UNIVERSIDAD SAN FRANCISCO DE QUITO

Colegio de Ciencias e Ingenierías

Evaluación Ex - Post de La Eficiencia de Tres Plantas de Tratamiento de Aguas Residuales, en el Área Del Lago San Pablo, Cantón Otavalo, Provincia De Imbabura.

Lorraine Alejandra Gómez Cabrera Ingeniería Civil

Trabajo de fin de carrera presentado como requisito para la obtención del título de:

Ingeniera Civil

Quito, 11 de Mayo del 2020

UNIVERSIDAD SAN FRANCISCO DE QUITO Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

Evaluación Ex - Post de La Eficiencia de Tres Plantas de Tratamiento de Aguas Residuales, en el Área Del Lago San Pablo, Cantón Otavalo, Provincia De Imbabura.

Lorraine Alejandra Gómez Cabrera

Nombre del Profesor, Título Académico Sixto. A Durán Ballén, PhD.

Quito, 11 de Mayo del 2019

3

DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica

de Educación Superior.

Nombres y apellidos:

Lorraine Alejandra Gómez Cabrera

Código:

00123046

Cédula de identidad:

2000091336

Lugar y fecha:

Quito, Mayo de 2020

AGRADECIMIENTO

En primer lugar, quiero agradecer a Dios y a mis padres por brindarme apoyo constante durante la carrera. A mis padres, en especial les gradezco la oportunidad que me dieron de formar parte de esta grandiosa institución y por siempre inspirarme a seguir adelante día a día, sin desistir a pesar de las dificultades. En segundo lugar, quiero agradecer a mis profesores por compartirnos su trabajo y experiencia en cada una de las clases, en especial a mi tutor de tesis, quien me ha guiado en el desarrollo de este estudio. Finalmente, extiendo un agradecimiento especial a la Empresa Municipal de Agua Potable y Alcantarillado de Otavalo por brindarme la oportunidad de realizar el estudio dentro de sus instalaciones y a los técnicos de la empresa, quienes me facilitaron las visitas técnicas de lugar.

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

RESUMEN

En el presenta trabajo de titulación se estudian 3 plantas de tratamiento del Lago San Pablo. Este estudio corresponde el análisis de la eficiencia del uso de plantas acuáticas para la remoción de contaminantes en el agua residual. Además, se realiza una corroboración del diseño implementado usando nuevos datos del censo del 2010. Para lograr los objetivos, se deben realizar muestras de las plantas de tratamiento para obtener el porcentaje de remoción. Además, se realizan proyecciones de la población para la corroboración del diseño. Finalmente, realizan visitas técnicas para encontrar los problemas actuales en las plantas de tratamiento, de esta manera se fijan parámetros que ayuden a mejorar la construcción de plantas de tratamiento en futuros proyectos de este tipo.

Palabras Clave: Planta de Tratamiento, Eficiencia, Diseño, Remoción de Partículas, Lenteja Acuática, Agua residual, Dotación.

ABSTRACT

This study corresponds to the analysis of the efficiency of the use of aquatic plants for the removal of contaminants in wastewater. In addition, a corroboration of the implemented design is performed using new data from the 2010 census. To achieve the objectives, samples must be taken from the treatment plants to obtain the removal percentage. In addition, population projections are made to corroborate the design. Finally, it carries out technical visits to find current problems in treatment plants, thus setting parameters that help improve the construction of treatment plants in future projects of this type.

Key Words: Treatment Plant, Efficiency, Design, Particle Removal, Aquatic Duckweed, Wastewater, Endowment.

TABLA DE CONTENIDO

CAPÍTULO 1. Introducción		13
1.1 Información básica existen	nte	13
1.1.1 Ubicación geográfica		13
1.2 JUSTIFICACIÓN		16
1.3 DIAGNÓSTICO		17
1.4 Objetivos		17
1.4.1 Objetivo General		17
1.4.2 Objetivo Especifico		17
1.5 Alcance y profundidad del est	tudio de la tesis	18
CAPÍTULO 2. MARCO TEÓRICO)	19
2.1 El agua		19
2.2 Agua Residual		20
Tipos de Agua Residual		20
2.2.1 Agua Residual Doméstica	a	21
2.2.2 Agua Residual Industrial.		21
2.2.3 Agua Pluvial		21
2.3 Caracterización del Agua Res	idual	21
2.3.1 Contaminantes Físicos		21
2.3.2 Contaminantes Químicos		22
2.3.3 Contaminantes Microbiol	ógicos	22
2.4 Tratamiento de las Aguas Ser	vidas	22
2.4.1 Pretratamiento		23
2.4.2Tratamiento Primario		23
2.4.3 Tratamiento Secundario		23
2.4.4Tratamiento Terciario		23
2.5 Normativa Ambiental Vigente	e	24
2.5.1 Texto Unificado de Legis	lación Secundaria del Medio Ambiente	24
	al De Las Plantas De Tratamiento y Información Bási	
2.6.1 Pretratamiento: Uso de Ro	ejillas	27
2.6.2 Tratamiento Primario: Ta	nque sedimentador y Filtración	27
2.6.3 Filtración Anaeróbica Aso	cendente	28
2.6.4 Tratamiento Secundario:	Uso de Plantas Acuáticas "Lenteja de Agua"	28

2.7 Planta de Tratamiento de San Pablo	29
2.7.1 Visita a la Planta de Tratamiento de San Pablo	30
2.8 Planta de Tratamiento de Araque	33
2.8.1 Visita a la Planta de la Comunidad de Araque.	33
2.9 Planta de Tratamiento de Cuaraburo	35
2.9.1 Visita a la Planta de tratamiento de la Comunidad de Cuaraburo	35
CAPÍTULO 3. Población de diseño	37
3.1 Determinación del Índice de Crecimiento	37
3.1.1 San Pablo y Araque	37
3.1.2 Cuaraburo	39
3.2 Proyección de la Población al año 2020	40
3.2.1 Método Geométrico	42
3.2.2 Método Exponencial	42
3.2.3 Método Aritmético	42
CAPÍTULO 4. CAUDAL DE DISEÑO	46
4.1 Aguas Pluviales.	46
4.1.1San Pablo y Araque.	48
4.1.2 Cuaraburo.	48
4.2 Caudal Ilícito	49
4.3 Caudal de Infiltración	49
4.4 Caudal Promedio	49
4.4.1 San Pablo y Araque	50
4.4.2 Cuaraburo	50
4.4.3 %Perdidas	50
4.5 Caudales de Diseño	50
CAPÍTULO 5. Dimensionamiento de las Plantas	55
5.1 Diseño de la Planta de Tratamiento de San Pablo	55
5.1.1 Orificio	55
5.1.2 Muro frontal separador de caudal.	56
5.1.3 Vertedero.	57
5.1.4 Tanque Sedimentador.	57
5.1.5 Filtro Percolador.	58
5.1.6 Estanques con Lenteja de Agua.	59
5.2 Diseño de la Planta de Tratamiento de la Comunidad de Araque	61
5.2.1 Orificio	61

5.2.2 Muro Frontal	61
5.2.3 Vertedero.	62
5.2.4 Tanque Sedimentador.	62
5.2.5 Filtro Percolador.	63
5.2.6 Estanques.	64
5.3 Diseño de las Plantas de Tratamiento de la Comunidad Cuaraburo	65
4.3.1 Orificio	65
5.3.2 Muro frontal	65
CAPÍTULO 6. RESULTADOS	71
6.1 Porcentajes de Remoción	71
6.2 Comparación Diseño	73
6.3 Recomendaciones Fallas y Consideraciones en Futuros Proyectos	77
CAPÍTULO 7. CONCLUSIONES	79
6. BIBLIOGRAFÍA	81
ANEXOS	83
Anexo A. Registro Fotogáfico	83

ÍNDICE DE TABLAS

Tabla 1. Datos de la Población de San Pablo	15
Tabla 2. Datos de la Población de Eugenio Espejo	16
Tabla 3. Contaminantes Físicos del Agua	
Tabla 4. Materia Orgánica Presente en el Agua Residual	22
Tabla 5. Límites Permisibles de Descarga sobre cuerpo de Agua Dulce (Texto Unificado de	
Legislación secundaria del medio ambiente Libro IV; s/f, 12)	26
Tabla 6. Datos Censos (INEC; s/f)	37
Tabla 7. Índice de Crecimiento por el Método Aritmético	38
Tabla 8. Índice de Crecimiento por el Método Geométrico	38
Tabla 9. Índice de Crecimiento por el Método Exponencial	38
Tabla 10. Datos Censos (INEC; s/f)	39
Tabla 11. Índice de Crecimiento por el Método Aritmético	39
Tabla 12. Índice de Crecimiento por el Método Geométrico	
Tabla 13. Índice de Crecimiento por el Método Exponencial	40
Tabla 14. Habitantes de las Comunidades Rurales de Araque y Cuaraburo	40
Tabla 15. Proyección de la Población de la Comunidad San Pablo	43
Tabla 16. Proyección de la Población de la Comunidad Araque	
Tabla 17. Proyección de la Población de la Comunidad Cuaraburo	45
Tabla 18. Dotación	49
Tabla 19. Caudal de Diseño de la Comunidad San Pablo	52
Tabla 20. Caudal de Diseño de la Comunidad Araque	53
Tabla 21. Caudal de Diseño de la Comunidad Cuaraburo	54
Tabla 22. Dimensionamiento de Lechos de Secado	70
Tabla 23. Resultados Planta de Tratamiento de San Pablo	71
Tabla 24. Resultados Planta de Tratamiento de Araque	72
Tabla 25. Remoción del Parámetro DQO	72
Tabla 26. Resultados Dimensionamiento del Tanque Sedimentador Comunidad San Pablo	73
Tabla 27. Resultados Dimensionamiento del Filtro Percolador Comunidad San Pablo	73
Tabla 28. Resultados Dimensionamiento de Estanques Comunidad de San Pablo	73
Tabla 29. Resultados Dimensionamiento de Lechos de Secado Comunidad San Pablo	74
Tabla 30. Resultados Dimensionamiento del Tanque Sedimentador Comunidad Araque	74
Tabla 31. Resultados Dimensionamiento del Filtro Percolador Comunidad Araque	75
Tabla 32. Resultados Dimensionamiento de Estanques Comunidad de Araque	75
Tabla 33. Resultados Dimensionamiento de Lechos de Secado Comunidad Araque	75
Tabla 34. Resultados Dimensionamiento del Tanque Sedimentador Comunidad Cuaraburo	76
Tabla 35. Resultados Dimensionamiento del Filtro Percolador Comunidad Cuaraburo	
Tabla 36. Resultados Dimensionamiento de Estanques Comunidad de Cuaraburo	
Tabla 37. Resultados Dimensionamiento de Lechos de Secado Comunidad Cuaraburo	

ÍNDICE DE FIGURAS

Figura 1. Ubicación Global del Proyecto en Estudio	14
Figura 2. Ciclo del Agua (Campos; 2012)	19
Figura 3. Ciclo del Agua Residual (Campos; 2012)	20
Figura 4. Ubicación Global de las Plantas de Tratamiento	27
Figura 5. Sedimentación de Partículas (Rodríguez, Gómez, et al; 2010)	28
Figura 6. Lenteja de Agua	29
Figura 7. Planta de Tratamiento Parroquia San Pablo (Moscoso; 2006)	29
Figura 8. Implementación Planta de Tratamiento de la Comunidad de Araque	33
Figura 9. Implementación de la Planta de Tratamiento de la Comunidad de Cuaraburo (Mosco	s; 2006)
	35
Figura 10. Crecimiento San Pablo	41
Figura 11. Crecimiento Comunidad de Cuaraburo	41
Figura 12. Periodo de Retorno Imbabura (Instituto Nacional de Meteorología e Hidrología; 20	15. pp.
69)	47
Figura 13. Implementación Separador de Caudales (Moscoso; 2006)	55
Figura 14. Rangos de Carga (Comisión Nacional del Agua; s/f)	59

CAPÍTULO 1. INTRODUCCIÓN

El Lago San Pablo es un sitio turístico que es visitado diariamente por turistas extranjeros y nacionales, por sus paisajes hermosos y sus aguas cristalinas, se encuentra ubicado al Este de la ciudad de Otavalo, tiene una superficie aproximada de 612 Hectáreas y una altitud de 2.680 m.s.n.m. En ella se han visto peces como la trucha arcoíris y las carpas. Además, posee una gran variedad de aves que se pueden observar en las riveras de los ríos que la alimentan y en las orillas, que atraen por su colorido en la laguna y sus alrededores. Existen totorales a lo largo de la rivera con mayor concentración en el lado este, noroeste y sur, se pueden observar también bosques de eucaliptos, sauce y pinos.

Alrededor de ella existen asentamientos de población humana que generan un impacto sobre la laguna, específicamente en la descarga de aguas residuales. Estas deben ser evacuadas adecuadamente y las mismas tratadas para que el efluente vaya al cuerpo receptor bajo los parámetros normales que permitan que las aguas de la laguna no se contaminen.

Esta investigación está orientado a la evaluación de las plantas de tratamiento que has sido construidas en el año 2010 y se encuentran en funcionamiento, evaluar su eficiencia y determinar recomendaciones para mejorar su funcionamiento.

1.1 Información básica existente

Dentro de la información proporcionada por la Empresa Municipal de agua potable y alcantarillado de la ciudad de Otavalo EMAPA-O, se describe aquella que ha sido tomada como referencia dentro de la presente tesis, en relación a:

- Plan de desarrollo y ordenamiento territorial (PDOT) del cantón Otavalo.
- Registro de usuarios de las comunidades.
- Entrevistas con personal administrativo, supervisores y operadores.

Adicionalmente se tiene información técnica desarrollada por instituciones gubernamentales, que será tomada para el desarrollo de las bases de diseño como:

- Censos de población y vivienda, INEC: 1962, 1974, 1982, 1990, 2001, 2010.
- Estudio de lluvias intensas, INAMHI mayo 1999.
- Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1000 habitantes, INEN EC CPC 5.9.1, 1992.
- Plano catastral de los predios.

1.1.1 Ubicación geográfica

El área de estudio se ubica en la provincia de Imbabura, Cantón Otavalo, y específicamente en las parroquias de San Pablo (donde se encuentra la planta de tratamiento de San Pablo y Araque), y parroquia Eugenio Espejo (donde se encuentra la planta de tratamiento de Cuaraburo).

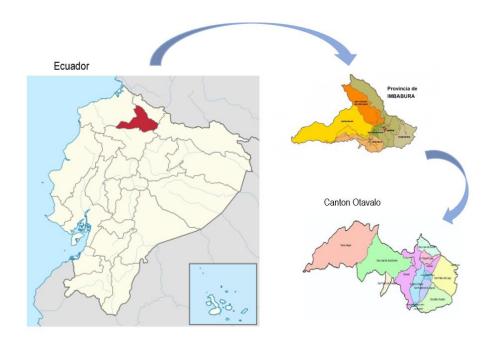


Figura 1. Ubicación Global del Proyecto en Estudio

Los límites geográficos de esta parroquia San Pablo son:

Al Norte y al Este: Con su cercanía con el volcán Imbabura, en este lado se encuentra el cantón La Esperanza de Ibarra y es por donde nace la quebrada Macufishi que desemboca en el Lago San Pablo.

Al Sur: Se encuentran las parroquias rurales de San Rafael y la de González Suarez donde nace el Río Itambi que desemboca en el Lago San Pablo del Lago.

Al Oeste: Se encuentra la parroquia urbana de Otavalo, donde se encuentra la loma del Lechero llamado Rey Loma un símbolo icono del lugar(Plan de Ordenamiento Territorial de San Pablo; 2015).

Ubicación. - Se halla ubicada en las siguientes coordenadas: 17N, 21236.138N; latitud norte y 811544.982E longitud occidental del meridiano.

Elevación. - Según dato tomado por esta consultoría se tiene la siguiente elevación en las áreas de estudio, Planta de San Pablo a 2.694 m.s.n.m.

Distancia. - Está a 10 Km. Al este de Otavalo, tiene dos conexiones con la panamericana E35, una que es por el ingreso a la cabecera de la Parroquia Eugenio Espejo y la Otra que es por la cabecera de la parroquia González Suárez. llegándose a ella por un carretero de primer orden (vía asfaltada), el viaje en carro tiene una duración de veinte minutos (Plan de Ordenamiento Territorial de San Pablo; 2015)

Clima. – Las precipitaciones oscilan entre 750 mm a 1000 mm anualmente, mientras que la temperatura promedio se ubican entre los 7 y 12 grados centígrados (Plan de Ordenamiento Territorial de San Pablo; 2015)

Población. - Al observar la evolución de la población desde el año 1990 hasta el año 2001 se puede notar un crecimiento poblacional de 2,09%, mientras que en el último censo del INEC el crecimiento de la población desde el año 2001 hasta 2010 es de 0,93% centígrados (Plan de Ordenamiento Territorial de San Pablo; 2015)

SEXO	AÑO 1990	AÑO 2001	AÑO 2010
HOMBRES	3,333	4,355	4,701
MUJERES	3,900	4,751	5,200
TOTAL	7,233	9,106	9,901

Tabla 1. Datos de la Población de San Pablo

En la parroquia de San Pablo existe la cabecera parroquial que tiene 7 barrios y 11 comunidades. La cabecera es la más poblada con un aproximado de 1300 familias, seguida por la comunidad de Araque con 750 familias; la comunidad con menor población de familias es Loma Kunga con 55 familias.

Principales productos agrícolas. – En esta región los principales productos son la frutilla, siguiéndole la quinua y el chocho, y en mayor escala los cultivos asociados de maíz, frejol y habas.

Los límites geográficos de la parroquia Eugenio Espejo son:

Al Norte: Se encuentra la parroquia Urbana de El Jordán de la ciudad de Otavalo

Al Sur: Se encuentra el cantón Pedro Moncayo, provincia de Pichincha donde se tiene la Laguna Grande de Mojanda.

Al Oeste: Se encuentra la Parroquia Urbana de El Jordán de la ciudad de Otavalo

Al Este: Se encuentra la Parroquia de San Rafael.

POBLACIÓN. Según datos del último censo de INEC 2010, la parroquia Eugenio Espejo tiene una población total de 7357 habitantes, de los cuales 3499 son hombres y 3858 son mujeres

SEXO	AÑO	AÑO	AÑO
	1990	2001	2010
HOMBRES	1,700	2,868	3,499
MUJERES	2,034	3,136	3,858
TOTAL	3,734	6,004	7,357

Tabla 2. Datos de la Población de Eugenio Espejo

En la parroquia de Eugenio Espejo existen 12 comunidades y 9 barrios que son parte del centro parroquial. De acuerdo a versiones obtenidas en la asamblea, se estima que la comunidad de Calpaquí es la más poblada con un número de 380 familias y la comunidad con menor población es la comunidad de Censo Copacabana con 60 familias, aquí se encuentra la comunidad de Cuaraburo con 163 familias objeto del estudio.

Ubicación. - Se halla ubicada en las siguientes coordenadas: 17N, 22516.280N; latitud norte y 807441.971E longitud occidental del meridiano.

Elevación. - Según dato tomado por esta consultoría se tiene la siguiente elevación en las áreas de estudio, Planta de Cuaraburo a 2.688 m.s.n.m.

