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RESUMEN 

El modelo presentado, utiliza un puntal arqueado para describir la transferencia de corte 

en una losa de dos direcciones. Describe una ruta de carga antes de la falla que se puede 

adaptar a una amplia gama de losas bajo cargas puntuales, tanto concéntricas como 

excéntricas. El punzonamiento excéntrico puede ocurrir en conexiones de losa-columna 

sometidas a una combinación de esfuerzos cortantes y momentos desbalanceados. 

Normalmente, esta situación se produce en conexiones de losa-columna, situadas en 

columnas de borde y de esquina. Para este trabajo, se evalúa una base de datos de 35 

experimentos de losa-columna. Las capacidades predichas por el modelo se comparan 

con la carga máxima en el experimento. Se destaca la importancia del desarrollo del 

refuerzo perpendicular al borde libre. Este trabajo muestra cómo se puede usar un modelo 

basado en los principios de la plasticidad de límite inferior para el caso práctico de la 

capacidad de una conexión para columnas de borde y esquina. Así mismo, el modelo 

puede utilizarse para fines de análisis como para situaciones de diseño 

Palabras Clave: puntal arqueado, columnas, punzonamiento excéntrico, hormigón 

armado, losas, strip model. 

 

 

 

 

 

 

 

 

 

 

 

 

  



ABSTRACT 

The strip model makes use of an arched strut to describe shear transfer in a two-way slab. 

It describes a load path prior to failure that can be tailored to a wide range of slabs under 

concentrated loads, both concentric and eccentric. Eccentric punching shear can occur in 

concrete slab-column connections subjected to shear and unbalanced moments. Common 

practical cases are at edge and corner columns.  For this work, a database of 35 edge and 

corner column-slab tests is evaluated. The predicted capacities using the strip model are 

compared to the maximum load in the experiment. The importance of development of 

reinforcement perpendicular to the free edge is highlighted. This work shows how a lower 

bound plasticity-based model can be used for the practical case of the slab-column 

capacity for edge and corner columns, both for analysis and design situations. 

 

Keywords: arched strut, columns, eccentric punching shear, reinforced concrete, 

slabs, strip model
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STRIP MODEL FOR PREDICTING ECCENTRIC PUNCHING SHEAR CAPACITY OF REINFORCED 

CONCRETE SLABS 

Bernardo Carrera, Eva O.L. Lantsoght and Scott D.B. Alexander 

SYNOPSIS 

The strip model makes use of an arched strut to describe shear transfer in a two-way slab. It describes a load path prior 

to failure that can be tailored to a wide range of slabs under concentrated loads, both concentric and eccentric. 

Eccentric punching shear can occur in concrete slab-column connections subjected to shear and unbalanced moments. 

Common practical cases are at edge and corner columns.  For this work, a database of 22 edge and corner column-

slab tests is evaluated. The predicted capacities using the strip model are compared to the maximum load in the 

experiment. The importance of development of reinforcement perpendicular to the free edge is highlighted. This work 

shows how a lower bound plasticity-based model can be used for the practical case of the slab-column capacity for 

edge and corner columns, both for analysis and design situations  
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INTRODUCTION 

A flat plate can be defined as a slab of uniform thickness supported on columns. Flat plates are usually used for 

relatively light loads, as occurring in apartments or similar structures. Flat slabs (which are flat plates without drop 

panels or capitals at the slab-column connection) are used for spans ranging from 5 m (15 ft) to 6 m (20 ft) and, among 

the widely used structural systems, they have presented effective and economical solutions in the construction of mid- 

and high-rise buildings [1]. In general, the design of flat plates is governed by serviceability limits regarding 

deflections or by the ultimate strength of the slab-column connection [2]. According to Oukaili and Husain [3], there 

are several factors that affect the strength of a slab-column connection such as the column size, concrete compressive 

strength, thickness of the slab and the flexural reinforcement ratio.  

Usually, the ultimate strength of the slab-column connection is associated with two-way shear (punching 

failure) and it could lead to the progressive collapse of the structure. Once a punching shear failure has occurred, the 

load is transferred to the adjacent connections, possibly overloading them and causing them to fail as well. Because 

the load transfer from flat slabs to the columns is direct, the slab-column connection needs special attention because 

a failure of this type is both brittle and catastrophic. Hence, although a flat slab has large ductility for flexure, it 

possesses very little ductility when it comes to punching failure.  

The behavior of a slab-column connection becomes complex in the presence of shear and unbalanced 

moments due to asymmetrical loading, unequal spans, structural discontinuity and the presence of lateral forces 

originating from wind or earthquakes [1]. In such cases, the shear distribution on the punching perimeter becomes 

asymmetrical and the capacity of the slab-column connection decreases.  The analysis for these cases involves a 

combination of flexure, shear, and torsion in the slab-column connection. Because of this, failures can take various 

forms making the punching behavior less predictable. Common practical cases of eccentric punching shear occur at 

edge and corner columns.  

RESEARCH SIGNIFICANCE 

Most studies on punching shear are based on experiments on slab-column connections subjected to loads applied 

concentrically. Studies regarding eccentric punching shear are scarce and most of the existing codes present empirical 

methods that are inconsistent with the experimental data. Given the uncertainty on the eccentric punching shear 

capacity of slab-column connections, edge and corner columns often become governing for the design. We propose 

the use of the Strip Model to determine the capacity of slab-column connections subjected to eccentric punching shear, 

since the model can be easily adapted to different geometrical and loading conditions. This approach can reduce the 

uncertainties on predicting the capacity of slab-column connections. 

 

LITERATURE REVIEW 

Eccentric Punching Shear 

 

Eccentric punching shear occurs in a slab-column connection in the presence of shear and unbalanced moments. This 

type of failure is more common in corner and edge columns. The punching provisions from ACI 318-19 [4] provide 

empirical equations and are based on the maximum shear stress vu on the critical perimeter bo of the slab-column 

connection assuming a distance of 0.5d from the face of the column to the perimeter. The ultimate shear stress vu shall 

not exceed the nominal capacity of the slab vn, which is a combination of the concrete shear strength vc and the strength 

provided by shear reinforcement vs, if any. Figure 1 shows a general sketch of the distribution of unbalanced moments 

in a typical slab-column connection. ACI 318-19 § 8.4.1.2 states the importance of considering unbalanced moments. 

