system, after 

doing all the calculations and the MATLAB codes the new system would have not be an 

upgrade of the old system because gains are minimal, and more weight will have been added 

with 6 bars instead of one used in the track-rod system. 
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Figure 75 Kinematic Diagram of Six Bar Steering Mechanism. 

 Six-bar steering mechanism dimensions. 
 

 

 
Figure 76 Six Bar steering Angle for Outside Wheel.  

The six-bar and track-rod mechanism actual functions do not approximate to the desired 
function 
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Figure 77 Six Bar Steering Angle Error for Outside Wheel.  
Maximum error: 2.3 º at 2.2 [m].  
Minimum error: 0.12 º at 20 [m]. 

 

Code Output 

ACKERMAN STEERING ERROR   

VEHICLE:  ILALO  

TYPE OF STEERING MECHANISM:  SIX-BAR TRAILING  

 

FRAME LENGTH:            600.000 mm  

FRAME ANGLE:               90.0 deg  

TRACK ARM LENGTH:        103.000 mm  

NEUTRAL STEER ANGLE:      168.0 deg  

TIE ROD LENGTH:          528.000 mm  

BELL CRANK LENGTH:       140.000 mm  

BELL CRANK ANGLE:         201.5 deg  

 

MAX INSIDE WHEEL ANGLE:    40.6 deg  
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MAX OUTSIDE WHEEL ANGLE:   27.0 deg  

MAX ACKERMAN ANGLE:        31.0 deg  

MAX STEERING INPUT:        23.2 deg  

 

MEAN SQUARE ERROR =  1.5770 deg^2  

 

MAX DEVIATION = 2.33 deg  AT RADIUS =  2.30 m 

 

 

Automatic Control 

Parking Brake 

The implemented automatic control unit consists of a parking brake system. Its main 

purpose is to prevent the vehicle from moving after parking, especially when it is on sloped 

surfaces. The system could also aid in theft prevention since it allows driving capabilities to 

the owner alone. The blocking and unblocking capability of the brake is accessed by the owner 

of the vehicle through Bluetooth communications with their smartphone. The following section 

explains the setup, programing and use of the system. 

 

Components 

• Arduino Nano 

• Bluetooth module HC-05 

• 9V Battery 

• Servo Motor M MG995 

• Extended Door Side Lock 
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Schematic 

 

Figure 78 Automatic Control Schematic 
 

As shown on the schematic on the figure 77, the setup is relatively simple. The 9V 

battery powers the Arduino Nano (chosen for its versatility when joining the system to the 

vehicle chassis) which drives the servomotor. The HC-05 Bluetooth module acts as an on/off 

switch for the system since there is no interest in managing varying degrees of rotation in the 

motor. The extended door side lock is in turn attached to the servomotor, which will alternate 

between 0 and 60 degrees to slide the lock in and out of position. The system locks the rear 

wheel by using the door side lock as an obstacle between its spikes. To ensure the durability 

and reliance of the system, the M MG995 servo motor was chosen since it has a powerful 

torque and premium components, such as metal gears.   
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Simulation 

To test the system, the schematic was analyzed using the electronic circuit analyzer 

from the software Fritzing, which allows current and voltage simulations that verify the validity 

and resistance of the circuit. This proved that the used schematic manages the correct amount 

of power for its components, without short circuits or burnt components.  

 The used code was proved to be able to compile in the Arduino loading software, but, 

due to the physical testing limitations set by the Covid-19 pandemic, simulations had to be used 

to prove the validity of the system. The online platform Autodesk TinkerCad was used to 

emulate the use of the schematic with the code. Sadly, the platform does not support Bluetooth 

module testing, so a slide on/off switch was used to replace the Bluetooth operations for the 

simulation (the code had to be slightly modified for this effect). Figure 76 shows how the 

simulation was run successfully, with a 60 degrees motor position representing the open lock 

(on in the switch), and 0 degrees motor position representing the closed lock (off in the switch). 

 

Figure 79 Switch Simulation 
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App Interaction 

 The Romoremo app (free in the Apple and Android app stores) was used as a remote 

control for the parking brake. The app is easy to set up through Bluetooth and includes the 

option to program buttons to use. In the case of this product, a simple two-button layout is used 

to lock and unlock. Pressing the lock button will send the 0 signal to the Bluetooth receiver, 

moving the motor to 0 degrees. Similarly, pressing the unlock button will send the 1 signal to 

the Bluetooth receiver, moving the motor to 60 degrees. 

 

Figure 80 App Interface 
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Matlab Codes  

Loading Scenarios  

%% Weight Fraction Computation - pg 108. Overview Design of HPV Archibald  
% By: Francisco Plaza  
% 02/15/2020  
clear all  
close all  
clc  
   
% NOMENCLATURE  
% CM - Center of Mass  
% W - Weight  
%   R - Rear  
%   F - Front  
% f - Weight Fraction  
% G - grade  
   
% Metodology:  
% So far the values are assing randomly. There is no design objetive yet  
% defined.   
   
%% ############ Parameters ###########  
%***GEOMETRY***  
m = 25 + 75; %kg Mass of the vehicle including the rider  
L = 1.2; %m Wheel base / DEFINED by Design Parameters  
b = 0.45; %m horizontal distance from Rear axis to CM  
h = 0.50; %m vertical distance from the ground to the CM  
h_b = h/b;  
   
%***CONDITIONS***  
g = 9.8; %ms^-2 gravity  
G = -0.15:0.01:0.15; %Slope grade  
C_RR = 0.005; % Rollin Resistance Coefficient  
   
%***DRIVE SYSTEM***  
P = 200; %[W] Estimated human power imput  
w = 0; %[rad/s] Angular velocity  
V_cruise = 8.333; %[m/s] Cruise target speed of the vehicle - 30 
km/hr... kratos has 12.5 or 45 km/hr  
d_DW = 0.6604; % [m] Diameter of the drive wheel  
r_turning = 3; %[m] Minimum turning diameter from Krator design book  
   
%***AERODYNAMICS  
A_aero = 1.08; %[m^2] Frontar area 1.2m*0.9m  
rho = 1.2; %[kg/m^3]  
C_D = 0.5; %Drag Coefficient from Kratos design  
   
%***TURN RADIUS  
V_turn = 1:8; %[m/s] Turning velocity of the vehicle  
r = 3; %[m] minimum requiere turn radius  
   
%***BRAKING  
V_brake = 7; %[m/s] Before breaking velocity  
d_brake = 6; %[m] Maximum braking distance  
   
%***POWER IMPUT  
P_imput = 200; %[W] Human power imput  
eta_PT = 0.9; %Power train efficiency  
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eta_friction = 0.75; %Estatic friction coefficient for asphalt  
   
%% ############### Computations ##################  
W = m*g; %N Full vehicle weight  
theta = atan(G);  
   
%% *****LEVEL GROUND STATIC LOAD*****  
% Wheel Weight Computation  
W_F = W*b/L; %Computation of Front wheel weight  
W_R = W - W_F; %Computation of Real wheel weight  
% Weight Fraction  
f_R = W_R/W*100;   
f_F = W_F/W*100;   
   
%% *****GRADE STATIC LOAD*****  
% Wheel Weight Computation  
W_F_G = (W*(b*cos(theta)-h*sin(theta)))/L; %Computation of Front wheel 
weight  
W_R_G = (W*((L-b)*cos(theta)+h*sin(theta)))/L; %Computation of Real wheel 
weight  
% Weight Fraction  
f_R_G = W_R_G/W*100;   
f_F_G = W_F_G/W*100;   
   
