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RESUMEN

En el presente trabajo se propone un nuevo método para calcular los autovalores
de operadores de Hecke aplicados a formas modulares clásicas de nivel 1 basado en su
evaluación analítica en puntos del plano superior. Utilizamos el hecho de que el espacio
de formas modulares Mk es un espacio vectorial de dimensión finita sobre Q con una
base formada de elementos de la forma Ea

4E
b
6 donde E4 y E6 son series de Eisenstein de

peso 4 y 6 respectivamente. Nuestro enfoque funciona con precisión arbitraria, permite
controlar el error y mejora los métodos exactos actuales.

Palabras Clave: Formas Modulares, Autovalores de Hecke, Evaluación Analítica,
Aproximación Numérica, Algoritmo.
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ABSTRACT

In the present work we propose a new method to calculate Hecke eigenvalues
for classical modular forms of level 1 based of their analytic evaluation at points in
the upper half plane. We use the fact that the space of modular forms Mk is a finite
dimensional vector space over Q with a basis of elements of the form Ea

4E
b
6 where E4

and E6 are Eisenstein series of weight 4 and 6 respectively. Our approach works with
arbitrary precision, allows for a strict control of the error in the approximation, and
outperforms current exact computation methods.

Key Words: Modular Forms, Hecke eigenvalues, Analytic Evaluation, Numerical
Approximation, Algorithm.
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CHAPTER I

INTRODUCTION

Modular forms are well studied because they have many applications and con-

nections with different areas of mathematics. Probably, the best known application of

modular forms is in the study of elliptic curves and their usefulness for counting the

points on an elliptic curve modulo a prime. The algorithms devised to do so have been

proven useful not only in the field of number theory providing useful tools to solve diop-

hantine equations, but they have also served in other fields such as cryptography. The

connection between elliptic curves and the coefficients of modular forms have opened

many new interesting possibilities for study and research. For instance, an entire book

[1] is focused on showing and understanding the proof of the modularity theorem: All

rational elliptic curves arise from modular forms (previously known as the Taniyama -

Shimura conjectura). Andrew Wiles proved this result for a large class of elliptic curves,

an approach that led him to achieve the proof of Fermat’s last theorem after 350 years.

The complete modularity theorem was proved later on.

For example, consider an elliptic curve E that can be defined by the equation,

y2 = x3 + ax+ b.

The problem with this equation is that, while sometimes it may seem easy to find

particular rational solutions, it becomes difficult to show the complete set of solutions,

or even discuss wether it is finite or not. One way to work around is to consider, instead

of the full set of solutions, just solutions modulo a prime p; if we keep a and b fixed,
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then we only have to worry about p2 number of cases and possible solutions. To show

this consider the elliptic curve,

y2 = x3 − x

and let p = 5. Modulo 5 we see that the set of solutions is precisely:

{(0, 0) , (1, 0) , (4, 0) , (2, 1) , (3, 2) , (3, 3) , (4, 2)}

every solution can be easily checked, for instance 32 ≡ 4 ≡ 33 − 3 (mód 5). There

are formulas to estimate the number of solutions modulo p and there is also a famous

formula for taking into the account the “error” of this approximation. If we define Np

as the number of solutions modulo p then we can state an error term ap as ap = Np−p.

The fascinating connection between elliptic curves and modular forms is that, as we

will see, modular forms can be expressed as a fourier series with coefficients ci, the

result is that for each modular form there exists an elliptic curve such that ap = cp for

all prime p.

Even though the exact definition of a modular form, which will be introduced later

on, might be mystifying, it actually arises from a very natural way. Picture the real

line. The functions sin and cos have very special properties: if you shift their argument

by an integer multiple of 2π, you get the same value; in other words, sin and cos are

periodic. This condition could be reestated as the following: sin and cos are invariant

under the action of translations by integer multiples of 2π along the real line. Just

like sin and cos have this special property, if instead of R one thinks of the upper half

plane on C, there exists a group of symmetries that act on this plane and a group

of functions that are invariant over these group actions, such functions are known as

weakly modular forms, once we add the requirement of holomorphy we get the modular
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forms.

To give a more precise explanation, consider a lattice Λ ⊂ C defined as Λ =

Zω1+Zω2 where ω1 and ω2 are linearly independent, i.e, ω1

ω2
�∈ R. Then we can identify

an elliptic curve as the quotient group C�Λ and we want to find functions F such that

F (Λ) is preserved under certain actions. Multiplying a lattice by a non-zero complex

scalar λ just amounts to rotating and reescaling the points on the lattice, so we want

functions such that F (λΛ) = F (Λ) since C�Λ
∼= C�λΛ. Yet this equation imposes

many unnecesary restrictions on our functions and instead we want to consider the

equation

F (λΛ) = λ−kF (Λ) (1)

The functions that satisfy (1) are called weakly modular forms of weight k.

Among the reasons why people study modular forms is that modular forms have a

Fourier expansion and sometimes arithmetic information is contained in their Fourier

coefficients, like for example, eigenvalues of Hecke operators and counting points on

elliptic curves. As we mentioned, one can study elliptic curves by studying lattices

Λ ⊂ C. Modular forms can be in fact generalized as a function on the complex upper-

half plane to an automorphic form as a function on a Lie Gruop G [2].

The space of modular forms is also of interest because given a weight k on a

subgroup of SL2(Z), this space is finite dimensional and algorithmically computable.

Also modular forms occur naturally in connections with problems arising in many other

areas of mathematics [3]. If one wishes to see more applications of modular forms one

can refer to [4].

In terms of Hecke operators, Hecke managed to determine all entire modular forms
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with multiplicative coefficients by introducing a sequence of linear operators Tn called

the Hecke operators. Hecke operators act on the space of automoprhic forms on a group

G to form a commutative ring called the Hecke algebra [2]. These operators are still

objects of current research and proof of that is that there still are conjectures about

the action of Hecke operators on level 1 modular forms such as Maeda’s Conjecture

and the Gouvea-Mazur conjecture [5].

Last but not least, objects of extreme importance in this dissertation are the

Eisenstein series. Ramanujan started studying Eisenstein series without knowing their

connection to modular forms or even number theory. He then realized the coefficients

of Eisenstein series in fact contain a lot of connections with other parts of number

theory. In particular, it is not difficult to show, and we will later, that Eisenstein series

are in fact modular forms. Ramanujan made many contributions to the theory and

applications of Eisenstein series in [6], some of which where made within the theory of

the divisor function, the partition function, and the number of representations of n as

a sum of k squares [7]. Also, the coefficients of Eisenstein series hide very important

mathematical objects such as the Bernoulli numbers, special values of the Riemann

zeta function ζ(s) and the sums of powers of the divisors [8]. Such is the case that

Eisenestein series of weight k have also been referred as 2-dimensional analogs of the

Riemann zeta function [1].

Eisenstein series, are still objects of current research and study. As an example,

Langland’s study of Eisenstein series inspired his conjectures know as the Langlands

program that dictate the role of modular forms (and their generalization known as auto-

morphic forms) in modern number theory. The Langlands program is a set of influential

conjetures that relate Galois groups in algebraic number theory to automorphic forms

in representation theory.

There are many other fields which show the application of Eisenstein series such as

in the theory of automorphic forms (L-functions arise out of the calculations of constant
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termis of Eisenstein series along parabolic subgroups), representation theory (they aid

to achieve the spectral decomposition of the space of L2 functions), number theory,

arithmetic geometry (aritmethically speaking, the p-divisibility of its coefficients helps

in the construction of p-adic L-functions), etc. [9]. Eisenstein series are also helpful in

proving analytic continuation and functional equations for L-functions. For example,

the Siegel-Weil formula asserts that the Fourier coefficients of some Eisenstein series

can be used to count the number of representations of a number by a quadratic form

[10].

Up until now, Eisenstein series have provided many interesenting, seemingly unk-

nown, connections. They have been studied since they show connections with crystals

and lattice models, which are mathematical objects that first appeared in other context

such as quantum groups and mathematical physics [11], an exploration which is just

beginning.

While there are many applications, in this work we will focus in computing Fou-

rier coefficients and Hecke eigenvalues of modular forms. This topic has been of interest

especially because of the relations between the number of solutions on an elliptic curve

modulo p and the coefficients of the modular form associated to that curve. A very

important result for modular forms, that we will explain later, is that there exist mo-

dular forms that are eigenforms of the Hecke operators; furthermore, for these modular

forms, the Fourier coefficients and Hecke eigenvalues agree. These eigenforms, suitably

normalized, will be known as newforms. In this thesis we describe a new method to

compute Hecke eigenvalues of eigenforms, as well as an implementation of the method.