Distancia. – La parroquia de Eugenio Espejo, se encuentra ubicada geográficamente en el cantón Otavalo, en la provincia de Imbabura a 2 km al este de la parroquia de Otavalo (Plan de Ordenamiento Territorial de San Pablo; 2015)

Clima. – Las precipitaciones oscilan entre 900 mm a 1000 mm anualmente, mientras que la temperatura promedio se ubican entre los 7 y 14 grados centígrados (Plan de Ordenamiento Territorial de Eugenio Espejo; 2015)

Principales productos agrícolas. – En esta región los principales productos son la frutilla con un 20% de área cultivada, siguiéndole la quinua que ocupa el 17%, mientras que el chocho el 18%, y en mayor escala los cultivos asociados de maíz, frejol y habas. Existe una variación importante en el cultivo de frutilla, hoy se considera uno de los productos preponderantes cuyo destino es la comercialización, de igual forma sucede con el cultivo de chocho, a diferencia de cultivos como la cebada y la arveja que en los últimos años se han visto disminuidos completamente (Plan de Ordenamiento Territorial de Eugenio Espejo; 2015)

1.2 JUSTIFICACIÓN

El lago San Pablo es de vital importancia para las comunidades que viven alrededor de la cuenca hídrica puesto que es la fuente económica de distintas actividades que se realizan en las parroquias. Alguna de las actividades que se realizan en las comunidades son: la agricultura, pastoreo de animales, actividad turística, entre otros. En esta fuente se descargan los efluentes residuales de las distintas comunidades que habitan alrededor del lago. En el año 2006 se realizó un estudio en el que se propuso la construcción de 14 plantas de tratamiento para evitar descargas de aguas negras directamente sobre la fuente. Sin embargo, se construyeron solo 11 plantas de

tratamiento, por lo que actualmente hay comunidades que descargan el agua residual directamente sobre la cuenca San Pablo. El exceso de contaminantes dentro de un cuerpo de agua es la fuente principal de eutrofización, especialmente las cargas altas en fosforo y nitrógeno que son consecuencia de la actividad humana. Por esta razón, es importante conocer el rendimiento de las plantas de tratamiento para determinar el estado de tan valioso recurso hídrico. Adicionalmente, es esencial conocer el estado del lago considerando las descargas directas de aguas residuales de las comunidades que se opusieron a la construcción de 3 plantas de tratamiento. El objetivo principal de la tesis es realizar el estudio de tal manera que permita frenar el impacto ambiental para poder gozar de los beneficios que otorga la fuente hídrica. Cabe mencionar, que el conocimiento es poder por lo que conocer el estado actual del lago permitirá tomar decisiones para prevenir la eutrofización del recurso y mejorar el rendimiento de las plantas de tratamiento.

1.3 DIAGNÓSTICO

La problemática principal es la contaminación por la ineficiencia de la planta, por lo que se busca en primer lugar, verificar con los ensayos químicos si el rendimiento de la planta de tratamiento cumple con todos los parámetros establecidos por la norma. Esto se realiza con la finalidad de buscar una solución y alternativas que permitan tener una mayor precisión al momento de construir una planta de tratamiento. Además, se busca obtener un diagnostico técnico en cuanto al diseño de las plantas para determinar la eficacia del estudio realizado el 2006. Con la información recolectada será más fácil tomar medidas de control para evitar la secuencia de contaminación de un recurso hídrico. Finalmente, el estudio pretende obtener recomendaciones para mejorar la construcción de las plantas de tratamiento que usan plantas acuáticas para tratar aguas residuales.

1.4 Objetivos

1.4.1 Objetivo General

• Evaluar el rendimiento y funcionamiento ext-post de las plantas de tratamiento de las comunidades de San Pablo, Cuaraburo y Araque

1.4.2 Objetivo Especifico

Los objetivos específicos a lograr en los estudios son:

- Diagnóstico de la situación del funcionamiento y desempeño de las 3 Plantas de Tratamiento de aguas residuales en San Pablo, Imbabura al año 2020.
- Efectuar el diagnóstico técnico de la infraestructura sanitaria existente en el área del Proyecto.
- Comparación del diseño de las plantas de tratamiento del 2006 y Validación con información del censo 2011.
- Criterios y recomendaciones a los procesos, metodologías, tecnologías, y técnicas que contribuyan al mejoramiento de la planta de tratamiento.

- Realización de aforos, muestreos, análisis de la calidad de aguas residuales y caracterización del cuerpo receptor.
- Análisis de la calidad del agua y Evaluación de las Plantas de Tratamiento de Aguas residuales en cumplimiento de los estándares otorgados por la normativa ambiental nacional para el tratamiento de aguas servidas que se descargan sobre un cuerpo hídrico.

1.5 Alcance y profundidad del estudio de la tesis.

El alcance del presente estudio está orientado a evaluar la eficiencia de las plantas de tratamiento construidas en el año 2011, y comparar resultados en el año actual sobre los resultados proyectados en el estudio, para lo cual se espera obtener los siguientes resultados:

- Diseño de las plantas de tratamiento de aguas residuales para el año 2020
- Resultados de parámetros físicos-químicos evaluados en laboratorio para las 3 plantas de tratamiento
- Análisis de los resultados obtenidos para el diseño de la planta al 2020
- Análisis de los resultados físicos químicos obtenidos de las pruebas de las plantas de tratamiento y cuerpo hídrico receptor.
- Cumplimiento del Plan de operación y mantenimiento de las plantas de tratamiento de aguas residuales

CAPÍTULO 2. MARCO TEÓRICO

2.1 El agua

El agua es un elemento compuesto que se forma de la unión de oxígeno e hidrogeno, siendo H2O su fórmula molecular en estado líquido. De acuerdo con la Organización de las Naciones Unidas (ONU), el agua es el epicentro del desarrollo socioeconómico, ecosistemas saludables, producción de alimentos, siendo un vínculo fundamental entre el ser humano y el medio ambiente (s/f). El agua se puede encontrar en el ambiente en cualquiera de sus tres estados: solido, liquido o gaseoso. Una partícula de agua cumple un ciclo rotatorio en la naturaleza conocido como el ciclo del agua, el mismo que explica la interacción del agua con su entorno. En un principio se obtiene el agua por medio de la escorrentía. Una porción del agua lluvia se filtra y forma parte de las aguas subterráneas; la otra parte forma ríos, mares y lagos. Posteriormente, el agua se evapora por el calor o se obtiene vapor de agua por medio de la transpiración de las plantas. El vapor de agua se condensa y vuelve a caer en forma de gotas de lluvia o nieve. En la siguiente imagen, se ilustra gráficamente el ciclo del agua. El inicio del ciclo del agua no es definido ya que puede empezar con la evaporación del agua o la precipitación, sin embargo, lo que es importante recalcar, es que una molécula de agua nunca esta quieta y se la encuentra de distintas maneras en la naturaleza.

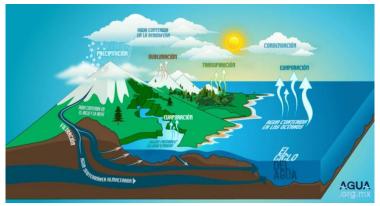


Figura 2. Ciclo del Agua (Campos; 2012)

Actualmente el 96.5% del agua almacenada en el planeta corresponde a los océanos (agua salada), mientras que 3.5% es agua dulce la cual se encuentra distribuida como: glaciares, aguas subterráneas, acuíferos, escorrentía, hielo en la cumbre de las montañas, lagos, etc (Campos; 2012). Actualmente la demanda del agua dulce es muy alta. Además, el recurso se encuentra en constante riesgo de contaminación debido a su capacidad de solvencia con otros elementos. En ocasiones, el agua puede disolver elementos no deseables que afectan el ecosistema o la salud de los seres vivos. Considerando el bajo porcentaje de agua dulce, el recurso se debe cuidar para poder asegurar un desarrollo sostenible sin comprometer los derechos de las personas ahora y en las futuras generaciones. A fin de cumplir esta responsabilidad social, las instituciones nacionales e internacionales crearon leyes y normas que exigen tratamiento del agua, tanto para consumo humano como para las aguas residuales que se desechan directamente sobre cuerpos hídricos. En Ecuador, las agencias públicas encargadas de hacer cumplir la

legislación ambiental son: el ministerio del medio ambiente, municipios regionales y provinciales.

2.2 Agua Residual

El agua residual también conocida como aguas servidas o aguas negras representan una mezcla de residuos líquidos y sólidos generados en casas, industrias, escuelas, hoteles y en cualquier institución que haga uso del recurso agua para cualquier actividad. El ciclo de utilidad que cumple en agua se representa en la siguiente imagen. En primer lugar, se obtiene agua de una fuente natural, posteriormente es tratada para que sea apta para el consumo humano. Posteriormente, el agua es utilizada por la población y en la mayoría de los casos se une a una red de alcantarillado. En los lugares donde todavía no se tiene el servicio de alcantarillado, el agua es desechada directamente sobre cuerpos de agua natural, mientras que el agua recolectada por la red de alcantarillado, entra en un proceso de desintoxicación del agua lo que requiere plantas de tratamiento. El tratamiento puede ser diverso, dependiendo los contaminantes existentes en las aguas negras. Luego del tratamiento, el agua es apta para otras actividades como riego de cultivos, actividades recreativas, entre otros. El agua tratada es apta para reincorporarse a los distintos cuerpos de agua como ríos, lagos, etc. De esta manera se cierra el ciclo del uso del agua. Este proceso se puede apreciar en la siguiente imagen:

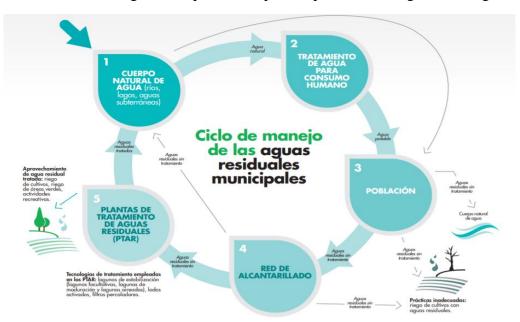


Figura 3. Ciclo del Agua Residual (Campos; 2012)

Tipos de Agua Residual

Los tratamientos deben especificarse en base a la naturaleza contaminante de las aguas, por ello es necesario conocer el uso el origen de las aguas residuales. En base al uso se pueden clasificar principalmente como aguas residuales: domésticas, industriales y pluvial (Zambrano, Saltos, et al. 2004, 2).

2.2.1 Agua Residual Doméstica.

El agua residual domestica es el agua que provienen del uso diario en los hogares e instituciones públicas. El agua comúnmente se utiliza para satisfacer las necesidades de higiene de las personas como limpieza del hogar, limpieza personal, etc. Dicha agua contiene agentes patógenos, solidos, detergentes, grasa, entre otros.

2.2.2 Agua Residual Industrial.

Como su nombre lo especifica el agua residual industrial proviene de los desechos generados por industrias. Su naturaleza contaminante depende directamente de la actividad que realiza la industria. No es lo mismo los desechos que produce una industria minera como una industria de cemento ya que los contaminantes varían.

2.2.3 Agua Pluvial.

El agua pluvial es el agua proveniente de la precipitación como la lluvia o la nieve. Como se mencionó anteriormente una molécula de agua no está quieta, lo que quiere decir que la escorrentía recoge sedimentos y cualquier contaminante que se cruce por el camino de la partícula de agua. La superficie que recibe la lluvia puede ser una capa permeable o impermeable. En las ciudades, las aceras de hormigón y asfalto se considera como capa impermeable ya que conduce el agua sin filtrar en el suelo. Por otro lado, una superficie permeable es aquella que permite el paso de las partículas del agua a través de los estratos del suelo (Zambrano, Saltos, et al. 2004, 3).

2.3 Caracterización del Agua Residual

El agua luego de ser usada posee diversos contaminantes sólidos, orgánicos o químicos que impiden el uso de este recurso en alguna otra actividad, por lo que es necesario darle un tratamiento para poder hacer uso del mismo. Es esencial conocer la naturaleza de los contaminantes que forman parte del caudal puesto que, en base a esto, se selecciona el tipo de tratamiento más óptimo para el caso de estudio. El agua posee una diversidad de elementos los cuales se dividen en componentes físicos, químicos y biológicos.

2.3.1 Contaminantes Físicos.

Las aguas residuales presentan las siguientes características físicas: temperatura, turbidez, olor, sólidos en suspensión y sedimentos. A continuación, en la tabla N. 3 se muestra el posible origen de los contaminantes antes mencionados.

Contaminantes Físicos	Origen		
Olor	El olor puede ser ocasionado por la descomposición de la		
	materia orgánica o por residuos industriales.		
Turbidez	Se debe a la degradación de la materia y al arrastre de		
	sedimentos		
Temperatura	La temperatura en las aguas residuales suele ser mayor.		
Conductividad	La conductividad es un indicador de la sal disuelta. El uso		
	doméstico emite rangos de 1000 y 2000 µSiemens/cm.		

Sólidos en Suspensión	Se debe al arrastre de sedimentos por la erosión del suelo.	
	Arrastre de sedimentos y materia orgánica.	

Tabla 3. Contaminantes Físicos del Agua

(Características de las aguas residuales; s/f)

2.3.2 Contaminantes Químicos.

Las características químicas más representativas son: aceites, grasas, metales pesados, detergente, azufre, fosforo, demanda química de oxígeno y potencial hidrogeno.

Materia Orgánica

Demanda Oxígeno (Di	Biológica BO5)	de	Representa la demanda de oxígeno no disuelto que se consume en lapso de 5 días a 20° C. Los valores típicos en aguas residuales s entre 200 ~ 300 mg/L (Beascoechea, Muñoz, et al; s/f).	
Demanda Oxígeno (D	Química QO)	de	Representa la demanda de oxígeno para oxidar la materia orgánica que se encuentra en la muestra de agua residual (Beascoechea, Muñoz, et	
			al; s/f).	

Tabla 4. Materia Orgánica Presente en el Agua Residual

Materia Inorgánica

Como materia inorgánica se presenta el nitrógeno con rangos de "20~85mg/L (orgánico 8-35 mg/amoniacal 1250 mg/l y nitratos 0-10 mg/l). En cuanto al fosforo varían entre 4 y 15 mg/l (orgánico 1-5 mg/l e inorgánico 3-10 mg/l)" (Beascoechea, Muñoz, et al; s/f). Cabe mencionar que la medida de acidez (pH) varía entre 6 ~9.

2.3.3 Contaminantes Microbiológicos

Las aguas residuales poseen bacterias, virus, protozoos y algas. Algunos de los organismos biológicos contribuyen a la descomposición de materia, sin embargo, la naturaleza puede hacerlo hasta cierto rango limitado. Cabe mencionar que también existen microorganismos patógenos como los coliformes.

Coliformes Fecales: Se los utiliza como indicadores de organismos que puedan causar alguna enfermedad. Una fuente principal de estos contaminantes son las aguas residuales domesticas puesto que el cuerpo humano arroja $10^9 y 4 * 10^{11}$ coliformes (Valencia; 2013).

2.4 Tratamiento de las Aguas Servidas

Los procesos de depuración cumplen el objetivo de extraer contaminantes que pongan en riesgo la salud púbica. El tratamiento requerido para las aguas residuales puede ser variado dependiendo el origen o uso del agua, además, depende de la cuenca receptora. Es decir, para un río pequeño el tratamiento debe ser mayor en comparación con un río grande. En ambos casos, el tratamiento debe responder a las normas ambientales regentes en cada sector. El nivel de tratamiento del agua y el tipo de tratamiento que se aplica depende de dos cosas principalmente. La primera es de la normativa ya que esta describe las concentraciones permisibles de cada componente dependiendo del cuerpo receptor. La segunda es el tipo de contaminantes que contiene el agua por tratarse.

En una depuradora el tratamiento se divide principalmente en tres partes, pretratamiento, tratamiento primario, tratamiento secundario y tratamiento terciario. Cada tratamiento se enfoca en los contaminantes que se desee eliminar, dependiendo la necesidad que se tienen en el sector de estudio.

2.4.1 Pretratamiento

En primera instancia, el agua puede contener variedad de contaminantes grandes, lo que dificultaría el proceso. El pretratamiento responde a la necesidad de separar elementos solidos que son arrastrados por el agua pluvial como basura, ramas, piedras, raíces, etc. Considerando que la red de alcantarillado normalmente se une a la recolección de aguas de las calles debido a las precipitaciones, el agua puede arrastras cualquier cantidad de basura que fácilmente se extrae en el pretratamiento. Para cumplir con este objetivo, se realizan diferentes operaciones como: desbaste, tamizado, eliminación de arenas y desengrasado lo que involucra el uso de rejillas, filtros y tanque sedimentador (Beascoechea, Muñoz, et al; s/f, 32). El pretratamiento es importante para el funcionamiento correcto de la depuración de agua residual puesto que, si no se diseña correctamente, esto causaría daños en el sistema de bombas o atrofiaría las tuberías.

2.4.2Tratamiento Primario

Una vez removidas las partículas grandes se procede al tratamiento primario, el mismo que consiste en retirar desde un 40% hasta 60% de las partículas que son arrastradas en el agua. Este proceso es netamente mecánico, es decir no involucra métodos biológicos o químicos (Tratamiento de Aguas Residuales; 2010, 7). Este tratamiento también se conoce como "clarificación" ya que retira materia suspendida y se busca retirar la turbidez presente en el agua residual. Cabe mencionar que este proceso facilita los tratamientos posteriores. Dentro de este tratamiento se encuentran los siguientes procesos: sedimentación, flotación y filtración.

2.4.3 Tratamiento Secundario

El tratamiento secundario utiliza los microorganismos para que, a través de procesos biológicos, elimine la materia orgánica coloidal y disuelta presente en el agua residual (Tratamiento Secundario; s/f). En este tratamiento se eliminan compuestos que contengan Nitrógeno y Fósforo. La materia orgánica contiene la fuente de energía, carbono y oxigeno (en el caso de procesos aeróbicos) necesarios para el crecimiento de microorganismos. Este tipo de tratamiento se clasifica principalmente en procesos aeróbicos y procesos anaeróbicos. Para el proceso aeróbico se necesita la presencia de oxígeno y se obtiene como resultado biomasa, CO2 y H2O, mientras que en los procesos anaeróbicos (ausencia de oxígeno) se obtiene como resultado CO2, biogás y metano (Tratamiento Secundario; s/f). Dentro de cada tipo de proceso hay varios tratamientos que se pueden aplicar a las aguas residuales como: filtros percoladores, fangos activos, filtros verdes, entre otros.

2.4.4Tratamiento Terciario

El tratamiento terciario no siempre se realiza, sin embargo, está destinado a usarse en ocasiones donde los límites permisibles son más rigurosos, de modo que el agua requiere un tratamiento más severo. Los tratamientos terciarios corresponden al grupo de tratamientos avanzados o complementarios en caso de que el agua fuera a ser reusada. Para este tratamiento se usas

procesos como: coagulación o floculación, precipitación química y procesos biológicos adicionales.

2.5 Normativa Ambiental Vigente

Las aguas servidas deben desecharse a algún lugar, por lo que se debe evitar la contaminación del resto del recurso existente en la naturaleza. Por esta razón, existe leyes y normativas que establecen ciertos límites que se deben cumplir antes de desechar las aguas sobre otro cuerpo hídrico, evitando de esta manera la propagación de agentes contaminantes.

