

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Stock Price Analysis with Deep-Learning Models
.

Juan Javier Arosemena Cereceda

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniero en Ciencias de la Computación

Quito, 17 de diciembre de 2020

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

Stock Price Analysis with Deep-Learning Models

Juan Javier Arosemena Cereceda

Nombre del profesor, Título académico Noel Pérez, PhD

Quito, 17 de diciembre de año

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: Juan Javier Arosemena Cereceda

Código: 00129650

Cédula de identidad: 0923477004

Lugar y fecha: Quito, 17 de diciembre de 2020

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

La mayoría de los algoritmos novedosos de predicción de inteligencia artificial utilizan técnicas

de aprendizaje profundo para predecir series temporales financieras, comúnmente utilizando

redes neuronales recurrentes (RNN) y redes neuronales convolucionales (CNN) como sus

componentes básicos. Además, los codificadores automáticos han ganado notoriedad por su

capacidad para extraer características del espacio latente de los datos y decodificarlas también

para las predicciones. En este artículo comparamos arquitecturas de aprendizaje profundo con

diferentes combinaciones de redes de memoria larga a corto plazo (LSTM) y CNN, así como

autocodificadores implementados con estas redes para encontrar el modelo de mejor

rendimiento para las tareas de pronóstico financiero. En este experimento, entrenamos cuatro

arquitecturas diferentes con datos del mercado de valores de cuatro empresas de los años 2010-

2020. El modelo de mejor rendimiento fue la arquitectura LSTM sin codificador automático

para todas las empresas, que arrojó un error cuadrático medio de 0,004 para las acciones de

AMD al aplicar una validación cruzada anidada de 10 veces. Los resultados muestran que los

LSTM son muy adecuados para tareas de predicción mediante el uso de una arquitectura simple

de aprendizaje profundo.

Palabras clave: LSTM, Conv2D, autoencoder, acciones, predicción, deep learning, series

de tiempo

6

ABSTRACT

Most novel artificial intelligence prediction algorithms use deep learning techniques to predict

financial time series, commonly using Recurrent Neural Networks (RNNs) and Convolutional

Neural Networks (CNNs) as their building blocks. Also, autoencoders have gained notoriety

for their ability to extract latent space features from data and decode them for predictions as

well. In this paper we compare deep learning architectures with different combinations of Long

short-term memory (LSTM) networks and CNNs, as well as autoencoders implemented with

these networks to find the best performing model for financial forecasting tasks. In this

experiment, we train four different architectures with stock market data of four companies from

years 2010-2020. The best performing model was the LSTM architecture without autoencoder

for all companies, which delivered a mean squared error of 0.004 for AMD stocks by applying

10-fold nested cross validation. The results show that LSTMs are very well suited for

prediction tasks by using a simple deep-learning architecture.

Key words: LSTM, Conv2D, autoencoder, stocks, prediction, deep learning, time series

7

TABLA DE CONTENIDO

Introduction .. 10

Materials and methods .. 13

Stock database .. 13

Deep-learning models .. 13

Autoencoders. .. 13

LSTM. .. 14

Conv2D. ... 14

Proposed method .. 15

Experimental setup .. 17

Feature vectors and labels. ... 17

Training and test partitions. ... 18

Model configuration... 18

Experimental environment. .. 19

Assessment metrics. ... 19

Selection criteria. ... 19

Results and discussion ... 20

Performance evaluation... 21

Conclusions ... 23

References ... 25

8

ÍNDICE DE TABLAS

Table 1: 10-Fold time series nested cross validation of evaluated models per company. 20

9

ÍNDICE DE FIGURAS

Figure 1: Architecture of the proposed LSTM model without autoencoder 15

Figure 2: Architecture of the proposed LSTM-LSTM model with autoencoder 16

Figure 3: Visualization of a training sample of the two data topologies. 18

Figure 4: Evaluation of the best performing model for each company 22

10

INTRODUCTION

Financial markets are one of the strongest driving factors in the world economy, and the stock

market is a subset of all financial markets that involves trading shares of public companies.

These markets are characterized by their unpredictability, which for the inexperienced investor

means a gamble with their money (Bouattour, 2019). The stocks, also known as shares or

securities, are a representation of the ownership of a part of a company and they can be bought

and sold for currency. The price of stocks in markets tends to vary unpredictably along different

periods, which translates to gains and losses of value for the owner of such stocks. This

variability is what motivates some investors and scares away others from participating in the

stock market because the profits of the investments depend on their correct risk management

and being able to forecast when, by how much, and in what direction the stock price will move.