MacGregor and Wight [1] define vu as: 

 
1 2

1 2

u v u v u
u

o c c

V M c M c
v

b d J J

 
=  +  (1) 

where Vu is the factored shear acting on the centroid of the critical section; c is the distance from the centroid of the 

critical section to the point where the shear stress is calculated; Jc is the polar moment of inertia of the critical section 

and γvMu  is the fraction of factored moment transferred by eccentricity shear with γv as:  

 1v f = −  (2) 

Here, γf  is the fraction of moment transmitted by flexure: 
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Here b1 is the total width of the critical section measured perpendicular to the axis about which the moment acts and 

b2 is the total width parallel to the axis. Figures 1,2, 3 and 4 show the distribution of shear stress and unbalanced 

moment in a slab-column connection. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Transfer of unbalanced moments to column, modified from [1] 

 

 

 

 

 

 

 

 

 

 

Figure 2: Shear stresses due to Vu, modified from [1] 
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Figure 3: Shear stress due to unbalanced moment, modified from [1] 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4: Total shear stress modified from [1] 

 

ACI 421.3R-15 states that for slabs without beams, experience has shown that measures should be taken to 

resist the torsional and shear stresses [5]. In addition, a large degree of ductility is required because the interaction 

between shear and unbalanced moment is critical. Section 7.5 emphasizes that during earthquakes, significant 

horizontal displacements may occur, resulting in unbalanced moments and possibly generating a brittle punching shear 

failure. For these type of loading systems, ACI 421.2R-10 states that even when an independent lateral force system 

is provided, flat plate column connections should be designed to accommodate the moments and shear forces 

associated with the displacements during earthquakes [6]. All ACI references state the importance of unbalanced 

moments and consideration of detailing to ensure ductile behavior, however none of the references explain how this 

should be done. 

 NEN-EN 1992-1-1:2005 [7] provisions assume that the concrete contribution to the shear capacity is equal 

for one-way shear and two-way shear. As with the ACI 318-14 provisions, a perimeter bo is established, but in this 

case, the perimeter is located at 2d from the loaded area and round corners are used. The punching capacity of the slab 

is based on the shear stress vEd  

 

Ed
Ed ED

o

V
v

b d
=  (4) 

 

1

1 Ed o
ED c

Ed

M b
k

V W
 = +  

(5) 

where W1  represents the shear distribution on the perimeter,  VEd is the design shear force, MEdis the design moment 

and kcis a coefficient  based on the ratio between column dimensions c1/c2. kc increases as the column dimension, in 
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the same direction as the unbalanced moment, increases. The coefficient is given by Table 6.1 from Eurocode 2 NEN-

EN 1992-1-1:2005  [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Shear distribution in a slab-column connection, modified from [7] 

Shear Transfer in One-Way and Two-Way Flexural Systems 

In a reinforced concrete flexural member, bending moment can be expressed as the product of the steel’s tensile force 

T, and the internal lever arm jd. Conceptually, one-way shear can be defined as the gradient of bending moment along 

the length of the member. In other words, one-way shear (moment gradient) exists wherever the magnitude of the 

tensile force or effective moment arm varies along the length of the member [8]. 

 ( )
( ) ( )

    
d T d jdd d

V M Tjd jd T
dx dx dx dx

= = = +  (6) 

Shear resulting from a varying tensile force over a constant moment arm is known as beam action. Shear 

flow across any horizontal plane between the reinforcement and the compression zone needs to exist for beam action 

to be present and requires bond between the steel and concrete. On the other hand, arching action refers to the 

component of shear resulting from a constant tensile force on a varying moment arm. In this case, shear flow cannot 

be transferred because the steel is unbonded, or if the transfer of shear flow is interrupted by an inclined crack.  Arching 

action requires anchorage of the reinforcement and its magnitude depends on the slope of the compression strut.  Beam 

action is characteristic of slender flexural members known as B-regions and arching action is usually associated with 

deep beams known as D-regions. 

In a two-way flexural system, shear can be transferred by bending shear and torsional shear. Bending shear 

is produced by a gradient in the bending moment as in one-way flexural systems and present characteristics of both 

B- and D-regions used in a strut-and-tie modeling. Torsional shear is produced by a gradient in the torsional moments 

and is a unique characteristic of two-way flexural systems.  Many experiments for slab-column connections show that 

arching action is the dominant mechanism of shear transfer in the radial direction and strain measurements suggest an 

inclined radial compression strut rather than a straight one [9]. 
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Strip Model 

 

The strip model, also known as the bond model [9], describes a load path for shear transfer of a slab-column connection 

and is the result of a modification of the truss model proposed by Alexander and Simmonds [2]. Because the strip 

model provides a lower bound estimate, it does not model a particular failure mechanism, yet it provides a load path 

that is consistent with the static constraints, making sure it does not exceed the material capacities.  

 

 

 

 

 

 

 

 

Figure 6: Arched compression strut, modified from [9] 

 
The shear transfer between the slab and column is related with the vertical force component of the 

compression struts. The compression strut is assumed to be inclined with respect to the horizontal plane of the slab 

and the magnitude of the inclination depends on the conditions at the intersection of the strut and its attendant tension 

tie.  

For the model to work properly, a rectangular layout of reinforcement must exist within the slab. The area of 

consideration is divided into radial strips and quadrants, as shown in Figure 7. The strips extend from the column 

parallel to the reinforcement to a line of zero shear either at the edge of the specimen or at the center of the span. The 

strips separate the columns from the quadrants so that no load can reach the column without passing through one of 

the radial strips. Each radial strip supports the adjacent quadrants and as a result, is loaded in shear on its side faces. 

