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RESUMEN 

A lo largo de los años, la captura ilegal de tiburones en el Océano Pacífico ha aumentado 

drásticamente, hasta el punto en que el tiburón martillo se ha convertido en una especie en 

peligro de extinción. El monitoreo para esta especie es un procedimiento bastante complicado 

debido a que la mayoría de los métodos utilizados para este proceso son invasivos. Dadas estas 

circunstancias, los biólogos marinos optaron como solución usar cámaras subacuáticas para 

hacer este análisis directamente de los videos, pero este sigue siendo un proceso lento y costoso. 

Una herramienta importante e innovadora para resolver este problema es mediante el uso de 

métodos automatizados. En este artículo, se aplicó un detector de objetos basado en Regiones 

más rápidas con redes neuronales convolucionales (R-CNN más rápido) para detectar tiburones 

martillo obtenidos de videos y bases de datos de imágenes. La capacitación utilizó como 

extractor de funciones el ResNet50, que es una red neuronal convolucional con 50 capas de 

profundidad, para obtener un detector exitoso y aplicarlo en un rastreador en tiempo real para 

observar el comportamiento y el movimiento de las comunidades de tiburones martillo. El 

trabajo consistió en crear una base de datos lo suficientemente grande con imágenes 

etiquetadas, preprocesar estas imágenes, lo que significa cambiar su tamaño con la restricción 

de red de características y crear un conjunto de datos aumentado para mejorar las condiciones 

de entrenamiento. Después de eso, el detector fue entrenado usando un R-CNN más rápido el 

cual crea un sistema de seguimiento de objetos en tiempo real para observar tiburones martillo 

bajo el agua, con imágenes obtenidas con el mínimo efecto en el ecosistema. Se obtuvo una 

precisión promedio del 90% con todas las imágenes de prueba utilizadas en la experimentación. 

 

Palabras claves: R-CNN más rápido, aprendizaje profundo, seguimiento de objetos, detección 

de objetos, detección y seguimiento de tiburones martillo, detector en tiempo real, ResNet50. 
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ABSTRACT 

Over the years the illegal catch of sharks in the Pacific Ocean has drastically increased, to the 

point where the Scalloped Hammerhead Shark has become an endangered species. The 

monitoring of these for this endangered species is a very difficult procedure due to the fact that 

most of the methods used for this process are invasive. Given this circumstances marine 

biologists have chosen as solution the use of underwater cameras to make this analysis directly 

from videos, but this is still a slow and expensive process. An important and innovative tool 

for solving this problem is by using automated methods. In this paper, an object detector based 

on faster Regions with convolutional neural networks (faster R-CNN) was applied to detect 

hammerhead sharks obtained from videos and image datasets. The training used as a feature 

extractor the ResNet50, which is a Convolutional Neural Network with 50 layers deep, to 

obtain a successfully detector and to apply this in a real time tracker to observe the behavior 

and movement of hammerhead shark communities. The work consisted on creating a large 

enough database with labeled images of hammerhead sharks, pre-process these images, which 

means to resize them with the feature network restriction, and create an augmented dataset as 

well to improve training conditions. After that, the detector was trained by using a Faster R-

CNN and this create an object tracking system in real time to observe hammerhead sharks 

underwater, with footage obtained with the minimum effect on the ecosystem. An average 

accuracy of 90% was obtained with all the testing images used in the experimentation. 

 

Key Words: Faster R-CNN, Deep Learning, Object Tracking, Object Detection, hammerhead 

shark detection and tracking, real-time detector, ResNet50.  
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INTRODUCTION 

Marine species, such as sharks, contribute significantly to the preservation of healthy 

marine ecosystems (Sharma, Scully-Power & Blumenstein, 2018).  The Galapagos Marine 

Reserve (RMG) protects some of the last shark aggregations that remains in the world 

(Chiriboga, 2018). Among the fish types that are key to the RMG, both at an ecological and 

tourist level, a large number of shark species can be found, including hammerhead sharks 

(Sphyrna lewini) (Vilema, 2015). 