With enough gained forecasting information an investor can lower their probability of losing

the value of their investments as well as optimize their gains (Montgomery, 2013) (Picasso,

2019).

Through history, analysts have developed statistical models that can outperform gambles with

the market by giving certain margins of risk and expecting certain price movements in the

future. However, machine learning techniques for stock trend prediction have been on the rise

since the early 2000s (Lee, 2001) by proving that they are capable of learning patterns on

historical data to tell, with considerable precision, how the trend will move or even how the

price of a stock will change. Two very traditional machine learning techniques used for market

predictions are support vector machines (SVM) and artificial neural networks (ANNs), the

latter proving itself as the better performing option in terms of accuracy. The promising

potential of ANNs and back propagation algorithms has branched into different neural network

architectures that have been applied to the field of stock market analysis, as well as many ways

11

to implement these architectures with the available data. In this paper we will focus on two of

the most popular neural network architectures currently under research for the stock market:

convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We deal with

numerous amounts of inputs for the market data of several financial indicators using different

periods for each one, and CNNs are capable of extracting and down sampling features from

the local interactions between matrix-arranged inputs. (Hoseinzade, 2019). RNNs are also a

key feature in this study as they are designed to capture patterns in time series, which translates

to analyzing the variation of these numerous inputs through time (Rahman, 2019). Lastly,

autoencoders are used to explore their ability to extract hidden features into latent space as it

has proven useful for deep learning models to interpret hidden patterns more precisely (Chong,

2017).

Several papers have studied the usefulness of building complex deep learning models to

forecast the near future stock market. A common approach involves analysis of time series

using feature extracting techniques like ARIMA or ARFIMA (Bukhari, 2020) or Empirical

Mode Decomposition (Zhou, 2019), which are then fed into neural network architectures for

stock price prediction. Another methodology incorporates both CNNs and RNNs into deep

learning models to train models on predicting prices based on sequential samples with diverse

and numerous inputs (Eapen, 2019) (Liu, 2017) including non-financial time series such as

electrical consumption (Khan, 2020), and it has proven to outperform traditional shallow

learning architectures. A few papers have also implemented these models with Autoencoders

(Essien, 2019) which is a type of deep learning architecture that transforms input data into

latent space code to be then interpreted, and it can be used to remove noise and redundancies

in the data. However, these papers tend to focus on the performance of a single architecture

and do not compare the incremental improvement that yields by applying the mentioned

network elements on the same data sets.

12

The main objective of this work is to explore the effectiveness of applying and combining

different types of the aforementioned neural networks to stock price prediction. The

effectiveness between tested models is measured based on error measurements of future price

predictions for specific stocks. The usefulness of the application of autoencoders is also

discussed based on the results for each combination of each type of neural network to report

the best performing model with its respective set of hyperparameters.

13

MATERIALS AND METHODS

Stock database

This experiment uses stock data from several companies that are considered volatile in the

market, namely AMD, ResMed, Macy's, and Nvidia. Market index data was used as well as

part of the input vectors to feed the models, and the indices used are Dow Jones Industrial,

Nasdaq Composite, S&P 500, NYSE and Russell 2000. All this information was downloaded

using yfinance, which is a python library created by Ran Aroussi that retrieves historical stock

and market index data from Yahoo Finance. Both stock and index data contain daily ticker

information that includes open, close, high, and low prices, as well as trading volume and other

factors that we are not considering for our data sets. The raw data contains market history from

2010 to 2020, and each year contains 252 daily ticker records.

Deep-learning models

Deep learning is one of the most successful approaches to solve time series prediction problems

so far. There has been an increasing popularity in application of this methodology with

financial time series using complex architectures and novel machine learning algorithms

(Hiransha, 2018) (Nabipour, 2020). For this experiment we will study two deep learning

architectures: a model without autoencoder and a model with autoencoder. Also, for each of

these we will apply two different machine learning algorithms to process the data inputs.

Autoencoders.

Autoencoders are made of two parts: an encoder and a decoder. Encoders take the inputs and

transform them into latent space by reducing its dimensionality. The Decoder takes this

encoded information and reconstructs it, which allows it to detect nonlinear correlations and

reduce redundancies in the data more easily (Soleymani, 2020). Autoencoders can be

14

implemented with almost any combination of machine learning algorithms, but RNNs are

common candidates to use for the decoder implementation.

LSTM.