The width of each strip is defined by the column width c and the length of the strip is defined as lw. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Layout of Radial Strips modified from [9] 
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In the quadrants, shear transfer is carried by beam action whereas the radial strips carry shear by means of 

arching action. The compression arch inside the radial strip varies from a maximum at the face of the column, where 

the slope of the arch is large to a minimum where the arch intersects the reinforcement and the slope is small. The 

horizontal component of the strut is assumed constant through the length of the strut and the shear that is carried by 

the arch at the face of the column must be dissipated in a direction perpendicular to the arch at some distance away 

from the column. The rate at which shear dissipates determines the curvature of the arch, and the mechanism of shear 

transfer across the side faces of the radial strip must be compatible with a constant moment arm jd perpendicular to 

the radial strip. 

The capacity of the strip can be quantified by its flexural capacity and the ability of the slab to generate bar 

force gradient. The shear capacity of the connection is equal to the sum of all independent shear capacities of the radial 

strips. In order to find a lower bound solution three requirements are needed. The first one regards statics, where 

equilibrium must be satisfied at every point. The second one states that no element may be loaded beyond its relevant 

capacity and finally, there must be enough ductility at the connection in order to redistribute the load prior to failure.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Equilibrium of a radial strip, modified from [9] 

 
A simple model of a cantilever beam, as in Figure 8, with hogging (MHOG) and sagging (MSAG) moment 

capacities may be used to analyze a single radial strip. The total flexural capacity Ms can be taken as the sum of MHOG 

and MSAG. The total load transferred by the radial strip to the column is taken as Ps. Each strip supports the adjacent 

quadrants and, as a result is loaded in shear on each side with the one-way shear capacity, w. Since each strip of an 

interior slab-column connection has two side faces, the loading term becomes 2w as seen in Figure 8. Taking rotational 

and vertical equilibrium leads to the following expressions: 

 

22

2
s

wl
M =  (7) 

 2sP wl=  (8) 

Solving for the loaded length l from Eq. (7) and substituting into Eq. (8), and summing the capacity of the four strips 

yields the following equation for the total capacity: 

 ( )4 2 8s s sP P M w M w=  = =  (9) 
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METHODS: 

 

Description of Database: 

 

The database developed by Vargas [10] contains 66 experiments of eccentric punching shear on flat slabs, including 

slabs with shear reinforcement. For this analysis, only slabs without shear reinforcement were used. The experiments 

used for the analysis are tested by Albuquerque [11], Krüger [12], Hammil and Ghali [13], Narashimhan [14], Zaghlool 

[15], and Anis [16]. 

Typical slab-column geometries found in the database are corner connections, edge connections and interior 

connections with unbalanced moments.  Table 1 presents the most relevant input parameters of the experiments in the 

database that were tested without shear reinforcement. h is the slab thickness, d is the effective depth, Lx and Ly the 

lengths of the specimen in the x-direction and y- direction respectively, a is the shear span, av is the clear shear span, 

and ρ is the longitudinal reinforcement ratio. The database of slabs without shear reinforcement shows that the majority 

of the experiments are made out of normal strength concrete. In order to ensure a punching shear failure most of the 

slabs were over-reinforced. Typical slab designs use reinforcement ratios of 0.6% - 0.8%; however, a ratio close to 

1.25% was commonly used in the tested slabs [10]. Albuquerque slabs [11] were loaded incrementally to failure, and 

each experiment was held with a constant eccentricity. For the Kruger slabs [12], a special shape was given to the 

column so that it was possible to apply an axial force with a constant eccentricity. Hammil and Ghali slabs [13] were 

tested with four loading stages maintaining a constant eccentricity of 0.43 m (1.4 ft), approximately. Narashimhan 

slabs [14] were mounted vertically and consisted of a ten-stage loading procedure maintaining the eccentricity constant 

through each experiment. Zaghlool slabs [15] were also tested maintaining a constant eccentricity. For corner 

connections, the value of the eccentricity was measured as the ratio of the applied moment and the applied axial force.  

Results from the Annis slabs [16] show that during each experiment the eccentricity was held constant. 

As output parameter, the load at failure was registered in the database. All the reported values for the sectional 

shear force at failure include the contribution of the self-weight when testing was performed in the gravitational 

direction. Most of the entries in the database failed in brittle punching shear and only a few slabs failed in flexure-

induced punching shear [10].  

Table 1: Important Parameters in Database 

Parameter Min Max 

h (mm) 102 180 

d (mm) 76 153 

Lx (mm) 1067 3000 

Ly (mm) 965 3000 

a (mm) 400 1375 

av (mm) 200 1100 

ρ (%) 0.72% 2.40% 

fcm (MPa) 26 59 

a/d (-) 2.62 11.36 

av/d (-) 1.31 9.09 

 

 

Extended Strip Model 

 

The Extended Strip Model is based on the Strip Model for concentric punching shear, and modifications to study 

maximum loads on reinforced concrete slab bridges [17]. The model describes the capacity of a slab-column 

connection with strips that work in arching action and slab quadrants that work in two-way flexure. Experiments have 

shown that the failure mode of slabs under concentrated loads is a combination of one-way and two-way shear as well 

as two-way flexure [17]. The Extended Strip Model considers the effects of geometry for describing the ultimate 

capacity of slabs under concentrated loads. This method is suitable for the design and assessment of elements that are 

in the transition zone between one-way and two-way shear. 

The first modification is based on the observation that some slabs will have different dimensions, 

reinforcement ratios and effective depths in the longitudinal and transverse direction. The load on the y-direction strips 

will be determined by dx since the cross-section of the intersection between the strip and the quadrant has the x-

direction reinforcement as bending reinforcement. In the same sense, the load on the x-direction will be determined 
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by dy. As the depth of the specimen increases, the shear capacity does not increase proportionally. A recommendation 

for considering the size effect on the shear capacity results in the following expressions [17]: 
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Where d is the average effective depth between dx and  dy. Lantsoght observed that the introduction of this size effect 

term leads to a good correspondence with experimental results [17].  