% Create table  
[f_R f_F;...  
W_F_G' W_R_G'];  
   
% Create Plots  
figure(1)  
hold on  
plot(G,W_R_G,'r')  
plot(G,W_F_G,'k')  
title('Estudio de Cargas Estatica para diferentes pendientes. It #01')  
xlabel(sprintf('Slope Grade. For h/b = %.2f',h_b))  
ylabel('Force [N]')  
legend('Rear Wheel','Front Wheel')  
hold off  
   
%% *** STEADY MOTION LOADS ***  
% For steady state motion at cruise  
F_aero = rho/2*C_D*A_aero*V_cruise^2; %[Aerodynamic drag]  
F_RR = W*C_RR; %[N] Rolling Resistance  
   
F_x_ss = F_RR + F_aero + W*sin(theta); % [N] Drive force requiere for SS 
grade motion  
   
%Transformation to power  
w_DW_ss = V_cruise*2/d_DW; %[rad/s] angular velocity of drive wheel at 
cruise speed  
T_DW_ss = d_DW/2*F_x_ss; %[Nm] Drive wheel steady state motion required   
P_DW_ss = T_DW_ss*w_DW_ss; %[W] Drive wheel steady state power required   
   
[(G*100)' F_x_ss' P_DW_ss']; %Steady motion loads data values  
   
figure(2)  
plot(G*100, P_DW_ss,'b')  
title('Estudio de fuerza de traccion necesaria para S.S motion en 
pendientes. It #01')  
xlabel(sprintf('Slope Grade. For h/b = %.2f',h_b))  
ylabel('Power [W]')  
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%% *** CURVATURE ***  
for i = 1:length(V_turn)  
    %Computations  
    a_y = V_turn(i)^2/r;    %Centripetal Acceleration  
    F_y = m*a_y;            %Centripetal Force  
    F_yF = W_F_G*a_y/g;     %Turning Force Front Wheel       
    F_yR = W_R_G*a_y/g;     %Turning Force Real Wheel  
      
    %Start Ploting  
    figure(4); %Front Wheel Turning Force for different turning valocities  
    hold on  
    plot(G, F_yF); %Front Wheel Plots  
    hold off  
    title('Turning Force at the Front Wheel for different turning 
velocities. It #01');  
    xlabel(sprintf('Slope Grade. For h/b = %.2f',h_b));  
    ylabel('Turning Force [N]');  
   
   
    figure(5); %Rear Wheel Turning Force for different Turning Velocities  
    hold on  
    plot(G, F_yR); %Real Wheel Plots  
    hold off  
    title('Turning Force at the Rear Wheel for different turning 
velocities. It #01');  
    xlabel(sprintf('Slope Grade. For h/b = %.2f',h_b));  
    ylabel('Turning Force [N]');  
end  
%Centripetal Force Calculation  
a_y = V_turn.^2/r;    %Centripetal Acceleration  
F_y = m*a_y;            %Centripetal Force  
   
figure(6); %Centripetal Force plot  
    hold on  
    plot(V_turn, F_y); %Real Wheel Plots  
    hold off  
    title('Centripetal Force for Different Turning Velocities. It #01');  
    xlabel('Turning Velocity [m/s]');  
    ylabel('Centripetal Force [N]');  
   
figure(4); %Turning Force Front Wheel  
legend(sprintf('V_(turn) = %.0f m/s',V_turn(1)),sprintf('V_(turn) = %.0f 
m/s',V_turn(2)),...  
    sprintf('V_(turn) = %.0f m/s',V_turn(3)),sprintf('V_(turn) = %.0f 
m/s',V_turn(4)),...  
    sprintf('V_(turn) = %.0f m/s',V_turn(5)),sprintf('V_(turn) = %.0f 
m/s',V_turn(6)),...  
    sprintf('V_(turn) = %.0f m/s',V_turn(7)),sprintf('V_(turn) = %.0f 
m/s',V_turn(8)));  
   
figure(5); %Turning Force Rear Wheel  
legend(sprintf('V_(turn) = %.0f m/s',V_turn(1)),sprintf('V_(turn) = %.0f 
m/s',V_turn(2)),...  
    sprintf('V_(turn) = %.0f m/s',V_turn(3)),sprintf('V_(turn) = %.0f 
m/s',V_turn(4)),...  
    sprintf('V_(turn) = %.0f m/s',V_turn(5)),sprintf('V_(turn) = %.0f 
m/s',V_turn(6)),...  
    sprintf('V_(turn) = %.0f m/s',V_turn(7)),sprintf('V_(turn) = %.0f 
m/s',V_turn(8)));  
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% figure(6); %Cetripetal Force  
% legend(sprintf('V_(turn) = %.0f m/s',V_turn(1)),sprintf('V_(turn) = %.0f 
m/s',V_turn(2)),...  
%     sprintf('V_(turn) = %.0f m/s',V_turn(3)),sprintf('V_(turn) = %.0f 
m/s',V_turn(4)),...  
%     sprintf('V_(turn) = %.0f m/s',V_turn(5)),sprintf('V_(turn) = %.0f 
m/s',V_turn(6)),...  
%     sprintf('V_(turn) = %.0f m/s',V_turn(7)),sprintf('V_(turn) = %.0f 
m/s',V_turn(8)));  
   
%% *** Braking ***  
a_brake = -V_brake^2/(2*d_brake); %[m/s^2] Computation 
for aceleration necesary to satisfy braking design parameter  
F_brake = -F_aero-F_RR-W*sin(theta)-m*a_brake; %[N] Necessary force to 
brake within the design parameter for diferente slopes  
figure(3)  
plot(G,F_brake)  
title('Estudio de la fuerza de frenado necesaria para diferentes 
pendientes. It #01')  
xlabel(sprintf('Slope Grade. For h/b = %.2f',h_b))  
ylabel('Braking Force [N]')  
legend(sprintf('Braking Force @ level = %.0f [N]',F_brake(11)))  
   
A_brake_max1 = -(L-b)/h %Pitchover limit  
A_brake_max2 = - eta_friction  
   
%% ***Acceleration***  
P_prime = P_imput*eta_PT; %Actuall power transmitted to the wheels.   
Fx_max_traction = eta_friction*W; %[N] Max force possible to apply to the 
vehicle wheel  
V_PW = 0:0.2:9; %[m/s] ranges of velocity of the vehicle  
Fx_max_power = P_prime./V_PW; %[N] Max force that can be imput to the 
vehicle according to power available.    
A = ones(1,length(V_PW))*Fx_max_traction;  
   
%Plot of Force vs Vehicle Speed  
figure(7)  
plot(V_PW,A,'b');   
hold on  
plot(V_PW,Fx_max_power,'b');  
hold off  
title('Estudio de la fuerza de acceleracion maxima para plano. It #01')  
xlabel('Vehicle Velocity [m/s]')  
ylabel('Acceleration Force [N]')  
   