As a motivation, consider the Ramanujan τ -function given by

∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24 = Δ(z)

where q = 2πiz and �(z) > 0; Δ(z) is the unique modular cusp form of level 1
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and weight 12. In 1947 Lehmer conjectured [12] that the Fourier coefficients of Δ(z)

never vanish. Since we mentioned that the Fourier coefficients of Δ(z) are also its Hecke

eigenvalues, one of the oldest unsolved conjectures about modular forms can be studied

by computing the Hecke eigenvalues of a modular form.

The usual way to compute Hecke eigenvalues is by the method of modular symbols

implemented in Sage [13] and MAGMA [14], which will be briefly explained in section

3.1. One advantage of using modular symbols is that the method can be applied for

a modular form of any given level and weight. However, one disadvantage is that, as

the dimension of the space of modular forms increases, the linear algebra required

for the computation of Hecke eigenvalues becomes difficult and inefficient. Recently,

Wuthrich [15] proposed the computation of modular symbols which is faster for large

level compared to traditional methods of computing modular symbols. Also recently,

PARI/GP [16] has started to include methods to compute Hecke eigenvalues based on

trace formulas [17].

A significant breakthrough appeared in the second half of the last decade with

the work of Couveignes and Edixhoven and their collaborators [18]. Their main result

is an algorithm that computes the Galois representation over a finite field attached to

a modular eigenform of level one in time polynomial in the logarithm of the cardinality

of the finite field. One can therefore compute the coefficients of such eigenforms (in

characteristic zero) via a multimodular algorithm. Unfortunately, we are not aware of

any implementations of this algorithm that are available for public use.

In this dissertation we propose another way to compute Hecke eigenvalues, one

whose idea is relatively simple. For f a newform, if we apply a Hecke operator Tp on

f with eigenvalue λp we get that Tpf = λpf . In other words, if we could evaluate Tpf

and f at some fixed point z0 in the complex upper half-plane H at which f does not

vanish, then

λp =
Tpf(z0)

f(z0)
.
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One clear drawback to our proposed method is that we only get a numerical approxima-

tion to λp. However, this drawback is not too problematic. For example, in numerical

experiments on L(f, s), the L-function associated to f , we only need numerical ap-

proximations to the Dirichlet series coefficients (which are determined by the Hecke

eigenvalues of f). If an exact representation of the Hecke eigenvalue is required, since

the number field in which the Hecke eigenvalue lives is known, one can use LLL to find

the Hecke eigenvalue exactly. The advantages of our method are that it allows us to

compute some Hecke eigenvalues more quickly than using the traditional approach and

that it can easily be made parallel.

In this dissertation we will focus on the special case of a level 1 eigenform f , we

investigate a variant of the analytic evaluation method that writes any eigenform f

of level 1 as an explicit polynomial in the Eisenstein series E4 and E6, and evaluates

these Eisenstein series at relevant points as described above. The advantage of using

this approach is that the Fourier expansions of Eisenstein series are easy to compute and

there also exist computational packages such as ARB that will allow for the optimized

evaluation of E4 and E6 [8], [19].
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CHAPTER II

MATHEMATICAL BACKGROUND

2.1 Modular Forms

To get a better understanding of modular forms we will first define some concepts

that will be used. We define the upper half plane H = {z ∈ C :Im(z) > 0} and the

group

SL2(R) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝a b

c d

⎞
⎟⎠ : a, b, c, d ∈ R and ad− bc = 1

⎫⎪⎬
⎪⎭ .

SL2(R) acts on the upper half plane by linear fractional transformations of the form

⎛
⎜⎝a b

c d

⎞
⎟⎠ τ =

aτ + b

cτ + d
(2)

for τ ∈ H, it sends points in the upper half plane to points in the upper half plane.

This can be seen from the simple equation,

Im

(
aτ + b

cτ + d

)
=

(ad− bc)Im(τ)

|cτ + d|2

Since we know that ad−bc = 1 and Im(τ) > 0 we see that aτ+b
cτ+d

∈ H. For modular forms

we are particularly interested in the group SL2(Z) which is defined just like SL2(R)
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but with the entries now in Z. We also define the fundamental domain for SL2(Z) to

be,

F =
{
z ∈ H : |�(z)| ≤ 1

2
and |z| ≥ 1

}
.

Figura 1: Fundamental domain for SL2(Z) [20]

Observe that T =

⎛
⎜⎝1 1

0 1

⎞
⎟⎠ and S =

⎛
⎜⎝0 −1
1 0

⎞
⎟⎠ ∈ SL2(Z), in fact these two matrices

are very important in our study because the group SL2(Z) is generated by the matrices

T and S [1]. We will prove this result,

Lemma 1. SL2(Z) is generated by the matrices T =

⎛
⎜⎝1 1

0 1

⎞
⎟⎠ and S =

⎛
⎜⎝0 −1
1 0

⎞
⎟⎠

Proof. First observe that S2 = −I and T n =

⎛
⎜⎝1 n

0 1

⎞
⎟⎠. Let A =

⎛
⎜⎝a b

c d

⎞
⎟⎠ ∈ SL2(Z) and

G =< S, T > be the subgroup of SL2(Z) generated by S and T . Suppose without loss

of generality that c �= 0, and that |a| ≥ |c|. By the division algorithm, a = qc+ r with

0 ≤ r < |c|. So, T−qA has a− qc = r as its entry a11. Now, mutiplication by S switches

rows with a minus sign to the first row and now the entries a11 = −c and a21 = r, we

repeat this process again until we will get eventually that a21 = 0 and our matrix will

have the form A
′
=

⎛
⎜⎝±1 m

0 ±1

⎞
⎟⎠, since A ∈ SL2(Z). This matrix A

′ has to be ±Tm for

some m ∈ N. So, ∃B ∈ G such that BA = ±Tm for some integer n. Since T n ∈ G and

S2 = −I we have that A = ±B−1T n, and the proof is complete.
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To illustrate the proof let us consider A =

⎛
⎜⎝11 8

4 3

⎞
⎟⎠, we will express it in terms of S

and T . Since 11 = 2 · 4 + 3, we have

T−2A =

⎛
⎜⎝3 2

4 3

⎞
⎟⎠

Now, we multiply by S,

ST−2A =

⎛
⎜⎝−4 −3

3 2

⎞
⎟⎠

Since −4 = (−2) · 3 + 2 we multiply by T 2,

T 2ST−2A =

⎛
⎜⎝2 1

3 2

⎞
⎟⎠

Once again, we multiply by S to switch rows,

ST 2ST−2A =

⎛
⎜⎝−3 −2

2 1

⎞
⎟⎠

Now since −3 = (−2) · 2 + 1 we multiply by T 2,

T 2ST 2ST−2A =

⎛
⎜⎝1 0

2 1

⎞
⎟⎠
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Switching rows,

ST 2ST 2ST−2A =

⎛
⎜⎝−2 −1

1 0

⎞
⎟⎠

We have that −2 = (−2) · 1 + 0 and we have that,

T 2ST 2ST 2ST−2A =

⎛
⎜⎝0 −1
1 0

⎞
⎟⎠

With our final switch of rows we have that

ST 2ST 2ST 2ST−2A =

⎛
⎜⎝−1 0

0 −1

⎞
⎟⎠ = −I = S2

Solving for A we finally arrive to,

A = T 2S−1T−2S−1T−2S−1T−2S−1S2

Given that S−1 = −S we get that,

A = −T 2ST−2ST−2ST−2S

And thus, with this algorithm we are able to write any matrix in SL2(Z) as a product

of powers of T and S. Another important property about the action of SL2(Z) is

associativity, for A,B ∈ SL2(Z) we have that
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(AB) (τ) = A (B(τ)) .

So that f ((AB) (τ)) = f (A (B(τ))). We will first state the definition of modular

forms of level 1 and then we will generalize this idea to modular forms of higher levels.

Definition 1. A meromorphic function f on H is called a weakly modular function of

weight k ∈ Z if for all A = ( a b
c d ) ∈ SL2(Z) and all τ ∈ H we have that,

f(τ) = (cτ + d)−kf

(
aτ + b

cτ + d

)

We will explain this condition when we define a modular function of any level and

weight.

We now turn our attention to when τ ∈ H tends to ∞, we want our function to

be well behaved when this happens,

Definition 2. A modular function f of weight k is a weakly modular function of weight

k that is meromorphic at ∞.

And now we define a modular function of weight k and level 1,

Definition 3. A modular form of weigth k and level 1 is a modular function of weight

k that is holomorphic on all H and ∞.