As mentioned before, the capacity of the strip will be determined by the maximum stress that can occur at 

the interface between the strip and the quadrant for all considered loads. For specimens tested in the direction of 

gravity, the self-weight should be considered. This load also contributes to shear stresses in the slab. Therefore, in 

order to find the maximum value of the concentrated load, the effect of self-weight must be subtracted from the total 

available capacity. For laboratory experiments, this reduction will be small because the depths of the slabs that are 

commonly tested are relatively small [17]. The sectional shear at the position of the load can be transformed into a 

distributed load by dividing the sectional shear by the total width of the element. For strips in the y-direction, the total 

load then becomes: 
 

, ,MAX Y ACI Y DLq w v= −  (14) 

For loads that are close to the support, a direct strut can develop between the load and the support leading to 

an increase in the shear capacity because of a direct load transfer. To take this effect into account an enhancement 

factor is used as follows: 

 
2

1 4l

v

d

a
   (15) 

In this expression, av is the face-to-face distance between the load and the support and dl  is the effective 

depth in the direction being considered. 

In a case where continuity at the supports exists, the effect of both the hogging and sagging reinforcement 

needs to be considered when the load is placed closed to a continuous support. The quadrants between the load and 

the support will be subject to a change in moment from hogging over the support MSUP to sagging at the position of 

the concentrated load in the span MSPAN. The quadrants that are affected by the moment diagram are bordered by three 

strips: the y-direction strips and the x-direction strip between the load and the support. The moment capacity of these 

strips will be based on both the hogging and sagging reinforcement. This effect can be considered with the following 

factor: 

 1
 

SUP
moment

SPAN

M

M
 =   (16) 

The total moment capacity of these strips is taken as: 

 

 s SAG moment HOGM M M= +  (17) 



17 
 

 

 

In the case of edge columns, as seen in Figure 9 (a), only three strips can develop and only two quadrants are 

used. The free edge itself does not contribute to the capacity of the strips. So, for the x-direction strips, the critical 

shear can only be reached on one side of the strips. For the y-direction strip, both sides are supported with a quadrant 

and the shear capacity is analyzed on both sides. On the other hand, as seen in Figure 9 (b), when a column is placed 

close to the edge, four strips are developed. For these cases, the so called “edge-effect” can take place. If the length 

of the strip between the load and the free edge is smaller than the loaded length of the strip, the full capacity of the 

strip cannot develop because it can only carry load over the length of the strip. The value of the length to the free edge 

will then replace the loaded length of the strip for the determination of the capacity.  The resulting expressions are 

shown for slab L1 from the Albuquerque [11] experiments with Eqs. (22) and (23). 

Torsion is also an effect that needs to be considered for loads close to the support and for asymmetric loading 

conditions. This effect is considered by a reduction factor β on the applied distributed load on the strips. The derivation 

of the β factor comes from a number of finite element models of one-way slabs where the ratio of the torsional 

moments to the bending moments was studied [17]. The ratio is associated with the geometry of the position of the 

load and results in the following expression: 
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Here, br  is the distance from the center of the load to the free edge and a is the center-to-center distance 

between the load and the support. Figure 11 shows how β is applied to the distributed load in the quadrants between 

the load and the free edge 

 

 

 

  

 

  

 

  

 

 

 

 

 

 

 

 

 

 
Figure 9 Columns acting close to supports, modified from [17] 

 

For slab-column connections with unbalanced moments, the static equilibrium from Figure 8 needs to be 

adjusted. The external moments applied should be considered on the statical equilibrium of the strips.  Figure 10 shows 

how the external moments applied affect directly the flexural capacity of the strips. 
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Figure 10: Application of the external moments on the static equilibrium of the strips 

Figure 11 shows an example of one of the Albuquerque Slabs [11] with a complete overview of the loads 

applied in the x- and y-direction strips. The implications of static equilibrium, including the reduction of self-weight 

and the effects of torsion are included. 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 11: Overview of loads applied in x- and y-direction strips for experiment L1 from Albuquerque [11] 

 

 



19 
 

 

 

The resulting maximum load according to the Extended Strip Model is: 

 1 2 3s s sP P P P= + +  (20) 
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= +  (21) 

𝑃𝑠2 = 𝑃𝑠3 = {
√2𝛽𝑀𝑠,𝑦(𝑤𝐴𝐶𝐼,𝑌 − 𝑣𝐷𝐿)     𝑙𝑒𝑑𝑔𝑒 < 𝑙

𝛽(𝑤𝐴𝐶𝐼,𝑌 − 𝑣𝐷𝐿)𝑙𝑒𝑑𝑔𝑒         𝑙𝑒𝑑𝑔𝑒 > 𝑙

 

 

(22) 

The loaded length of strips 2 and 3 is determined as:  
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RESULTS 

 

Comparison of Predictions with Database: 

 

In this section, the maximum load predicted with the Extended Strip Model will be compared with the maximum 

concentrated load obtained in the experiments from the following references: Albuquerque [11], Krüger [12], Hamil 

and Ghali [13], Narashimhan [14], Zaghlool [15], and Anis [16]. Material properties, slab geometries and 

reinforcement layouts were taken from the database [10].  

The results of the calculations are summarized in Table 2, where λmoment, and β are determined from Eqs. (16), 

(18) and (19) respectively. The values of Ppred are calculated from the statics of the strip depending on the geometry 

of the slab and the loading conditions. Table 2 shows the comparison between the tested to predicted values PTest/PPred. 

The full calculations using the Extended Strip Model are available in the annex section of this paper. For all 

experiments, the external moments applied were considered on the flexural capacities of the strips as shown in Figure 

10. References [13] and [15] present the application of external moments in both x and y directions.  

For all the remaining references, the external moments were only analyzed in one direction according to the 

test setups. The capacity of each strip on the slabs analyzed were calculated according to the geometry and statical 

constraints presented in the slab. For interior connections, all strips were loaded in both directions. All interior slab-

column connections were simply supported around the whole perimeter of the slab, therefore no β factor was 

calculated for those cases. For the interior connection of reference [14], the effect of self weight was neglected because 

the slab was hung vertically in the test frame. References [11], [13], [14], and [15] present edge and corner slab-

column connections. For these cases, the loaded length of the strips was compared with the length of the edge strips. 