%Computo de acceleration for level ground  
ax_traction = 1/m *(Fx_max_traction - F_RR); %[m/s^2] max acceleration due 
to traction  
F_aero = rho./2.*C_D.*A_aero.*V_PW.^2; %[Aerodynamic drag] for different 
velocities  
ax_power = 1/m *(Fx_max_power - F_aero - F_RR); %[m/s^2] max acceleration 
due to power imput  
 %Plot of acceleartion  
 A = ones(1,length(V_PW))*ax_traction;  
 figure(8)  
plot(V_PW,A,'r');   
hold on  
plot(V_PW,ax_power,'r');  
hold off  
title('Estudio de la acceleracion maxima para plano. It #01')  
xlabel('Vehicle Velocity [m/s]')  
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ylabel('Acceleration [m/s^2]')  
  
  
Failure Criteria 

%% Code For computing the Failure Criteria of the Chassis Design   

% Wrote By: Francisco X. Plaza  

% Date: 03/05/2020  

   

%% Imput  

% Material Selected: ASTM A500 Structural Steel   

Sut = 350; %[MPa] Ultimate Strength  

Sy = 290; %[MPa] Yield Strenth  

    %For Ka Cold Drawn   

    a = 4.51;  

    b = -0.265;  

    %For kb   

    d = 0.0190; %[m]   

% FEA Simulation Imputs Static  

 Sigma_VM = 63.5; %[Mpa] Von Mises Strength Computed by FEA Simulation  

   

% FEA Fatigue Analysis  

   

   

%% Static Analysis  

eta_static = Sy/Sigma_VM;   

   

%% Fatigue Analysis  

ka = a*Sut^b;  

kb = 0.879*d^-0.107;  

kc = 1;  

kd = 1;  

ke = 0.814; % 99% of confidence  

kf = 1;  

   

% Endurance Limit   

Se = 0.5*ka*kb*kc*kd*ke*kf*Sut;  

   

%% Data Presentation  

sprintf('Yield Strength is: %0.f MPa \nSafety Factor in Static Analysis is: 

%.2f \nThe Endurance Limit is: %.2f MPa',...  

        Sy, eta_static, Se)  
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Akerman Track Rod  (Archibald, 2016) 

clear;  

close all;  

clc;  

   

% INPUT SECTION   

vehicle = 'ILALO';  

   

%   Vehicle Parameters  

r1 = 1.20;        % KINEMATIC TRACK  

L = 1.20;         % WHEELBASE  

Rmin = 2;      % MINIMUM TURN RADIUS  

   

%Mechanism parameters  

r2 = 0.103;                 % STEERING ARM LENGTH  

theta_o =(atand((4*L)/(3*r1))+(pi/2)+90)*pi/180; %144.7*pi/180;    % 

NEUTRAL STEER ANGLE  

   

% Select Units  

unit = 'm';      % Units, enter 'i' for inches or 'm' for meters  

   

% Output switch  

output = 'y';       % Set to 'N' to suppress graphical/text output  

% END INPUT SECTION  

   

% Type of mechanism  

mech_type = 'TRACK ROD';  

   

% Compute track rod length from given data  

r3 = r1-2*r2*sin(theta_o);              % TRACK ROD LENGTH  

t = r1;  

   

% Compute minimum theta and R based on mechanism limit position  

theta_min = acos((r2^2-r1^2-(r2+r3)^2)/(2*r1*(r2+r3))) + pi/2;  

Rminmech = L/tan(theta_o-theta_min) + t/2;  

if Rmin < Rminmech,  

    fprintf(1,'MINIMIM TURN RADIUS NOT OBTAINABLE ON INSIDE WHEEL \n\n');  

end;  
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% Establish turn radius vector R   

Rmax = 20;  

n = 50;  

I = (Rmax/Rmin)^(1/(n-1)) - 1;  

R = Rmin*(I+1).^(0:n-1)';  

   

% Compute steer angles  

if theta_o > 0,  

    psi_o = 2*pi - theta_o;  

else  

    psi_o =  -theta_o;  

end;  

theta = theta_o - atan2(L,(R-t/2)); % INSIDE WHEEL ANGLE  

psi_p = psi_o - atan2(L,(R+t/2));   % THEORETICAL OUTSIDE WHEEL ANGLE  

   

% Solve Chase equation  

C = r2*exp(i*theta) - r1*exp(i*pi/2);  

Ca = abs(C);  

Cu = C./Ca;  

Cuxk = (imag(Cu) - i*real(Cu));  

T = (r2^2-r3^2+Ca.^2)./(2*Ca);  

A1=sqrt(r2^2-T.^2).*Cuxk + T.*Cu;  

A2=-sqrt(r2^2-T.^2).*Cuxk + T.*Cu;  

if sign(imag(A1(1))*imag(A1(n))) > 0,  

    psiA1 = angle(A1)+2*pi;  

else  

    psiA1 = unwrap(angle(A1));  

end;  

psiA2 = angle(A2);            

if theta_o > 0,  

    psi = psiA1;;  

else  

    psi = psiA2;  

end;  

   

% Compute Error  

err = 180*(psi_p - psi)/pi;  

MSE = mean(err.^2);  

[max_dev, max_dev_idx] = max(err);  

[min_dev, min_dev_idx] = min(err);  
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% Output Results   

if (output == 'y') | (output == 'Y'),  

    close ALL;  

    clc;  

      

    if lower(unit) == 'm',  

        runit = 'm';  

        munit = 'mm';  

        r1 = r1*1000;   % convert kinematic dimensions to mm  

        r2 = r2*1000;  

        r3 = r3*1000;  

        L = L*1000;  

        t = t*1000;  

        Rf = R;  

    else  

        runit = 'ft';  

        munit = 'in';  

        Rf = R/12;              % Radius in feet  

    end  

      

    % Plot results  

      

    plot(Rf,psi_p*180/pi,'bx-',Rf,(psi)*180/pi,'r.');  %STEER ANGLES  

    fig1 = gcf;  

    set(fig1,'Position', [990 690 560 420]);  

    set(fig1,'Position', [50 690 560 420])  

    title('STEERING ANGLE FOR OUTSIDE WHEEL');  

    str = sprintf('TURN RADIUS (%s)',runit);  

    xlabel(str);  

    ylabel('OUTSIDE WHEEL ANGLE (deg)');  

    grid;  

    legend('DESIRED FUNCTION', 'ACTUAL FUNCTION',0);  

      

    fig2 = figure;      % ACKERMAN ERROR PLOT  

    plot(Rf,err,'.-');  

    set(fig2,'Position', [990 150 560 420])  

        set(fig1,'Position', [50 50 560 420])  

    title('STEERING ANGLE ERROR FOR OUTSIDE WHEEL');  

    xlabel(str);  

    ylabel('ERROR (deg)');  

    grid;  
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    fig3 = figure;      % GRAPHIC OF MECHANISM  

    QX = [-r1/2 -r1/2+r2*sin(theta_o) r1/2-r2*sin(theta_o) r1/2];  

    QY = [0 r2*cos(theta_o) r2*cos(theta_o) 0];  

    v = [-.6*r1 .6*r1 -1.5*r2 r2];  

    H = plot(QX,QY,'- .');  

    set(fig3,'Position',[15 375 560 200]);  

    set(H,'linewidth',2.5);  

    set(H,'markersize',21);  

    axis(v);  

    axis equal;  

    title('KINEMATIC DIAGRAM OF STEERING MECHANISM');  

    grid;  

    % Print Summary  

    fprintf(1,'\n\n  ACKERMAN STEERING ERROR  \n\n');  

    fprintf(1,'VEHICLE:  %s \n\n',vehicle);  

    fprintf(1,'WHEELBASE:  %5.2f %s \n',L,munit);  

    fprintf(1,'TRACK:      %5.2f %s \n\n',t,munit);  

    fprintf(1,'TYPE OF STEERING MECHANISM:  %s \n\n',mech_type);  

    fprintf(1,'TRACK ARM LENGTH:        %6.3f %s \n',r2,munit);  

    fprintf(1,'STEERING ARM CENTERS:    %6.3f %s \n',r1,munit);  

    fprintf(1,'TRACK ROD LENGTH:        %6.3f %s \n',r3,munit);  

    fprintf(1,'NEUTRAL STEER ANGLE:      %5.1f deg \n\n',theta_o*180/pi);  

    fprintf(1,'MEAN SQUARE ERROR = %7.4f deg^2 \n\n',MSE);  

    fprintf(1,'MAX POS DEVIATION = %4.2f deg  AT RADIUS = %5.2f %s \n',...  