Now, we extend this definitions and we define a modular form for any level N and

weight k. First of all, let us examine the congruence subgroups of SL2(Z).

Definition 4. A congruence subgroup of SL2(Z) is any subgroup that contains

Γ(N) = ker
(
SL2(Z)→ SL2

(
Z�NZ

))
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for some positive N. The smallest such N is called the level of Γ.

The most important congruence subgroup is:

Γ0(N) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝a b

c d

⎞
⎟⎠ ∈ SL2(Z) :

⎛
⎜⎝a b

c d

⎞
⎟⎠ ≡

⎛
⎜⎝∗ ∗
0 ∗

⎞
⎟⎠ (mod N)

⎫⎪⎬
⎪⎭ .

Now, we can safely define a modular form of weight k and level N to be the following.

Definition 5. A modular form of level N and weight k is a holomorphic function

f : H→ C satisfying the following:

Modularity condition

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) (3)

for all elements ( a b
c d ) in Γ0(N) and all τ ∈ H.

The function f(τ) is bounded as Im(τ) approaches infinity.

The space of all modular forms of weight k and level N is denoted Mk(N).

One might find (3) particularly unmotivated since the factor (cτ + d)k seems to

appear from nowhere. However, we will show that it is actually natural to include it

in the definition of a modular form once we recall our discussion in the Introduction

about how modular forms arise from functions invariant over lattices Λ ∈ C. Since we

saw that the modularity condition implies that f(τ + 1) = f(τ), we see that knowing

the value of f in a strip of width 1 will give us the value of the function at any point

in the upper half plane, that is why we only care about lattices of the form Z+ τZ and

its multiples. Consider the equation
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F (λΛ) = −λkF (Λ)

and the lattices previously defined. We consider a lattice Λ = Zω1+Zω2 where ω1

ω2
�∈ R

and define a new function F (ω1, ω2) = F (Zω1 + Zω2), what we need is that,

F (λω1, λω2) = −λkF (ω1, ω2)

Now, it is known that two pair of complex numbers (ω1, ω2) and (ω
′
1, ω

′
2) generate

the same lattice if (ω1, ω2) = (aω
′
1+b, cω

′
2+d) for some ( a b

c d ) ∈ SL2(Z). This is precisely

the action of SL2(Z) in the upper-half plane. That is why we can only consider how

the functions behaves in the lattice Λ = Zτ + Z where τ ∈ H, we can then define a

function f(τ) = F (Λ) and for a general lattice we get that

F (Zω1 + Zω2) = F

(
(ω2)Z

ω1

ω2

+ Z

)

= (ω2)
−k F

(
Z
ω1

ω2

+ Z

)

Now,

f (τ) = F (Zτ + Z)

= F (Z(aτ + b) + Z(cτ + d))

= (cτ + d)−k f

(
aτ + b

cτ + d

)

This is the modularity condition.
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Also, if we apply (2) to T and S we see the the action of these matrices are simply

transformations that are equivalent to translation by a unit, T (τ) = τ+1 and inversion

of unit cirle plus a reflection on the real axis, S(τ) = − 1
τ
. However, also observe that

P =

⎛
⎜⎝−1 0

0 −1

⎞
⎟⎠ ∈ SL2 and so,

P (τ) = (−1)kP (τ)

this simple equations shows that any modular forms of weight k, when k is odd, has

to be the 0 function, one can check the zero function is in fact a modular form of any

weight.

One of the conditions of modular functions can be reestated as follows, an entire

modular form contains no-negative powers of x in its Laurent expansion. It is analytic

everywhere and at i∞ [21]. Since we saw that every modular function is holomorphic

and satisfies the modularity condition, they admit a Fourier expansion that has to be

of the form

f(q) =
∞∑
n=0

anq
n, (4)

where q = exp(2πiτ). Equation (4) is usually called the q-expansion of f . This repre-

sentation of modular forms allow us to manipulate them more easily and it also let us

define one kind of modular forms that we are particularly interested, cusp forms.

Definition 6. A cusp form of weight k and level N is a modular form f of weight k

and level N that vanishes at the cusps. In other words, f is a cusp form if its Fourier

expansion has constant term equal to 0: f(q) =
∑∞

n=1 anq
n. We denote the space of all

cusp forms of weight k and level N by Sk(N).
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2.2 Algebraic structure of Mk(1) and Sk(1)

One of the reasons modular forms are so studied is because the space consisting

of all modular forms of a given level and weight forms a vector space over C. In fact,

we define the operations in Mk(1) as (f + g)(τ) = f(τ)+ g(τ) and (fg)(τ) = f(τ)g(τ).

In particular, consider two modular forms f and g of weight k and level 1. We know

that the sum of two holomorphic functions is holomorphic, also, observe that,

(f + g)(τ) = f(τ) + (gτ)

= (cz + d)−kf

(
aτ + b

cτ + d

)
(cz + d)−kd

(
aτ + b

cτ + d

)

= (cz + d)−k(f + g)

(
aτ + b

cτ + d

)

So that f + g satisfies the modularity condition and f + g is bounded as τ → i∞ since

both f and g are bounded. This shows that f + g is also a modular form of weight k.

Now let f ∈Mk(1) and g ∈Ml(1), and consider the following,

(fg)(τ) = f(τ)(gτ)

= (cz + d)−kf

(
aτ + b

cτ + d

)
(cz + d)−ld

(
aτ + b

cτ + d

)

= (cz + d)−(k+l)(fg)

(
aτ + b

cτ + d

)

By similar reasons fg is holomorphic in H and fg(τ) is bounded at the cusps. This

shows that fg is a modular form of weight k + l. Similar calculations also show that

for g �= 0, f
g

is a modular form of weight k − l.
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It is also easy to see that Sk(1) is a subspace of Mk(1).

2.3 Modular forms of Level 1

We will now focus our attention to the structure of modular forms of level 1,

i.e., modular forms on SL2(Z) = Γ0(1) = Γ1(1). First, we examine the first non-trivial

example of a modular form.

2.3.1 Examples of Modular forms

Perhaps the most common non-trivial example of a modular form are Eisenstein

series, as we saw that there are no nonzero modular forms of odd weight. We have the

following proposition.

Proposition 1. For even k ≥ 4, the non-normalized weight k Eisenstein series is the

function given by

Gk(τ) =
∑

(m,n)∈Z,
(m,n) �=(0,0)

1

(mτ + n)k
.

The function Gk(τ) is a modular form of weight k.

Proof. For a proof of the fact that Gk(τ) is an holomorphic function on H see [22,

Chapter 7. Section 2.3]. It is also shown in [23, Section 1.4] that for k ≥ 4, Gk(τ) is

absolutely convergent. Now, what it is left for us to show is that Gk(τ + 1) = Gk(τ),

Gk

(−1
τ

)
= τ kGk(τ) and that Gk(τ) is bounded as Im(τ) approaches infinity. First

observe that

Gk(τ + 1) =
∑

(m,n)∈Z,
(m,n) �=(0,0)

1

(m(τ + 1) + n)k

=
∑

(m,n)∈Z,
(m,n) �=(0,0)

1

(mτ +m+ n)k

=
∑

(m,n)∈Z,
(m,n) �=(0,0)

1

(mτ + (m+ n)k
.
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Since (m,n) runs through all Z \ {0, 0} then so does (m,m+ n) and we can rearrange

this last terms because Gk(τ) is absolutely convergent. Thus,

Gk(τ + 1) = Gk(τ).

Now also observe that,

Gk

(−1
τ

)
=

∑
(m,n)∈Z,

(m,n) �=(0,0)

1(−m
τ
+ n

)k
=

∑
(m,n)∈Z,

(m,n) �=(0,0)

τ k

(−m+ nτ)k

= τ k
∑

(m,n)∈Z,
(m,n) �=(0,0)

1

(−m+ nτ)k
.

Similarly (−m,n) also runs through all Z \ {0, 0} and we can rearrange the terms and

we get that,

Gk

(−1
τ

)
= τ kGk(τ).

Now, observe that if Im(τ)→∞ then

Gk (τ) =
∑
n �=0

1

nk
+
∑
m �=0

∑
n∈Z

1

(mτ + n)k
= 2

∑
n≥1

1

nk
+ 2

∑
m≥1

∑
n∈Z

1

(mτ + n)k
,

every term in the sum 1
(mτ+n)k

goes to 0 as τ goes to ∞. Thus,
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ĺım
Im(τ)→∞

Gk (τ) = 2
∑
n≥1

1

nk
<∞

which proves that Eisenstein Series are in fact modular forms of weight k.