Para lograr defender el patrimonio natural, en la constitución de la republica del Ecuador establece como un principio fundamental el defender el medio ambiente. En los artículos 5, 7, 3 y 14 otorga el derecho a los civiles de vivir en un ambiente sano, ecológicamente equilibrado, salvaguardando la salud de cada ciudadano. Por ello, se promueve el código orgánico ambiental que fija las leyes y derechos de cada ciudadano en cuanto a lo ambiental. El Código Orgánico Ambiental en el artículo 196 establece que los gobiernos autónomos descentralizados deben contar con la infraestructura técnica para la instalación de sistemas de alcantarillado y tratamiento de aguas residuales urbanas y rurales. Además, se promueve la reutilización del agua por lo que se debe recuperar niveles cualitativos y cuantitativos que exija la autoridad competente para no afectar la salud pública ni el medio ambiente (Código Orgánico Ambiental; 2008). El código ambiental, establece distintos artículos con la finalidad de proteger los distintos recursos como el agua, suelo. Esto con la finalidad de tomar medidas de prevención en el impacto ambiental.

Por otro lado, el texto unificado de legislación secundaria del medio ambiente "TULSMA" establece los niveles y límites permisibles con el fin de cumplir con lo establecido en el código orgánico ambiental.

2.5.1 Texto Unificado de Legislación Secundaria del Medio Ambiente

El texto unificado de legislación secundaria del medio ambiente establece "La norma de calidad ambiental y de descarga de efluentes: recurso agua", la cual tiene como objetivo principal proteger el recurso agua para cuidar al mismo tiempo el futuro de nuevas generaciones y su relación con el medio ambiente. Esta normativa procura disminuir el impacto ambiental salvaguardando un recurso vital, por ello la normativa ofrece distintos límites permisibles que limitan la carga contaminante. A continuación, en la Tabla N. 3 se detallan los límites permisibles para descargas de efluentes sobre cuerpos de agua dulce, como es el caso del lago San Pablo.

Aceites y Grasas Sustancias solubles en hexano Alkil mercurio Aldehídos Aluminio Al mg/l Arsénico total Bario Ba mg/l Bario Ba mg/l Cadmio Cd mg/l Cianuro total Cloro activo Cloro activo Cloroformo Cloruros Cloruros Cl- Cobre Cu Cobalto Cobalto Coliformes Fecales Color Real Compuestos Fenol Endicos Cromo Cromo Cromo Cromo Cromo Cromo Cromo Crofofáns) Demanda Bioquímica de Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetola Fenol Estaño Sn mg/l Fosforo Total P mg/l Hierro total Fe mg/l Hierro total TPH mg/l mg/l	Límite
Aceites y Grasas Sustancias solubles en hexano mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Máximo
Alkil mercurio Alkil mercurio Aldehídos Aluminio Al mg/l Arsénico total Bario Ba mg/l Boro Total Cadmio Cd mg/l Cianuro total Cloro activo Cloroformo Cloroformo Cloroformo Cloruros Cobalto Co Con mg/l Cobalto Co Con mg/l Cobre Cu mg/l Compuestos Fenol Fenol Fenólicos Cromo Arabella DBO5 Mg/l Bioquímica de Oxígeno (5días) Demanda Demanda Bioquímica de Oxígeno Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Fenol Bestaño Sn mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hierro total Fe mg/l mg/l Hierro total Fe mg/l Hierro total Fe mg/l TPH mg/l	Permisible
Alkil mercurio mg/l mg/l mg/l mg/l Aldehídos mg/l Muminio Al mg/l mg/l Marsénico total As mg/l Bario Ba mg/l Boro Total B mg/l Cadmio Cd mg/l Cloro activo Cl mg/l Cloro activo Cl mg/l Cloroformo Extracto carbón cloroformo Creal Unidades de color mg/l Cloroformo Cr +6 mg/l mg/l Cloroformo Cr +6 mg/l mg/l Cloroformo Cr +6 mg/l mg/l Cloroformo Cloroformo Cr +6 mg/l mg/l Cloroformo Cloroformo Cloroformo Cr +6 mg/l mg/l Filuoruros F mg/l mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l mg/l	0.3
Alkil mercurio Aldehídos Aluminio Al mg/l Arsénico total Bario Ba Ba mg/l Boro Total Cadmio Cd Cianuro total Cloro activo Cloroformo Cobalto Co Cobalto Co Coliformes Fecales Color real unidades de color mg/l Compuestos Fenol Fenol Fenol Fenol Bioquímica de Oxígeno Oxígeno Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Sn mg/l Fósforo Total P mg/l Hidrocarburos TPH mg/l mg/l	
Aldehídos Aluminio Al Arsénico total As Bario Ba Bario Ba Bario Ba Bario Cd Cd mg/l Cadmio Cd mg/l Cianuro total CN- Cloro activo Cl Cloroformo Extracto carbón cloroformo Cloruros Cl- Cobre Cu Cobalto Co Coliformes Fecales Color Real Color real Compuestos Fenol Fenólicos Cromo Cr +6 Demanda DBO5 Bioquímica de Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Extracto carbón mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	
Aldehídos Alumínio Al Arsénico total As Bario Ba Ban Boro Total B Cadmio Cd Cianuro total Cloro activo Cl Cloroformo Comg/l Comg/l Fecales Color real Unidades de color mg/l Fenólicos Cromo Cr +6 mg/l Fenólicos Cromo Demanda DBO5 mg/l Bioquímica de Oxígeno Cyígeno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Estaño Sn mg/l Fiuoruros F mg/l Hierro total Fe mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	No
Aluminio Al mg/l Arsénico total As mg/l Bario Ba mg/l Boro Total B mg/l Cadmio Cd mg/l Cianuro total CN- Cloro activo Cl mg/l Cloroformo Extracto carbón cloroformo Cloruros Cl- Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Dicloroetileno Dicloroetileno mg/l Fésforo Total P mg/l Hierro total Fe mg/l Hierro total Fe mg/l Boro Total P mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	detectable
Arsénico total As mg/l Bario Ba mg/l Boro Total B mg/l Cadmio Cd mg/l Cianuro total CN- Cloro activo Cl mg/l Cloroformo Extracto carbón cloroformo Cloruros Cl- Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Cumg/l Cosaro Sn mg/l Fesióro Total P mg/l Hierro total Fe mg/l Hierro total Fe mg/l Ediado mg/l Fenol mg/l Fe mg/l Fe mg/l Fe mg/l Fesióro Total P mg/l Hierro total Fe mg/l Toda mg/l Teda mg/l	2
Bario Ba mg/l Boro Total B mg/l Cadmio Cd mg/l Cianuro total CN- mg/l Cloro activo Cl mg/l Cloroformo Extracto carbón cloroformo Cloruros Cl- mg/l Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l Bario Mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Cosaro Mg/l Fluoruros F mg/l Fosforo Total P mg/l Hierro total Fe mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	5
Boro Total B mg/l Cadmio Cd mg/l Cianuro total CN- mg/l Cloro activo Cl mg/l Cloroformo Extracto carbón cloroformo Cloruros Cl- mg/l Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Cromo Cr +6 mg/l Demanda DBO5 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Coxígeno Sn mg/l Fluoruros F mg/l Fisaño Sn mg/l Fisaño F mg/l Fisaño Total F mg/l	0.1
Cadmio Cd mg/l Cianuro total CN- mg/l Cloro activo Cl mg/l Cloroformo Extracto carbón cloroformo Cloruros Cl- mg/l Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l hexavalente Demanda DBO5 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Coxígeno Sn mg/l Fluoruros F mg/l Fesaño Sn mg/l Fisoforo Total P mg/l Hierro total Fe mg/l	2
Cianuro total CN- Cloro activo Cl mg/l Cloro formo Extracto carbón cloroformo Cloruros Cl- Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l hexavalente Demanda DBO5 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Química de Oxígeno Dicloroetileno Dicloroetileno mg/l Fesaño Sn mg/l Fiuoruros F mg/l Fisoforo Total P mg/l Hierro total Fe mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	2
Cloro activo Cloroformo Extracto carbón cloroformo Cloruros Cl- mg/l Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenólicos Cromo Cr +6 hexavalente Demanda DBO5 Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Estaño Fenol Dicloroetileno Dicloroetileno Fenol Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l Mg/	0.02
Cloroformo Extracto carbón cloroformo Cloruros Cl- Cobre Cu mg/l Cobalto Co Coliformes Fecales Color Real Color real Compuestos Fenol Fenólicos Cromo hexavalente Demanda Domanda Domanda Oxígeno (5días) Demanda Dicloroetileno Dicloroetileno Dicloroetileno Extracto carbón mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hierro total Fe mg/l mg/l	0.1
Cloruros Cl- Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Fenólicos Dicloroetileno Dicloroetileno Dicloroetileno Dicloroetileno Fenólicos Dicloroetileno	0.5
Cloruros Clobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol Fenólicos Cromo Cr +6 hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda DQO mg/l Química de Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Fenol mg/l mg/l mg/l mg/l mg/l mg/l Fosforo Total P mg/l Hierro total Fe mg/l mg/l mg/l	0.1
Cobre Cu mg/l Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Química de Oxígeno Dicloroetileno Dicloroetileno mg/l Estaño Sn mg/l Fiuoruros F mg/l Hierro total P mg/l Hierro total Fe mg/l	
Cobalto Co mg/l Coliformes Nmp/100 ml Fecales Color Real Color real unidades de color mg/l Compuestos Fenol mg/l Fenólicos Cromo Cr +6 mg/l hexavalente Demanda DBO5 mg/l Bioquímica de Oxígeno (5días) Demanda DQO mg/l Química de Oxígeno Dicloroetileno Dicloroetileno mg/l Estaño Sn mg/l Fluoruros F mg/l Hierro total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	1000
Coliformes Fecales Color Real Color real Compuestos Fenol Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Estaño Fluoruros Fenol mg/l	1
Fecales Color Real Color real unidades de color mg/l Compuestos Fenol Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Fenol mg/l	0.5
Color Real Color real unidades de color mg/l Compuestos Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Fluoruros F Fosforo Total Hierro total Fe Innidades Innidade	Remoción >
de color mg/l Compuestos Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Fluoruros F Hierro total Hidrocarburos Fenol mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	99.9%
Compuestos Fenol Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Fluoruros F Hioruros F Hierro total Hidrocarburos FFenol mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Inapreciable
Compuestos Fenólicos Cromo Cromo Cr +6 Mg/l Mexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Fruoruros Fruor	en dilución
Fenólicos Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Fluoruros F mg/l Fósforo Total Hierro total Fe mg/l Fe mg/l Final	1/20
Cromo hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Estaño Fluoruros F mg/l Hierro total Fe mg/l mg/l mg/l mg/l mg/l	0.2
hexavalente Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Estaño Sn Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos DBO5 mg/l mg/l mg/l	
Demanda Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Dicloroetileno Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l mg/l	0.5
Bioquímica de Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Estaño Sn mg/l Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	
Oxígeno (5días) Demanda Química de Oxígeno Dicloroetileno Dicloroetileno Estaño Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	100
Demanda DQO mg/l Química de Oxígeno Dicloroetileno mg/l Estaño Sn mg/l Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	
Química de Oxígeno Dicloroetileno mg/l Dicloroetileno Dicloroetileno mg/l Estaño Sn mg/l Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	
Oxígeno Dicloroetileno Dicloroetileno mg/l Estaño Sn mg/l Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	250
Dicloroetileno Dicloroetileno mg/l Estaño Sn mg/l Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	
Estaño Sn mg/l Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	
Fluoruros F mg/l Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	1
Fósforo Total P mg/l Hierro total Fe mg/l Hidrocarburos TPH mg/l	5
Hierro total Fe mg/l Hidrocarburos TPH mg/l	5
Hidrocarburos TPH mg/l	10
	10
	20
Totales de	
Petróleo	
Manganeso total Mn mg/l	2

Materia flotante	Visibles	mg/l	Ausencia
Mercurio total	Hg	mg/l	0.005
Níquel	Ni	mg/l	2
Nitratos+Nitritos	Expresado como	mg/l	10
	Nitrógeno		
Nitrógeno Total	N	mg/l	15
Kjedahl			
Organoclorados	Concentración de	mg/l	0.05
totales	Organoclorados		
	totales		
Organofosforados	Concentración de	mg/l	0.1
totales	Organofosforados		
	totales		
Plata	Ag	mg/l	0.1
Plomo	Pb	mg/l	0.2
Potencial de	pН	mg/l	5~9
Hidrógeno			
Selenio	Se	mg/l	0.1
Sólidos		mg/l	1
Sedimentables			
Solidos		mg/l	100
Suspendidos			
Totales			
Sólidos totales		mg/l	1600
Sulfatos	SO4	mg/l	1000
Sulfitos	SO3	mg/l	2
Sulfuros	S	mg/l	0.5
Temperatura	С	mg/l	<35
Tensoactivos	Sustancias	mg/l	0.5
	activas al azul de		
	metileno		
Tetracloruro de	Tetracloruro de	mg/l	1
Carbono	carbono		
Tricloroetileno	Tricloroetinol	mg/l	1
Vanadio	V	mg/l	5
Zinc	Zn	mg/l	5

Tabla 5. Límites Permisibles de Descarga sobre cuerpo de Agua Dulce (Texto Unificado de Legislación secundaria del medio ambiente Libro IV; s/f, 12)

2.6 Estudio De La Situación Actual De Las Plantas De Tratamiento e Información Básica De Las Plantas Construidas

Las plantas de tratamiento se encuentran distribuidas alrededor del Lago San Pablo como se muestra a continuación:

Figura 4. Ubicación de las Plantas de Tratamiento

Todas las plantas de tratamiento tienen una entrada, en donde, se reparte y se controla el caudal por medio de vertederos triangulares. Posteriormente, el caudal es repartido y entra a un filtro pre colador y tanque de sedimentación. A continuación, el agua es dirigida por una tubería hasta el filtro ascendente. Finalmente, entran a los estanques de totoral en donde se lleva a cabo un proceso de tratamiento por medio del uso de plantas acuáticas. A continuación, se detalla por separado cada uno de los tratamientos aplicados:

2.6.1 Pretratamiento: Uso de Rejillas

En las plantas de estudio se tiene solamente una rejilla con excepción de la planta de tratamiento de la parroquia de San Pablo, ya que es la única que cuenta con 2 rejillas. Este pretratamiento separa las partículas suspendidas reteniéndolas en la abertura de la rejilla. Este proceso se realiza con el objetivo de retener partículas grandes para facilitar el proceso de sedimentación y filtración posterior.

2.6.2 Tratamiento Primario: Tanque sedimentador y Filtración

Este tratamiento se realiza en un tanque lo suficientemente largo para que permita la sedimentación de las partículas. La sedimentación se realiza debido a la fuerza de gravedad que hace que las partículas empiecen a caer mientras que el agua se desplaza horizontalmente. A continuación, se ilustra la idea de la sedimentación en la siguiente imagen:

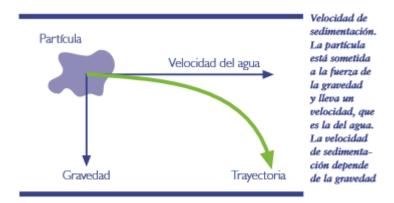


Figura 5. Sedimentación de Partículas (Rodríguez, Gómez, et al; 2010)

Las partículas se sedimentan dependiendo la velocidad a la que se desplazan. De acuerdo con Miguel Beascoechea, Miguel Muñoz et al para partículas de más de 200 micras la velocidad ideal de sedimentación es de 80m/h. Mientras que para partículas de menor densidad se debe tener una velocidad menor para permitir la sedimentación de partículas (s/f, 34).

2.6.3 Filtración Anaeróbica Ascendente

Este proceso requiere de un medio filtrante que permita retener los sólidos en suspensión, en el caso de estudio se tiene una tubería perforada por debajo del medio filtrante, de modo que el agua al subir se va filtrando en la grava colocada. Como medio filtrante se utiliza piedra bola de 20 cm de diámetro. Además, hay grava de 5-7.5cm de diámetro distribuida en el tanque de filtración. En la parte superior del tanque hay una tubería perforada por arriba para recolectar el agua más limpia. Los lodos se acumulan y deben ser retirados posteriormente con ayuda de bombas generando presión.

2.6.4 Tratamiento Secundario: Uso de Plantas Acuáticas "Lenteja de Agua"

En el caso de estudio se utiliza las plantas acuáticas lemnáceas, también conocidas como "lentejas de agua". Estas plantas flotan en la superficie de los humedales y cumplen los siguientes objetivos:

- Aireación. El oxígeno es fundamental para cualquier proceso biológico por lo que le facilita el oxígeno a los microorganismos existentes dentro del medio.
- Absorben nutrientes, de esta manera retiran elementos como nitrógeno o fosforo del agua residual.
- Absorben contaminantes

La Lenteja de Agua es un tipo de planta acuática que se caracteriza por su alta taza de crecimiento en distintas condiciones ambientales. La tasa de reproducción es considerablemente alta, de modo que puede duplicar su biomasa en dos días (Rodríguez, Gómez, et al; 2010, 5)

Figura 6. Lenteja de Agua

2.7 Planta de Tratamiento de San Pablo

La planta de tratamiento de la comunidad de San Pablo se encuentra en la coordenada 0.19189929 Latitud y -78.201329 Longitud. La planta de tratamiento consta de 54 estanques, 3 filtros percoladores, 2 lechos de secado, 3 tanques sedimentadores. La configuración correspondiente a la planta de tratamiento en cuestión se muestra a continuación en la figura #7

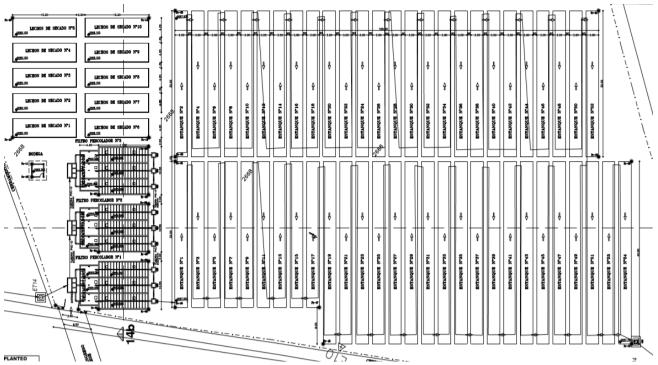


Figura 7. Planta de Tratamiento Parroquia San Pablo (Moscoso; 2006)

2.7.1 Visita a la Planta de Tratamiento de San Pablo.

En la visita de la planta de tratamiento de la comunidad de San Pablo se pudo constatar que las rejillas se saturan por la cantidad de solidos suspendidos que se encuentran en el alcantarillado combinado ver anexo 3. Los operadores necesitan ir 3 veces a la semana a destapar las rejillas. En el repartidor de caudal se observa acumulación de sedimentos, de igual manera que en las rejas antes mencionadas. Además, se percibe residuos de combustibles en los pozos puesto que se logró percibir el aroma de combustibles y se pudo observar que las aguas contenían gran cantidad de grasas, ver anexo 8. En esta planta se debe estar destapando los filtros percoladores ya que se saturan de lodos, para lo cual se bombea manualmente de modo que el agua residual pueda continuar su flujo hacia tanque sedimentador y estanques. La acumulación de sedimentos evita el correcto funcionamiento de la planta puesto que provoca que los tanques sedimentadores empiecen a saturarse y a vaciarse en los alrededores. En épocas de lluvia, la saturación es peor por lo que se requiere ir 2 veces al día a destapar el filtro para evitar que esto suceda. Los lechos de secado constan con un sifón que permite drenar las aguas al estanque, sin embargo, estos se saturan y como resultado se observa que las aguas se filtran directamente al suelo ver anexo 5. Cuando los tanques se empiezan a vaciar son dirigidos por un canal rectangular hecho directamente sobre el suelo, lo que causa una contaminación mayor de los recursos agua y suelo ver anexo 6. Adicionalmente, se encuentra que, al tener muchos estanques, el totoral se cosecha en 15 días laborables. De acuerdo con los operadores, se coloca más o menos ¼ de plantas acuáticas por piscina una vez al mes. Luego de la cosecha de las plantas, se colocan en los lechos de secado y son distribuidos a personas que requieran abono para terrenos de cultivos. En esta planta de tratamiento se han realizado muestreos de agua residual, sin embargo, se realizan 2 ensayos químicos aprobados al año, ya que la empresa de agua todavía no puede realizar todos los ensayos químicos. La última muestra tomada por parte de la EMAPAO en esta planta se realizó el 5 de Febrero del 2020. A continuación, se muestran unas fotografías tomadas en la visita a la planta de tratamiento de la parroquia San Pablo:

Anexo N. 3 Rejillas

Anexo N.4 Lechos de Secado

Anexo N. 5 Lecho de Secado

Anexo 6. Canal Aguas residuales directo sobre el suelo

Anexo 7. Tanque repartidor de Caudal

Anexo 8. Tanque repartidor de Caudal

2.8 Planta de Tratamiento de Araque

La planta de tratamiento de la comunidad de Araque se encuentra ubicada en las coordenadas: latitud: 0.20192381 y longitud: -78.203457. La comunidad de Araque es mucho más pequeña que la parroquia de San Pablo, por lo que está conformada por: una conexión de entrada, tanque repartidor de caudal con 4 vertederos, 2 tanques percoladores, 12 estanques, 8 lechos de secado y conexión de salida. La configuración de la planta se muestra a continuación:

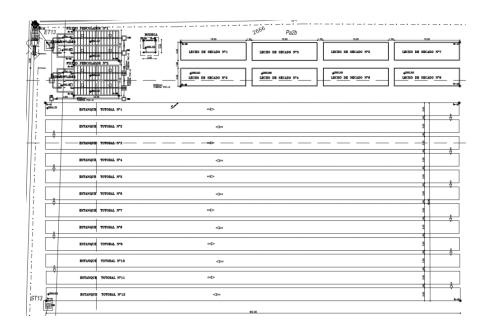


Figura 8. Implementación Planta de Tratamiento de la Comunidad de Araque

2.8.1 Visita a la Planta de la Comunidad de Araque.

En la visita a la planta de la comunidad de Araque se puede constar que existen problemas similares que en la comunidad de San Pablo. Las rejillas se saturan con sedimentos y residuos sólidos ver anexo N. 10. Estos residuos igual se encuentran en el tanque distribuidor de caudal. El filtro percolador se satura y no permite el flujo de agua al tanque sedimentador por lo que es necesario bombear manualmente para que los tanques no se rebosen. En esta planta de tratamiento se encontró el tanque a punto de rebosar como se muestra en el anexo N. 11. De igual manera que en San Pablo, en épocas de lluvia la situación empeora por el arrastre de basura de las aguas lluvias. De acuerdo con los operadores, si se ha rebosado el agua residual de los tanques debido al taponamiento del filtro, sin embargo, esto no se pudo constatar en la visita realizada. Cabe mencionar que esta planta de tratamiento está rodeada por brotes de agua natural (ver anexo 14), por lo que cualquier rebose del tanque de aguas negras resultaría perjudicial ya que contaminaría otras fuentes de agua natural. En esta planta de tratamiento no se observó daños en los lechos de

secado al momento de la visita. El lodo acumulado en el tanque sedimentador se libera con agua a presión, este mantenimiento se realiza 1 vez cada 15 días, ya que los operadores deben desplazarse por cada una de las plantas de tratamiento construidas alrededor del lago San Pablo. El bombeo manual se realiza más a menudo ver anexo N. 13. A continuación, se muestra el registro fotográfico de la visita realizada en la planta de Tratamiento de la Comunidad de Araque.

Anexo N. 10 Rejilla

Anexo N. 12 Lechos de Secado

Anexo N. 11 Tanque repartidor de Caudal

Anexo N. 13 Bombeo Manual

2.9 Planta de Tratamiento de Cuaraburo

En Eugenio Espejo, en la comunidad de Cuaraburo se presenta la tercera planta de tratamiento en estudio. Esta comunidad es mucho más pequeña que las anteriores, consiste en una conexión de entrada, controlador de caudal con 4 vertederos, tanque percolador, tanque de sedimentación, 4 estanques de totoral, conexión final y 4 lechos de secado como se muestra a continuación:

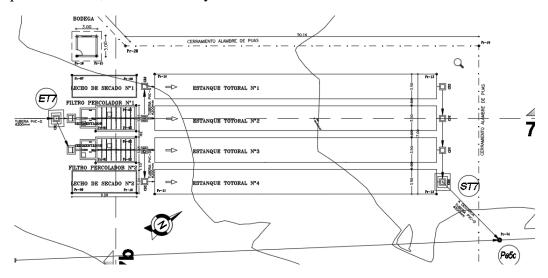


Figura 9. Implementación de la Planta de Tratamiento de la Comunidad de Cuaraburo (Moscos; 2006)

2.9.1 Visita a la Planta de tratamiento de la Comunidad de Cuaraburo.

En la planta de tratamiento de la comunidad de Cuaraburo lo ideal sería cosechar el lechugín cada mes, sin embargo, debido al poco número de operadores se realiza cada dos meses. Uno de los problemas que se encuentra en esta planta de tratamiento es que el sistema de bombeo no está funcionando puesto que la estación de bombeo ya cumplió su periodo de diseño. Adicionalmente, al igual que las otras plantas de tratamiento requiere la limpieza constante de los filtros y rejillas para su correcto funcionamiento. En épocas de lluvia, la totora crece más rápido por lo que requiere de más trabajo, de igual manera, el sistema se satura mucho más debido al sistema combinado del alcantarillado. A continuación, se presenta el registro fotográfico del estado actual de la planta de tratamiento.

Anexo N. 16 Planta de Tratamiento de Cuaraburo

Anexo N. 17 Rejilla

Anexo N. 18 Lechos de secado

CAPÍTULO 3. POBLACIÓN DE DISEÑO

3.1 Determinación del Índice de Crecimiento

El índice de crecimiento es un coeficiente que indica el aumento o disminución de la población de un sector por unidad de tiempo, a continuación, se procede a la determinación del mismo para el sector de San Pablo y Araque.

Para determinar el índice de crecimiento de la población fue necesario obtener datos de 3 censos correspondientes a los años1990, 2001 y 2010 para San pablo y Eugenio Espejo que son las parroquias en donde se asientan las comunidades Araque y Cuaraburo respectivamente. Para la determinación del índice de crecimiento se usó el método aritmético, exponencial y geométrico. Luego se obtuvo una ponderación de los 3 métodos para diseñar por el lado de la seguridad. A continuación, se detallan los cálculos realizados para cada Comunidad:

3.1.1 San Pablo y Araque

-4	
AÑO	POBLACION
	TOTAL
1990	8,833
2001	9,106
2010	9,901

Tabla 6. Datos Censos (INEC; s/f)

Para determinar el índice de crecimiento se aplicó la siguiente ecuación:

$$r_{aritm\acute{e}tico} = (\frac{P_{t+n} - Pt_t}{a})/P_t$$

En donde,

Pt+n, es la población al momento actual

Pt, es la población al momento inicial

a, es la diferencia de años

Al realizar los cálculos para los datos obtenidos de los 3 censos, se obtienen los siguientes índices:

ÍNDICE ARITMÉTICO					
	1990-2001 2010-2001				
r	0.281% 0.970%				
Pt+n	9,106 9,901				
Pt	8,833 9,106				
a	11	9			

Tabla 7. Índice de Crecimiento por el Método Aritmético

Para el índice geométrico se aplicó la siguiente ecuación:

$$r = \left(\frac{P_{t+n}}{P_t}\right)^{\frac{1}{a}} - 1$$

	ÍNDICE GEOMÉTRICO				
1990-2001 2001-2010					
r	0.277% 0.934%				
Pt+n	9,106	9,901			
Pt	8,833	9,106			
a	11	9			

Tabla 8. Índice de Crecimiento por el Método Geométrico

Para el índice Exponencial se aplica la siguiente ecuación:

$$r = \frac{1}{a} \ln(\frac{P_{t+n}}{P_t})$$

ÍNDICE EXPONENCIAL

	1990-2001	2001-2010
r	0.277%	0.930%
Pt+n	9,106	9,901
Pt	8,833	9,106
a	11	9

Tabla 9. Índice de Crecimiento por el Método Exponencial

El índice de crecimiento promedio obtenido entre todos los métodos usados para la población de San Pablo y Araque es de: 0.603%. Para la comunidad de Cuaraburo se realiza el cálculo de

la tasa de crecimiento de forma muy similar. Se debe considerar que Cuaraburo es una comunidad que forma parte de la parroquia Eugenio Espejo, por lo que se considera la población de esta parroquia como base de datos para determinar el índice de crecimiento. A continuación, se muestran los resultados Obtenidos para Cuaraburo:

3.1.2 Cuaraburo

AÑO	POBLACION	
ANO	TOTAL	
1990	6,416	
2001	6,004	
2010	7,357	

Tabla 10. Datos Censos (INEC; s/f)

De la misma manera se realiza el cálculo del índice para todos los métodos antes mencionados:

ÍNDICE ARITMÉTICO						
	1990-2001 2010-2001					
r	-0.584% 2.504%					
Pt+n	6,004	7,357				
Pt	6,416	6,004				
a	11	9				

Tabla 11. Índice de Crecimiento por el Método Aritmético

ÍNDICE GEOMÉTRICO				
	1990- 2010-			
	2001	2001		
r	-0.602%	2.284%		
Pt+n	6,004	7,357		
Pt	6,416	6,004		
a	11	9		

Tabla 12. Índice de Crecimiento por el Método Geométrico

ÍNDICE EXPONENCIAL						
	1990-2001 2010-2001					
r	-0.603%	2.258%				
Pt+n	6,004	7,357				
Pt	6,416	6,004				
a	11	9				

Tabla 13. Índice de Crecimiento por el Método Exponencial

Para la comunidad de Cuaraburo, se obtiene un índice de crecimiento ponderado de: 0.827%

3.2 Proyección de la Población al año 2020

Para poder realizar la proyección de la población de cada una de las comunidades en estudio, primero se averigua la población actual en cada comunidad. De acuerdo con el Plan de Ordenamiento Territorial de San Pablo y Eugenio Espejo, se encontró que en las comunidades de Araque y Cuaraburo habitan 650 y 163 familias respectivamente. Para determinar el número de habitantes en total en cada comunidad se considera un numero de 4 miembros por familia (Plan de Ordenamiento Territorial Otavalo; 2015). Los datos de población encontrados para estas comunidades se detallan a continuación:

ARAQUE	CUARABURO			
No. De Habitantes		No. De		Habitantes
familias		familias		
650	2600		163	652

Tabla 14. Habitantes de las Comunidades Rurales de Araque y Cuaraburo

la proyección de la población futura, se grafican las poblaciones de los 3 censos para observar el comportamiento del crecimiento poblacional. A continuación, se muestran las gráficas correspondientes:

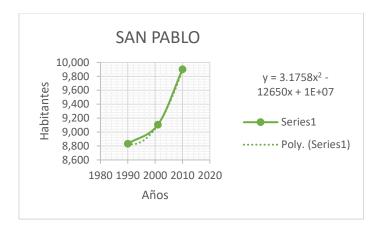


Figura 10. Crecimiento San Pablo

En la gráfica se puede apreciar que la población de San Pablo está en constante crecimiento, ya que en cada punto se encuentra mayor cantidad de habitantes. Para San Pablo y Araque, se observa un tipo de crecimiento geométrico que se representa con la siguiente ecuación:

$$y = 3.1758x^2 - 12650x + 1E+07$$

Para la comunidad de Cuaraburo se encuentra la siguiente gráfica:

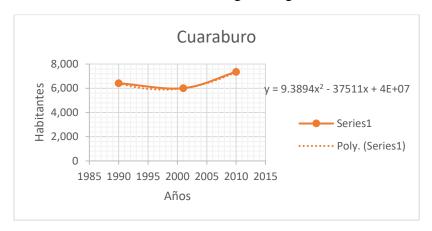


Figura 11. Crecimiento Comunidad de Cuaraburo

En esta gráfica, se observar una disminución de la población entre 1990 y el dato del 2001. Por lo que al comienzo presenta una tasa de crecimiento negativa. Pasado el 2001, la población se recupera. Se observa que el método que más se acopla es el geométrico con la siguiente ecuación:

$$y = 9.3894x^2 - 37511x + 4E+07$$

Sin embargo, como solo se obtiene 3 datos de población de las parroquias, se realizará la proyección por 3 métodos (aritmético, geométrico y exponencial) y se obtendrá una población promedio para una mejor toma de decisiones.

San Pablo

3.2.1 Método Geométrico

$$P_t = P_o * (1 + r)^t$$

En donde,

Pt representa la población final

Po, la población Inicial

r, la tasa de crecimiento

t, número de años transcurridos entre Po y Pt

3.2.2 Método Exponencial

$$Pd = Pa.e^{k.t}$$

3.2.3 Método Aritmético

$$Pd = Pa + r.t$$

En las tres siguientes tablas se presentan los resultados para la proyección de la población de las 3 comunidades.

2011 9902 9901 9962 9921 2012 9902 9901 10023 9942 2013 9903 9901 10084 9963 2014 9903 9901 10146 9984 2015 9904 9901 10208 10004 2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10337 1008 2019 9906 9901 10461 10090 2020 9907 9901 10525 1011 2021 9908 9901 10590 10133 2022 9908 9901 10590 10133 2022 9908 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 <td< th=""><th colspan="5">COMUNIDAD SAN PABLO</th></td<>	COMUNIDAD SAN PABLO				
ANO GEOMETRICO Flabitantes [Habitantes] [Habitantes] [Habitantes] [Habitantes] [Habitantes]					PORLACIÓN
Habitantes Habitantes Habitantes Habitantes	AÑO	GEOMÉTRICO			
2011 9902 9901 9962 9921 2012 9902 9901 10023 9942 2013 9903 9901 10084 9963 2014 9903 9901 10146 9984 2015 9904 9901 10208 10004 2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10397 10068 2019 9906 9901 10461 10090 2020 9907 9901 10525 1011 2021 9908 9901 10590 10133 2022 9908 9901 10590 10133 2022 9908 9901 10750 10173 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 <t< td=""><td></td><td>[Habitantes]</td><td>[Habitantes]</td><td>[Habitantes]</td><td>TROWLDIO</td></t<>		[Habitantes]	[Habitantes]	[Habitantes]	TROWLDIO
2012 9902 9901 10023 9942 2013 9903 9901 10084 9963 2014 9903 9901 10146 9984 2015 9904 9901 10208 10004 2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10397 10068 2019 9906 9901 10461 10090 2020 9907 9901 10525 1011 2021 9908 9901 10590 10133 2022 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901	2010	9901	9901	9901	9901
2013 9903 9901 10084 9963 2014 9903 9901 10146 9984 2015 9904 9901 10208 10004 2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10397 10068 2019 9906 9901 10461 10090 2020 9907 9901 10525 1011 2021 9908 9901 10590 10133 2022 9908 9901 10655 1015 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10852 10221 2026 9911 9901 10986 1026 2028 9912 9901 <	2011	9902	9901	9962	9921
2014 9903 9901 10146 9984 2015 9904 9901 10208 10004 2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10397 1068 2019 9906 9901 10461 10090 2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10852 10221 2026 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901	2012	9902	9901	10023	9942
2015 9904 9901 10208 10004 2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10397 1068 2019 9906 9901 10461 10090 2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 11053 10289 2028 9912 9901 11121 10312 2030 9913 9901	2013	9903	9901	10084	9963
2016 9905 9901 10271 10026 2017 9905 9901 10334 10047 2018 9906 9901 10397 1068 2019 9906 9901 10461 10090 2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11125 10312 2031 9914 9901	2014	9903	9901	10146	9984
2017 9905 9901 10334 10047 2018 9906 9901 10397 1068 2019 9906 9901 10461 10090 2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901	2015	9904	9901	10208	10004
2018 9906 9901 10397 10068 2019 9906 9901 10461 10090 2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901	2016	9905	9901	10271	10026
2019 9906 9901 10461 10090 2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10269 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901	2017	9905	9901	10334	10047
2020 9907 9901 10525 10111 2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901	2018	9906	9901	10397	10068
2021 9908 9901 10590 10133 2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11537 10451 2035 9916 9901 11607 10475 2036 9917 9901	2019	9906	9901	10461	10090
2022 9908 9901 10655 10155 2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11607 10475 2036 9917 9901 11607 10475 2038 9918 9901 11750 10523 2039 9919 9901 11822 <t< td=""><td>2020</td><td>9907</td><td>9901</td><td>10525</td><td>10111</td></t<>	2020	9907	9901	10525	10111
2023 9909 9901 10720 10177 2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901	2021	9908	9901	10590	10133
2024 9909 9901 10786 10199 2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11895 10572 2040 9919 9901	2022	9908	9901	10655	10155
2025 9910 9901 10852 10221 2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2040 9919 9901 11895 10572 2041 9920 9901	2023	9909	9901	10720	10177
2026 9911 9901 10919 10244 2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 12041 10621 2042 9920 9901 12115 <t< td=""><td>2024</td><td>9909</td><td>9901</td><td>10786</td><td>10199</td></t<>	2024	9909	9901	10786	10199
2027 9911 9901 10986 10266 2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 <t< td=""><td>2025</td><td>9910</td><td>9901</td><td>10852</td><td>10221</td></t<>	2025	9910	9901	10852	10221
2028 9912 9901 11053 10289 2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2026	9911	9901	10919	10244
2029 9913 9901 11121 10312 2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2027	9911	9901	10986	10266
2030 9913 9901 11189 10334 2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2028	9912	9901	11053	10289
2031 9914 9901 11258 10358 2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2029	9913	9901	11121	10312
2032 9914 9901 11327 10381 2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2030	9913	9901	11189	10334
2033 9915 9901 11396 10404 2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2031	9914	9901	11258	10358
2034 9916 9901 11466 10428 2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2032	9914	9901	11327	10381
2035 9916 9901 11537 10451 2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2033	9915	9901	11396	10404
2036 9917 9901 11607 10475 2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2034	9916	9901	11466	10428
2037 9917 9901 11679 10499 2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2035	9916	9901	11537	10451
2038 9918 9901 11750 10523 2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2036	9917	9901	11607	10475
2039 9919 9901 11822 10547 2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2037	9917	9901	11679	10499
2040 9919 9901 11895 10572 2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2038	9918	9901	11750	10523
2041 9920 9901 11968 10596 2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2039	9919	9901	11822	10547
2042 9920 9901 12041 10621 2043 9921 9901 12115 10646	2040	9919	9901	11895	10572
2043 9921 9901 12115 10646	2041	9920	9901	11968	10596
	2042	9920	9901	12041	10621
2044 9922 9901 12189 10671	2043	9921	9901	12115	10646
	2044	9922	9901	12189	10671
2045 9922 9901 12264 10696	2045	9922	9901	12264	10696