Data related to the quantity and spreading of these species are important when it comes 

to monitoring their status and condition. Although there are manual methods used to estimate 

the size of these shark populations and their taxonomy, they may involve invasive and time-

consuming measures, some examples of this are physical catch and release fishing sampling 

and underwater visual census made by divers. Video monitoring, on the other hand, has gained 

popularity over the years for being a method that prevents invading and destroying these 

ecosystems. However, this analysis is a slow and expensive process. A solution to solve this 

problem can be system for recognizing these species automatically, this will improve the 

analysis efficiency. (Siddiqui et al., 2017). 

Research on marine species recognition is not a very commun area on computer vision, 

but with recent developments of deep learning, the interest on these topics has increase. (Xu, 

Bennamoun, An, Sohel & Boussaid, 2019). Deep Learning is considered a machine learning 

technique, that works as a neural network extension, where a computer model acquires the 

knowledge to perform classification tasks directly from images, texts, or sound (MathWorks). 

Where a computer model learns representations of data with multiple levels of abstraction 

(Kim, 2017). These methods fed the machine with raw data and to discover important 

representations for detection or classification automatically (LeCun, Bengio & Hinton, 2015). 
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There are diferent types of deep learning architectures, some of these are: recurrent 

neural networks (RNN), long short term memory networks (LSTM), convolutional neural 

networks (CNN), deep belief networks (DBN), deep sparse-coded Networks (DSN) among 

others. These architectures are applied in a wide range of scenarios. A CNN, can be used for 

image recognition and video analysis (Jones, 2017). One deep learning approach is the so called 

regions with convolutional neural networks (R-CNN), which trains end-to-end CNNs to 

categorize rectangular region proposals into object or background (Ren, He, Girshick & Sun, 

2015). There are three variants of a R-CNN (R-CNN, Fast R-CNN, Faster R-CNN). Each one 

attempts to optimize or speed-up the results of the processes (MathWorks). For this work, we 

will use the Faster R-CNN for detection and tracking of scalloped hammerhead sharks. 

Object detection is considered a challenging problems of computer vision. (Liu et al., 

2018).  The purpose of this method is to determine the location of objects in a given image 

(Zhao, Zheng, tao Xu & Wu, 2019). On the other hand, object tracking is an automatic 

estimation of the trajectory of an object around the video footage (Wang & Yeung, 2013). 

Despite the progress that has been made in this area in recent years, this methos are still a 

challeng, due to the object appearance variation caused by illumination variations, obstructions, 

change possess, cluttered scenes, backgrounds and others (Chen et al., 2015). In this project 

we want to detect the location of hammerhead sharks on video images which were taken at the 

Galapagos Islands.  
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MATERIALS AND METHODS 

Faster R-CNN detection network 

A Faster R-CNN is composed by a feature extraction network which is a pretrained 

CNN, on this case a Residual Neural Network (ResNet50), followed by two subnetworks, a 

RPN and a second proposal network to predict the class of each object (MathWorks). 

The RPN is designed to predict region proposals. It takes an image as input and gives a 

set of rectangular proposals as outputs, each one with a probability score (Ren et al., 2015). 

For this process, it is important to use anchor boxes, the number of anchor is obtained by 

calculating the mean intersection-over-union (IoU), which is the area of overlap between the 

prediction and the training data divided by the area of union between the prediction and the 

ground truth, of the training data. It is important to use a number of boxes that give as result a 

mean IoU greater than 0.5, this will ensure that the anchor boxes overlap with the boxes in the 

training data (MathWorks).   

The training of the RPN consist on setting the anchor boxes and the training data boxes. 

The anchors with the highest IoU that overlap with a training data box will be labeled as 

foreground, and they will pass to the next level (ROI pooling) as proposals (Ren et al., 2015). 

The region of interest (ROI) pooling layer accepts the convolutional features generated 

by the CNN and the predicted bounding boxes given by the RPN (Ren et al., 2015), to produce 

a set of matting on the feature maps according to the proposal boxes, for which it scales them 

to a pre-defined size (Yan, Chen, Chen, Kendrick & Wu, 2018). The process done up to the 

ROI pooling corresponds to feature extraction. The results of this process pass then to the object 

classification, where the classification layers take the output produced by the ROI pooling layer 

and passes them through a series of convolutional layers which produce a classification and a 

bounding box refinement layer. This process is observed on Figure 1.    
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The Faster R-CNN requires to specify several inputs: 

Network input size. 