This is the first example of a modular form and it also shows an important fact we

previously discused about Eisenstein Series, when τ → ∞ we see that the Eisenstein

Series tends to 2
∑
n≥1

1

nk
, we actually have that this sum equals to 2ζ(k), where ζ(k) is

the famous Riemann Zeta function.

Since Eisenstein series are modular forms we can think about their Fourier ex-

pansion, but first, we introduce an important function that will appear in this Fourier

expansion,

Definition 7. For an integer t ≥ 0 and a positive integer n, we define the sum of

divisors function as,

σt(n) =
∑
1≤d|n

dt.

In other words, σt(n) is the sum of the t-th powers of positive divisors of n.

Now, we determine the Fourier expansion of an Eisenstein series.

Proposition 2. For even k ≥ 4 we have,

Gk(τ) = 2ζ(k) + 2 · (2πi)k

(k − 1)!

∞∑
n=0

σk−1(n)q
n

Proof. This proof can be found at [23, Theorem 1.4.6]. It can be shown that,

1

τ
+

∞∑
d=1

(
1

τ − d
+

1

τ + d

)
= π cot(πτ) = πi− 2πi

∞∑
m=0

qm (5)
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Then we will first prove that
∑
d∈Z

1

(τ + d)k
=

(−2πi)k
(k − 1)!

∞∑
n=1

nk−1qn. Differentiating both

sides of (5) with respect to τ we get that,

− 1

τ 2
+

∞∑
d=1

( −1
(τ − d)2

+
−1

(τ + d)2

)
= −(2πi)2

∞∑
d=1

dqd

The series on the left hand side converges absolutely and therefore,

∑
d∈Z

1

(τ + d)2
= (2πi)2

∞∑
d=1

dqd.

This proves the equation for k = 2, the general identity follows by induction by dif-

ferentiating (5) k − 1 times. Now we prove the general result we were after, we see

that

Gk(τ) =
∑
n �=0

1

nk
+
∑
m �=0

∑
n∈Z

1

(mτ + n)k
= 2ζ(k) + 2

∞∑
m=1

∑
n∈Z

1

(mτ + n)k

Using the identity we previously proved replacing m by mz we get that,

Gk(τ) = 2ζ(k) + 2
∞∑

m=1

(
(−2πi)k
(k − 1)!

∞∑
d=1

dk−1qdm

)
= 2ζ(k) +

2(−2πi)k
(k − 1)!

∞∑
m=1

∞∑
d=1

dk−1qdm

We know group the pairs in the inner sum that contribute to qn, i.e., we are looking

for the divisors of n, the pairs (m, d) such that md = n, thus using the sigma function

we previusly defined we arrive to the result,

Gk(τ) = 2ζ(k) + 2 · (2πi)k

(k − 1)!

∞∑
n=0

σk−1(n)q
n

However, we can still have another representation of this Fourier expansion once we

introduce the Bernoulli numbers, this representation is useful in a computational point

of view since Bernoulli numbers have a fast method of computation as implemented in

Sage.



32

Definition 8. The Bernoulli number Bn for n ≥ 0 is defined to be the number such

that the following equality holds,

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

Expanding the power series one can get that the first values for Bn are

B0 = 1

B1 = −1
2

B2 =
1
6

B3 = 0

B4 = − 1
30

B5 = 0

B6 =
1
42

Notice that the Bernoulli numbers with odd n > 1 are 0. Another interesting

property about the Bernoulli numbers is that they give the value of the Riemann zeta

function for positive even integers,

Proposition 3. If k ≥ 2 is an even integer,

ζ(k) = −(2πi)k

2k!
Bk

Proof. The proof can be found at [22, Chapter 7, section 4, prop 7]. Replacing x = 2iτ

in the definition of the Bernoulli numbers we get that

τ cot(τ) = 1−
∞∑
k=1

Bk
2kτ k

k!
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Taking the logarithmic derivative of

sin τ = τ
∞∏
n=1

(
1− τ 2

n2π2

)

we get that,

τ cot(τ) = 1 + 2
∞∑
n=1

τ 2

τ 2 − n2π2
= 1− 2

∞∑
n=1

∞∑
k=1

τ 2k

n2kπ2k

Since,

1− 2
∞∑
n=1

∞∑
k=1

τ 2k

n2kπ2k
= 1−

∞∑
k=1

Bk
2kτ k

k!

we get the desired result.

Often, it will be convenient to express a function in its Fourier expansion as

a normalized series, i.e, with the coefficient of q equal 1. Therefore, we are able to

introduce the normalized Eisenstein series as follows,

Definition 9. The normalized Eisenstein Series of even weight k ≥ 4 is

Ek =
(k − 1)!

2 · (2πi)kGk

= −Bk

2
+ q +

∞∑
n=2

σk−1(n)q
n

Among other reasons, we want to use normalized series is that the eigenvalue of the

n-th Hecke operator is the coefficient of qn, as we will see later on.

As we have seen, Eisenstein series constitute the first example of a non-trivial

modular form; however, cusp forms are also an object of study in this work and we will

use eisenstein series to define a very important cusp form,

Theorem 1. Delta (Δ) is a cusp of weight 12 defined by,
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Δ =
D

(2π)12
,

where D(z) = (60G4(z))
3 − 27(140G6(z))

2. Its q-expansion is given by,

Δ = q ·
∞∏
n=1

(1− qn)24.

Observe that 60G4(i∞) = 120ζ(4) and that 140G6(i∞) = 280ζ(6), then we get that,

60G4(i∞) =
4

3
π4, 140G6(i∞) =

8

27
π6

Therefore,

Δ(i∞) =

(
4

3
π4

)3

− 27

(
8

27
π6

)2

= 0,

which tells us indeed that Δ is a cusp form of level 12.

In [22, Chapter 7. Section 2], the author gives an explanation with lattices for

where the discriminant D comes from. Let Γ be a lattice of C, and let,

ϑΓ(u) =
1

u2
+

′∑
γ∈Γ

(
1

(u− γ)2
− 1

γ2

)

be the corresponding Weierstrass function, in the Laurent expansion of ϑΓ(u) we will

find Eisenstein series,

ϑΓ(u) =
1

u2
+

∞∑
2

(2k − 1)Gk(Γ)u
2k−2.
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This function satisfies the differential equation (f ′)2 = 4f 3 − g2f − g3 and so, if we let

y = ϑ
′
Γ(u) and x = ϑΓ(u) we have that,

y2 = 4x3 − g2x− g3,

where g2 = 60G4(z) and g3 = 140G6(z). So, up to some constant, Δ is in fact the dis-

criminant of the polynomial 4x3−g2x−g3 which ends up showing one of the important

properties that Δ possess: it never vanishes for points on the upper-half plane.

Among other properties of Δ we can find that its Fourier series also involves the

Ramanujan τ function and it is given by

Δ(z) =
∑
n≥1

τ(n)qn,

Δ is perhaps one of the most important modular forms of level 1 and it is especially

useful since we will prove that multiplication by Delta establishes an isomorphism

between cusp forms and modular forms.

One of the reasons modular forms have been studied as much as they have is

because of the structure they possess, especially when we are considering modular

forms of level 1 like we are. We first define the ordw(f) to be the largest integer n such

that f(z)
(w−z)n

is holomorphic at w when f is a meromorphic function in H. Observe that

ord∞(f) is the smallest positive integer for which the power of q in th q-expansion of

f has a non-zero coefficient, i.e., ord∞(f) = a0 if f(τ) =
∑
n≥a0

anq
n. Now, let ρ = e

2πi
3 .

Then we state the following theorem,

Theorem 2. Valence Formula: Let k be any integer and suppose f ∈Mk(1) is nonzero.
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Then,

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∑
w∈F

ordw(f) =
k

12
(6)

where the sum ranges for the elements of F other than i and ρ.

Proof. The proof can be found in [22, Chapter 7. Section 3. Theorem 3].

Remember that Mk(N) and Sk(N) are the space of modular forms of weight k

and level N and the space of cusp forms of level k and level N respectively. For ease

of notation let Mk := Mk(1) and Sk := Sk(1). We now have the tools to prove the

following theorem.

Theorem 3. Multiplication by Δ defines an isomorphism between Mk−12 and Sk

Proof. The proof can be found in [4, Chapter 2. Theorem 2.14 ]. We know that Δ is

never zero, so the holomorphy of Δ implies that multiplication by Δ establishes an

injective map from Mk−12 → Sk. We only need to show that this map is also surjective,

to do this consider a cusp form f ∈ Sk, we will prove that f
Δ

is a modular form of level

k − 12. Define g = f
Δ

, g is holomorphic in H since Δ never vanishes and it is bounded

as Im(τ)→∞ because

ord∞(g) = ord∞(f)− ord∞ (Δ) = ord∞(f)− 1 ≥ 0.