Tabla 15. Proyección de la Población de la Comunidad San Pablo

	COMUNIDAD ARAQUE				
	MÉTODO	MÉTODO	MÉTODO	POBLACIÓN	
AÑO	GEOMÉTRICO	ARITMÉTICO	EXPONENCIAL	PROMEDIO	
	[Habitantes]	[Habitantes]	[Habitantes]	PROMEDIO	
2010	2600	2600	2600	2600	
2011	2600	2600	2616	2605	
2012	2600	2600	2632	2611	
2013	2600	2600	2648	2616	
2014	2601	2600	2664	2622	
2015	2601	2600	2681	2627	
2016	2601	2600	2697	2633	
2017	2601	2600	2714	2638	
2018	2601	2600	2730	2644	
2019	2601	2600	2747	2650	
2020	2602	2600	2764	2655	
2021	2602	2600	2781	2661	
2022	2602	2600	2798	2667	
2023	2602	2600	2815	2672	
2024	2602	2600	2832	2678	
2025	2602	2600	2850	2684	
2026	2603	2600	2867	2690	
2027	2603	2600	2885	2696	
2028	2603	2600	2903	2702	
2029	2603	2600	2920	2708	
2030	2603	2600	2938	2714	
2031	2603	2600	2956	2720	
2032	2604	2600	2974	2726	
2033	2604	2600	2993	2732	
2034	2604	2600	3011	2738	
2035	2604	2600	3029	2745	
2036	2604	2600	3048	2751	
2037	2604	2600	3067	2757	
2038	2604	2600	3086	2763	
2039	2605	2600	3105	2770	
2040	2605	2600	3124	2776	
2041	2605	2600	3143	2783	
2042	2605	2600	3162	2789	
2043	2605	2600	3181	2796	
2044	2605	2600	3201	2802	
2045	2606	2600	3221	2809	

Tabla 16. Proyección de la Población de la Comunidad Araque

	COMUNIDAD CUARABURO				
	MÉTODO	MÉTODO	MÉTODO	POBLACIÓN	
AÑO	GEOMÉTRICO	ARITMÉTICO	EXPONENCIAL	PROMEDIO	
	[Habitantes]	[Habitantes]	[Habitantes]	TROMEDIO	
2010	652	652	652	652	
2011	652	652	658	654	
2012	652	652	664	656	
2013	652	652	669	658	
2014	652	652	675	660	
2015	652	652	681	662	
2016	652	652	687	664	
2017	652	652	693	666	
2018	652	652	699	668	
2019	653	652	705	670	
2020	653	652	712	672	
2021	653	652	718	674	
2022	653	652	724	676	
2023	653	652	731	679	
2024	653	652	737	681	
2025	653	652	744	683	
2026	653	652	750	685	
2027	653	652	757	687	
2028	653	652	763	690	
2029	653	652	770	692	
2030	653	652	777	694	
2031	653	652	784	696	
2032	653	652	791	699	
2033	653	652	798	701	
2034	653	652	805	703	
2035	653	652	812	706	
2036	653	652	819	708	
2037	654	652	826	711	
2038	654	652	833	713	
2039	654	652	841	716	
2040	654	652	848	718	
2041	654	652	855	721	
2042	654	652	863	723	
2043	654	652	871	726	
2044	654	652	878	728	
2045	654	652	886	731	

Tabla 17. Proyección de la Población de la Comunidad Cuaraburo

CAPÍTULO 4. CAUDAL DE DISEÑO

Para estimar el caudal apropiadamente se debe considerar que el sistema de alcantarillado en estudio es un sistema mixto, es decir, debe incorporarse el caudal de aguas lluvias más el caudal de agua residual.

4.1 Aguas Pluviales.

Las aguas pluviales o de escorrentía representan el agua por precipitación de lluvia recogida por el sistema de alcantarillado. Este caudal arrastra sedimentos y basura que se encuentra presente en las calles. Este caudal depende directamente de la intensidad y de la duración de la lluvia en la zona de estudio. El caudal de aguas lluvia se calcula mediante la siguiente ecuación:

$$Q_{pluvial} = IS\varphi$$

En donde,

I, es la intensidad de la lluvia

S, es la superficie total del cauce

 φ , es el coeficiente de escorrentía

Debido a que este caudal depende netamente de la lluvia, se realiza un análisis de riesgo, y se estima la probabilidad de ocurrencia para una tormenta de 5 y 10 años. En primer lugar, se estima la probabilidad de ocurrencia en año con lluvias con periodo de retorno de 5 y 10 años. Se utiliza la siguiente expresión:

$$Probabilidad\ de\ Retorno = \frac{1}{T} * 100$$

Para 5 años se obtiene:

$$P = \frac{1}{5} * 100 = 20\%$$

Para 10 años se obtiene:

$$P = \frac{1}{10} * 100 = 10\%$$

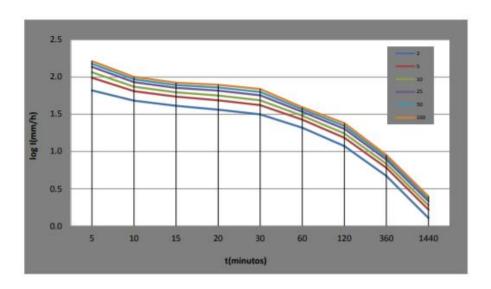
Se realiza un análisis de riesgo para ver qué tan probable es que las tormentas de 5 y 10 años ocurran en el periodo de diseño.

Análisis de Riesgo =
$$1 - \left(1 - \frac{1}{T}\right)^n$$

En donde,

n corresponde al # periodo de diseño, que es 25 años

T, es el periodo de retorno de 5 y 10 años


Para 5 años la probabilidad de ocurrencia es:

$$P_5 = 1 - \left(1 - \frac{1}{5}\right)^{25} = 99.6\%$$

Para 10 años la probabilidad de ocurrencia es:

$$P_{10} = 1 - \left(1 - \frac{1}{10}\right)^{25} = 93\%$$

Se observa que es altamente probable que ocurra una lluvia de al menos 10 años en los 25 años de vida útil de la estructura.

(min)	2	Perio 5	do de Retor 10	no T (años) 25	50	100
5	74.8	89.2	102.0	121.7	139.0	158.9
10	54.0	64.5	73.7	87.9	100.4	114.7
15	44.7	53.3	60.9	72.6	83.0	94.9
20	39.0	46.6	53.2	63.5	72.5	82.9
30	35.3	41.4	46.8	55.0	62.1	70.1
60	21.1	24.8	28.0	32.9	37.2	42.0
120	13.0	15.1	17.0	19.8	22.2	24.9
360	4.8	5.6	6.3	7.4	8.3	9.3
1440	1.4	1.6	1.8	2.1	2.4	2.7

Figura 12. Periodo de Retorno Imbabura (*Instituto Nacional de Meteorología e Hidrología;* 2015. pp. 69)

Otavalo se estima una duración de entre 5~50 minutos, para el análisis se va a considerar el peor escenario posible, ya que el sistema de alcantarillado es combinado. De la tabla se extraen las siguientes intensidades de lluvia para 5 y 10 años.

Para una duración de 60 minutos:

$$i_{5a\tilde{n}os} = 24.8 \frac{mm}{hr}$$

$$i_{10a\tilde{n}os} = 28 \frac{mm}{hr}$$

Para una duración de 5 minutos:

$$i_{5a\tilde{n}os} = 89.2 \frac{mm}{hr}$$

$$i_{10a\tilde{n}os} = 102 \frac{mm}{hr}$$

Se toma como datos las intensidades con una duración de 5 minutos ya que son más críticas. Col el motivo de comparar los caudales por aguas lluvias con el estudio realizado el 2006, se estimará el caudal pluvial con curvas de retorno de 5 años y de 10 años.

Para el factor de escorrentía es necesario un análisis de la cobertura vegetal existente en la zona en donde se va a recolectar el agua lluvia, por lo tanto, se obtiene lo siguiente:

4.1.1San Pablo y Araque.

A continuación, se determina el factor de escorrentía dependiendo la cobertura vegetal de la zona de estudio. En primer lugar, el suelo de la parroquia de San Pablo, está compuesto de 4.8 % con bosques plantados, 55.31% tierras agropecuarias, vegetación arbustiva de 7.34%, los páramos con 28.5%. En los asentamientos de humanos hay diversas carreteras de asfalto, parques, carreteras de tierra. Por esta razón se considera un promedio para el factor de escorrentía.

4.1.2 Cuaraburo.

En Cuaraburo, el suelo se caracteriza por 15.18% de bosque, 41.81% de áreas agropecuarias de maíz pasto, 18.09% de vegetación arbustiva. Existen diversas carreteras de asfalto y de tierra, canales que se conectan a la red de alcantarillado. La zona es muy cercana a Araque y San Pablo, por lo que se esperan grandes caudales de aguas lluvias en temporadas de invierno.

El suelo para San Pablo y Cuaraburo está compuesto por vegetación similar, por lo que el coeficiente de escorrentía que se utiliza es un promedio de: 0.64

4.2 Caudal Ilícito

El caudal por infiltración representa aquellas conexiones que no se consideran en el diseño y que normalmente se conectan clandestinamente al sistema de alcantarillado. De acuerdo con el estudio realizado por el Ing. Moscoso el caudal ilícito supera el recomendado por la norma de 80L/Hab/día (Moscos; 2006)

4.3 Caudal de Infiltración

Los diseños actuales del sistema de recolección muestran el uso de tuberías de HS por lo que se espera un aporte de aguas de infiltración a la red de recolección. Para estimar dicho aporte se ha adoptado un valor de 0.4 l/s/km. Este valor se adoptó, puesto que fue medido con para el estudio 2006.

4.4 Caudal Promedio

Para estimar el caudal de aguas residuales se debe utilizar la siguiente expresión:

$$Q_{prom} = \frac{P * D * 0.7}{86400}$$

En donde.

Qprom = caudal promedio de aguas servidas, l/s

P = población, habitantes.

D = dotación

En primer lugar, se adopta una dotación la cual representa el uso que se le da al agua. La dotación es el consumo de agua por habitante y por día en base al uso del recurso. En el caso de estudio, la dotación es para consumo doméstico en su mayoría. A continuación, en la siguiente tabla se presentan los rangos de la dotación en base al uso del agua.

Uso D	Casas, hoteles, baños	
Zona Urbana	200~250 L/hab/día	públicos, cocina, jardines, etc
Zona Rural	100~150 L/hab/día	publicos, coellia, jaidilles, etc

Tabla 18. Dotación

Antes de adoptar la dotación se estudia la situación social de cada comunidad.

4.4.1 San Pablo y Araque

En la parroquia de San Pablo existen 3 escuelas, 6 centros de desarrollo infantil, varios parques, varios hoteles alrededor del lago por lo que se considera una dotación de 200 L/hab/día para las comunidades de San Pablo y Araque.

Dotación Araque y San Pablo: 250 L/hab/día-30%Perdidas=190L/hab/día

4.4.2 Cuaraburo

A diferencia de San Pablo y Araque, la comunidad de Cuaraburo es mucho más pequeña, y cuenta con 1 escuela y 7 centros de desarrollo infantil. Por esta razón se utiliza una dotación de 150 L/hab/día.

Dotación Cuaraburo: 150L/hab/día -%P=120L/hab/día

4.4.3 %Perdidas

Se considera un 30% de perdidas en la dotación asumida. Se estima este valor considerando que en la fecha en que se realizó el estudio existían pérdidas de hasta un 60%, por lo que se supone que se han mejorado las fugas en los últimos 14 años. Este porcentaje de pérdidas se aplicó a la dotación asumida. En el caso de Cuaraburo, se consideró una pérdida de 20% ya que hay menor cantidad de habitantes y se espera menos perdidas.

4.5 Caudales de Diseño

Es necesario estimar el caudal máximo diario y caudal máximo horario, ya que se debe considerar la probabilidad de simultaneidad en el uso del servicio. El uso del servicio varía dependiendo diversos factores por lo que puede existir mayor demanda un día del año y en una hora específica del día, por esta razón se deben calcular dichos caudales. Además, la planta de tratamiento debe ser capaz de solventar dicha demanda. En primer lugar, el caudal máximo diario se estima con la siguiente expresión:

$$Q_{{\rm m\acute{a}x}\,diario}=K_1Q_{prom}$$

En donde el factor K1 representa un factor de mayoración que varía entre el rango de (1.2~2), se asume un valor de 1.7 (Empresa Metropolitana de Alcantarillado y Agua Potable Quito; 2009)

Por otro lado, el caudal máximo horario se estima con la siguiente expresión:

$$Q_{\text{máx}\,horario} = K_2 Q_{\text{max}\,diario}$$

En donde el factor K2 se puede asumir dentro del rango (1.5~3.5). Para el caso de estudio se asumió un valor de k2= 1.8 (Empresa Metropolitana de Alcantarillado y Agua Potable Quito; 2009)

Finalmente, el caudal total se estima sumando los caudales que van a formar parte del tratamiento para lo que se aplica la siguiente ecuación:

$$Q_{total} = Q_{máx\,horario} + Q_{infiltración} + Q_{ilícito}$$

A continuación, se detallan los caudales estimados. Cabe mencionar que se estimó un Qtratamiento el cual se multiplica por un factor de reducción (0.44), considerando que no todo el caudal entra en el proceso de tratamiento. El primer elemento limita el caudal que atraviesa por el resto del sistema. A continuación, se detallan los caudales obtenidos para las 3 comunidades. En primer lugar, la comunidad de San Pablo; en segundo lugar, la comunidad de Araque y en tercer lugar, la comunidad de Cuaraburo.

AÑO	PROYECCIÓN POB SAN PABLO	DOTACIÓN	COBERTURA	POB con Redes	Qprom [L/s]	Factor k1	Qmax diario [L/s]	Factor K2	Qmax horario [L/s]	Ilícito [L/s]	Qpluvial [l/s]	Qinfiltración [L/s]	Qtotal [l/S]	Qtotal [m3/s]	Q horario [m3/s]	POB TRATAMIENTO	Q TRATAMIENTO [L/S]
2010	9901	190	95%	9406	14.47914	1.8	26	1.8	47	9	175	3.44	234	0.2339	0.0469	4139	19
2011	9921	190	95%	9425	14.50839	1.8	26	1.8	47	9	175	3.44	234	0.2340	0.0470	4147	19
2012	9942	190	95%	9445	14.53918	1.8	26	1.8	47	9	175	3.44	234	0.2341	0.0471	4156	19
2013	9963	190	95%	9465	14.56997	1.8	26	1.8	47	9	175	3.44	234	0.2342	0.0472	4165	19
2014	9984	190	95%	9484	14.59921	1.8	26	1.8	47	9	175	3.44	234	0.2343	0.0473	4173	19
2015	10004	190	95%	9504	14.63	1.8	26	1.8	47	9	175	3.44	234	0.2344	0.0474	4182	19
2016	10026	190	95%	9524	14.66079	1.8	26	1.8	48	9	175	3.44	235	0.2346	0.0475	4191	19
2017	10047	190	95%	9544	14.69157	1.8	26	1.8	48	9	175	3.44	235	0.2347	0.0476	4199	19
2018	10068	190	95%	9565	14.7239	1.8	27	1.8	48	9	175	3.44	235	0.2348	0.0477	4209	19
2019	10090	190	95%	9585	14.75469	1.8	27	1.8	48	9	175	3.44	235	0.2349	0.0478	4217	19
2020	10111	190	95%	9606	14.78701	1.8	27	1.8	48	9	175	3.44	235	0.2350	0.0479	4227	19
2021	10133	190	95%	9626	14.8178	1.8	27	1.8	48	9	175	3.44	235	0.2352	0.0480	4235	19
2022	10155	190	95%	9647	14.85013	1.8	27	1.8	48	9	175	3.44	235	0.2353	0.0481	4245	19
2023	10177	190	95%	9668	14.88245	1.8	27	1.8	48	9	175	3.44	235	0.2354	0.0482	4254	19
2024	10199	190	95%	9689	14.91478	1.8	27	1.8	48	9	175	3.44	236	0.2355	0.0483	4263	19
2025	10221	190	95%	9710	14.94711	1.8	27	1.8	48	9	175	3.44	236	0.2357	0.0484	4272	19
2026	10244	190	95%	9731	14.97943	1.8	27	1.8	49	9	175	3.44	236	0.2358	0.0485	4282	19
2027	10266	190	95%	9753	15.0133	1.8	27	1.8	49	9	175	3.44	236	0.2359	0.0486	4291	19
2028	10289	190	95%	9774	15.04563	1.8	27	1.8	49	9	175	3.44	236	0.2360	0.0487	4301	19
2029	10312	190	95%	9796	15.07949	1.8	27	1.8	49	9	175	3.44	236	0.2362	0.0489	4310	19
2030	10334	190	95%	9818	15.11336	1.8	27	1.8	49	9	175	3.44	236	0.2363	0.0490	4320	19
2031	10358	190	95%	9840	15.14722	1.8	27	1.8	49	9	175	3.44	236	0.2364	0.0491	4330	19
2032	10381	190	95%	9862	15.18109	1.8	27	1.8	49	9	175	3.44	237	0.2366	0.0492	4339	19
2033	10404	190	95%	9884	15.21495	1.8	27	1.8	49	9	175	3.44	237	0.2367	0.0493	4349	19
2034	10428	190	95%	9906	15.24882	1.8	27	1.8	49	9	175	3.44	237	0.2368	0.0494	4359	19
2035	10451	190	95%	9929	15.28422	1.8	28	1.8	50	9	175	3.44	237	0.2369	0.0495	4369	19
2036	10475	190	95%	9951	15.31809	1.8	28	1.8	50	9	175	3.44	237	0.2371	0.0496	4378	19
2037	10499	190	95%	9974	15.3535	1.8	28	1.8	50	9	175	3.44	237	0.2372	0.0497	4389	19
2038	10523	190	95%	9997	15.3889	1.8	28	1.8	50	9	175	3.44	237	0.2374	0.0499	4399	19
2039	10547	190	95%	10020	15.42431	1.8	28	1.8	50	9	175	3.44	237	0.2375	0.0500	4409	20
2040	10572	190	95%	10043	15.45971	1.8	28	1.8	50	9	175	3.44	238	0.2376	0.0501	4419	20
2041	10596	190	95%	10066	15.49512	1.8	28	1.8	50	9	175	3.44	238	0.2378	0.0502	4429	20
2042	10621	190	95%	10090	15.53206	1.8	28	1.8	50	9	175	3.44	238	0.2379	0.0503	4440	20
2043	10646	190	95%	10113	15.56747	1.8	28	1.8	50	9	175	3.44	238	0.2380	0.0504	4450	20
2044	10671	190	95%	10137	15.60441	1.8	28	1.8	51	9	175	3.44	238	0.2382	0.0506	4460	20
2045	10696	190	95%	10161	15.64135	1.8	28	1.8	51	9	175	3.44	238	0.2383	0.0507	4471	20