The image input size required by this network is [224x224x3]. This means that it 

accepts RGB images with a maximum size of 224x224. In consequence, images and bounding 

boxes resizing have to be done in a previous step. 

Anchor boxes. 

Anchors are a key component for Faster R-CNN. They consist on boxes with different 

ratios (Ren et al., 2015). This method is the most efficient, given than all predictions can be 

evaluated at once, and it only labels the images, instead of cropping and resizing them, as it is 

done with the R-CNN method.  For calculating the number of anchor boxes the graphic number 

of anchors versus mean IoU has to be done, this can be observed on Figure 2. As it was mention 

before, it is essential to have a mean IoU higher than 0.5. On the graphic, it can be seen that by 

using only one anchor, the mean IoU is equal to 0,44 and with more than seven anchors, it 

yields only a marginal improvement in mean value. While using a large number of anchor 

boxes in the object detector can lead to an overfitting (MathWorks), therefore for this study, it 

was opted to use six anchor boxes. 

Feature extraction networks. 

The detector works with ResNet50. This is a pre-trained 50 layers deep CNN used 

mainly as a feature detector. The ResNet50 was trained with more than a million images from 

ImageNet database, where it can recognize over 1000 different categories (Espinosa, 2019). 

ResNet50 block diagram can be observed on Figure 3. 
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Shark Database  

Two video footage sources that were filmed during diving sessions at the Galapagos 

Islands [0° 39' 59.99" N -90° 32' 59.99" W], where the diver encounters a great number of 

scalloped hammerhead sharks among some other marine species, were used for this study. 

Furthermore, a dataset of hammerhead shark images taken from the internet, where the sharks 

characteristics could be better observed and analyzed, was also used. 

The videos were processed using MATLAB with the ``video labeler" application from 

the Image Processing and Computer Vision toolbox. This application allows to label every 

frame from a video using a point tracker algorithm, which tracks various ROIs using the 

Kanade-Lucas-Tomasi (KLT) algorithm (MathWorks). Although the apps provided the 

algorithms help with this process, it was necessary to manually resize the ROIs rectangle for 

each frame of the video to ensure proper proposed regions. For the image data, a similar process 

was used, it was necessary to manually label every scalloped hammerhead shark within each 

image using the Image Labeler application.  

The purpose of using these applications was to create a ground truth file for each video 

and images data store which contains the information of the data source, label definition and 

label data (MathWorks). With this information it was possible to create a database that contains 

the all the images obtained from the videos plus the ones retrieved online with the information 

previously described. The labeled images were mixed in one data-base. The ones retrieved 

online where only used for training, given their high clarity respect the shape characteristic of 

the hammerhead sharks, while the ones obtained from the videos were separated on two groups, 

one for training the other one for validation, given a total of two databases. 
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Experimental setup  

Image Resizing. 

Original images from the dataset are from frames of high definitions videos which are 

[4096x2160x3]. Therefore, it is necessary to readjust the size of these images to the required 

[224x224x3] size, defined by the feature extraction network, and repeat this process for each 

labeled box defined in every image so that the final images and the labeled boxes will match 

with their respective ones. 

Data Augmentation.  

The original training data set contains 247 images. Data augmentation methods were 

used to enlarge the dataset (He, Zhang, Ren, & Sun, 2016). It is also used to improve network 

accuracy by transforming the training data randomly, adding more variety without actually 

increasing the number of labeled training samples (MathWorks). For this instance, every image 

was rotated and scaled. The final Training Dataset consisted of 988 shark images. 

Training Options. 

 For the training options defined for the training Process of the Faster R-CNN, a 

stochastic gradient descent with momentum (SGDM) is used. This method calculates the error 

for each training data and adjust the weights immediately. By instance, if the trainer has 100 

training data points, the SGDM adjust the weights 10 times. It updates the network parameters, 

such as weights and biases, and ensure a minimal loss function. At each iteration, the SGDM, 

using a subset of the training data, updates the parameters. Mini-batch is also used at each 

iteration. One epoch means that all the training data passed through the training algorithm using 

mini-batches (MathWorks).   
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Validation Metrics.  