Long short-term memory networks are a popular type of RNN well suited to be used in time

series predictions. LSTMs are made of a memory cell and hidden states which remember the

previous elements in an input sequence sample, as well as 3 gates that regulate the flow of

information in the network. The memory cells of the LSTM allow it to make better predictions

than traditional feed-forward networks by including a temporal dimension to the data. This is

used to exploit temporal patterns in financial data because each time step involves matrix

operations with trainable weights (Baek, 2018) between the memory cell, the inputs, and

hidden states. LSTMs require the shape of the elements in input sequences to be one-

dimensional.

Conv2D.

CNNs are a type of neural networks that are generally used along input data with numerous

features arranged in matrices (e.g.: digital images). Conv2D is a type of CNN that applies

convolution operations to two-dimensional inputs, and also allows the inputs to have an

additional channel axis to use for the depth of convolutions, such as in RGB images. These

networks also use max pooling layers after the convolutions in order to locally extract relevant

features from the latent space of the input data (Gudelek, 2017). Conv2D networks can also be

used for time series applications by using the two dimensions as feature and temporal axes,

while the channel axis can be used to add related sources of the same data. This way, the input

data must be arranged into two-dimension matrices, plus a channel axis.

15

Proposed method

The prediction task is carried out by four different deep learning architectures, which include

two models without an RNN autoencoder and two models with autoencoders. The first group

of models use each of the two aforementioned neural networks, followed by a fully-connected

section of two hidden layers, and an output layer. We name these models LSTM, and Conv2D

in reference to the main deep learning component in each of them. The first has a LSTM

module that takes an input of 60 time steps by 240 features returning a singletime step output

of size 200 to the fully-connected section, which we call Dense in this experiment. Before

connecting to the Dense component, we apply a batch normalization layer to the LSTM outputs

with a momentum of 0.5. The Dense component takes the LSTM output and passes it to a 400

neuron hidden layer, followed by another 100 neuron hidden layer, and finally to a single

neuron output layer that returns the predicted price. The first and second layers of the Dense

section apply a dropout of 0.3 to reduce overfitting, and also apply a tanh activation each. The

output layer of the Dense component uses a sigmoid activation to guarantee that the values fall

into the same range as the normalized prediction labels. Figure 1 shows a visual representation

of the LSTM architecture without autoencoder.

Figure 1: Architecture of the proposed LSTM model without autoencoder. The ’?’ values in

the input and output shapes refer to the batch size, which is a training hyperparameter.

16

The Conv2D model implements the same architecture as LSTM, using batch normalization

after the main component and the same Dense section. For Conv2D, the inputs are 60 time

steps by 40 indicators and periods by 6 markets, using this last axis as the channel dimension

of the convolution operations, followed by a max pooling layer of size 2. The second group of

models include an additional RNN module to serve as a decoder for the autoencoder

architecture, specifically a LSTM decoder. For these, we use the same deep learning

architecture as the models in the first group, except that we use the main component as an

encoder to the LSTM decoder that connects to a Dense component, and we name the models

LSTM-LSTM and Conv2D-LSTM. For the Conv2DLSTM model we apply a flattening layer

after the encoder outputs, which are two dimensional vectors, in order to match the dimensions

of the decoder inputs. Before passing the inputs to the RNN decoder, each model uses a repeat

vector layer to pass the encoded vectors as sequences. For the LSTM-LSTM model we

initialize the hidden states of the decoder with the last state returned by the LSTM encoder.

The decoders in both autoencoder models are set to return a single time step vector instead of

sequences to predict the price of the stock for the next time step of each sample. Finally, the

decoder outputs pass through the same Dense section as described in the first group of models

to deliver a single value prediction. Figure 2 shows a visual representation of the LSTM-LSTM

autoencoder architecture.

Figure 2: Architecture of the proposed LSTM-LSTM model with autoencoder. The ’?’ values

in the input and output shapes refer to the batch size, which is a training hyperparameter.

17

Experimental setup

Feature vectors and labels.