We used the fact that ord∞ (Δ) = 1 but one can see this clearly from the q-expansion

of Δ. We also used that ord∞(f) ≥ 1 since f is a cuspform and it does not have a

constant term. In section 2.2 one can see that the quotient of two modular forms of

weight k and l respectively satisfy the modularity condition for k − l. This completes

the proof.

We have that the space of modular forms can be written as a direct sum of the space

of cusp forms and the Eisenstein series. We state the following theorem,
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Theorem 4. If k ≥ 4 is even, then Mk = Sk

⊕
CGk.

Proof. Let f(τ) ∈Mk and consider h(τ) = f(τ)− f(i∞) Gk(τ)
Gk(i∞)

. It is well defined since

Gk(i∞) �= 0. Now, observe that

h(i∞) = f(i∞)− f(i∞)
Gk(i∞)

Gk(i∞)
= 0

This proves that h ∈ Sk. We have shown that any modular form of weight k can

be written as the sum of a cusp form and a multiple of Gk(τ); which completes the

proof.

All the results we are stating are important since we want to arrive to the fact

that the space of modular forms Mk is a vector space over C, but most importantly,

we want to show that its dimension is finite. If we can do this, we would like to find a

basis for this space and carry on the evaluations of a modular form f expressed as a

linear combination of the basis elements. We will show how strong the Valence Formula

is when studying the dimension of the spaces of modular forms,

Lemma 2. The dimension of Mk is zero for k < 0 and k = 2; furthermore, Sk = 0 for

k < 12.

Proof. Observe that the left-hand side of (6) is non-negative, thus the right-hand side

must be non-negative as well and k ≥ 0. If k = 2 we see that the right hand side is 1
6
,

yet the left-hand side contains non-negative multiples of 1, 1
2

and 1
3

which makes the

sum too big, so k �= 2. The second part of the theorem is just a corollary of theorem 3

since Mk−12
∼= Sk we see that the dimensions agree, so Mk = 0 for k < 0 imply that

Sk = 0 for k < 12.

Now that we have used the Valence formula to take care of the cases k < 0, k = 2

for the space Mk, we are in position to show one of the important results of this section,
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Theorem 5. If k < 0 or k is odd, Mk = 0. For even k ≥ 2, we have that,

dim (Mk) =

⎧⎪⎪⎨
⎪⎪⎩
⌊

k
12

⌋
if k ≡ 2 (mód 12)

1 +
⌊

k
12

⌋
if k �≡ 2 (mód 12)

(7)

Proof. For k < 12 using Theorem (3), observe that

dim(Mk) = 1 + dim(Sk) = 1 + dim(Mk−12) = 1 + 0 = 1

. So, for k = 0, 4, 6, 8, 10 we have that dim(Mk) = 1. Now, using again Theorem (3) we

get that

dim(Mk) = 1 + dim(Sk) = 1 + dim(Mk−12)

Thus we see that when k is replaced by k+12 the dimension of Mk increases by 1, and

the theorem is proved.

This theorem tells us for instance that for k = 0, 4, 6, 8, 10 the space Mk has

dimension 1 over C. Also, the theorem tell us that dim (M38) =
⌊
38
12

⌋
= 3 and that

dim (M42) = 1 +
⌊
42
12

⌋
= 4.

Now that we have proved that the space of modular forms is finite-dimensional,

the right question to ask next should be about its basis. Is there an explicit basis for

Mk? If so, how can we find a basis for Mk? If we were able to do this, as we have

said before, we would be able to express any modular form as a linear combination

of its basis, and we hope that it might be composed with elements that are more

computationally accesible. The next theorem shows that all the things we discussed in

this paragraph are true.

Theorem 6. The space Mk has as basis the modular forms Ea
4E

b
6 where a,b run over

all non-negative integers such that 4a+ 6b = k
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Proof. This proof uses [4, Chapter 2. Theorem 2.17] and [23, Corollary 1.6.10]. We will

prove this result by induction. Fix an even integer k. We see that for k ≤ 10, k = 14

for which dim(Mk) = 1 the bases are 1,E4,E6,E8,E10 and E14 respectively. Now choose

a, b ∈ Z+ such that 4a + 6b = k, then define g = Ea
4E

b
6, we see that g is not a cusp

form since g(∞) �= 0. Now let f ∈Mk be such that ∃α ∈ C so that f −αg ∈ Sk. Thus,

by Theorem 3 ∃h ∈ Mk−12 such that f − αg = hΔ, by our inductive hypothesis, h is

a polynomial in E4 and E6 and so is Δ, since Δ =
E2

6−E3
4

1728
, and therefore, so is f . We

have proved that
{
Ea

4E
b
6|(a, b) ≥ 0, 4a+ 6b = k

}
spans Mk. All that is left to prove is

that the polynomials are in fact linearly independent. We will also use induction on

steps of 12, we want to show that the number of the monomials Ea
4E

b
6 that satisfy the

condition agree with the dimension of Mk. For k ≤ 14 calculations are straightforward.

Now assume that k > 14, for each monomial Ea
4E

b
6 of weight k − 12 there exists one

Ea
4E

b+2
6 of weight k. All those monomials are obtained in that way except those that

are of the form Ea
4 or Ea

4E6. When k ≡ 0 (mód 4) then E
k/4
4 is of weight k and when

k ≡ 2 (mód 4) then E
(k−6)/2
4 E6 is of weight k, in either case there is exactly one more

monomial of weight k than there are of weight k − 12. This completes the proof.

For instance, dim(M32) = 3 and we see that 2 · 4+ 4 · 6 = 32, 5 · 4+ 2 · 6 = 32 and

8 · 4 = 32, so {E2
4E

4
6 , E

5
4E

2
6 , E

8
4} is a basis for M32. This theorem plays an essential role

in the algorithm that we describe since expressing every modular form as a combination

of Eisenstein series, whose coefficients are well known, will make the computations a

lot easier.

As a result of these theorems we can state the following proposition.

Proposition 4. A :=
⊕∞

k=0 Mk defines a graded C-algebra and A ∼= C[x, y]

Proof. The fact that A is an algebra is easily checked, now Theorems 5 and 6 establish

that the following map,

π : C[x, y]→ A
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is an algebra isomorphism. This map sends x to E4 and y to E6, in that way we can

identify elements in A as polynomials in E4 and E6.

2.4 Hecke operators

Now that we have discussed the structure of the space of modular forms, we are

particularly interested in a special type of modular forms known as newforms. But first,

we have to introduce some other concepts. Hecke determined all entire modular forms

with multiplicative coefficients by introducing a sequence of linear operators Tn, known

as Hecke operators, which map Mk onto itself [21]. For a fixed k and n = 1, 2, 3, . . . ,

the action of Tn on f is defined as,

(Tnf) (τ) = nk−1
∑
d|n

d−k

d−1∑
b=0

f

(
nτ + bd

d2

)
. (8)

If n = p we see that the sum only contains two terms and (8) turns into

(Tpf) (τ) = pk−1f(pτ) +
1

p

p−1∑
b=0

f

(
τ + b

p

)
.

Among the intereseting properties of Hecke operators, we state the following proposi-

tion,

Proposition 5. If f ∈Mk and has a Fourier expansion

f(τ) =
∞∑

m=0

c(m)q2πimτ

then Tnf has a Fourier expansion

(Tnf)(τ) =
∞∑

m=0

bn(m)q2πimτ
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where,

bn(m) =
∑

d|(n,m)

dk−1c
(mn

d2

)

Proof. For a proof of this fact refer to [21, Theorem 6.6].

Another very important fact about Hecke operators is that, as we should have

expected, it maps modular forms into modular forms and cusp forms into cusp forms.

Theorem 7. If f ∈Mk, then Tnf ∈Mk. Furthermore, if f ∈ Sk, then Tnf ∈ Sk.

Proof. If f ∈ Mk the definition of Tn shows that Tnf is analytic everywhere on H.

Proposition 5 shows that Tnf has the required q-form and that it is bound when

Im(τ) → ∞. For the second part of the theorem, Proposition 5 shows that Tnf for

f ∈ Sk also vanishes at the cusp. To see a proof that Tnf satisfies the modularity

condition one can see [21, Chapter 6. Theorem 6.11].

Finally, we would like to have that Hecke operators are multiplicative and how we

could decompose the operator Tn when we have pn for some prime p. This is summarized

in the following proposition.