Tabla 19. Caudal de Diseño de la Comunidad San Pablo

AÑO	PROYECCIÓN POB ARAQUE	DOTACIÓN	Cobertura	POB con redes	Qprom [L/s]	Factor k1	Qmax diario [L/s]	Factor K2	Qmax horario [L/s]	Ilícito [L/s]	Qpluvial [l/s]	Qinfiltración [L/s]	Qtotal [l/S]	Qtotal [m3/s]	Q horario [m3/s]	POB TRATAMIENTO	Q TRATAMIENTO [L/S]
2010	2600	190	95%	2470	3.802199	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0123	1087	7
2011	2605	190	95%	2475	3.809896	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0123	1089	7
2012	2611	190	95%	2480	3.817593	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0124	1091	7
2013	2616	190	95%	2485	3.825289	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0124	1093	7
2014	2622	190	95%	2491	3.834525	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0124	1096	7
2015	2627	190	95%	2496	3.842222	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0124	1098	7
2016	2633	190	95%	2501	3.849919	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0125	1100	7
2017	2638	190	95%	2506	3.857616	1.8	7	1.8	12	2	215	3.44	233	0.233	0.0125	1103	7
2018	2644	190	95%	2512	3.866852	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0125	1105	7
2019	2650	190	95%	2517	3.874549	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0126	1107	7
2020	2655	190	95%	2522	3.882245	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0126	1110	7
2021	2661	190	95%	2528	3.891481	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0126	1112	7
2022	2667	190	95%	2533	3.899178	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0126	1115	8
2023	2672	190	95%	2539	3.908414	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0127	1117	8
2024	2678	190	95%	2544	3.916111	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0127	1119	8
2025	2684	190	95%	2550	3.925347	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0127	1122	8
2026	2690	190	95%	2555	3.933044	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0127	1124	8
2027	2696	190	95%	2561	3.94228	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0128	1127	8
2028	2702	190	95%	2567	3.951516	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0128	1129	8
2029	2708	190	95%	2572	3.959213	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0128	1132	8
2030	2714	190	95%	2578	3.968449	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0129	1134	8
2031	2720	190	95%	2584	3.977685	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0129	1137	8
2032	2726	190	95%	2590	3.986921	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0129	1140	8
2033	2732	190	95%	2596	3.996157	1.8	7	1.8	13	2	215	3.44	233	0.233	0.0129	1142	8
2034	2738	190	95%	2601	4.003854	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0130	1144	8
2035	2745	190	95%	2607	4.01309	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0130	1147	8
2036	2751	190	95%	2613	4.022326	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0130	1150	8
2037	2757	190	95%	2619	4.031563	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0131	1152	8
2038	2763	190	95%	2625	4.040799	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0131	1155	8
2039	2770	190	95%	2631	4.050035	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0131	1158	8
2040	2776	190	95%	2637	4.059271	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0132	1160	8
2041	2783	190	95%	2643	4.068507	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0132	1163	8
2042	2789	190	95%	2650	4.079282	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0132	1166	8
2043	2796	190	95%	2656	4.088519	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0132	1169	8
2044	2802	190	95%	2662	4.097755	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0133	1171	8
2045	2809	190	95%	2668	4.106991	1.8	7	1.8	13	2	215	3.44	234	0.234	0.0133	1174	8

Tabla 20. Caudal de Diseño de la Comunidad Araque

PROYECCIÓN POB CUARABURO	DOTACIÓN	Alcance	POB con Redes	Qprom [L/s]	Factor k1	Qmax diario [L/s]	Factor K 2	Qmax horario [L/s]	Qilícito [L/s]	Qpluvial [l/s]	Qinfiltración [L/s]	Qtotal [l/S]	Qtotal [m3/s]	Q horario [m3/s]	POB TRATAMIENTO	Q TRATAMIENTO [L/S]
652	120	90%	587	0.570694	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0018	258	4
654	120	90%	589	0.572639	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	259	4
656	120	90%	590	0.573611	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	260	4
658	120	90%	592	0.575556	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	260	4
660	120	90%	594	0.5775	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	261	4
662	120	90%	596	0.579444	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	262	4
664	120	90%	597	0.580417	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	263	4
666	120	90%	599	0.582361	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	264	4
668	120	90%	601	0.584306	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	264	4
670	120	90%	603	0.58625	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	265	4
672	120	90%	605	0.588194	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	266	4
674	120	90%	607	0.590139	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	267	4
676	120	90%	609	0.592083	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	268	4
679	120	90%	611	0.594028	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	269	4
681	120	90%	613	0.595972	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	270	4
683	120	90%	615	0.597917	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	271	4
685	120	90%	617	0.599861	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	271	4
687	120	90%	619	0.601806	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0019	272	4
690	120	90%	621	0.60375	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	273	4
692	120	90%	623	0.605694	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	274	4
694	120	90%	625	0.607639	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	275	4
696	120	90%	627	0.609583	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	276	4
699	120	90%	629	0.611528	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	277	4
701	120	90%	631	0.613472	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	278	4
703	120	90%	633	0.615417	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	279	4
706	120	90%	635	0.617361	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	279	4
708	120	90%	637	0.619306	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	280	4
711	120	90%	640	0.622222	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	282	4
713	120	90%	642	0.624167	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	282	4
716	120	90%	644	0.626111	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	283	4
718	120	90%	646	0.628056	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	284	4
721	120	90%	648	0.63	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0020	285	4
723	120	90%	651	0.632917	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0021	286	4
726	120	90%	653	0.634861	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0021	287	4
728	120	90%	655	0.636806	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0021	288	4
731	120	90%	658	0.639722	1.8	1	1.8	2	1	28	3.44	34	0.034	0.0021	290	4

Tabla 21. Caudal de Diseño de la Comunidad Cuaraburo

CAPÍTULO 5. DIMENSIONAMIENTO DE LAS PLANTAS

5.1 Diseño de la Planta de Tratamiento de San Pablo

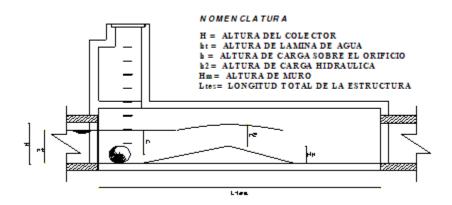


Figura 13. Implementación Separador de Caudales (Moscoso; 2006)

En primer lugar, se establece dimensiones para un colector, que a través de un orifico da paso a un repartidor de caudal, en este caso un vertedero triangular.

5.1.1 Orificio.

Para estimar el diámetro del orificio se debe realizar una iteración, para ello se debe conocer el caudal admisible con anterioridad. La expresión para determinar el caudal que atraviesa un orificio se obtiene de la siguiente expresión:

$$Q_{adm} = \mathsf{C} A_o * \sqrt[2]{2 * g * h}$$

En donde,

Ao = Es el área del orificio obtenido mediante la siguiente formula: Ao = $\pi/4$ x d² en [m²]

h = altura de carga sobre el orificio (desde el centro hasta el nivel libre),

h = ht - d/2,

ht = altura del calado normal del canal de entrada a la estructura de separación orificio

C = coeficiente de caudal para orificios se asume 0.62 (Empresa Metropolitana de Alcantarillado y Agua Potable Quito; 2009)

Se espera que la separación del caudal permita manejar los altos caudales en épocas de lluvia, de esta manera el caudal que entra al tratamiento se maneja de forma moderada. Para asegurarse que el vertedero satisfaga las necesidades en tiempos de lluvia, en donde los caudales son sumamente altos, se usa como parámetro de diseño un caudal con 10% adicional al caudal total

máximo horario estimado. Este porcentaje ayuda a aumentar el caudal que va a ser tratado por la planta de tratamiento, además se escoge un 10% por efectos comparativos con el diseño final. A este caudal de diseño antes mencionado se lo denomina como caudal máximo admisible (Qadm).

De la red se sabe que ingresa al tanque recolector con una tubería de PVC, el agua ingresa como flujo uniforme, en donde la pendiente se estimó por medio de las cotas del diseño con la siguiente expresión:

$$S = \frac{Cota\ 2 - Cota\ 1}{L} = 0.3\%$$

La tubería es de 60 cm de diámetro (B) y se diseña 60% llena y al ras del suelo del tanque colector, por lo tanto, la altura ht, del calado normal es de:

$$ht = 0.6(0.6m) = 0.36m$$

Se establece la siguiente condición para determinar el valor del Área del Orificio:

$$CA_o[2gh]^2 - Q_{adm} = 0$$

Se obtiene un diámetro de orificio de: 22cm por efectos constructivos se realizaría un diámetro de 20 o de 25 cm.

El caudal que ingresa a la zona de los vertederos para ser tratada es el caudal admisible que atraviesa el orificio. En los vertederos, el caudal se divide para 3 ya que hay 3 dispositivos hidráulicos.

5.1.2 Muro frontal separador de caudal.

En primer lugar, se despeja la carga de agua de la expresión del orificio, ya que el resto de parámetros son conocidos. La altura de agua hasta el centro del orificio se estimó mediante la siguiente ecuación:

$$h's = \left[\frac{Q_{adm}}{CA_o}\right]^2 2g = 0.25cm$$

Ahora la altura total del agua es:

$$h''s = hs' + \frac{Di\acute{a}metro}{2} = 0.36m$$

Como parámetro de diseño se escoge que la longitud [L] del muro sea 1.7B (B= ancho del colector). La altura del muro se obtiene al sumar la carga del agua más la carga hidráulica de velocidad,

$$H_{muro} = h''s + h''v_s$$

Para estimar la velocidad, se debe antes conocer el área mojada obtenida a continuación:

$$A_{mojada} = h''s * L$$

$$v_s = \frac{Q_{adm}}{A_{mojada}} = 0.123$$

De la ecuación de Bernoulli se sabe que la carga por velocidad se estima como la energía cinética del sistema, es decir:

$$h''vs = \frac{vs^2}{2g}$$

Finalmente, la altura del muro redondeada es de: 0.4cm

5.1.3 Vertedero.

Se pretende realizar un vertedero triangular de 90 grados. La ecuación que representa esta condición es:

$$Q_n = 1.42H^{5/2}$$

En donde al despejar la incógnita H, se puede obtener la siguiente ecuación:

$$H_v = \left[\frac{Q_v}{1.42}\right]^{\frac{2}{5}} = 0.44$$

La altura total del agua obtenida se obtuvo con la siguiente expresión:

$$h_{total\ agua} = H_v + H_{muro} - H_{t1} = 0.77m$$

En donde, Ht1 representa la altura de la velocidad en el tramo inicial con el caudal total. Por seguridad se asume una altura adicional de 30cm.

La carga hidráulica $h_2 = \frac{2}{3}H_v = 0.384m$, finalmente la altura total de las paredes es:

$$H_M = H_{muro} + H_2 + H_s = 1m$$

La longitud total de la estructura es:

$$L_{total} = 4.95 \approx 5m$$

5.1.4 Tanque Sedimentador.

Para dimensionar el tanque sedimentador primero es necesario establecer algunos parámetros de diseño, como lo es el tiempo de retención que está dentro del rango (0.5hr~8hr). Para el caso de estudio se asume un tiempo de retención de 1.35horas.

El caudal que se usa para estimar el volumen del tanque sedimentador, es el caudal máximo horario estimado anteriormente. Además, la carga superficial promedio de un sedimentador primario es de 32.5 m3/m2/d (20~40 rango). Este dato se utiliza para estimar el área del sedimentador, por lo tanto:

$$A_{superficial} = \frac{Qm\acute{a}x\ hr}{Carga\ superficial} = 208.93m^2$$

El volumen por otra parte se obtiene al multiplicar el tiempo de retención con el caudal por modulo, se diseñan 3 módulos por lo que el caudal también debe dividirse para 3.

$$V_{sedimentador} = 13.26m^3$$

Con este volumen se puede estimar el área que cumpla con la carga impuesta de ante mano, además representa el área para 1 solo sedimentador

$$A_{sedimentador} = 11.05m^2$$

Para estimar las dimensiones se puede asumir un ancho de 2.5m, por lo que al despejar el largo se obtiene de 4.5m

5.1.5 Filtro Percolador.

Para poder estimar el área requerida del filtro, se adopta un ancho y se despeja su longitud. El caudal que se usa para estimar el volumen fue el máximo horario sin considerar el agua pluvial, puesto que al comienzo se realizó una separación de caudales. A dicho caudal instantáneo se dividió para 3 módulos, ya que hay 3 tanques sedimentadores que pasan a 3 filtros. Se asume un tiempo de retención de 1.5 horas. Con el tiempo y el caudal es posible determinar el volumen necesario, por lo tanto:

$$V_{filtro} = \frac{Q_{m\acute{a}x\ horario}}{tiempo\ de\ retenci\'on} = 36.59\ m^3$$

Se asume una altura de 2.5 m, entonces el área superficial del filtro seria:

$$A_{filtro} = \frac{V_{filtro}}{Altura} = 14.64m^2$$

Se pretende diseñar un filtro percolador de carga media. De acuerdo con Crites & Tchobanoglous la carga máxima aplicable para los lechos de contacto es de 4m3/m2/día (2000). El rango que recomiendan para un filtro desarenador es entre 2m~3m. Posteriormente se estima el área del lecho angular de la siguiente manera:

$$A_{lecho\ granular} = \frac{Q_{mx\ horio/m\'odulo}}{Carga\ M\'axima\ Aplicable\ [\frac{m^3}{dia}]} = 52.23m^2$$

Asumiendo un ancho granular de 3.5m se despeja la longitud del filtro granular igual a 15m. Se establecen las alturas de las capas de la grava que se utilizara en el filtro, conociendo que el rango recomendado por Crites & Tchobanoglous es de 2~3m (2000). Por lo tanto, se utiliza una capa de piedra bola (20cm) de 50cm de espesor, grava (5cm ~7.5 cm) de 1m de espesor. Adicionalmente se establece una medida adicional por seguridad de 50cm. La altura total obtenida es de: 2.45m

Finalmente se puede estimar el volumen real del filtro:

$$V_{real\ filtro} = (2.45 - 0.50) * 3.5 * 15 = 102m^3$$

Para estimar la carga orgánica total se asume una dotación de 0.04Kg/hab/dia, este valor se multiplica por la población y se obtiene la carga orgánica total:

$$C_{org} = 42.33 \text{kg/DBO5/dia}$$

Al dividir para el volumen se obtiene la tasa volumétrica de 0.21 < 0.48 que representa a los filtros con carga medio y intermedia, en base a los parámetros definidos en la siguiente tabla. Cabe mencionar que pretende reducir la presencia de moscas, por lo que se aproxima al

	-					
Característica	Baja		Carga		Filtros de	Filtros de dos
Caracteristica	Баја	Intermedia	Alta	Super alta	desbaste	etapas
Medio de soporte	Roca, escoria	Roca, escoria	Roca, plástico	Plástico	Plástico	Roca, plástico
Carga hidráulica, m³/(m² d)	1 - 4	4 - 10	4 - 10	40 - 200	160 - 533	10 - 40
Carga orgánica kg DBO/(m³ d)	0.08 - 0.32	0.24 - 0.48	0.32 - 10	0.8 - 0.6	2.67 - 10.67	0.32 - 0.10
Profundidad, m	1.8 - 2.4	1.8 - 2.4	0.90 - 1.80	3 - 12	4.50 - 16	1.80 - 2.40
Relación de recirculación	0	0-1	1-2	0 - 2	1 - 4	0.5 - 3
Presencia de moscas	Muchas	Varias	Pocas	Pocas o ninguna	Pocas o ninguna	Pocas o ninguna
Desprendimiento de biomasa	Intermitente	Intermitente	Continuo	Continuo	Continuo	Continuo
Remoción de DBO	80-90	50-70	65-85	65-85	40 - 65	85 - 95
Efluente	Bien nitrificado	Parcialmente nitrificado	Poca nitrificación	Poca nitrificación	No hay nitrificación	Bien nitrificado

Figura 14. Rangos de Carga (Comisión Nacional del Agua; s/f)

El tiempo de retención finalmente obtenido es de aproximadamente 23.45hrs, este tiempo de retención corresponde al tiempo obtenido del volumen del filtro en base a las dimensiones del lecho granular, dicho valor que se obtuvo usando el caudal y volumen del filtro.

5.1.6 Estanques con Lenteja de Agua.

Para poder estimar las dimensiones del estanque es necesario conocer el caudal de entrada y tiempo de retención. Con estos datos se puede obtener el volumen total que requerirán los estanques de agua correspondiente al tiempo de retención. En primer lugar, para el funcionamiento de las plantas acuáticas se estima un tiempo de retención de 8 días, por lo que se procede a determinar el volumen diario. El volumen en los estanques para un día seria

$$V_{1dia} = 86.4 * Q(L/s) = \frac{1645.15m^3}{dia}$$

Se estima un tiempo de retención de 8 días por lo que el volumen que debe almacenarse corresponde al volumen luego de los 8 días:

$$V_{tw} = 8d$$
ías * $\frac{1645.15m^3}{d$ ía = 13161.23 m^3

Asumiendo una profundidad de 1.50 m se obtiene el área del estanque= 1.08Ha. Se asumen un ancho de 3m para determinar el largo necesario.

$$Largo = \frac{A_{estanque}}{Ancho \ asumido} = 2924.72$$

Esto sería en el caso de construir solo 1 estanque. A continuación, se asumen un largo, para poder determinar el número de estanques necesarios, para ello, se jugó con las dimensiones hasta obtener un numero de estanques cercanos a los del estudio que son 54 estanques, para poder comparar el dimensionamiento. Finalmente se obtiene: 49 estanques de 3 m de ancho y 60 m de largo.

5.2 Diseño de la Planta de Tratamiento de la Comunidad de Araque

Todo el diseño presentado anteriormente corresponde a la comunidad de San Pablo, el mismo método se siguió para diseñar las plantas de tratamiento de Araque y Cuaraburo. A continuación, se presenta en detalle un resumen de los resultados obtenidos para las dos comunidades restantes:

Para la Comunidad de Araque se obtuvo lo siguiente:

5.2.1 Orificio.

$$ht = 0.6(0.6m) = 0.36m$$

De igual manera para estimar el diámetro del orificio se establece una ecuación:

$$CA_0[2gh]^2 - Q_{adm} = 0$$

Se obtiene un diámetro de: 0.11m

5.2.2 Muro Frontal.

Al despejar la carga de agua del orificio se obtiene:

$$h's = \left[\frac{Q_{adm}}{CA_o}\right]^2 2g = 0.30m$$

Para obtener la altura total del agua, se debe sumar la mitad del diámetro, por lo tanto:

$$h''s = hs' + Diámetro/2 = 0.35m$$

Usando una relación L=2B La altura mínima del muro requerida se obtiene al sumar la altura del agua más la carga de velocidad. Para estimar dicha carga, se debe estimar la velocidad y área modada de la siguiente manera:

$$A_{mojada} = h''s * L = 0.42m$$

$$v_s = \frac{Q_{adm}}{A_{mojada}} = 0.034 m/s$$

La carga de velocidad se obtuvo mediante la siguiente expresión:

$$h''v = \frac{v^2}{2g}$$

$$H_{muro} = h^{\prime\prime} s + h^{\prime\prime v_s} = 0.36m$$

Hasta este punto solo se ha considerado la carga del orificio y de la velocidad. A esta altura se debe agregar una altura por seguridad en caso de mayor caudal pluvial y la carga hidráulica del vertedero. La altura adicional se considera puesto que se ha considerado curvas de retorno de lluvia bajas.