The validation consisted in two sections. The first one is the use of the true ground 

labeled boxes, which are then later compared to the ones obtained by the detector. The second 

method consists in running a video footage, specifically on .avi format, to obtain as result the 

same video but with labeled bounding boxes of the detected hammerhead sharks and their 

respective matching score. 

The implementation and application of the proposed shark detector was made in 

MATLAB (Release R2019b) while the employed Faster R-CNN is available within the Deep 

Learnig Tool Box (version 13.0) (MathWorks). 

RESULTS AND DISCUSSION  

Once all the parameters are correctly defined, the training process can take place. While 

the training is in progress, the MATLAB console displays the results of each epoch. Within 

these results, it is possible to observe the GPU processing time required by each epoch, the 

mini-batch loss, and the mini-batch accuracy. For the Faster R-CNN training, a total number 

of 8 epochs were used. The total time required by the GPU for training was 31 min and 50 s. 

For each epoch carried out, it was observed that the mini batch loss was less than 1, except for 

the first one that had a loss of 1.59, and the accuracy for most of the epochs was around 99%. 

Training Validation  

After accomplishing the training process, it is necessary to validate the dataset inside 

the detector. An image dataset with labeled images was obtained, which correspond to every 

hammerhead shark found in the images obtained by the detector. To ensure a successful 

training process, it is necessary to compare the obtained results with the Bounding Box data-

stored, set at the beginning of the whole process. On the other hand, a video source that was 
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not considered during the training step was used to test the proposed method in real-time. The 

performance of the method was based on the accuracy (ACC) of hammerhead shark detection 

and tracking across a set of retrieved frames from the test video. The detection will give the 

following results: 

 True positives TP: It refers to all the correct detections we obtain on the test. 

 False positives FP: It refers to all the wrong detections we obtain on the test.  

 True negative TN: It refers to a correct misdetection. 

 False negative FN: It refers to all results we obtain with any objects detected. 

The comparison process between the validation box labels and the ones given by the 

detector, was used to compute the precision and the recall of our trained detector. The precision 

was obtained by dividing the true positive results by all the detections, while the recall was 

obtained by dividing the true positives by the validation data.  

The comparison is done by observing the superposition of the detector-obtained 

bounding box over the bounding box manually placed during training, as illustrated by Figure 

4, where the bounding box represented in red, was taken from the dataset created manually for 

validation, while the blue rectangle is the bounding box obtained as a result of running the 

same image on the detector. A true positive result was obtained for this case since the area of 

the obtained bounding box completely covers the area of the validation bounding box. 

This process must be done for every image tested on the detector. Figure 5 shows the 

Precision vs Recall curve obtained by testing the validation images. The graph shows that most 

of the analyzed images got a precision of 100% for detection. By calculating the average of 

this results we can obtain a precision of 0.9 over 1. This means that the proposed detector is 

capable of detecting hammerhead sharks within the video or images under test in almost all 

cases. For this propose the testing image dataset consisted of 163 images. Once the detector 
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was confirmed to be working properly, other test images or videos were processed, using the 

following criteria: 

Object detection  

The performance of the detector was evaluated by the recognition of all hammerhead 

sharks present in a given image. For this process, any image where a shark is present was 

imported, the size of this picture was irrelevant for the process. A bounding box was placed on 

the detected object and the score that represents the certainty that it is a shark was also 

displayed, for example as it is observer on Figure 6. For this study, we considered a threshold 

value of 0.85 for considering a true shark detection.   

Object tracking  

The object tracking works as the previous method but in this case it detects the objects 

as they move on a video. The footage was separated into frames and shark detection was carried 

out in each one, as it was done previously for the images. A box will follow the shark in the 

generated video. This method was tested with two video footage not previously used for 

training and without verification content (i.e without manually placed bounding boxes). The 

results can be observed on Figure 7 and Figure 8.  