Proposition 6. On weight k modular functions we have that,

Tmn = TmTn

if gcd(m,n) = 1 and that for p prime,

Tpn = Tpn−1Tp − pk−1Tpn−2

Now that we have defined the action of Hecke operators on a modular form, we can

now turn our attention to a very particular kind of modular form. We are interested in



42

cuspforms, specifically in those that are Hecke eigenforms. Among Hecke eigenforms,

we are particularly interested in newforms:

Definition 10. If d1d2 = N and f ∈ Mk(d1), then we also have f ∈ Mk(N) and also

g(z) = f(d2z) ∈Mk(N). The subspace of Sk(N) spanned by the forms obtained in one

of these ways are the old forms and the orthogonal complement, with respect to the

Peterson inner product, of the oldforms are the newforms, denoted by Sk(N)new.

Where the Peterson inner product comes given by,

Definition 11. Let f and g be two cuspforms of weight 2k, k > 0.

〈f, g〉 =
∫
F

f(τ)g(τ)y2k−2dxdy.

Where τ = x+ iy and F is the fundamental domain.

Another definition for newform might make more sense regarding what we are

working with,

Definition 12. A non zero modular form f ∈Mk(N) that is an eigenform for the Hecke

operator Tn for all n ∈ Z is an Hecke eigenfrom or simple eigenform. The eigenform

f(τ) =
∞∑
n=0

anq
n is normalized when a1 = 1. A newform is a normalized eigenform in

Sk(N)new [1].

One might wonder why we care at all about eigenforms or newforms in particular.

The answer is relatively simple and it is explained in [22]. Let f(τ) =
∞∑
n=0

a(n)qn be a

modular form of weight k. Assume that f is an eigenform as defined above, i.e.,

(Tnf)(τ) = λnf(τ)

for all n ≥ 1. We have the following theorem,
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Theorem 8. Let f be a newform and let the coefficient a(1) of q in f be different than

zero. If f is normalized by having a(1) = 1, then we have that

a(n) = λn

for all n > 1.

The theorem tell us that the Hecke eigenvalues agree with the Fourier coefficients

of newforms. This is one of the most important results that we use since when compu-

ting Hecke eigenvalues we are actually computing the Fourier coefficients of classical

modular forms.
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CHAPTER III

COMPUTATIONAL BACKGROUND

In the following chapter we will give a brief introduction to modular symbols 3.1,

the method currently used by SAGE to calculate Hecke eigenvalues. In section 3.2 we

explain the computational package Arb which we use to make the analytic evaluation

of our modular forms.

3.1 Modular Symbols

We saw in the previous section that we could explicitly construct a basis for

each space Mk of modular forms of level 1, consisting of elements of the form Ea
4E

b
6

where 4a+ 6b = k. However, this is not so easy in general. The existing algorithm for

computing eigenvalues of Hecke operators uses the method of modular symbols, which

we will explain here.

First of all, we define the set of all cusps to be P1 (Q) = Q ∪ {∞}. We can define

an action of SL2(Z) on the set of cusps as,

z → az + b

cz + d

and z → ∞ if z = −d
c
, i.e., we identify the cusp ∞ with the fraction 1

0
. We say

that two cusps α, β are equivalent mód Γ0 if ∃A ∈ Γ0 ⊂ SL2(Z) such that Aα = β,

where Γ0 contains Γ0(N) for some N . We can use this cusps to construct a homology

class, in particular, the homology class of any oriented path from α to β. We define
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this homology class as {α, β}. Since we are considering oriented paths, we see that

{α, β} = −{β, α}.

For now, let us focus on modular symbols of weight 2. We can then define a perfect

map from the product of cusp forms of level 2 with the homology class of modular

symbols to C as follows,

S2 (Γ0)×H1 (XΓ0 ,Z)→ C,

(f, {α, β})→ 2πi

∫ β

α

f(z)dz :=< {α, β}, f > . (9)

Where XΓ0 =
Γ0�H is a Riemann surface. Observe that (9) is independent of path since

f is holomorphic. However, we do require that f vanish at the cusps. It can actually be

shown that this construction works even if α and β are not equivalent mód Γ0. What

we have done is that we define the modular symbol {α, β} to be the homology class in

H1 (XΓ0 ,Z) of the path between α and β. Thus, modular symbols give a representation

of H1(XΓ0 ,Z) in terms of paths between cusps.

We now state some important properties of modular symbols,

{α, β} = −{β, α} {α, β} = {α, γ}+ {γ, β} {α, β} = {gα, gβ}g ∈ Γ0 (10)

{α, gα} ∈ H1 (XΓ0 ,Z) {α, gα} = {β, gβ}

The last two conditions tell us that we can safely define the map
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Γ0 → H1 (XΓ0 ,Z)

g → {α, gα}

and that this map is independent of α. With these results, Manin managed to prove

that if α, β are cusps of Γ0, then {α, β} ∈ H1 (XΓ,Q) [24].

Now, define M2(Γ0) to be the Q-vector space generated by {α, β} modulo the

first three conditions of (10). We define a left action on M2 such as g ∈ Γ. g{α, β} =
{g(α), g(β)}. We can consider the natural canonical homomorphism,

M2(Γ0)→ H1 (XΓ0 , ∂XΓ0 ,Z)

Manin actually showed that we can construct an isomorphism from this space to the

homology classes of H1 (XΓ0 , ∂XΓ0 ,Q). Now define B2(Γ0) to be the Q-vector space

generated by the cusps of XΓ0 . We define a very important map

∂ :M2(Γ0)→ B2(Γ0)

{α, β} → {β} − {α}

With this map we now define the most important vector space we will use to compute

with modular symbols. Let S2(Γ) = ker(∂). This space is called the space of cuspidal

modular symbols, Manin proved that this space actually captures the homology of XΓ0

[24]. The above map induces a canonical isomorphism.
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S2(Γ0)→ H1(XΓ0 ,Z)

3.1.1 Hecke operators on modular symbols

Something surprising that will open a lot of possibilities with modular symbols is

that the Hecke operators Tn act on the space of modular symbols, we define the action

of a Hecke operator over a modular symbol. When p is a prime not dividing N we have

that,

Tp ({α, β}) =

⎛
⎜⎝p 0

0 1

⎞
⎟⎠ {α, β}+ ∑

r mód p

⎛
⎜⎝1 r

0 p

⎞
⎟⎠ {α, β}

If p divides N the definition is the same, the only change is that we don’t add the first

term. As we see, Hecke operators can act on modular symbols, but not only that. We

have that

〈Tn{α, β}, f〉 = 〈{α, β}, Tnf〉 . (11)

Where 〈{α, β}, f〉 = 2πi

∫ β

α

f(τ)dτ . What is really importante about (11) is that it

tells us that if we can find engenvalues of Hecke operators in S2(Γ0), we can recover

eigenvalues in S2(Γ0), the space of cusp forms. Therefore, if we can find finite generators

of M2(Γ0) we would have found a method to calculate Hecke eigenvalues.

Since we know that Γ0(N) has a finite index in SL2(Z). Let r0, r1, . . . , rm be the

right cosets representatives such that SL2(Z) is the disjoint union of these cosets.

SL2(Z) = Γ0(N)r0 ∪ · · · ∪ Γ0(N)rm
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To make our calculations easier, consider the symbol [ri]
′ and let [ri] be the modular

symbol ri{0,∞}. We equip this symbols with the right action [ri]
′
g = [rj]

′ where

Γ0(N)rj = Γ0(N)rig. The symbols [ri]
′ are known as Manin symbols. The key idea

of using Manin symbols is that every modular symbol can be expressed as a linear

combination of ri{0,∞}. In fact these modular symbols ri{0,∞} generate M2(Γ0) [4].

Since {α, β} = {0, β}− {0, α} in only suffices to consider modular symbols of the

form {0, a
b
}. This can be achieved by thinking of continued fractions, if we consider

that
{

bk−1

ak−1
, bk
ak

}
= gk{0,∞} = ri{0,∞}. For instance, consider the fraction 20

3
we see

that

20

3
= 6 +

1

1 + 1
2

Therefore,

{
0,

20

3

}
= {0,∞}+ {∞, 6}+ {6, 7}+

{
7,

20

3

}

We know state the following theorem without proof (the proof can be found at [4,

Theorem 3.13]).