5.2.3 Vertedero.

Se realiza un vertedero triangular de 90 grados. La ecuación que representa esta condición es:

$$Q_v = 1.42H^{5/2}$$

En donde al despejar la incógnita H, se puede obtener la siguiente ecuación:

$$H_v = \left[\frac{Q_v}{1.42}\right]^{\frac{2}{5}} = 0.50m$$

La altura del agua obtenida se obtuvo con la siguiente expresión:

$$h_{total\ agua} = H_v + H_{muro} - H_{t1} = 0.76m$$

En donde, Ht1 representa la altura de la velocidad en el tramo inicial con el caudal total. Se estima la carga hidráulica del vertedero:

$$h_2 = \frac{2}{3}H_v = 0.384m$$

Por seguridad se asume una altura adicional de seguridad de 30cm. Finalmente, la altura total del muro es de:

$$H_M = H_{muro} + H_2 + H_s = 1m$$

La longitud total de la estructura es:

$$L_{total} = 4.38 \approx 4.5m$$

5.2.4 Tanque Sedimentador.

El parámetro de diseño que se establece para la comunidad de Araque es de un tiempo de retención de 3 horas. Se estima el área para la misma carga superficial.

$$A_{superficial} = \frac{Qm\'{a}x\ hr}{Carga\ superficial} = 310.02$$

El volumen por otra parte se obtiene al multiplicar el tiempo de retención con el caudal por modulo, se diseñan 2 módulos por lo que el caudal también debe dividirse para 2.

$$V_{sedimentador} = 14.6m^3$$

Con este volumen se puede estimar el área que cumpla con la carga impuesta de ante mano, además representa el área para 1 solo sedimentador

$$A_{sedimentador} = 7.3 m^2$$

Para estimar las dimensiones se puede asumir un ancho de 2.4m, por lo que al despejar el largo se obtiene de 3.1m.

5.2.5 Filtro Percolador.

Para diseñar el filtro percolador se usó el caudal máximo horario del caudal sanitario separando el caudal pluvial y se usa como parámetro de diseño el tiempo de retención que se asume 1.5 horas. Se realiza el diseño para 4 módulos. Con estos datos es posible estimar el volumen que requiere el filtro, por lo tanto:

$$V_{filtro} = \frac{Q_{m\acute{a}x\ horario}}{tiempo\ de\ retenci\'on} = 25.04\ m^3$$

Se asume una altura de 2.5 m, entonces el área superficial del filtro sería:

$$A_{filtro} = \frac{V_{filtro}}{Altura} = 10.02 m^2$$

Asumiendo la misma carga establecida por Crites & Tchobanoglous de 4m3/m2/día (2000). El rango que recomiendan para un filtro desarenador es entre 2m~3m. Posteriormente se estima el área del lecho angular de la siguiente manera:

$$A_{lecho\;granular} = \frac{Q_{m\acute{a}x\;horario/m\acute{o}dulo}}{Carga\;M\acute{a}xima\;Aplicable} [\frac{\overline{m}^3}{\overline{d}ia}] = 40.7m^2$$

Asumiendo un ancho granular de 3.5m se despeja la longitud del filtro granular igual a 12m. Se establecen las alturas de las capas de la grava que se utilizara en el filtro, conociendo que el rango recomendado por Crites & Tchobanoglous es de 2~3m (2000). Por lo tanto, se utiliza una capa de piedra bola (20cm) de 50cm de espesor, grava (5cm ~7.5 cm) de 1m de espesor. Adicionalmente se establece una medida adicional por seguridad de 50cm. La altura total obtenida es de: 2.45m Se estima el volumen requerido mediante la siguiente expresión:

$$V_{real\,filtro} = Ancho\,lecho*largo*altura = 79.51m^3$$

Para estimar la carga orgánica total se asume una dotación de 0.04Kg/hab/día, este valor se multiplica por la población y se obtiene la carga orgánica total:

$$C_{org} = 26.9/\text{DBO}5/\text{día por módulo}$$

Al dividir para el volumen se obtiene la tasa volumétrica de 0.16 < 0.48 que representa a los filtros con carga medio e intermedia. El tiempo de retención finalmente obtenido es de aproximadamente 24 horas.

5.2.6 Estanques.

De la misma manera que para los estanques de la Planta de Tratamiento de San Pablo, en Araque se asume un tiempo de retención de 7 días. Se estima en primer lugar el volumen en los 7 días de retención.

$$V_{1dia} = 86.4 * Q(L/s) = 651.13 \frac{m^3}{dia}$$

Se estima un tiempo de retención de 7 días, por lo que el volumen es de:

$$V_{tw} = 7dias * \frac{651.13m^3}{dia} = 4557.9m^3$$

Asumiendo una profundidad de 1.20 m se obtiene el área del estanque= 0.38Ha. Se asumen un ancho de 3m para determinar el largo necesario total.

$$Largo = \frac{A_{estanque}}{Ancho \ asumido} = 96m$$

A continuación, se asumen un largo, para poder determinar el número de estanques necesarios, para ello, se jugó con las dimensiones, en donde finalmente se obtiene: 13 estanques de 96m de largo y 3 ancho.

5.3 Diseño de las Plantas de Tratamiento de la Comunidad Cuaraburo

En primer lugar, se realiza el dimensionamiento del orificio

4.3.1 Orificio.

La tubería de entrada es de 20cm 60% lleno por lo tanto se obtiene un ht de:

$$ht = 0.6(0.2m) = 0.12m$$

De igual manera para estimar el diámetro del orificio se establece una ecuación:

$$CA_o[2gh]^2 - Q_{adm} = 0$$

El diámetro que cumple este parámetro es de: 6cm

5.3.2 Muro frontal.

Al despejar la carga de agua del orificio se obtiene:

$$h's = \left[\frac{Q_{adm}}{CA_o}\right]^2 2g = 0.08m$$

Para obtener la altura total del agua, se debe sumar la mitad del diámetro, por lo tanto:

$$h''s = hs' + \frac{Di\acute{a}metro}{2} = 0.11m$$

Se utiliza una relación de L=2B para obtener el área mojada y la velocidad vs:

$$A_{mojada} = h''s * L = 0.026m^2$$

$$v_s = \frac{Q_{adm}}{A_{mojada}} = 0.0811 m/s$$

Por la energía cinética del agua se obtiene la siguiente expresión:

$$h''v = \frac{v^2}{2a}$$

$$H_{muro}=h^{\prime\prime}s+h^{\prime\prime}_{vs}=0.12m$$

A esta altura se debe agregar una altura por seguridad en caso de mayor caudal pluvial y la carga hidráulica del vertedero.

5.3.3 Vertedero.

La ecuación para diseñar el vertedero es:

$$Q_{11} = 1.42H^{5/2}$$

En donde al despejar la incógnita H, se puede obtener la siguiente ecuación:

$$H_v = \left[\frac{Q_v}{1.42}\right]^{\frac{2}{5}} = 0.22m$$

La altura del agua obtenida se obtuvo con la siguiente expresión:

$$h_{total\,agua} = H_v + H_{muro} - H_{t1} = 0.32m$$

En donde, Ht1 representa la altura de la velocidad en el tramo inicial con el caudal total. Por otro lado, se estima la carga hidráulica del vertedero:

$$h_2 = \frac{2}{3}H_v = 0.15m$$

Se asume una altura adicional de seguridad de 30cm, obteniéndose una altura final del muro de:

$$H_M = H_{muro} + H_2 + H_s = 0.60m$$

Para estimar la longitud, se asume un espesor de cresta de 10cm, una relación de talud de 4 veces la altura del muro, de esta manera se obtiene una longitud total de la estructura es:

$$L_{total} = 1.60m$$

5.3.4 Tangue Sedimentador.

Considerando que Cuaraburo es una comunidad mucho más pequeña que las anteriores se establece el diseño para 2 tanques sedimentadores con un tiempo de retención de 2 horas. Se obtiene un área superficial de:

$$A_{superficial} = \frac{Qm\acute{a}x\ hr}{Carga\ superficial} = 45.15m^2$$

El volumen por otra parte se obtiene al multiplicar el tiempo de retención con el caudal por modulo.

$$V_{sedimentador} = 30.78m^3$$

Con este volumen se puede estimar el área que cumpla con la carga impuesta de ante mano, además representa el área para 1 solo sedimentador

$$A_{sedimentador} = 14.66 m^2$$

Se asume un ancho de 3m y se obtiene un largo de aproximadamente 5m.

5.3.5 Filtro Percolador.

Para el dimensionamiento del filtro se usa el caudal instantáneo ya que el filtro debe tener la capacidad para la máxima demanda de la comunidad. Este caudal es aquel que se obtiene por modulo y posterior a la separación de caudales. El tiempo de retención asumido es de 1.2 horas.

$$V_{filtro} = \frac{Q_{m\acute{a}x\;horario}}{tiempo\;de\;retenci\acute{o}n} = 12.86m^3$$

Se asume una altura de 2.5 m, entonces el área superficial del filtro sería:

$$A_{filtro} = \frac{V_{filtro}}{Altura} = 5.14 \, m^2$$

Ahora se establecen las dimensiones que requieren el lecho granular. Se asume la misma carga aplicada en los diseños anteriores.

$$A_{lecho\ granular} = \frac{Q_{m\acute{a}x\ horario/m\acute{o}dulo}}{Carga\ M\acute{a}xima\ Aplicable\ [\frac{m^3}{dia}]} = 46.17m^2$$

Asumiendo un ancho granular de 4m se despeja la longitud requerida del filtro granular igual a 11.6m aproximadamente 12m. Se establecen las alturas de las capas de la grava que se utilizara en el filtro de la siguiente manera, se utiliza una capa de piedra bola (20cm) de 50cm de espesor, grava de 1m de espesor. Se asume una longitud de seguridad de 50cm. La altura total obtenida es de: 2.5m

El volumen requerido mediante la siguiente expresión:

$$V_{real \, filtro} = Ancho \, lecho * largo * altura = 90m^3$$

El tiempo de retención finalmente obtenido en base al volumen y caudal de diseño, es de aproximadamente 23.5 horas.

5.3.6 Estanques.

Para los estanques se asumió un periodo de retorno de 3 días por lo que en primer lugar se calcula el volumen diario en m3/día

$$V_{1dia} = 86.4 * Q(L/s) = 369.3 \frac{m^3}{dia}$$

El volumen acumulado en el tiempo de retención es de:

$$V_{tw} = 3dias * \frac{369.3m^3}{dia} = 1108.14m^3$$

Se asume una profundidad de 1.50 m y se obtiene el área del estanque=0.07Ha. Se asumen un ancho de 3.5m para determinar el largo necesario para 1 solo estanque.

$$Largo = \frac{A_{estanque}}{Ancho \ asumido} = 211 \ m$$

Finalmente se obtiene: 5 tanques de 45m de largo y 3.5 ancho.

5.4 Diseño de Lechos de Secado para las 3 Plantas de Tratamiento

El método más común para secar lodos en sistemas pequeños de tratamiento de aguas residuales es el secado del lodo con aire en lechos de arena, los lechos de secado de lodo son fáciles de manejar producen un alto contenido de sólidos, son de bajo costo y se utilizan normalmente en comunidades rurales como es el caso de estudio. Para estimar la masa de lodo generado en cada planta de tratamiento se aplica la siguiente ecuación:

$$M_{lodo}[\frac{kg}{a\tilde{n}o}] = (S_o - S_e) \left[\frac{mg}{L} \right] * (Q_x 86.4 * 365 \frac{d}{a\tilde{n}o} / 1000)$$

$$M_{volátiles}[\frac{Kg}{a\tilde{n}o}] = (Ss_0 - Ss_e) \left[\frac{mg}{L} \right] * (Q_x 86.4 * 365 \frac{d}{a\tilde{n}o} / 1000)$$

En donde

So, representa los sólidos en el afluente [mg/L]

Se, representa los sólidos en el efluente [mg/L]

Sso, son los sólidos suspendidos en el afluente

Sse, son los sólidos suspendidos en el efluente

Qx, es el caudal de diseño [L/s]

Para obtener las cantidades de los sólidos suspendidos tanto en el afluente como el efluente, es necesario realizar muestras para conocer los valores típicos de sólidos totales y suspendidos en el afluente. Con el propósito de realizar el diseño de los lechos de secado se utilizan valores promedios de estudios que se han realizado en distintos afluentes de aguas servidas en varios colectores del Lago San Pablo. Además, se establece una carga máxima por año de 250kg/m2/año para el correcto funcionamiento de los lechos de secado, ya que se considera una carga apropiada para secar los lodos. El porcentaje de remoción para el tanque de sedimentación y filtro percolador estimado es de un 85% en combinación, lo cual es congruente con los resultados obtenidos en las muestras de laboratorio que se exponen más adelante. De acuerdo con el estudio que se llevó acabo el 2006 se encuentra en promedio 234.1 mg/L de sólidos suspendidos en el afluente y 575mg/L de sólidos totales en distintos colectores alrededor de Lago San Pablo como Eugenio Espejo y San Pablo, que son poblaciones de interés para el estudio actual (Moscoso, 2006). Con estos datos de entrada se puede obtener la masa de fangos generadas con la ecuación anterior. El área se obtiene de la siguiente manera:

$$A = \frac{S\'olidos\,Fijos\,(\frac{kg}{a\~no})}{Carga\,Aplicada\,(\frac{Kg}{a\~no})}$$

La masa de solidos fijos se obtiene al restar la masa del fango y la masa volátil. Al realizar esto se obtiene los siguientes resultados:

	CAUDAL	MASA DEL FANGO	MASA S. VOLATILES	S. FIJOS	Área	Largo	Ancho	# UNIDADES
	(L/S)	kg/año	kg/año	kg/año	m2	(m)	(m)	U
TRATAMIENTO ARAQUE	7.54	68328.44	19473.01	48855.43	407.13	15.00	4.00	8.00
TRATAMIENTO SAN PABLO	19.04	172638.36	49200.43	123437.93	1028.65	15.00	5.00	14.00
TRATAMIENTO CUARABURO	4.28	38761.85	11046.79	27715.06	230.96	5.00	10.00	6.00

Tabla 22. Dimensionamiento de Lechos de Secado

Se debe incluir al diseño un sistema de drenaje para los líquidos lixiviados del tratamiento, esta tubería debe ser de material PVC.

CAPÍTULO 6. RESULTADOS

6.1 Porcentajes de Remoción

El porcentaje de remoción se estima mediante los análisis de las muestras de laboratorio. Para cada uno de los parámetros se analizan las entradas antes y después del tratamiento. Para estimar el porcentaje de remoción se aplica la siguiente ecuación:

$$\%Remoci\'on = \frac{M_i - M_f}{M_i} * 100$$

En donde,

Mi, es el parámetro a la entrada de la Planta de Tratamiento

Mf, es el parámetro a la salida de la Planta de Tratamiento

En primer lugar, se presentan los resultados de muestreos realizados por la Empresa de Agua y Alcantarillado de Otavalo. Estas muestras fueron realizadas el 18 de diciembre del 2019. Las muestras han sido tomadas para tener un mayor control sobre las descargas al lago San Pablo y detectar posibles conexiones ilegales. El análisis corresponde a las plantas de tratamiento de San Pablo y Araque.

	PLANTA DE TRATAMIENTO DE SAN PABLO								
Parámetro Analizado	Unidad	Límite Permisible	Entrada	Salida	Criterio de Resultados	% de Remoción			
Aceites y Grasas									
Gravimétrico	mg/L	30	<20	<20	CUMPLE	=			
Coliformes									
Fecales	NMP/100 ml	2000	350	33	CUMPLE	91%			
Demanda									
Bioquímica de									
Oxígeno	mg/L	100	191.18	10.54	CUMPLE	94%			
Demanda									
Química de									
Oxígeno	mg/L	200	457.4	24.4	CUMPLE	95%			
Tensoactivos	mg/L	0.5	6.91	0.35	CUMPLE	95%			

Tabla 23. Resultados Planta de Tratamiento de San Pablo

De acuerdo con los resultados, se puede observar que la planta de tratamiento trabaja sobre el 90% de eficiencia en remoción de materia orgánica, coliformes fecales, entre otros. Se puede apreciar la existencia de aceites y grasas, sin embargo, el límite es apenas perceptible. Por otro lado, para la planta de tratamiento de Araque se obtuvo lo siguiente:

PL	PLANTA DE TRATAMIENTO DE ARAQUE								
Parámetro Analizado	Criterio de Resultados	% de Remoción							
Aceites y Grasas Gravimétrico	mg/L	30	<20	<20	CUMPLE	-			
Coliformes Fecales	NMP/100 ml	2000	2000	130	CUMPLE	94%			
Demanda Bioquímica de Oxígeno	mg/L	100	100	10.51	CUMPLE	89%			
Demanda Química de Oxígeno	mg/L	200	200	25.4	CUMPLE	87%			
Tensoactivos	mg/L	0.5	0.5	< 0.1	CUMPLE	>80%			

Tabla 24. Resultados Planta de Tratamiento de Araque

En la planta de tratamiento de Araque se encuentra que cumplen con la normativa los parámetros mencionados en la tabla N.24 para esta planta de tratamiento se obtienen porcentajes de remoción 87% y 89% para la Demanda Química y Bioquímica de oxígeno respectivamente, valores más bajos que en la planta de tratamiento de San Pablo. A continuación, se presentan los resultados obtenidos de las muestras que se tomaron el 6 de marzo del 2020. Estas muestras no fueron analizadas completamente, sin embargo, se puede analizar algunos parámetros como la demanda química de oxígeno. Los resultados Obtenidos para el parámetro de DQO de cada planta de tratamiento a la entrada y salida se muestran a continuación:

Planta de Tratamiento	Entrada	Salida	%Remoción
San Pablo	511.01	77	85%
Araque	613.57	56.34	91%
Cuaraburo	480.31	84.51	82%
Lago San Pablo		39.44	

Tabla 25. Remoción del Parámetro DOO

La demanda química de oxígeno es un parámetro que demuestra la cantidad de materia orgánica presente en el agua residual, se puede observar que la remoción es considerablemente alta, por lo que las lentejas de agua si logran remover la materia orgánica presente en gran porcentaje. En las muestras químicas se encontró la existencia de bario con 31.87 ug/L, manganeso 8.40ug/L y vanadio 7.14ug/L. En base a la normativa que se presentó en el capítulo 1, se puede ver que todos los parámetros presentados hasta el momento cumplen la normativa, es decir, están por debajo del límite permisible. Se puede observar que los porcentajes de remoción se mantienen altos para cada planta de tratamiento, con valores superiores al 80% de remoción. Cabe destacar que a pesar de que se cumple con la normativa, las emisiones del parámetro DQO han aumentado de acuerdo al análisis actual. Además, se ve un decremento en los porcentajes de remoción de la planta de tratamiento de San Pablo, ya que en la muestra del 2019 se obtuvo un porcentaje de 95% y ahora se obtiene uno de 85%. Por otro lado, en Araque sucede lo contrario, es decir en el 2019 se obtiene un 87% y actualmente se encuentran valores de 91%. En cuanto a Cuaraburo, la empresa de agua

no ha realizado pruebas recientemente en esta planta de tratamiento, sin embargo, se encuentra un porcentaje de remoción de DQO menor al resto de plantas de tratamiento analizadas.

6.2 Comparación Diseño

Comparación Comunidad San Pablo

A continuación, se realiza una breve comparación entre los diseños reales con el estudio realizado en esta tesis de los elementos principales de la planta de tratamiento. En primer lugar, se analizan lo resultados obtenidos para la Comunidad de San Pablo.