                        max_dev,Rf(max_dev_idx),runit);  

    fprintf(1,'MAX NEG DEVIATION = %4.2f deg  AT RADIUS = %5.2f %s \n\n',...  

                        min_dev,Rf(min_dev_idx),runit);  

end;  

  

 
Six-bar trail (Archibald, 2016) 

% 6B_trail.m  Data file for 6-Bar trailing rod mechanism 

  

mech_type = 'SIX-BAR TRAILING'; 
vehicle = 'ILALO'; 

  

%   Vehicle parameters 
L = 1.2;     % WHEELBASE 
t = 1.2;     % KINEMATIC TRACK 
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Rmin = 2;  % MINIMUM TURN RADIUS, in 

  

%   Mechanism parameters 
r1 = 0.6;              % BELL-CRANK PIVOT TO STEERING AXIS DISTANCE ON 

FRAME 
theta1 = 90*pi/180;     % ANGLE OF VECTOR R1 
r2 = 0.103;               % STEERING ARM LENGTH 
r3 = 0.528;                % TIE ROD LENGTH 
r4 = 0.14;               % BELL-CRANK ARM LENGTH 
theta_o = 168.0*pi/180; %151*pi/180;   % NEUTRAL STEER ANGLE   

 

Ackerman six-bar (Archibald, 2016) 

function [err, MSE] = Ackerman_6B_f(varargin);  
% Ackerman_6B --> computes steering error for 6-Bar steering 
% 
% Input Arguments 
%   fstr    string      % NAME OF SCRIPT FILE CONTAINING DATA 
% 
% 
%  DATA REQUIRED IN INPUT SCRIPT FILE: 
% Vehicle Parameters 
%  vehicle string          % NAME OF VEHICLE 
%  L       scaler          % WHEELBASE 
%  t       scaler          % KINEMATIC TRACK 
%  Rmin    scaler          % MINIMUM TURN RADIUS 
% 
% Mechanism parameters 
%  r1      scaler          % BELL-CRANK PIVOT TO STEERING AXIS DISTANCE ON  
%                               FRAME 
%  r2      scaler          % STEERING ARM LENGTH 
%  r3      scaler          % TIE ROD LENGTH 
%  r4      scaler          % BELL-CRANK ARM LENGTH 
%  theta_o scaler          % NEUTRAL STEER ANGLE FROM VEHICLE X-AXIS TO 
%                               STEERING ARM WHEN WHEELS STRAIGHT AHEAD 
%  theta1  scaler;         % ANGLE OF VECTOR R1 FROM BELL CRANK PIVOT TO 
%                               KINGPIN AXIS 
% 
%  unit    char            % INPUT LENGTH UNIT, EITHER 'M' OR 'I' 
%  output  char            % SWITCH TO SUPPRESS OUTPUT, EITHER 'Y' OR 'N' 
% 
% 
% Written By Mark Archibald         March, 2005 
%                                   Revised February 2012 
  
  
clear; 
% close all; 
  
mech_type = 'SIX-BAR LINKAGE'; 
  
% Check for optional arguments 
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if nargin == 0, 
    % SAMPLE FILES: (Matlab scripts that contain all parameter values) 
    mnu = menu('SELECT VEHICLE','DEFAULT SIX BAR TRAIL',... 
                                     'ENTER OTHER FILENAME'); 
    switch mnu 
    case 1, 
        sixbar_trail; 
    case 2, 
        fprintf('\n\nACKERMAN STEERING PROGRAM -- SIX BAR LINKAGE \n\n'); 
        fstr = input('ENTER FILE NAME: ','s'); 
        eval(fstr); 
end 
else, 
    % Data file passed to function 
    fstr = varargin{1}; 
    eval(fstr) 
end 
unit = 'm'; 
output = 'y'; 
% END INPUT SECTION  ..>................................................... 
  
% Establish R vector 
Rmax = 20; 
n = 50; 
I = (Rmax/Rmin)^(1/(n-1)) - 1; 
R = Rmin*(I+1).^(0:n-1)'; 
  
% Compute steer angles 
psi_o = 2*pi-theta_o; 
theta = theta_o - atan2(L,(R-t/2));     % Inside Wheel Angle 
psi_p = psi_o - atan2(L,(R+t/2));       % Theoretical Outside wheel angle 
  
% % Determine Neutral steer angle delta_o of bell crank 
C = r2*exp(i*theta_o) - r1*exp(i*theta1); 
Ca = abs(C); 
Cu = C./Ca; 
Cuxk = (imag(Cu) - i*real(Cu)); 
T = (r4^2-r3^2+Ca.^2)./(2*Ca); 
A1=sqrt(r4^2-T.^2).*Cuxk + T.*Cu;       % These are scalers corresponding 
A2=-sqrt(r4^2-T.^2).*Cuxk + T.*Cu;      % to the neutral steer position 
delA1 = angle(A1); 
delA2 = angle(A2); 
if abs(theta_o) < pi/2,  % If TRUE, choose solution with angle closest to 0 
    if abs(delA1) < abs(delA2),  
        delta_o = delA1; 
    else 
        delta_o = delA2; 
    end 
else                       % ELSE choose solution with angle closest to pi 
    if abs(delA1) > abs(delA2),  
        delta_o = delA1; 
    else 
        delta_o = delA2; 
    end 
end 
delta_o = delta_o + (sign(delta_o)-1)*(-pi);  % Convert from (-pi to pi) to 
(0 to 2*pi) 
  
% solve first Chase equation for del -- bell crank angle, inside wheel 
C = r2*exp(i*theta) - r1*exp(i*theta1); 



 

157 
 

157 

Ca = abs(C); 
Cu = C./Ca; 
Cuxk = (imag(Cu) - i*real(Cu)); 
T = (r4^2-r3^2+Ca.^2)./(2*Ca); 
A1=sqrt(r4^2-T.^2).*Cuxk + T.*Cu; 
A2=-sqrt(r4^2-T.^2).*Cuxk + T.*Cu; 
delA1 = angle(A1); 
delA2 = angle(A2); 
if abs(theta_o) < pi/2,  % If TRUE, choose solution with angle closest to 0 
    if abs(delA1) < abs(delA2),  
        deli = delA1;       % deli = actual angle of bell crank (inside  
    else                    % wheel 
        deli = delA2; 
    end 
else                       % ELSE choose solution with angle closest to pi 
    if abs(delA1) > abs(delA2),  
        deli = delA1; 
    else 
        deli = delA2; 
    end 
end 
delio = deli + (sign(deli)-1)*(-pi);  % Convert from (-pi to pi) to (0 to 
2*pi) 
del = delta_o-deli;        % del = relative angle of bell crank wrt neutral 
steer 
delo = delta_o+del;        % delo = del reflected about delta_o (for 
outside wheel) 
  