Theorem 9. Consider the quotient group M of the free abelian group on Manin symbols

[r0]
′
, . . . , [rm]

′ generated by the elements,

[ri]
′
+ [ri]

′
σ [ri]

′
+ [ri]

′
τ + [ri]

′
τ 2

Then, there is an isomorphism

Φ : M →M2(Γ0(N))
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given by [ri]
′ → [ri]

Where σ =

⎛
⎜⎝0 −1
1 0

⎞
⎟⎠ and τ =

⎛
⎜⎝1 −1
1 0

⎞
⎟⎠. By default, Sage computes modular symbols

spaces over Q, and represents Manin symbols as pairs (c, d).

So, we have a finite computable model of M2(Γ) and S2(Γ), and an algorithm to

compute Hecke operators and the space of modular symbols. Once we get the Manin

symbols we can lift this to a modular symbol and thus, calculate the Hecke eigenvalue.

This is the general outline of the method of modular symbols for modular forms of

level 2.

This idea can be generalized for modular forms of higher degree if we consider

Mk := Q[x, y]k−2 ⊗M2 and define the action of a g ∈ Γ0(K) on a P ∈ Q[x, y]k−2 as

(gP )(X, Y ) = P

⎛
⎜⎝g−1

⎛
⎜⎝−X

Y

⎞
⎟⎠
⎞
⎟⎠ = P (dX − bY,−cX + aY )

and thus,

g (P ⊗ {α, β}) = gP ⊗ {gα, gβ}

in this case, we also have spaces of modular symbols and cuspidal modular symbols if

we consider the following maps,

Mk(Γ0) : Mk�P ⊗ {α, β} − gP ⊗ {gα, gβ}

We define Bk to be Q[x, y]k−2 ⊗ B2 and finally, we get our boundary map
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∂ :Mk → B2

∂ (P ⊗ {α, β}) = P ⊗ {β} − P ⊗ {α}

We define our space of cuspidal modular symbols to be the kernel of ∂, Sk(L) := ker(∂).

If one wishes to dig deeper into the algoritm to compute with modular symbols, one

can refer to chapters 3 and 8 in [4].

3.2 Arb Package

As we mentioned, we want to be able to evaluate the quotient Tpf(z0)

f(z0)
for a newform

f of level 1. One of the advantages of using Theorem 6 is that we can express any

newform f as a polynomial in E4 and E6 and the Arb Package, which we will talk

about in this section, provides a method for the optimal evaluation of E4 and E6

allowing a computationally advantage when evaluating Tpf(z0) and f(z0).

Arb stands for ’Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic’

and we will explain it now. Arb is based on interval arithmetic that allows computing

in a rigourous way while tracking the error in each step of the program. In this case,

Arb uses midpoint-radius intervals in which a real number is represented by an interval

[m±r] where both m and r are floating numbers. The whole idea of Arb, as described by

its creator Fredrik Johansson, is to provide a modern treatment of numerical evaluation

that works in the whole domain of the functions; with arbitrary precision, rigorous error

bounds and with efficiency.

The algorithms implemented in Arb use ball arithmetic internally for propagation

of error bounds. The algorithms used to evaluate mathematical functions have two

steps, if the first step they try to optimize the point of evaluation, then the second
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step consists in the evaluation itself with the help of series expansion. Arb has already

implemente algorithms to evaluate commonly-used modular forms as part of the open

source Arb library. In particular, we will focus on its evaluations for E4 and E6. Arb

first evaluates G4(τ) and G6(τ) on the fundamental domain using theta functions.

The q-series defined for modular forms in (4) always converges; however, this con-

vergence could be slow depending on τ , for instance if �(τ) is close to zero. Therefore,

in a first step we would like to be able to find a modular transformation that takes

τ into the fundamental domain. This will ensure that |q| ≤ e−π
√
3 which makes the

convergence extremely rapid [20]. This can be obtained by repeatedly applying T and

S to τ .

Once we send τ to the fundamental domain, we continue by evaluating G4 and G6. For

that, we define the following theta constants that will be of help:

θ2(τ) = e
πiτ
4

∞∑
−∞

qn(n+1), θ3(τ) =
∞∑
−∞

qn
2

, θ4(τ) =
∞∑
−∞

(−1)nqn2

.

where q = eπiτ . One can prove in fact that θ2, θ3 and θ4 are in fact modular forms of

half integer weight. The thing about the theta series is that Arb can evaluate them

extremely quickly with high precision. Therefore we express the Eisenstein series as

functions of these theta constants. In particular,

G4(τ) =
π4

90

(
θ82 + θ83 + θ84

)
, G6(τ) =

π6

945

(−3θ82 (θ43 + θ44
)
+ θ123 + θ124

)
.

The algorithm in detail for the evaluation of the theta constanst can be found in [20,
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Sec 1.4.2, Algorithm 1].

To sum up, we see how the Arb package uses the midpoint - radius implementation

and a complex ball field to evaluate G4 and G6 by evaluating them on the fundamental

domain using theta functions. This allows an optimized evaluations of the Eisenstein

series and therefore of Tpf(z0) and f(z0).

3.2.1 CBF and CIF

There is one more component we need to use in order to get an appropiate evalua-

tion of Eisenstein series and that is CBF or the Complex Ball Field. In Sage, Complex-

Ball is bond to the Arb library for arbitrary precision computations. A ComplexBall

represents a complex number with error bounds that use the midpoint-radius intervals.

A given real number is represented as a midpoint-radius interval, which will be refered

to as ball. Therefore, to represent an imaginary number we give a pair of real number

or balls; one for the real part and one for the imaginary part of τ . Sage includes them in

an interval with separate error bounds. Therefore, a ComplexBall is in fact a rectangle

[m1 ± r1] + i[m2 ± r2] in the complex plane. The whole idea of splitting the real and

imaginary parts is precisely the convenience of implementing many operations in this

way. The only drawback is that Sage does not work in general with Complex Balls,

and thus, once we do our evaluations with Arb we have to come back and work with

Complex Interval Fields or CIF which are handled by Sage.

Now, we can compute the evaluation of Eisenstein series in a given point doing the

following, in this case we will evaluate G4

(
1+i

√
3

2
+
√
2
)

and G6

(
1+i

√
3

2
+
√
2
)
. When

we use in Sage the command tau.eisenstein(n) we get the list G4(τ), G6(τ), . . . G2n(τ).

sage: CBF = ComplexBallField(1000)

sage: CIF = ComplexIntervalField(1000)

sage: tau = (1 + CBF(-3).sqrt())/2 + CBF(2).sqrt()
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sage: tau.eisenstein(2)

[[4.138203464850442981301356486 +/- 5.73e-28]

+ [-1.234103706958965429128029747 +/- 2.74e-28]*I,

[-2.07856354506168829726646980 +/- 1.65e-27]

+ [2.86150981834526398363179798 +/- 3.92e-27]*I]

sage: CIF(xx[0])

4.138203464850442981301356486? - 1.234103706958965429128029747?*I

sage: CIF(xx[1])

-2.07856354506168829726646980? + 2.86150981834526398363179798?*I

Which tells us that

G4

(
1 + i

√
3

2
+
√
2

)
= (4,1382 · · · 6486±5,73×10−28)+i(−1,2341 · · · 9747±2,74×10−28)

G6

(
1 + i

√
3

2
+
√
2

)
= (−2,0785 · · · 6980±1,65×10−27)+i(2,8615 · · · 9798±3,92×10−27)
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CHAPTER IV

ALGORITHM

We now state the main novelty of our work. We are proposing a new algorithm

to compute the eigenvalues of Hecke operators. The main idea is to obtain a numerical

approximation by evaluating our operator at points in the upper half plane,

λp =
Tp(f)(τ0)

f(τ0)

for any τ0 such that f(τ0) �= 0. The implemented algorithm works for modular forms

of level 1 and requires the evaluation of our newform. So, the idea behind the our

algorithm for level 1 is the following:

1. Take a newform f of weight k and identify a basis for Mk−12 using Theorem 6.

2. Multiply this basis by Δ and by Theorem 4 we get a basis for Sk. Use the fact

that Δ =
E2

6−E3
4

1728
.

3. Next, express f as a linear combination of the basis elements found in step 1.

4. Evaluate x = E4(τ), y = E6(τ) and Δ and then evaluate f(τ) and Tpf(τ)by

taking the appropriate combinations of x and y.

This algorithm is accomplished by the functions presented below that can be found

in [25]. The advantage is that E4, E6 and Δ coefficients are easy to calculate and to
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evaluate.

4.1 Implementation Details

For simplicity, we do not describe all the algorithms implemented, we will just

describe some important algorithms; the whole code can be found at [25].

Algorithm 1 Find the basis for Mk−12. findBasis(k)
Require: k ≥ 0, k ∈ Z.