Eqs. (18), (19), and (20) were used to analyze the capacity of the strip.  

A total of 22 slabs were analyzed with this situation. The values of Msup and Mspan, used to calculate λmoment 

were taken from the linear finite element models developed by Vargas [10]. They represent the value of the moments 

at failure of the tested slabs.  

The results show that the average of the tested to predicted values was 0.92 with a standard deviation of 0.31 

and a coefficient of variation of 33.4%. The maximum and minimum ratio of tested to predicted values were 1.53 and 

0.459 respectively. 
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Table 2: Overview of Test results and parameters 

 

REFERENCE 

 

SLAB TYPE 
MSUP 

[kNm/m] 

MSPAN 

[kNm/m] 
λmoment β 

Mext x 

[kN m/m] 

Mext y 

[kN m/m] 

Ppred 

[kN] 

Ptest 

[kN] 
Ptest/Ppred 

ALBUQUERQUE 

L1 EDGE 40 54 0.74 1.00 -95 - 383 437 1.14 

L5 EDGE 92 111 0.83 1.00 38 - 427 654 1.53 

L6 EDGE 93 108 0.86 1.00 67 - 459 605 1.32 

L11 EDGE 105 115 0.91 1.00 112 - 450 615 1.37 

L12 EDGE 97 114 0.85 1.00 56 - 446 665 1.47 

KRUGER 
P16A INT. 21 28 0.74 - 53 - 398 331 0.83 

P30A INT. 17 25 0.70 - 86 - 411 270 0.66 

HAMMIL & GHALI 
NH1 COR. 42 113 0.37 1.00 43 43 158 147 0.93 

NH2 COR. 40 106 0.38 1.00 40 40 156 139 0.89 

NARAYANI NARASHIMAN 

L1 INT. 63 52 1.00 - -122 - 540 399 0.74 

ES2 EDGE 83 63 1.00 1.00 78 - 329 342 1.04 

ES5 EDGE 83 63 1.00 1.00 112 - 337 492 1.46 

ZAGHLOOL 

Z-I (1) COR. 24 57 0.43 1.00 19 19 153 74 0.49 

Z-II (1) COR. 39 102 0.38 1.00 39 39 155 138 0.89 

Z-II (2) COR. 48 136 0.36 1.00 53 53 160 177 1.11 

Z-II (3) COR. 47 142 0.33 1.00 58 58 177 178 1.01 

Z-II (6) COR. 16 80 0.20 1.00 39 39 152 82 0.54 

Z-II (8) COR. 33 120 0.28 1.00 39 39 154 139 0.90 

Z-III(1) COR. 43 125 0.34 1.00 132 132 159 180 1.13 

Z-IV(1) EDGE 29 32 0.89 1.00 - -48 243 122 0.50 

Z-V (1) EDGE 44 53 0.84 1.00 - -48 266 215 0.81 

Z-V (2) EDGE 54 59 0.91 1.00 - -94 273 547 0.90 

Z-V (3) EDGE 57 65 0.87 1.00 - -104 290 268 0.92 

Z-V (6) EDGE 49 115 0.42 1.00 - -88 255 117 0.46 

Z-VI (1) EDGE 45 61 0.74 1.00 - -107 221 265 1.20 

ANIS 

B.3 INT. 13 40 0.33 - -18 - 204 191 0.94 

B.4 INT. 10 32 0.32 - -26 - 195 140 0.72 

B.5 INT. 14 30 0.45 - -39 - 187 125 0.67 

B.6 INT. 16 29 0.56 - -54 - 176 116 0.66 

B.7 INT. 12 26 0.47 - -66 - 144 70 0.48 

 

 

 

Comparison of Predictions with Codes: 

In this section, the predicted maximum load resulting from the Extended Strip Model is compared with the 

maximum concentrated load predicted with ACI-318-19 [4], Eurocode 2 [7], Critical Shear Crack Theory [18] and 

the fib Model Code 2010 [19]. All code predictions are taken from the work of Vargas [10]. Figure 12 shows the 

comparison of the results. Data points above the 45° line show a conservative result, whereas values below the line 

show un-conservative results 
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Figure 12: Prediction of Codes and Extended Strip Model 

After analyzing the code expressions from ACI 318-19 [4], Eurocode 2 NEN-EN 1992-1-1:2005 [7], Model 

Code 2010 [19], and the Critical Shear Crack theory [18], the following statistical properties were calculated: average 

of Ptest/Ppred, standard deviation (STD), coefficient of variation (COV) and the ranges of minimum and maximum 

values of Ptest/Ppred. Table 3 shows the resulting statistical parameters for the 30 experiments considered in this study. 

All code predictions present highly conservative results but show larger scatter than when using the 

Extended Strip Model, see Table 3. The NEN-EN 1992-1:2005 [7] code predictions show the least conservative 

results from all codes with an average tested to predicted capacity of 1.1 and it presents the highest scatter (COV =  

36%). The coefficient of variation with the Extended Strip Model is 33%, which is the second lowest of all methods 

considered. The predictions with ACI 318-19 present the lowest coefficient of variation but also the highest standard 

deviation (STD = 0.45). Code provisions present empirical equations that include the effect of eccentricities. 

Reduction factors are added to the capacity of the slab-column connection and the stress on the punching perimeter 

is increased, but there is no a mechanics-based model that lies at the basis of these expressions. The Critical Shear 

Crack Theory is the only mechanics-based model, however, it was developed for concentric punching shear and uses 

simplified assumptions to include the effects of unbalanced moments. 