Different results were obtained for images and videos, where it can be seen that the 

detector clearly recognizes most of the sharks located in every frame. On Figure 6 we can 

observe that the detector recognizes the shark with a mean score of 0.91. The image used for 

object detection is clear and the shark was found to be swimming near to the camera, which 

makes it easier for the detector to recognizes the shark. There were some problems when sharks 

were swimming far away from the camera. As we can see on some of the frames from Figure 

7 and Figure 8, when sharks are moving further from the camera, the score values decrease to 

the point where the detection is no longer satisfactory. The same happens when there is an 
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extremely high light exposure, as for example when the sharks found themselves directly under 

the sun, in such case the detector does not manage to find them in the image.  

Specific accuracy data related to results obtained from the frames of these videos can 

be found inside Table 1 and Table 2, where the real number of hammerhead sharks found in 

each frame is compared to the number of sharks detected and tracked by the Faster R-CNN 

detector. To ensure the proper functionality of the proposed method, the test videos were 

selected to have different conditions, such as density of other fish species as well as light 

exposure.  
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CONCLUSIONS 

In this study, we developed an automated shark detection method using a Faster R-CNN 

architecture. The obtained results are considered satisfactory, since there was a fairly good 

prediction level in the detection, as well as in the tracking of hammerhead sharks found in the 

tested video sources. However, there are still parameters that could be changed within this 

architecture for a better detection. For instance, when sharks are located further away from the 

camera location, and in situations where there is low or high light exposure, the detector was 

not able to find them, as well as when the sharks were located directly underneath the sun light 

or behind another fish species. For fixing this problem it would be necessary to manually 

increase or modify the layers that are used for training, so the detector would be able to find 

all the sharks presented in the image. Another found challenge was the casual mistake between 

sharks and other marine species, such as a variety of large fishes and other shark species. The 

detector would sometimes confuse them with a hammerhead shark, by mixing their physical 

features leading to a fault in the results, however in this cases the precision value was 

considerable low, never exceeding 75%. Furthermore, we must also take into consideration 

that the cameras used for recording the videos were not static and the video footage from these 

cameras do not have the best quality, this may cause some problems when using such images. 

Achieving lower false negative or false positive responses on the results is still a 

challenge on this type of videos. For a future work we will seek to fix these problems in order 

to obtain a higher quality detector, for which we could opt for more complete architectures.  
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TABLES 

Table 1 ACC results per frame obtained with the Faster R-CNN based on shark detector for 

footage video of figure 7 

Frame 

(ID) 

Time 

(s) 

Number of sharks 

per frame (u) 

Correct detection 

Faster R-CNN 

ACC based detection (%) 

Faster R-CNN 

1 09 3 2 67 

2 10 4 3 75 

3 11 5 4 80 

4 12 4 3 75 

5 13 3 2 67 

6 14 4 3 75 

7 15 5 4 80 

8 16 1 1 100 

9 20 1 1 100 
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Table 2 ACC results per frame obtained with the Faster R-CNN based on shark detector for 

footage video of figure 8 

Frame 

(ID) 

Time 

(s) 

Number of sharks 

per frame (u) 

Correct detection 

Faster R-CNN 

ACC based detection (%) 

Faster R-CNN 

1 09 2 1 50 

2 01 2 2 100 

3 02 2 2 100 

4 04 1 1 100 

5 31 2 1 50 

6 33 2 2 100 

7 37 2 2 100 

8 41 2 1 50 

9 46 3 1 33 
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FIGURES 

 

 

Figure 1 Block Diagram of the Faster R-CNN 

 

 

Figure 2 Behavior of the mean IoU against the number of anchor boxes 
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Figure 3 ResNet50 block diagram 



28 
 

 

 
Figure 4 Validation and detection bounding box for the first image 

 

 
Figure 5 Precision vs Recall curve 

 

 
Figure 6 Randomly selected image from the dataset with a hammerhead shark 



29 
 

 

 
Figure 7 Performance of the Faster R-CNN method across the frames under analysis: successfully (green box) hammer shark 

detection in a test video 

 

 
Figure 8 Performance of the proposed Faster R-CNN method across the frames under analysis: successfully (green box) 

hammer shark detection in another 

 

 

 

 