% Solve second Chase eqn for outside wheel angle (actual) 
C = r1*exp(i*theta1) + r4 *exp(i*delo); 
Ca = abs(C); 
Cu = C./Ca; 
Cuxk = (imag(Cu) - i*real(Cu)); 
T = (r2^2-r3^2+Ca.^2)./(2*Ca); 
A1=sqrt(r2^2-T.^2).*Cuxk + T.*Cu; 
A2=-sqrt(r2^2-T.^2).*Cuxk + T.*Cu; 
psiA1 = 2*pi - unwrap(angle(A1)); 
% % if (psiA1(1)-psi_p(1)) > pi*15/8, 
% %     psiA1 = psiA1 - 2*pi; 
% % elseif (psiA1(1)-psi_p(1)) < -pi*15/8, 
% %     psiA1 = psiA1 + 2*pi; 
% % end; 
psiA2 = 2*pi - unwrap(angle(A2));  
% psiA1 = angle(A1); 
% psiA2 = angle(A2); 
% psiA1 = psiA1 + (sign(psiA1)-1)*(-pi);  % Convert from (-pi to pi) to (0 
to pi) 
% psiA2 = psiA2 + (sign(psiA2)-1)*(-pi); 
if psiA1(n) < 2*pi, 
    if psiA1(n) > psi_o, 
        psi = psiA2; 
    else 
        psi = psiA1; 
    end 
else 
    psiA1 = psiA1 - 2*pi; 
    if psiA1(n) > psi_o, 
        psi = psiA2; 
    else 
        psi = psiA1; 
    end 
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end 
if psi(n) > 2*pi, 
    psi = psi - 2*pi; 
end 
  
% Compute Error 
err = 180*(psi_p - psi)/pi; 
MSE = mean(err.^2); 
[max_dev, max_dev_idx] = max(abs(err)); 
  
% Compute steer angles and max steer angles 
steer_i = theta_o-theta;        % Actual inside wheel steer angles 
steer_o = psi_o-psi;            % Actual outside wheel steer angles 
max_steer_Ack = atan2(L,R)    % Ackerman steering angles 
max_steer_i = max(steer_i);     % 
max_steer_o = max(steer_o);     % Steering angles at minimum turn radius 
max_Ack = max(max_steer_Ack);   % 
max_delta = (delta_o-delio(1)); % 
  
  
% Output Results 
if (output == 'y') | (output == 'Y'), 
    close ALL; 
    clc; 
     if lower(unit) == 'm', 
        runit = 'm'; 
        munit = 'mm'; 
        r1 = r1*1000;   % convert kinematic dimensions to mm 
        r2 = r2*1000; 
        r3 = r3*1000; 
        r4 = r4*1000; 
        L = L*1000; 
        t = t*1000; 
        Rf = R; 
    else 
        runit = 'ft'; 
        munit = 'in'; 
        Rf = R/12;              % Radius in feet 
    end 
     
    % Plot results 
    Rf = R;              % Radius in feet 
    plot(Rf,psi_p*180/pi,'bx-',Rf,(psi)*180/pi,'r.');  
    fig1 = gcf; 
    set(fig1,'Position', [990 200 560 420]) 
    title('STEERING ANGLE FOR OUTSIDE WHEEL'); 
    xlabel('TURN RADIUS (m)'); 
    ylabel('OUTSIDE WHEEL ANGLE (deg)'); 
    grid; 
    legend('DESIRED FUNCTION', 'ACTUAL FUNCTION',0); 
     
    fig2 = figure; 
    plot(Rf,err,'.-'); 
    set(fig2,'Position', [990 150 560 420]) 
    title('STEERING ANGLE ERROR FOR OUTSIDE WHEEL'); 
    xlabel('TURN RADIUS (m)'); 
    ylabel('ERROR (deg)'); 
    grid; 
     
    fig3 = figure;      % GRAPHIC OF MECHANISM 
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    QX = [-r1*sin(theta1) -r1*sin(theta1)+r2*sin(theta_o) 
r4*sin(delta_o)... 
        0 -r4*sin(delta_o)  r1*sin(theta1)-r2*sin(theta_o) r1*sin(theta1)]; 
    QY = [-r1*cos(theta1) -r1*cos(theta1)+r2*cos(theta_o) 
r4*cos(delta_o)... 
        0 r4*cos(delta_o) -r1*cos(theta1)+r2*cos(theta_o) -r1*cos(theta1)]; 
    v = [-1.2*r1 1.2*r1 -1.5*r2 r2]; 
    H = plot(QX,QY,'- .'); 
    set(fig3,'Position',[15 375 560 200]); 
    set(H,'linewidth',2.5); 
    set(H,'markersize',21); 
    axis(v); 
    axis equal; 
    title('KINEMATIC DIAGRAM OF STEERING MECHANISM'); 
          
    % Print Summary 
    fprintf(1,'\n\n  ACKERMAN STEERING ERROR  \n\n'); 
    fprintf(1,'VEHICLE:  %s \n\n',vehicle); 
    fprintf(1,'TYPE OF STEERING MECHANISM:  %s \n\n',mech_type);     
    fprintf(1,'FRAME LENGTH:            %6.3f in \n',r1); 
    fprintf(1,'FRAME ANGLE:              %5.1f deg \n',theta1*180/pi); 
    fprintf(1,'TRACK ARM LENGTH:        %6.3f in \n',r2); 
    fprintf(1,'NEUTRAL STEER ANGLE:      %5.1f deg \n',theta_o*180/pi); 
    fprintf(1,'TIE ROD LENGTH:          %6.3f in \n',r3); 
    fprintf(1,'BELL CRANK LENGTH:       %6.3f in \n',r4); 
    fprintf(1,'BELL CRANK ANGLE:         %5.1f deg \n\n',delta_o*180/pi); 
    fprintf(1,'MAX INSIDE WHEEL ANGLE:   %5.1f deg \n',max_steer_i*180/pi); 
    fprintf(1,'MAX OUTSIDE WHEEL ANGLE:  %5.1f deg \n',max_steer_o*180/pi); 
    fprintf(1,'MAX ACKERMAN ANGLE:       %5.1f deg \n',max_Ack*180/pi); 
    fprintf(1,'MAX STEERING INPUT:       %5.1f deg \n\n',max_delta*180/pi); 
    fprintf(1,'MEAN SQUARE ERROR = %7.4f deg^2 \n\n',MSE); 
    fprintf(1,'MAX DEVIATION = %4.2f deg  AT RADIUS = %5.2f ft 
\n\n',max_dev,Rf(max_dev_idx)); 
end; 
 
 
 
High-speed cornering, rollover and pitchover  (Archibald, 2016) 

  
clc;  

clear;  

close all;  

   

% INPUT SECTION   

% Input Trike Data  

vehicle = 'ILALO';  

m = 100;                 % Total mass, kg  

type = 'TADPOLE';  

 L = 1.2;      % Wheelbase, m  

 t = 1.2;       % Track, m   

 b = .45;       % CG location from rear axle, m  

 h = .5;       % CG height, m  
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% Input Tire Properties  