 

Table 3: Statistical Properties of tested to predicted punching loads with codes and Extended Strip Model 

MODEL AVG STD COV MIN MAX 

ACI 1.4 0.45 32 % 0.20 2.40 

EC2 1.1 0.40 36 % 0.40 2.00 

MC2010 1.3 0.43 33 % 0.50 2.30 

CSCT 1.3 0.44 34 % 0.50 2.40 

EXTENDED STRIP MODEL 0.9 0.30 33 % 0.46 1.53 
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DISCUSSION 

The Extended Strip Model is derived from the strip model for concentric punching shear in slabs [17]. It is a 

lower-bound plasticity method that describes a load path prior to failure. The load path consists of strips, working in 

arching action, and quadrants working in two-way flexure. Failure is assumed to occur at the interface of the strip and 

the quadrant. This model applies the concepts of  one-way slabs under concentrated loads to explain the complex 

behavior of two-way shear. The Extended Strip Model takes into consideration the effects of the geometry for 

describing the ultimate capacity of a slab-column connection and is suitable for the design and assessment of elements 

that are in the transition between one-way and two-way shear. 

The analyzed experiments show several parameters that are varied, such as the concrete compressive strength, 

slab geometries, and the reinforcement layout. Slabs with higher concrete strength present higher one-way shear 

capacities. The one-way shear capacity is directly related to the maximum tensile strength of the concrete. The tensile 

strength of concrete is proportional to the compressive strength of concrete, therefore the shear strength between the 

strip and the quadrants increases as the concrete strength increases. The bending moment capacity of a single strip is 

determined with Whitney’s Stress Block Diagram for hogging and sagging reinforcement. Higher concrete strengths 

represent a higher compressive stress distribution which, indeed, increases the flexural capacity.  

Slabs with higher longitudinal reinforcement ratios present higher flexural capacities on the strips as a result 

of the internal equilibrium. For shear capacity, increasing the amount of longitudinal reinforcement increases the 

dowel action capacity. Most of the slabs considered were over-reinforced in order to ensure a punching failure. A ratio 

close to 1.25% was commonly used in the tested slabs [10]. A result of these high reinforcement ratio is that one of 

the basic assumptions of the Extended Strip Model, i.e. that the reinforcement steel is yielding at failure, may not be 

fulfilled. For such cases, it is necessary to estimate the stress in the steel to determine the capacity of the strips, which 

requires more computational time and effort.  

Results of the experiments show that there is a significant reduction of the punching capacity of slab-column 

connections when subjected to shear and unbalanced moments. The effect of the external moments is considered in 

the static equilibrium of the strips. For all slab-column connections, sagging moments will reduce the capacity of the 

strip and hogging moments will increase the capacity of the strip. All the experiments were either interior, edge or 

corner slab-column connections. Interior slab-column connections show higher capacities than edge and corner slab-

column connections  because the effect of torsion is less than in corner and edge columns and more material of the 

surrounding slab can be activated. This is as expected, because most flat slab designs are governed by the ultimate 

capacity of corner and edge slab-column connections. References Hamil & Ghali [13] and Zaghlool [15] corner slabs 

(ZI, ZII and ZIII series) present external moments in both directions. For these cases the static equilibrium of the strips 

in both directions include the effect of the external moments. Some experiments show a significant reduction in the 

capacity when subjected to loads with relatively high eccentricities. For Zaghlool’s [15] experiments, this can be seen 

in slabs ZII(6) and ZV(6) with a ratio of PTest/PPred of 0.54 and 0.46 respectively as seen in Table 2. In addition, Anis 

[16] experiments show that slabs B.6 and B.7 present PTest/PPred  ratios of 0.66 and 0.48 respectively as seen in Table 

2.All the slabs mentioned before were tested with relatively high eccentricities. For these cases, the effect of high 

eccentricities is directly related to a reduction in the capacity of the slab-column connection. Figure 13 shows a 

significant reduction in the ratio of PTest/PPred for experiments with high eccentricities. This is due to the presence of 

higher torsional moments in the slabs as the eccentricities become higher and the interaction between shear and 

moment. The Extended Strip Model uses a factor β to consider the effects of torsion. To derive an expression for β, 

Valdivieso [20] performed several linear finite element models on different slabs with two supports subjected to a 

distributed load, representing a truck wheel print. The load was varied along the longitudinal and transverse direction 

and finally, the ratio of the torsional moments to the bending moments were studied. Valdivieso concluded that as the 

load approaches the center of the slab, the effect of torsion becomes less at the position of the load. Another conclusion 

stated that as the load was closer to the support, the torsional moments were larger, and the bending moments became 

smaller [20]. For these types of cases, the effect of shear becomes more important relative to bending. For future 

investigation, it would be interesting to include a new parameter that considers the effect of the eccentricity on the 

capacity of two-way flat slabs. β is based on models on one-way slabs so there are some inconsistencies when using 

it in two-way flexural systems. In addition, the interaction between moment and shear should be considered based on 

interaction diagrams for larger eccentricities [8].  

The testing setup changed in each series of experiments and some tests  such as those reported in Hamil & 

Ghali [13], Narashimhan [14], and Zaghlool [15] were tested vertically to reduce the effect of the self-weight. In these 

cases, the interface between the strip and the quadrant will only carry shear induced by the external load itself. The 

self-weight of the slab is in a direction perpendicular to the shear capacity between the quadrant and the strip, so this 
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effect can be neglected on the slabs that were tested vertically. All the other slabs, which include the effect of self-

weight, do not show a significant change in the capacity of the slab-column connection. This result was expected 

because the depths of the slabs are relatively low.  

All the experiments analyzed consider only slabs without shear reinforcement. Analyzing slabs with shear 

reinforcement should include a modification in the extended strip model in order to include the effect of the shear 

reinforcement in the capacity of the strips. Additionally, it would be interesting to study the effect of high strength 

concrete on the capacity of slab-column connections. 

Reference [17] shows an example of  the application of the extended strip model on span 2 of the 

Ruytenschildt bridge. The tested to predicted capacity was 1.26 as expected for a lower-bound plasticity method [17]. 