Create a list L and a list Mk.

for a = 0 to a <
⌊
k−12
4

+ 1
⌋

do

b← k−12−4a
6

if b ∈ Z then

(a, b)→ L

end if

end for

x← E4 y ← E6 d = Δ

for i = 0 to i < len(L) do

xa · yb →Mk

end for

for all f ∈Mk do

f ← Δf

end for

return Mk

Algorithm 1 receives the weight of our modular form f and finds all nonnegative integers

(a, b) such that 4a + 6b = k − 12 to find a basis for modular forms of weight k − 12;

then, it uses Theorems 4 and 6 to find the basis for cusp forms of weight k.
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Algorithm 2 Find the coefficients of a newform f with the basis found in findBasis(k).

getCoeff(k)
Require: Weight k of the newform f . k ≥ 0, k ∈ Z

Create the newform f of weight k.

Define a number field F given by the first coefficient of f .

M ← Matrix Space of dimension dim(Sk) over F

bs← findBasis(k)

Elements in bs will be q-expansions of the form
∑∞

n=0 a
i
nq

n

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1d

a21 a22 · · · a2d
...

... . . . ...

ad1 ad2 · · · add

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. Where ain corresponds to the coefficient of the i-th element

in the basis

b ← coefficients of f .

cf = M−1b

if dim(Sk) = 1 then

Choose the only embedding of f and place it in emb

else if dim(Sk) > 1 then

Choose the first embedding of f and place it in emb

end if

cf ← emb(cf)

return cf

Algorithm 2, which receives our function and its weight, uses the result of algorithm 1

to get the coefficients of the expression of f in our basis; in case of need, we used the

first embedding of F. When we talk about embeddings of a modular form what we refer

to is that the coefficients of f live in a field Q(α) where α is the root of a polynomial

and has various Galois conjugates, so we can define several embeddings Q(α)→ C. In

our case we always consider the first one.
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Algorithm 3 Evaluate E4 and E6. eval_F_generators_E(F,τ)
Require: f a newform. τ ∈ H.

Optimize τ

Define ComplexBallField (CBF), Complex Interval Field(CIF) to desired precision

τ ← CBF (τ)

Evaluate G4(τ) and G6(τ)

Normalize Eisenstein series in CIF.

return E4(τ) and E6(τ)

Finally, algorithm 3 uses the Arb package to evaluate E4 and E6 which then use the

previous algorithm implemented in order to get Tpf(τ0) and f(τ0) analytically and we

then get the quotient. The algorithms presented here are the ones that allow us to

evaluate a newform f and Tpf for τ ∈ H with f(τ) �= 0.
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CHAPTER V

RESULTS

We show how to calculate, with our algorithm, some eigenvalues of modular forms.

Consider a newform f of weight 24. We calculate the eigenvalues associated to T101 and

T1009.

sage: G=Newforms(1,24,names=’a’)[0]

sage: eigenvalue_Tp_generators2(G,next_prime(100))

(1.36242780888325255878883238244865442086689431712478219598441421443

98972115997786597432129914550484341046706628077601816739259285475204

66538424901865933929716258285092578396669202527871738197912845100991

42872605051794216159507589893064922279498602896097888555088125836755

9038909?e23,

3.093122555750734638171432620276759344465578788412526544717412652926

96171442287990058371598450061108685853730973988290157861669852227595

70838698145270787369383734496271073440453121096136241292527104426675

30790504844233084247481508717232013976091?e-35)

sage: eigenvalue_Tp_generators2(G,next_prime(1000))

(3.57033241914330158045673379609085877600447051142315583858506051187

79914242855530890737198146806950265940782356818395303587957273763981

51238757648065013371402744514350765548000401845850618175477738638037

581947442511070321909386589098028908695486740150291520352771493?e34,
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1.258135806028476522551728937497748775875771852994749865090134341404

59268947596728581284808923452683687510598192033553999901915997383492

94066646594511836964151053755182681446795412374899782802257951979603

007088030770783939775921278?e-37)

this tells us that,

λ101 = 1,362427 · · · 038909× 1023 ± 3,093122 · · · 976091× 10−35

λ1009 = 3,570332 · · · 771493× 1034 ± 1,258135 · · · 921278× 10−37

are the eigenvalues for the Hecke operators T101 and T1009, respectively. One can also

see that the 101th fourier coefficient of f is λ101 and the 1009-th fourier coefficient is

λ1009.

We run calculations with our code and we achieved the following results which can be

found at [26]. We compare the modular symbol method as implemented in Sage [13]

to our method. For each p we compute the pth Hecke eigenvalue in both ways (using

modular symbols and using our numerical approach).

In Table 1 we highlight some timings in which we computed Hecke eigenvalues

using both methods.
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level weight p Modular symbols Eisenstein

1 12 1 009 0,073 0,071

10 007 0,967 0,847

100 003 13,710 9,274

1 000 003 163,515 100,782

1 24 1 009 0,158 0,085

10 007 2,023 0,935

100 003 27,190 9,941

1 000 003 330,854 108,923

1 100 101 0,057 0,013

1 009 0,918 0,146

10 007 14,197 1,913

100 003 186,873 23,449

1 200 101 0,171 0,024

1 009 2,443 0,347

10 007 36,195 5,104

100 003 500,388 69,916

Cuadro 1: A summary of timings to compute Hecke eigenvalues using modular symbols

and using our method.

The previous table shows a summary of timings (in seconds; the bold figures

identify the shortest time in each row) to compute Hecke eigenvalues in different ways.

The first uses the modular symbols method as implemented in Sage; the second way

uses analytic evaluation of the Eisenstein series E4 and E6. The computations were

done on one Intel i7-8550U core at 1.80GHz, on a machine with 16 GB RAM. As seen

in table 1, our method outperforms the current algorithm implemented in Sage. It is

quicker for large weights and primes.
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CHAPTER VI

CONCLUSION

This worked served as an introduction to the theory of modular forms. The defini-

tion of a modular form as a holomorphic function in the upper half plane satisfying the

modularity condition (3) is very abstract. However, we wish to carry out calculations

with them. We defined all the things necessary to understand modular forms of level 1

and the algorithm implemented to calculate eigenvalues of Hecke operators. The code

implemented helped us to find, numerically, the eigenvalues λp of Hecke operators such

that

Tpf(τ0) = λpf(τ0)

for p a prime.

For this code, implemented for modular forms of level 1, we took advantage of

the structure of the space of modular forms and cusp forms. We used the fact that

there are some special modular forms called Eisenstein series which, when combined

appropiately, forms a basis for the space of modular forms since, as we were able to

see, Mk is in fact a vector space over C; furthermore, Mk is finite dimensional. Once

we found a basis for the space of modular forms of weight k, we used a very important

cusp form Δ to establish an isomorphism between this space Mk and the space of

cusp forms Sk+12. Once we did all that we evaluated f at points in the upper half

plane (f(τ0), TPf(τ0)) to get the quotient, and thus, an analytic evaluations for Hecke

eigenvalues.

Computational methods such as modular symbols provide a practical and efficient
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way of calculating Hecke eigenvalues of classical modular forms. However, when the

dimension of the space gets too big, when either the weight of the modular form or the

level or the p in Tp, increase, the calculations involved become impractical. An example

of that is the magnitude of the Fourier coefficients that we found in Section V. Our

algorithm was faster to evaluate because the Fourier coefficients of Eisenstein series

are easier to calculate. In particular, the number of coefficients needed for large weight

is much smaller than the number of coefficients needed to evaluate f using its Fourier

expansion. Also, we used the ARB package that allowed for the optimal evaluation of

E4 and E6 via theta functions. As ilustrated in Table 1, extensive benchmarks also

show that our method exhibits performance that compares favorably with the modular

symbol approach.

Therefore, the theoretical and experimental results of this work show that using

Theorems 6 and 4 along with their implementation in Sage serve as a good method to

obtain eigenvalues of Hecke operators Tp for large p. The approximations presented in

this work are important, as they brought significant improvements in the time needed

to calculate the eigenvalues, especially when p is large.

All in all, analytic evaluation of classical modular forms seem to be a promising

new approach to overcome the present difficulties associated with the current compu-

tational methods. Even though our algorithm runs quickly, we do not yet know if it is

the best we can do. We could optimize functions in between, or use parallel computing.

Future directions of the work would be to try to take advantage of the structure

of the space of modular forms of higher level and establish some connections with

modular symbols to use both approaches. Also, it would be nice if we maybe try to

use our algorithm for other projects such as investigations of Lehmer’s conjecture and

Maeda’s conjecture.
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