Af = .2532;     % 1st Cornering stiffness coefficient, front  

Bf = .000211;   % 2nd Cornering stiffness coefficient, front  

Ar = .2532;     % 1st Cornering stiffness coefficient, rear  

Br = .000211;   % 2nd Cornering stiffness coefficient, rear  

mup = .95;       % Peak brake coefficient  

mus = .8;       % Slide brake coefficient  

   

% Input Test Radius  

R = 4;          % Skid pad circle radius, m  

Vmax = 8;      % Max test speed, m/s  

% END INPUT SECTION   

% Constants  

g = 9.81;        % m/s^2  

   

% Calculations  

V = (2:.1:Vmax)';     % Test speed, m/s  

ay = V.^2/R;  

   

   

boL = b/L;     % Aft CG ratio, b/L  

hoT = 2*h/t;   % Height over half track ratio  

hoL = h/L;     % Height over Wheelbase ratio h/L  

   

lay = length(ay);  

% for i=1:lay,  

%     say(i,:) = sprintf('LATERAL ACCEL = %5.2f G \n',ay(i)/g);  

% end;  

   

if type == 'TADPOLE';  

    % Cornering Stiffness  

    Wf = m*g*boL;  

    Wr = m*g*(1-boL);  

    Caf = 2*(Af*Wf/2-Bf*(Wf/2).^2);  

    Car = Ar*Wr-Br*(Wr.^2);  

    Ktire = Wf./Caf - Wr./Car;  

    DFz = m*(hoT/2)*ay;    

    Kllt = (Wf./Caf.^2)*(2*Bf*DFz.^2);  

    K = Ktire + Kllt;  

      



 

161 
 

161 

    % Rollover Threshold  

    Rollg = boL/hoT;        % G's  

    Roll  = g*boL/hoT;      % m/s^2  

      

elseif type == 'DELTA  ',  

    Wf = m*g*boL;  

    Wr = m*g*(1-boL);  

    Caf = Af*Wf-Bf*(Wf.^2);  

    Car = 2*(Ar*Wr/2-Br*(Wr/2).^2);  

    Ktire = Wf./Caf - Wr./Car;  

    DFz = m*(hoT/2)*ay;  

    Kllt = -(Wr./Caf.^2) * (2*Bf*DFz.^2);  

    K = Ktire + Kllt;  

      

    % Rollover Threshold  

    Rollg = (1-boL)/hoT;       % for g's   

    Roll = g*(1-boL)/hoT;      % for m/s^2  

          

else  

    fprintf('ERROR ! WRONG TYPE ENTERED \n\n');  

    return;      

end;  

   

% Pitchover Threshold  

    Pitchacc = g*boL/hoL;  

    Pitchbrk = g*(1-boL)/hoL;  

          

% Critical Speed  

    vcr = sqrt(-180*L*g./(pi*K));  

      

% Characteristic Speed  

    vchar = sqrt(180*L*g./(pi*K));  

     

% Steer Angle Delta  

    del = (180/pi)*(L/R) + K.*ay;   % deg    

   

% Prepare Reference Graph Data  

delack = 180/pi*L/R*ones(1,2);  

Vdelack = [V(1) V(length(V))];  

delack2 = 2*delack;  

rolltic = sqrt(R*Roll)*ones(1,2);  
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title1 = sprintf('%s: UNDERSTEER GRADIENT (Ktire + Kllt) VS SPEED, R = %4.1f 

m'...  

    ,vehicle,R);  

title2 = sprintf('%s: STEER ANGLE VS SPEED, R = %4.1f m',vehicle,R);  

title3 = sprintf('%s: LATERAL ACCELERATION VS SPEED, R = %4.1f 

m',vehicle,R);  

      

% Output Results  

   

fprintf(1,'\nTRICYCLE HANDLING EVALUATION \n\n');  

fprintf(1,'VEHICLE:       %s \n',vehicle);  

fprintf(1,'TYPE OF TRIKE: %s \n\n',type);  

   

    fprintf(1,'TOTAL MASS:   %5.2f kg \n',m);  

    fprintf(1,'WHEELBASE:    %5.3f m \n',L);  

    fprintf(1,'TRACK:        %5.3f m \n',t);  

    fprintf(1,'CG HEIGHT:    %5.3f m \n',h);  

    fprintf(1,'CG LOCATION:  %5.3f m \n\n',b);  

    fprintf(1,'STATIC WEIGHT FRACTION, REAR:     %4.1f %% \n',100*(1-boL));  

    %fprintf(1,'CRITICAL SPEED:                   %5.3f m/s \n',vcr);  

    fprintf(1,'ROLLOVER THRESHOLD:               %5.3f G''s \n',Rollg);  

    fprintf(1,'BRAKE PITCHOVER THRESHOLD:        %5.3f G''s 

\n',Pitchbrk/g);  

    fprintf(1,'ACCELERATION PITCHOVER THRESHOLD: %5.3f G''s 

\n\n',Pitchacc/g);  

      

plot(V,K/g,'r',Vdelack,zeros(1,2),'b');  

%plot(ay/g,K/g,'r')  

fig1 = gcf;  

set(fig1,'Position', [1200 50 560 420])  

grid;  

xlabel('SPEED m/s');  

%xlabel('LATERAL ACCELERATION (G)');  

ylabel('UNDERSTEER GRADIENT K (deg/m/s^2)');  

title(title1);  

% legend(say);  

    

fig2 = figure;  

plot(V,del,'r',Vdelack,delack,'b',Vdelack,delack2,'g');  

vax = axis;  

hold on;  
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plot(rolltic,vax(3:4),'k','linewidth',2);  

hold off  

fig1 = gcf;  

set(fig1,'Position', [25 50 560 420])  

grid;  

xlabel('SPEED m/s');  

ylabel('STEER ANGLE (deg)');  

title(title2);  

legend('STEER ANGLE','ACKERMAN ANGLE','2X ACKERMAN',...  

    'ROLLOVER THRESHOLD','location','SouthEast')  

   

fig3 = figure;  

plot(V,ay/g,'r');  

set(fig3,'Position', [600 50 560 420]);  

vax = axis;  

hold on;  

plot(rolltic,vax(3:4),'k','linewidth',2);  

hold off  

xlabel('SPEED m/s');  

ylabel('LATERAL ACCELERATION G''s');  

title(title3);  

grid;  

  

  
Gear Development (Archibald, 2016) 

function G = gear_test(varargin) 

% INPUT VARIABLES 

% Units:'I' for gear-inches 

%       'M' for meters development 

%                    

% OUTPUT VARIABLES 

%   G = Matrix of gear development  

% 

% Calulates the gears for bicycle drivetrains.  Gears are  

% plotted on log scale to compare effort for each gear.  Speeds  

% corresponding to low, high, and medium cadence are also plotted for 

% each gear. 