On the other hand, results from the slabs in the database show an average ratio of PTest/PPred  of 0.92. This may seem 

like it  does not agree with the concept of a lower-bound plasticity-based method because the majority of the capacities 

show a predicted value greater than a tested one. However, this might be because the factor β is based on experiments 

on one-way slabs. The effects of high eccentricities on the capacities of the slabs, as seen in Figure 13, show that a 

significant reduction in the tested experiments is due to loading conditions with high eccentricities. Even though Figure 

12 shows that the performance of the Extended Strip Model is uniform, it can be concluded that the model gives a 

good but slightly unconservative estimate for the capacity of the tested slabs. We can also observe in Figure 13 that 

as the eccentricity increases, the proposed model is not sufficient to predict the maximum load, and a shear-moment 

interaction diagram [8] should be developed for the considered slab-column connection. Our proposed model can be 

used for eccentricities up to 300 mm. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13: Effect of Eccentricity in the Capacity of Slab-Column Connections 

SUMMARY AND CONCLUSIONS 

Reinforced concrete flat slabs are suitable design solutions for the construction of mid- to high-rise buildings, yet 

special attention needs to be given when analyzing the punching capacity of a slab-column connection subjected to 

shear and unbalanced moments. Experiments have shown that the failure mechanism of a slab-column connection 

consists of a combination of one-way shear, two-way shear, flexure and torsion. The Extended Strip Model can be 

used to explain the behavior of two way flexural systems by combining one-way shear limits with localized arching 

behavior. In this work, we applied the Extended Strip Model to eccentric punching shear experiments. For this purpose, 

we adjusted the model to consider the effect of the externally applied bending moment on the static equilibrium of the 

strip. The maximum capacity of the slab-column connection is assumed to be related to the interface between the slabs 

and strips reaching a shear stress equal to the one-way shear capacity.  The Extended Strip Model does not describe a 

failure mechanism yet it describes a load path that does not violate strength limits for flexure or one-way shear. It has 
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been demonstrated that if sufficient ductility is given in the slab-column connection, the load predicted from the 

Extended Strip Model is a lower-bound solution for the capacity of the system. 

The Extended Strip Model includes the following elements that influence the maximum load in the slab-column 

connection: 

• The effect of different longitudinal and transverse longitudinal reinforcement. 

• The model proposes the effect of the concentrated load by itself. Therefore, the effect of self-weight at the 

interface between the quadrant and the strip is subtracted from the capacity of the strips in the y-direction. 

• For slabs with large thickness, a size effect factor is added to the one-way shear capacity considering that 

shear does not increase proportionally with size. 

• For loads close to the support an enhancement factor is added to consider the formation of a direct 

compression strut between the load and the support 

• The method also considers the effect of continuity at the support 

• For loads that are close to the free edge, the so called “free-edge effect” can occur. A torsional factor is 

included in these cases and the actual length of the strip is compared to the loaded length to determine the 

capacity of the strip. 

When using the Extended Strip Model, expressions that calculate limiting two-way shear stresses are not necessary 

and results show a relatively low coefficient of variation for a complex shear problem.  Even though the extended strip 

model for two-way flexural systems is slightly unconservative, it presents a good estimate of the capacity of reinforced 

concrete slabs under concentrated loads subjected to shear and unbalanced moments. The model can be applied for 

eccentricities up to 300 mm, after which shear-moment interaction diagrams need to be developed to find the 

maximum load on the slab-column connection. Because of its versatility, it can be used for assessment of existing 

structures as well as the design of new ones. 

 

LIST OF NOTATIONS: 

a  = shear span (center-to-center distance between load and support) 

ai  = depth of Whitney’s stress block for compression zone 

av  = clear shear span (face-to-face distance between load and support)  

b  = slab width 

bo  = punching perimeter of a slab-column connection 

br  = distance from the center of the load to the free edge 

b1  = total width of the critical section measured perpendicular to the axis about which the moment acts 

b2  = total width of the critical section measured parallel to the axis about which the moment acts 

c  = distance from the centroid of the critical section to the point where the shear stress is calculated 

c1  = column width in the x-direction 

c2  = column width in the y-direction 

dx  = effective depth in the x-direction 

dy  = effective depth in the y-direction 

d  = average effective depth between dx and dy 

f’c  = average compressive strength of concrete 

fct  = tensile strength of concrete 

fy  = yield strength of longitudinal reinforcement 

h  = slab thickness 

jd  = internal lever arm between steel’s centroid to Whitney’s stress block diagram 

kc  = column size effect factor 

l  = loaded length of shear stress between strip and quadrant 

ledge  = length of strip close to edge  

vED  = design shear stress from EC2  

vc  = punching resistance provided by the concrete for ACI 318-19 

vu  = maximum shear stress for ACI 318-19 

vs  = punching resistance provided by the steel for ACI 318-19 

w  = maximum shear at the interface between the strip and the quadrant 

wACI X   = one-way shear expression with size effect from ACI for strips in the x-direction 

wACI Y   = one-way shear expression with size effect from ACI for strips in the y-direction 

Asx_bott  = area of bottom longitudinal tension reinforcement in the x-direction 

Asx_top  = area of top longitudinal tension reinforcement in the x-direction 
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Asy_bott  = area of bottom longitudinal tension reinforcement in the y-direction 

Asy_top  = area of top longitudinal tension reinforcement in the y-direction 

Jc = polar moment of inertia of the critical section according to ACI 318-19 

Mext  = external moment applied on the slab 

Mu  = factored moment applied on the slab 

Ms  = total flexural capacity of a single radial strip 

MHOG  = hogging moment capacity 

MSAG  = sagging moment capacity  

MSPAN  = span moment generated from concentrated load P 

MSUP  = support moment generated from concentrated load P 

L  = span length for a simply supported slab. 