Tanque Sedimentador

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	4.2	2.4	1.50	3
Estudio 2020	4.50	2.5	1.50	3

Tabla 26. Resultados Dimensionamiento del Tanque Sedimentador Comunidad San Pablo

Filtro Percolador

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	11.3	3.25	2.6	3
Estudio 2020	15	2.5	2.5	3

Tabla 27. Resultados Dimensionamiento del Filtro Percolador Comunidad San Pablo

Estanques

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	40	3	1.55	54
Estudio 2020	60	3	1.50	49

Tabla 28. Resultados Dimensionamiento de Estanques Comunidad de San Pablo

Lechos de Secado

	Largo	Ancho	# Módulos
Estudio 2006	15	4	12
Estudio 2020	15	5	14

Tabla 29. Resultados Dimensionamiento de Lechos de Secado Comunidad San Pablo

En el estudio realizado para la comunidad de San Pablo se encuentran dimensiones ligeramente mayores en comparación al estudio realizado el 2006, esto principalmente se debe a la incorporación de nuevos datos de población como lo fue el censo del 2010, así como también al uso del ponderado de distintos métodos de proyección de la población. En el estudio del 2006 únicamente se usa el método geométrico, mientras que en este estudio se incluyó el método aritmético y exponencial. Para el dimensionamiento del tanque sedimentador se estimó el volumen usando el mismo tiempo de retención, por lo que la variabilidad en las dimensiones proviene directamente del caudal de diseño, el cual se ve directamente afectado por la población de diseño y las dotaciones usadas. Si bien las diferencias no son mayores pueden ser significativas una vez que se cumple el periodo de diseño puesto que las plantas de tratamiento deben seguir desarrollando su función por más tiempo del estimado. Cabe mencionar que las diferencias no son muy relevantes en cuanto a diseño se refiere, ya que para esta comunidad se encuentran fácilmente las tasas de crecimiento, algo muy diferentes es lo que ocurre en el caso de la Comunidad de Cuaraburo y Araque. En los lechos de secado se observa que las medidas tomadas fueron apropiadas ya que el dimensionamiento es acertado para San Pablo, a pesar de que no se pudieron obtener los resultados de los parámetros de sólidos totales y suspendidos de fechas actuales.

Comparación Comunidad de Araque

Tanque Sedimentador:

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	3.7	2.45	2.1	2
Estudio 2020	3.1	2.4	2.3	2

Tabla 30. Resultados Dimensionamiento del Tanque Sedimentador Comunidad Araque

Tanque Percolador:

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	10.45	3.6	2.75	4
Estudio 2020	12	3.5	2.5	4

Tabla 31. Resultados Dimensionamiento del Filtro Percolador Comunidad Araque

Estanques:

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	96	3	1.45	12
Estudio 2020	96	3	1.2	13

Tabla 32. Resultados Dimensionamiento de Estanques Comunidad de Araque

Lechos de Secado:

	Largo	Ancho	# Módulos
Estudio 2006	15	4	7
Estudio 2020	15	4	8

Tabla 33. Resultados Dimensionamiento de Lechos de Secado Comunidad Araque

La comunidad de Araque es parte de San Pablo y como tal se usó la misma tasa de crecimiento debido a la limitación de información de dicha comunidad. El dimensionamiento no difiere significativamente con respecto al estudio del 2006, sin embargo, en algunos puntos se obtiene elementos mayores, esto se debe a la dotación utilizada para esta comunidad. En el estudio del 2006 se considera una dotación de 120 a 130 L/hab/día, mientras que en el estudio actual se consideró una dotación mayor puesto que la zona de Araque cuenta con diversas actividades turísticas, escuelas, instituciones, etc. Debido al desarrollo que se ha obtenido en los últimos años y a la incertidumbre en la tasa de crecimiento, se ha considerado una dotación mayor a pesar de ser una zona rural. En este estudio se usa una dotación de 190 L/hab/día ya considerando un porcentaje de pérdidas que se espera haya disminuido desde el 2006 hasta la fecha actual. En el estudio 2006 se obtuvo una mayor tasa de crecimiento en comparación al estudio actual, por esta razón el dimensionamiento es similar para ambos estudios en lo referente a tanque sedimentador. Para el filtro percolador se utilizó como parámetro de diseño un tiempo de retención de 1.5 hr mientras que en el estudio 2006 se usó un tiempo de retención de 1.3 hr. Se optó por un tiempo de retención mayor puesto que respecto a la visita técnica realizada, en épocas lluviosas el filtro percolador tiende a regarse fuera de la estructura, por esta razón se obtienen resultados ligeramente mayores para evitar estos inconvenientes, por otro lado, también se debe tratar de obtener mayores dimensiones a las mínimas requeridas en el sistema de recolección de lodos para evitar posibles

taponamientos en el sistema. Al igual que San Pablo, se observa una buena estimación para el dimensionamiento de los lechos de secado pues Araque es parte de la parroquia San Pablo, uno de los lugares en donde se realizaron los estudios en años anteriores.

Comparación Comunidad de Cuaraburo

Tanque Sedimentador

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	2	2.45	2.1	2
Estudio 2020	5	3	2.1	2

Tabla 34. Resultados Dimensionamiento del Tanque Sedimentador Comunidad Cuaraburo

Tanque Percolador

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	5.35	3.70	2.6	2
Estudio 2020	12	4	2.5	2

Tabla 35. Resultados Dimensionamiento del Filtro Percolador Comunidad Cuaraburo

Estanques

	Largo	Ancho	Profundidad	# Módulos
Estudio 2006	40	3.5	1.5	4
Estudio 2020	45	3.5	1.5	5

Tabla 36. Resultados Dimensionamiento de Estanques Comunidad de Cuaraburo

Lechos de Secado

	Largo	Ancho	# Módulos
Estudio 2006	9	3	2
Estudio 2020	10	5	6

Tabla 37. Resultados Dimensionamiento de Lechos de Secado Comunidad Cuaraburo

Para el diseño del tanque sedimentador se obtienen volúmenes diferentes de diseño lo cual genera diferentes dimensiones. En el estudio del 2006 se obtiene un volumen de 8.71 m3 mientras que según el estudio realizado actualmente se obtiene un volumen de 30.71. Adicionalmente se

consideraron diferentes valores de carga, ambas dentro del rango de aplicación. Cabe mencionar que por falta de datos poblacionales en esta comunidad se usó la tasa de crecimiento de la parroquia rural de Eugenio Espejo que es mucho más grande en comparación a la comunidad de Cuaraburo. Al usar una tasa de crecimiento diferente se puede estar sobredimensionando la población por lo que se obtienen grandes diferencias en la población de diseño. En el estudio del 2006 se obtiene una población de 347 habitantes al 2020 mientras que usando los datos encontrados en el plan de ordenamiento territorial del año 2010 se obtiene una población de 672 habitantes, lo cual es aproximadamente el doble de lo que se consideró en el estudio del 2006. En lo referente al filtro percolador, se observa un dimensionamiento mayor ya que el diseño se basa directamente en el volumen que entra al tratamiento. En cuanto a los estanques se consideraron distintos tiempos de retención. En el estudio del 2006 se utilizó 1.55 días, mientras que actualmente se usó un periodo de 3 días de retención para un mejor tratamiento del agua. Una de las constantes fallas que se encontró fue que el filtro se saturaba al punto de vaciarse fuera del tanque sedimentador, por lo que al tener un mayor volumen de almacenamiento se podría evitar este problema especialmente en épocas de lluvia y considerando que hay mucha probabilidad de que lluvias mayores a las consideras en el estudio aparezcan. Para esta comunidad se observa un sobredimensionamiento en cuanto a los lechos de secado, lo cual depende del caudal que es para una población mayor en comparación al estudio del 2006. Cabe mencionar que el ponderado de los sólidos totales suspendidos considerados para este dimensionamiento incluye la parroquia de Eugenio Espejo, por lo que no se considera como una fuente de error.

6.3 Recomendaciones Fallas y Consideraciones en Futuros Proyectos.

Uno de los problemas principales es que en épocas de lluvia la recolección de lodos en el filtro ascendente se satura, lo que quiere decir que gran cantidad de partículas de diferentes tamaños están atravesando el proceso de sedimentación. El arrastre de partículas proviene directamente de las aguas pluviales. Cabe mencionar que el diseño se realizó para curvas de retorno de 5 años, sin embargo, considerando que el diseño se realizó para 20 años existe la probabilidad que lluvias de 25 años ocurran en el trascurso, lo que implica grandes precipitaciones y a su vez grandes caudales de lluvia. Al ser intensa la lluvia, empieza a erosionar el suelo y todos los sedimentos terminarían en el sistema de tratamiento de agua. Del análisis de riesgo se obtuvo un 93% de probabilidad de que una lluvia mayor a la de 10 años aparezca.

Ante esta situación considero que hay dos opciones. La primera, realizar una separación de caudales para aguas lluvia y otro para aguas residuales. Esto sin duda, sería la mejor opción ya que de esta manera no se contamina el agua pluvial con las aguas servidas. Es la opción más óptima y ambientalmente la más viable, sin embargo, puede resultar cara de construir para las instituciones públicas. A largo plazo, resultaría mejor ya que el personal técnico no tendría que estar constantemente limpiando el filtro percolador. El caudal que se trataría sería netamente de aguas residuales lo que implica menor volumen y menor caudal.

La otra opción es implementar dos tratamientos de sedimentación, cada uno enfocado a un diámetro de partículas específico, de modo que en la filtración (filtro percolador) no se saturen las tuberías de recolección de lodos, aumentar el tiempo de retención de modo que las partículas caigan en el pretratamiento. Con la construcción de otro tanque sedimentador se puede apuntar a

las partículas de menor diámetro, lo que requeriría mayor tiempo de retención. Sin embargo, como se trata de una planta de tratamiento que ya está construida, al momento de pensar en una ampliación se debe considerar las dos opciones mencionadas. Adicionalmente, considero necesario realizar al menos otra rejilla que sea capaz de retener solidos más pequeños que la que existe actualmente.

Finalmente, para futuros diseños se recomienda llevar un mayor control en cuanto a conexiones ilícitas, ya que el caudal que aportan puede superar las dotaciones por habitante. Además, dichas conexiones pueden llegar a ser negativas para el tipo de tratamiento que se lleva a cabo en el diseño, como lo es la presencia de combustible y grasa en una de las plantas de tratamiento. La presencia de estos compuestos puede afectar el rendimiento de las plantas acuáticas. Por esta razón, es importante también la participación frecuente de la empresa de agua, es decir realizar toma de muestras de manera frecuente, ubicar las conexiones ilícitas para tomar medidas de prevención. Cabe mencionar, que el sistema de recolección de lodos debe diseñarse considerando que al ser un sistema combinado tiene mayor arrastre de partículas por lo que se debe tener sumo cuidado en el diseño de dichos elementos, siempre apuntando a un diseño más seguro.

CAPÍTULO 7. CONCLUSIONES

En las visitas técnicas realizadas se ha observado que el problema que tiene mayor relevancia en las plantas de tratamiento está relacionado con el sistema de alcantarillado combinado. Las zonas de estudio son comunidades rurales por lo que todavía existen algunas carreteras de tierra, lo que a su vez provoca erosión de los suelos y sedimentación en las principales vías asfaltadas. En el momento que llueve, toda esta erosión es transportada por el sistema de drenaje al mismo lugar. Eventualmente, el agua pluvial se combina con el agua residual proveniente de la comunidad. A pesar de que se hace una separación de caudal, la erosión excesiva afecta los sistemas de tratamiento. Este efecto negativo se observa directamente en el tanque sedimentador y filtro percolador de las plantas de tratamiento pues estos se saturan de lodos impidiendo el flujo de aguas negras, colapsando las plantas de tratamiento especialmente en los tratamientos primarios. Un sistema separado sería la mejor opción, pero lamentablemente en Ecuador se manejan sistemas combinados en su mayoría. Por lo que los sistemas de drenaje de lodos deben ser diseñados para brindar seguridad, deben contar con un buen sistema de succión de lodos. El cual de preferencia debe ser constante especialmente en invierno, ya que de esto va a depender el funcionamiento correcto de las plantas de tratamiento. Si bien el caudal por aguas lluvias puede ser alto en invierno y bajo en verano, las lluvias de alta intensidad pueden erosionar los suelos de las carreteras de tierra arrastrando aun mayor cantidad de sedimento a las plantas de tratamiento. Se considera prudente realizar diseños para lluvias de retorno de al menos 50 años, ya que a pesar de que el sistema de alcantarillado cumple su periodo de diseño este va a seguir siendo usado por la comunidad.

El diseño que se realizó actualmente considerando datos de población del último censo 2010 realizado en Ecuador muestra que el dimensionamiento del estudio 2006 está por debajo de los valores obtenidos proyectados al 2020 en el presente estudio. Cabe mencionar que el dimensionamiento fue un poco mayor al del 2006, es decir, actualmente no es significativo, pero se debe recalcar el diseño realizado aun no cumple su vida útil por lo que en el futuro puede haber mayor problema en las plantas de tratamiento. Se encuentra que en San Pablo al tener gran potencial turístico y expresiones culturales importantes se debe prever un crecimiento mayor por lo que es recomendable usar más de un método para establecer la población de diseño. Cabe mencionar que para establecer la población de diseño y el periodo de vida útil de la estructura, como diseñador se debe considerar que la construcción del proyecto no siempre empieza enseguida o en el mismo año una vez aprobado el diseño. En este caso de estudio, el diseño se aprobó en el 2006, sin embargo, la construcción se realizó recién en el 2010, por lo que hay 4 años "perdidos" de vida útil de la estructura.

De acuerdo a los resultados obtenidos de las muestras de laboratorio, se puede concluir que los tratamientos aplicados en las plantas cumplen con los estándares mínimos requeridos por la normativa actual vigente. Además, se comprueba que el tratamiento con plantas acuáticas es adecuado para procesar el agua residual ya que logra remover en conjunto con el tanque sedimentador y filtro percolador más del 80% de partículas que ingresan a las plantas de tratamiento. La ventaja que tienen este tipo de tratamiento es que no son muy caras de implementar

y que, al tratarse de una zona rural, en donde la agricultura es una fuente de ingreso de muchos ciudadanos otorga beneficios extras, como lo es la lenteja de agua que crece rápidamente y se puede utilizar como abono para cultivos. Por otro lado, los diseños de los lechos de secado utilizados están pensados en un ahorro económico, ya que son sencillos de construir y permite secar los lodos naturalmente.

Para que las plantas de tratamiento funcionen adecuadamente y por mayor tiempo del de diseño considero que es esencial dar mantenimiento a las plantas de tratamiento. En las visitas técnicas se observó algunas fracturas en los lechos de secado, rupturas en tapas de tanques sedimentadores y el taponamiento del filtro percolador. Las fracturas en los lechos de secado pueden dejar escapar líquidos contaminantes y si se realiza la reparación de la estructura ahora el costo sería menor, ya que los daños todavía son leves y controlados. En cuanto al tanque sedimentador, si bien el daño de la tapa no interfiere con el funcionamiento del tratamiento, puede dejar escapar olores al exterior afectando el bienestar de las personas que transitan el sector. En cuanto a los lodos, los filtros deben ser limpiados constantemente considerando que la estructura ya cumplió su periodo de diseño considerando desde el instante que fue diseñado.

Finalmente, se recomienda realizar una actualización de datos con el censo que se llevará acabo el 24 de noviembre del 2020 para obtener un mejor ajusto en cuanto a proyección de la población y caudales para diseño.

6. BIBLIOGRAFÍA

- Beascoechea, E. Muñoz, J. Curt, D. (s/f) Manual de Fito depuración. Filtros de Macrofitas en Flotación. Editan: Madrid.
- Campos, F. (2012). ¿Cuánta Agua hay en la Tierra? Organización Como Noticias. Extraído el 28 de enero del 2018 desde: https://www.cosmonoticias.org/cuanta-agua-hay-en-la-tierra/
- Comisión Nacional del Agua. (s/f) Manual de Agua Potable, Alcantarillado y Saneamiento. Diseño de Plantas de Tratamiento de Aguas Residuales Municipales: Pretratamiento y Tratamiento Primario. Extraído el 22 de Marzo del 2020 desde: http://aneas.com.mx/wp-content/uploads/2016/04/SGAPDS-1-15-Libro26.pdf
- Código Orgánico del Ambiente. (2018).
- Crites, R. Tchobanoglous, G. (2000). *Plantas de Tratamiento para aguas residuales*. McGrawn: Santafé de Bogota.
- Gutiérrez, C. (2005). *Filtros Percoladores* (pa. 14-16). Extraído el 25 de Marzo del 2020 desde: https://www.researchgate.net/publication/284446077_Plantas_de_tratamiento_de_aguas_residual es_Filtros_percoladores
- Instituto Nacional de Meteorología e Hidrología. (2015). *Intensidades Máximas Otavalo*. (pa. 69). Extraído el 25 de Marzo del 2020 desde: http://www.serviciometeorologico.gob.ec/Publicaciones/Hidrologia/ESTUDIO_DE_INT_ENSIDADE_S_V_FINAL.pdf
- Moscoso, A. (2006). Memoria Técnica Fase II Plantas de Tratamiento de Lago San Pablo.
- ONU. (S/F). *El Agua*. Extraído el 27 de Enero del 2020 desde: https://www.un.org/es/sections/issues-depth/water/index.html
- Plan de Ordenamiento Territorial de San Pablo. (2015). *Gobierno Autónomo descentralizado de la Parroquia Rural Administración 2015-2019*. Obtenido el 1 de Febrero del 2020 desde: http://app.sni.gob.ec/snilink/sni/PORTAL_SNI/data_sigad_plus/sigadplusdocumentofinal /0260013900001_PDOT_SAN_PABLO_2015-2030_27-10-2015_00-02-09.pdf
- Plan de Ordenamiento Territorial de Eugenio Espejo. (2015). *Gobierno Autónomo descentralizado de la Parroquia Rural Administración 2015-2019*. Obtenido el 1 de Febrero del 2020 desde: http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdocumentofinal/1060013670001_PDO T%20EUGENIO%20ESPEJO_30-10-2015_12-46-42.pdf
- Rodríguez, J. Gómez, E. Garavito, L. (2010). Estudio de Comparación del tratamiento de aguas residuales domesticas utilizando lentejas y buchón de agua en humedales artificiales.

 Extraído el 6 de Febrero del 2020 desde: https://www.redalyc.org/pdf/3535/353531968005.pdf

- Tratamiento de Aguas Residuales. (2010). Tratamiento Primario. Belzona Inc.
- Valencia, E. (2013). Diseño de un sistema de tratamiento para las aguas residuales de la cabecera parroquial de San Luis provincia de Chimborazo.
- Zambrano, X. Saltos, X. Villamar, F. (2004). Diseño del Sistema de Tratamiento para la Depuración de las Aguas Residuales de la población San Eloy en la Provincia de Manabí por medio de un Sistema de Tratamiento Natural compuesto por un Humedal Artificial Flujo Libre. Extraído el 28 de enero del 2020 desde: https://core.ac.uk/download/pdf/12391430.pdf

ANEXOS

Anexo A. Registro Fotogáfico

Imagen N. 1 Toma de Muestra In situ Lago San Pablo

Imagen N. 2 Toma de Muestras Planta de Tratamiento Araque

Imagen N. 3 Toma de Muestras Planta de Tratamiento San Pablo

Imagen N. 4 Toma de Parámetros In situ Planta de tratamiento de Araque

Imagen N.5 Toma de Muestras a la Salida de la Planta d Tratamiento de Cuaraburo

Imagen N. 6 Toma de Muestras Planta de Tratamiento San Pablo