  

clc; 

close all; 
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fprintf('\n\nBICYCLE GEAR CALCULATOR \n\n'); 

  

% INPUT DATA  

vehicle = "Ilalo";                           % Vehicle name 

sec_width = 54;                              % Tire Section Width [mm] or 

[in] 

BSD = 559;                                   % Bead Seat Diameter [mm] or 

[in] 

chain = [40, 30, 22];                        % Row Vector of chainring 

sizes (may be scaler for single) 

free = [25, 23, 21, 19, 17, 15, 13, 12, 11]; % Row Vector for number of 

teeth on each freewheel cog 

cad = [90,135, 50];                          % Row vector for Cadence:  

Nominal, Max, Min (rpm)  

  

  

% Basic Calculations 

nf = length(free); 

wheel = (BSD+2*sec_width)/25.4;                % Wheel diameter, inches 

lc = length(chain); 

  

% Calculate gearing 

G = wheel*chain'./free; 

LO = min(min(G)); 

HI = max(max(G)); 

RANGE = HI/LO; 

  

% Convert Units if required 

unit = 'meters'; 

units = 'm'; 

%if ~isempty(varargin)  % Check for optional argument 

 %   units = varargin{1}; % Store unit switch  

  %  if lower(units) == 'm' 

        %unit = 'meters'; 

        conv = pi/39.37;  % conversion factor from gear-inches to meters 

dev. 

        G = G*conv; 

        LO = LO*conv; 

        HI = HI*conv; 

  %  end 
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%end 

  

% OUTPUT RESULTS  ......................................................... 

clc; 

fprintf('\n\nBICYCLE GEAR CALCULATOR \n\n'); 

fprintf(1,'    VEHICLE:  %s \n',vehicle); 

fprintf(1,'DRIVE WHEEL:  %2i-%3i ISO\n',sec_width,BSD); 

fprintf(1,'   LOW GEAR:  %4.1f %s \n',LO,unit); 

fprintf(1,'  HIGH GEAR:  %5.1f %s \n',HI,unit); 

fprintf(1,'      RANGE:  %4.2f \n\n',RANGE); 

fprintf('CHAINRING TOOTH NUMBERS: \n'); 

disp(chain); 

fprintf('CASSETTE TOOTH NUMBERS: \n'); 

disp(free); 

  

fprintf(1,'\nGEARS (%s) \n\n',unit); 

if lc == 1 

    fprintf('     %5.1f \n',G); 

elseif lc == 2 

    fprintf('      HIGH       LOW \n'); 

    fprintf('     %5.1f      %5.1f \n',G); 

elseif lc == 3 

    fprintf('     HIGH        MID       LOW \n'); 

    fprintf('     %5.1f      %5.1f     %5.1f \n',G); 

end 

  

close; 

gear_plot(G,chain,free,vehicle,unit); 

  

fig2 = figure; 

[Vnom, Vmin, Vmax] = gear_speed(G,cad,vehicle,units); 

set(gcf,'Position',[20 400 750 500]); 

  

function [Vnom,Vmin,Vmax] = gear_speed(G,cad,vehicle,units) 

%  

% Computes speeds for bicycle with gearing specified 

% 

% INPUT VARIABLES 

% Variable      Size        Description     

% G             (i,j)       Gear inches i = # chainrings, j = # sprockets 

% cad           (3)         Cadence [nominal, max, min] 
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% vehicle       string      Name of vehicle 

% units         string      System of Units for G:  'I' for inches,  

%                                                   'M' for  meters 

% 

% OUTPUT VARIABLES 

% Vnom          (i,j)       Bike speed in each gear for nominal cadence 

% Vmax          (i,j)       Bike speed in each gear for maximum cadence 

% Vmin          (i,j)       Bike speed in each gear for minimum cadence 

  

  

[i,j] = size(G); 

  

% F is a conversion factor for speed 

if lower(units) == 'm' 

    F = 1/(60);       % m/s 

    vunit = 'm/s'; 

    unit = 'm'; 

else 

    F = pi*60/(12*5280);    % mph 

    vunit = 'mph'; 

    unit = 'in'; 

end 

  

Vnom = G*cad(1)*F; 

Vmax = G*cad(2)*F; 

Vmin = G*cad(3)*F; 

  

% Plotting matrices 

hold off; 

p = ['bx-'; 'gx-'; 'rx-'; 'kx-'; 'cx-'; 'mx-']; 

for k = 1:i 

    V1 = [Vmin(k,:);Vnom(k,:);Vmax(k,:)]; 

    G1 = [G(k,:); G(k,:); G(k,:)]; 

    plot(G1,V1,p(k,:),'linewidth',2,'markersize',12); 

    hold on 

end 

  

% Axis values 

LL = min(min(G)); 

HL = max(max(G)); 

wG = size(G); 
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wG = min(wG); 

lG = length(G); 

v2 = 10*ceil(HL/10); 

if LL < 20 

    v1 = floor(LL); 

else 

    v1 = 10*floor(LL/10); 

end 

vm = max(max(Vmax)); 

avm = 10*(floor(vm/10) + 1); 

A = [v1 v2 0 avm]; 

axis(A); 

  

grid; 

xstr = sprintf('Gear Development (%s)',unit'); 

ystr = sprintf('Speed (%s)',vunit'); 

xlabel(xstr); 

ylabel(ystr); 

titstr = sprintf('%s\nSPEED RANGES FOR EACH GEAR',vehicle); 

title(titstr); 

ax = gca; 

ax.FontSize = 16; 

  

function gear_plot(G,chain,free,vehicle,unit) 

% gear_plot(G)  Plot options for gearing programs 

% 

% Input Variables 

% 

%   G   Matrix  Matrix of gear numbers 

%   chain       Vector of chainring tooth numbers 

%   free        Vector of freewheel tooth numbers 

%   vehicle     Vehicle name 

  

LL = min(min(G)); 

HL = max(max(G)); 

wG = size(G); 

wG = min(wG); 

lG = length(G); 

  

str1 = sprintf('%2.0f ',chain); 

titstr = sprintf('%s \nEQUIVALENT CHAINRING SIZES: %s TEETH',vehicle,str1); 
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o = ones(lG,1)*(1:wG); 

cf = semilogx(G',o); 

  

set(gcf,'Position',[20 100 750 200]) 

h = findobj('Type','Line'); 

switch wG 

    case 1 

        set(h(1),'Marker','o'); 

        legstr = ['SPEED 1']; 

    case 2 

        set(h(1),'Marker','o');         

        set(h(2),'Marker','s'); 

        legstr = ['SPEED 1'; 'SPEED 2']; 

    case 3 

        set(h(1),'Marker','o');         

        set(h(2),'Marker','s'); 

        set(h(3),'Marker','d'); 

        legstr = ['SPEED 1'; 'SPEED 2'; 'SPEED 3']; 

    case 4 

        set(h(1),'Marker','o');         

        set(h(2),'Marker','s'); 

        set(h(3),'Marker','d'); 

        set(h(4),'Marker','v'); 

        legstr = ['SPEED 1'; 'SPEED 2'; 'SPEED 3'; 'SPEED 4']; 

    case 5 

        set(h(1),'Marker','o');         

        set(h(2),'Marker','s'); 

        set(h(3),'Marker','d'); 

        set(h(4),'Marker','v'); 

        set(h(5),'Marker','*'); 

        legstr = ['SPEED 1'; 'SPEED 2'; 'SPEED 3'; 'SPEED 4'; 'SPEED 5']; 

end 

  

set(cf,'Linestyle','none'); 

set(cf,'MarkerSize',10); 

set(cf,'LineWidth',2); 

grid; 

  

title(titstr); 

xstr = sprintf('Gear Development (%s) (Log Scale)',unit); 

xlabel(xstr); 
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ylabel('Chainring'); 

ax = gca; 

ax.FontSize = 16; 