One preprocessed data set is built for each of the analyzed companies. One feature vector for

a date consists of 240 features calculated for that date and for the past 59 days, which makes it

a total of 240*60 = 14400 values for each daily stock vector. The 240 daily features are made

up of 8 different financial indicators calculated by using 5 different periods each: 1, 5, 10, 20,

and 90 market days in the past as information windows. The list of financial indicators is as

follows: Rate of Change (ROC), Relative Strength Index (RSI), Money Flow Index (MFI),

Exponential Moving Average (EMA), Stochastic Oscillator (SO), Aroon Indicator (Aroon),

Detrended Price Oscillator (DPO), and Average True Range (ATR). These 8*5 = 40 indicators

are calculated for the stock data we try to predict concatenated with the same indicators for the

5 market indices we selected; this means each vector contains the same information for 6

financial sources, which yields the 8*5*6 = 240 total of daily features. The features are

normalized using Min-Max scaling across the entire data set for each company. Each input

vector is labeled with the normalized closing price of the day following the entire time series

of the sample (i.e.: the price on day 61 for a given sample). We construct our experiment data

set by considering two topologies for the same data: one-dimensional (1D) and twodimensional

(2D), which is used to train and test the LSTM and Conv2D respectively, as well as their

autoencoder variations. This approach allows us to apply the same data sets to different deep

learning models with different input topologies. The dimensions refer to the shape of each daily

feature vector in each sample sequence, while the temporal axis represents an additional

dimension of length 60 in each of the feature arrangements. The samples in 1D data sets are

arranged in chronologically sequential, one-dimensional vectors of 240 features. The samples

in 2D data sets are arranged in sequences of two-dimensional vectors of 40 * 6 features

18

corresponding to the 40 indicators and periods used to calculate them across the stock and

index data. Figure 3 shows a visualization of these data arrangements.

Figure 3: Visualization of a training sample of the two data topologies. a) 1D: 60 time steps

of 240 features. b) 2D: 60 time steps of 40*6 features.

Training and test partitions.

We applied a special kind of cross-validation to the data sets called Time Series Nested Cross-

Validation (Cochrane, 2018), which involves performing a k number of train/test splits on

increasing portions of the chronologically ordered data set. We perform k = 10 train/test splits

where spliti contains all the data from the beginning of the whole series up to i/k of its length

for each i in [1, k]. Each of these splits is then separated into train and test sets with a 70/30

ratio. Classical k-fold cross-validation cannot be used for time series data sets as it would not

be practical to train a machine learning algorithm with future data in order to predict past data.

For each of the four stocks to analyze we generate the two aforementioned dimensional

arrangements of the data sets, which are then split into ten training and testing sets of increasing

sizes. This yields a total of 120 separated data sets.

Model configuration.

Each of the four deep neural networks are trained on each stock train data set for 10,000 epochs

with early stopping and using the test data set as validation set. The early stop is triggered when

no decrease of loss has been detected for the last 100 epochs. For every model we use mean

squared error (MSE) as the loss function to optimize. We trained the models with batch sizes

19

of 120, 60, and 30 samples. Also, we trained the models using learning rates of 0.01, 0.005,

0.001, and 0.0005 with the Adam optimizer (Kingma, 2014). Adam is an algorithm for first-

order gradientbased optimization of objective functions, which is the main goal of machine

learning algorithms and applies well to our training architecture. We choose to use the Adam

optimizer because it dynamically adjusts the learning rate during training and is known for

being memory efficient.

Experimental environment.

The deep learning models are implemented using the Keras Functional API. The experiments

are carried out in a distributed GPU environment in an Nvidia DGX Station for optimal training

time.

 Assessment metrics.

For each trained instance we evaluate the models on test data to predict the future price of each

sample and measure the mean squared error, root mean squared error (RMSE), and mean

absolute error (MAE). MSE can be interpreted as how well fitted is the prediction line against

the actual values, giving higher errors for outliers. RMSE and MAE can be interpreted similarly

as how far our predictions are from the actual values with the same measurement units as the

target value.

 Selection criteria.

We show the best performing model with its set of hyperparameters with respect to the mean

MSE for each proposed company and for each architecture. For each company we select the

best performing of the four architectures to visualize its predictions.

20

RESULTS AND DISCUSSION

Table 1: 10-Fold time series nested cross validation of evaluated models per company. For

each architecture, we select the best performing set of hyperparameters. Each metric shown is

the mean of each cross validation plus minus a standard deviation.

Given the 1,920 trained deep learning instances, the results are evaluated for each company.

The trained models are evaluated on the respective testing set of each fold and their MSE,

RMSE, and MAE are calculated to obtain the mean and standard deviation of each metric

across the folds. Table 1 shows these summarized evaluations from which we can argue:

1) Best and worst overall architecture: The LSTM without autoencoder appears to be the best

performing model among the rest in all companies. Specifically, the best model performed on

AMD data with a batch size of 30 and a learning rate of 0.001, with a mean MSE of 0.004. The

learning rates of all four models are among the lower ones tested, but there is no specific

optimal batch size for the best performing instances. Also, it seems that the Conv2D and

Conv2D-LSTM models performed mostly the worst among all companies in comparison to the

LSTM-based architectures.

2) Best fitted company: It is fairly noticeable that all architectures performed better with the

AMD data set than with other companies. This may be due to differences in volatility of prices

21

between the companies, which account to more noisy training data. However, the difference

between the performance of LSTM over all companies is within the same order of magnitude,

which means there is no exaggerated preference of this model over the companies.

3) Autoencoder performance: We can conclude that the addition of autoencoders for this time

series prediction task did not show any improvement in performance under the same training

conditions as non-autoencoders. It is possible that the extra complexity of the models require

more training time to be able to achieve lower errors. However, this may hint that the models

are actually overfitting on the training data and missing on the testing data.

Performance evaluation

For each company, we evaluate the best performing model trained on the last fold of each cross

validation. We plot the predicted price time series over the actual prices to visualize how the

models could simulate trading algorithms, as it can be observed in figure 4. We can see that

the prediction plot fits mostly close to the real prices for AMD and M. However, the sudden

jumps and falls in price are not always predicted correctly, which account to the higher errors

for RMD, NVDA, and M. In the case of AMD, the predicted curve fits considerably close to

the real values. However, all four models have a tendency to replicate the overall trend

movement, even for figure 4b, but with disproportionate prices. A very important factor that

can affect the way the deep learning models interpret the target labels is the way they are

normalized. For this experiment we used Min-Max scaling, which essentially bounds the data

sets with their own maximum and minimum values. This means that the model may struggle

to predict prices that are outside of the range of prices found in the training data set, and

therefore the model will struggle with companies whose prices eventually reach new highs or

new lows.

22

Figure 4: Evaluation of the best performing model for each company: a) AMD, b) ResMed, c)

Nvidia, and d) Macy's. The time axis refers to the daily samples from 2011 up to 2020 present

in both training and test sets. Only the predictions of the 10th fold model are plotted.

23

CONCLUSIONS

This experiment demonstrates how to implement data preprocessing and deep-learning

architectures to make decently accurate predictions of financial time series. We have

implemented a data processing pipeline to retrieve historical stock and market indices

information, and extract financial indicators from the data to use as features to our models. We

have also developed a pipeline to train and evaluate the proposed models against certain

companies whose stock prices are considered volatile. Lastly, we selected the best models and

hyperparameters for each company to predict and plot the similarities between real and

predicted stock prices.

This paper shows that LSTM-based deep-learning architectures are capable of predicting

considerably well on stock prices of volatile companies over data sets with numerous features.

It also shows that even though autoencoders have proven successful in other time series tasks,

the model configurations and architectures in this experiment may not apply uniformly well to

all algorithms. Additionally, CNNs do not outperform LSTMs in prediction tasks even if the

data sets contain numerous features, which tends to be favorable for CNNs.

There are some aspects in this work that can be improved and expanded upon. First, the data

processing step is crucial to the whole experiment, and an experimentation with more financial

indicators could be useful to decrease errors. Also, the data sets could be further enriched with

non-technical information of the market like sentiment analysis, which would give a

quantification of the human reactions to financial news that could suddenly affect the market.

Additionally, the way that the data is normalized can affect the limits of performance for the

models, as with Min-Max scaling we are constraining the maximum and minimum predictable

24

prices to the upper and lower bounds found in the training data. We can normalize the features

and labels to a Gaussian distribution, which would remove the hard bounds on possible values

for predicted prices (Squires, 2001). This experiment can also be applied to other deep learning

models such as ConvLSTM2D networks, which combine the convolutional operations of a

Conv2D with the sequential analysis of an LSTM. Other interesting models include

Bidirectional LSTMs and Conv3D to apply for both encoders and decoders, as well as non-

autoencoder variations. Finally, the experiment could be further expanded with autoencoders

with attention mechanisms, which are capable of learning from time series in a more complex

order than non-attention models.

25

REFERENCES

M. Bouattour and I. Martinez, “Efficient market hypothesis: an experimental study with

uncertainty and asymmetric information,” Finance Controle Strat ˆ egie ´ , no. 22-4,

2019.

T. A. Montgomery, P. M. Stieg, M. J. Cavaretta, and P. E. Moraal, “Experience from hosting

a corporate prediction market: benefits beyond the forecasts,” in Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data

mining, 2013, pp. 1384– 1392.