  

v2 = 10*ceil(HL/10); 

if LL < 20 

    v1 = floor(LL); 

    xtic = v1:2:20; 

else 

    v1 = 10*floor(LL/10); 

    xtic = v1; 

end 

v = [v1 v2 0 wG+1]; 

axis(v); 

ha = gca; 

if v2 <= 100 

    if xtic >= 30 

        xtic = (30:10:v2); 

    else 

        xtic = [xtic 30:10:v2]; 

    end 

else 

    xtic = [v1:10:100 120:20:v2]; 

end 

  

set(ha,'XTick',xtic); 

set(ha,'YTick',1:wG); 

  

cogs = sprintf('Cassette Cogs: %s ',num2str(free)); 

text(v1+1,.3,cogs,'backgroundColor','White','Edgecolor','k'); 

legend(legstr); 
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Arduino Codes 

Parking Brake (Roumega, 176) 

#include <Servo.h> 

Servo myservo;  

int pos = 0;  

int state; int flag=0; 

void setup()  

{  

myservo.attach(9);  

Serial.begin(9600); 

myservo.write(60);  

delay(1000); } 

void loop() 

{  

if(Serial.available() > 0) 

{  

state = Serial.read(); 

flag=0;  

}     // if the state is '0' the DC motor will turn off  

if (state == '0') 

{  

myservo.write(8);  

delay(1000);  

Serial.println("Break Locked");  

}  

else if (state == '1')  

{  

myservo.write(55);  

delay(1000);  

Serial.println("Break Unlocked");  

}  

} 
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Appendix B – Project Management 

Material and Component Selection Tables 

Material Selection Table 
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 Automatic Control Selection Table 
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Drive Train Selection Table 
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Steering System Selection Table 
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Steering Input Selection Table 
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Chassis Selection Table 
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Design for Manufacturing 
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Gantt Chart   
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Budget and Expenses Report  
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Appendix C – Maintenance and Operating Manual 

Operation Manual  

 

1. Place the vehicle on a leveled surface.   

2. Put on a protective helmet (preferably a DOT approved one).  

3. Pass one leg over the main frame and in front of the seat.   

4. Place your body on the seat.   

5. Secure the seat belt properly by tightening the straps.  

6. Take your cell phone and turn the Bluetooth on. Then, secure the phone into a safe 

place.   

8. Place your feet over the pedals.   

9. Using Romoremo app, unlock the parking brake (this will give you 2 seconds to push 

the pedals).  

Main Frame 

Seat 

Seatbelt strap 

Pedals 

Levers 
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10. Grab the levers placed to your side and Start pedaling.  

11. Select the gear you feel comfortable pedaling with.   

12. To steer right, bring the right arm closer to your body.   

13. To steer left, bring the left arm closer to your body.   

14. To brake with the rear wheel, pull the brake lever on the right handle.   

15. To brake with the front wheels, pull the brake lever on the left handle. Be careful when 

using this break at turns or high speeds, as it can destabilize the vehicle.  

16. Before exiting the vehicle, while at a full stop, use the Romoremo app to lock the 

parking brake.  

17. To exit the vehicle, unbuckle the seat belt and proceed to remove one leg from the 

vehicle first, and then use it to balance yourself while you pull outwards.  

 

Caution - Operational Warnings  

• Never expose a limb outside of the vehicle frame while in movement.  

• Always secure a proper fit of the helmet and seat belt.  

• Be careful when using the front brake at turns or high speeds, as it can destabilize the 

vehicle.  

• Be aware of your surroundings always.  

• Do not attempt to operate the vehicle with headphones, since it reduces awareness of 

the surroundings.  

• Never use the cell phone or other distracting objects while riding the vehicle.  

• In case of collision or roll:  

• Try to keep all the limbs inside the frame of the vehicle.  

• Reduce the neck injury risk by using your hands to emulate a neck brace.  

• Exit the vehicle moving slowly, being extra careful with debris.  
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• Reduce speeds in wet conditions.  

  

Maintenance Manual  

Readjustments after the first outing   

• Bolt and screws tightening once the first outing is complete the tightening of the screws 

should be checked using a 10 mm Allen wrench and a 13mm and 14 mm hexagonal 

wrenches.  

 

Cleaning and Greasing  

• Cleansing: This process should be using a 100% cotton wipe that will be moisturized 

just with water, if you prefer to use a small amount of soap. If the vehicle is very dirty or 

covered in mud, use a garden hose with a powerful but tight water jet.  

• Make sure to not point the waterjet to the wheel bushings, chain or direction 

bearings and rods, if these elements get wet their lifetime will be decreased.  

• Once the vehicle is clean, proceed to drying with a clean and dry wipe, if disponible 

use an air compressor to accelerate the drying step.   

• Degrease: Before proceeding to grease certain mechanical parts of the vehicle, it is 

necessary to degrease them thoroughly. In the case of the chain, it will be degreased with a 

specific product, or with a brush soaked in gasoline. Other items likely to degrease are the 

pinions and chainrings. After degreasing, a clean cloth should be passed to remove all 

product residue. There is no need to degrease indiscriminately, there are bearings that are 

self-lubricated, and a degreasing product could make them lose their qualities. It must be 

done individually and carefully.  

• To clean the chain and other fine components, cotton ear buds must be used.   
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• Grease: The same type of lubricant is not used for all components. For the steering and 

hubs solid grease is used, while for the chain it is liquid petroleum jelly or special chain 

oil.  

• Do not use 3 in 1 oil, this type of oil will dry immediately and that is not convenient. 

The use of WD-40 is not recommended for the chain because dirt will stick to it 

and the chain will end up destroyed, and the pinions and chainrings will be 

damaged as well. WD-40 is useful in drive shafts. Oil and spray must be applied 

close to the target point.  

 

Brakes  

• Removing the brakes: To clean and adjust the brakes, it is necessary to follow the 

following steps to remove them:  

a. The cable is loosened in the handle (with the relevant wheel), then the cam cable is 

released that does not have a screw, it is pressed, and the other screw is loosened. 

Now it will be removed with an Allen key, you should look at how the springs are 

because there is one longer than the other. the short anger inserted in the cam, and 

the length in the frame. also note which hole the cables were in. finally remove the 

shoes, to change or clean them, with an Allen key and a flat one.  

• Cleansing: The cleansing process is very similar to the other components. Clean with a 

cloth slightly moistened with water or degreaser. It is convenient to clean the internal 

springs well, because a lot of dirt is stored there.  

• Grease:  Solid grease will be made inside the spring, and the bolts will also be coated.  

• Mounting: The cams will be mounted without the shoes first. The springs are placed on 

the cams (the longest spout outwards) and will fit naturally into the stud of the frame.  
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• The shoes: When a shoe is new it has a small shiny layer in the braking zone that does 

not give very good performance at first. The same occurs when it is used and there is a 

crystallization of the rubber on its surface. In both cases, it is solved by gently sanding 

the rubber to leave it virgin.  

• The cables: It is recommended to change the cables every two brake changes, including 

the covers. The small tension wheels on the handles are loosened two or three turns, to 

tighten the cable further, and the cam cable that does not have a screw is put on. Then 

the cams are brought together with one hand and the screw is tightened with the other 

hand. The vehicle will be fully braked, now the small wheel is released one turn at 

a time to adjust the brake. 
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