A. Picasso, S. Merello, Y. Ma, L. Oneto, and E. Cambria, “Technical analysis and sentiment

embeddings for market trend prediction,” Expert Systems with Applications, vol. 135,

pp. 60–70, 2019.

J. W. Lee, “Stock price prediction using reinforcement learning,” in ISIE 2001. 2001 IEEE

International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570),

vol. 1. IEEE, 2001, pp. 690–695.

E. Hoseinzade and S. Haratizadeh, “Cnnpred: Cnn-based stock market prediction using a

diverse set of variables,” Expert Systems with Applications, vol. 129, pp. 273–285,

2019.

M. O. Rahman, M. S. Hossain, T.-S. Junaid, M. S. A. Forhad, and M. K. Hossen, “Predicting

prices of stock market using gated recurrent units (grus) neural networks,”

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK

SECURITY, vol. 19, no. 1, pp. 213–222, 2019.

E. Chong, C. Han, and F. C. Park, “Deep learning networks for stock market analysis and

prediction: Methodology, data representations, and case studies,” Expert Systems with

Applications, vol. 83, pp. 187–205, 2017.

A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, and P. Kumam, “Fractional

neuro-sequential arfima-lstm for financial market forecasting,” IEEE Access, vol. 8,

pp. 71 326–71 338, 2020.

F. Zhou, H.-m. Zhou, Z. Yang, and L. Yang, “Emd2fnn: A strategy combining empirical

mode decomposition and factorization machine based neural network for stock market

trend prediction,” Expert Systems with Applications, vol. 115, pp. 136–151, 2019.

J. Eapen, D. Bein, and A. Verma, “Novel deep learning model with cnn and bi-directional

lstm for improved stock market index prediction,” in 2019 IEEE 9th annual

computing and communication workshop and conference (CCWC). IEEE, 2019, pp.

0264–0270.

S. Liu, C. Zhang, and J. Ma, “Cnn-lstm neural network model for quantitative strategy

analysis in stock markets,” in International Conference on Neural Information

Processing. Springer, 2017, pp. 198–206.

26

Z. A. Khan, T. Hussain, A. Ullah, S. Rho, M. Lee, and S. W. Baik, “Towards efficient

electricity forecasting in residential and commercial buildings: A novel hybrid cnn

with a lstm-ae based framework,” Sensors, vol. 20, no. 5, p. 1399, 2020.

A. Essien and C. Giannetti, “A deep learning framework for univariate time series prediction

using convolutional lstm stacked autoencoders,” in 2019 IEEE International

Symposium on INnovations in Intelligent SysTems and Applications (INISTA).

IEEE, 2019, pp. 1–6.

H. Li, Y. Shen, and Y. Zhu, “Stock price prediction using attention-based multi-input lstm,”

in Asian Conference on Machine Learning, 2018, pp. 454–469. [15] R. Aroussi,

“yfinance,” https://pypi.org/project/yfinance/, 2020.

“Yahoo finance - stock market live, quotes, business amp; finance news.” [Online].

Available: https://finance.yahoo.com/

M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, and K. Soman, “Nse stock market

prediction using deep-learning models,” Procedia computer science, vol. 132, pp.

1351–1362, 2018.

M. Nabipour, P. Nayyeri, H. Jabani, S. Shahab, and A. Mosavi, “Predicting stock market

trends using machine learning and deep learning algorithms via continuous and binary

data; a comparative analysis,” IEEE Access, vol. 8, pp. 150 199–150 212, 2020.

F. Soleymani and E. Paquet, “Financial portfolio optimization with online deep

reinforcement learning and restricted stacked autoencoderdeepbreath,” Expert

Systems with Applications, p. 113456, 2020.

Y. Baek and H. Y. Kim, “Modaugnet: A new forecasting framework for stock market index

value with an overfitting prevention lstm module and a prediction lstm module,”

Expert Systems with Applications, vol. 113, pp. 457–480, 2018.

M. U. Gudelek, S. A. Boluk, and A. M. Ozbayoglu, “A deep learning based stock trading

model with 2-d cnn trend detection,” in 2017 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE, 2017, pp. 1–8.

C. Cochrane, “Time series nested cross-validation,” May 2018. [Online]. Available:

https://towardsdatascience.com/ time-series-nested-cross-validation-76adba623eb9

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

G. L. Squires,The variance of s2 for a Gaussian distribution, 4th ed.Cambridge University

Press, 2001, p. 164–165

https://finance.yahoo.com/