P  = concentrated load  

T  = steel’s tensile strength 

VED  = design shear strength from EC2 

Vu  = factored shear applied on the slab according to ACI 318-19 

βEC = enhancement factor for eccentric shear from EC2 

β = reduction factor on the applied distributed load on the strips due to the effect of torsion 

γf  = fraction of the unbalanced moment transferred by flexure 

γv  = fraction of the unbalanced moment transferred by shear 

λmoment       = factor considering the effect of both hogging and sagging reinforcement when the load is placed on a       

    support  
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ANNEX 1: ALBUQUERQUE SLAB CALCULATIONS

SLAB L1
STRIP 1 CALCULATIONS
Data: ≔av --2350 mm 200 mm 300 mm ≔b 1700 mm ≔c1 300 mm

≔br ――
1700

2
mm ≔a --2350 mm 200 mm ――

300

2
mm ≔c2 300 mm

≔dx --180 mm 20 mm ―
16

2
mm ≔dy ---180 mm 20 mm 16 mm ――

12.5

2
mm

≔d ―――
+dx dy

2
=d 14.488 cm =dx 15.2 cm

Material Properties: ≔f'c 46.8 MPa for 16mm bars: ϕ ≔fy1 558 MPa

for 12.5mm bars:ϕ ≔fy2 530 MPa

Calculations: =av 185 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=dx 15.2 cm



≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 138.248 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅15 ⎛⎝201.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy1

⋅⋅0.85 f'c b
24.89 mm

≔Msagx =⋅⋅⋅Asx_bott fy1
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

41.453 ⋅kN m

≔Asx_top ⋅15 ⎛⎝122.7 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA model 
of the slab

≔a2 =――――
⋅Asx_top fy2

⋅⋅0.85 f'c b
14.424 mm

≔Mhogx =⋅⋅⋅Asx_top fy2
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

24.924 ⋅kN m

≔MSup1 39.85 ―――
⋅kN m

m
≔MSpan1 54.11 ―――

⋅kN m

m
≔Mext ⋅⋅-95 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.736 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.736

≔Msx =++Msagx ⋅λmoment Mhogx Mext 43.044 ⋅kN m



≔Ps1 ⋅E.F ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅⋅2 (( +1 β)) Msx wACI_x =Ps1 154.282 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝122.7 mm
2 ⎞⎠ ≔b 2150 mm

≔a3 =――――
⋅Asy_bott fy2

⋅⋅0.85 f'c b
9.124 mm

≔Msagy =⋅⋅⋅Asy_bott fy2
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.503 ⋅kN m

≔Asy_top ⋅20 ⎛⎝201.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy1

⋅⋅0.85 f'c b
26.241 mm

≔Mhogy =⋅⋅⋅Asy_top fy1
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

39.028 ⋅kN m

≔Msy =+Msagy ⋅λmoment Mhogy 43.246 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 152.549 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect: ≔vDL 1.38 ――
kN

m
≔L 2000 mm

≔br =――
1700

2
mm 850 mm

=β 1

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
――――――

⋅2 Msy

⋅β ⎛⎝ -wACI_y vDL⎞⎠
756.405 mm

≔ls =――
1700

2
mm 850 mm



≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β ⎛⎝ -wACI_y vDL⎞⎠ ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β ⎛⎝ -wACI_y vDL⎞⎠

=Ps2 114.345 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 382.972 kN



SLAB L5
STRIP 1 CALCULATIONS

Material Properties: ≔f'c 44.7 MPa

Calculations: =av 185 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=a 2000 mm

≔br ――
1700

2
mm

≔b 1700 mm

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 135.11 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅15 ⎛⎝201.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy1

⋅⋅0.85 f'c b
26.059 mm

≔Msagx =⋅⋅⋅Asx_bott fy1
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

41.279 ⋅kN m



≔Asx_top ⋅15 ⎛⎝122.7 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA 
model of the slab

≔a2 =――――
⋅Asx_top fy2

⋅⋅0.85 f'c b
15.102 mm

≔Mhogx =⋅⋅⋅Asx_top fy2
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

24.866 ⋅kN m

≔MSup1 92.26 ―――
⋅kN m

m
≔MSpan1 111.56 ―――

⋅kN m

m
≔Mext ⋅⋅38 kN m ―

c2

b

≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

≔λmoment =―――
MSup1

MSpan1

0.827 =λmoment 0.827

≔Msx =++Msagx ⋅λmoment Mhogx Mext 68.549 ⋅kN m

≔Ps1 ⋅E.F ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅⋅2 (( +1 β)) Msx wACI_x =Ps1 192.475 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝122.7 mm2 ⎞⎠ ≔b 2150 mm

≔a3 =――――
⋅Asy_bott fy2

⋅⋅0.85 f'c b
9.553 mm

≔Msagy =⋅⋅⋅Asy_bott fy2
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.479 ⋅kN m

≔Asy_top ⋅20 ⎛⎝201.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy1

⋅⋅0.85 f'c b
27.473 mm

≔Mhogy =⋅⋅⋅Asy_top fy1
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.835 ⋅kN m

=λmoment 0.827

≔Msy =+Msagy ⋅λmoment Mhogy 46.596 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 149.087 ――
kN

m



Dead Load 
Effect:

≔vDL 1.38 ――
kN

m
≔L 2000 mm

≔br ――
1700

2
mm

=β 1

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
――――――

⋅2 Msy

⋅β ⎛⎝ -wACI_y vDL⎞⎠
794.308 mm

≔ls =――
1700

2
mm 850 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β ⎛⎝ -wACI_y vDL⎞⎠ ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β ⎛⎝ -wACI_y vDL⎞⎠

=Ps2 117.325 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 427.126 kN



SLAB L6
STRIP 1 CALCULATIONS

Material Properties: ≔f'c 52.1 MPa

Calculations: =av 185 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=a 2000 mm

≔br ――
1700

2
mm

≔b 1700 mm

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 145.866 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅15 ⎛⎝201.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy1

⋅⋅0.85 f'c b
22.358 mm

≔Msagx =⋅⋅⋅Asx_bott fy1
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

41.829 ⋅kN m



≔Asx_top ⋅15 ⎛⎝122.7 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA model 
of the slab

≔a2 =――――
⋅Asx_top fy2

⋅⋅0.85 f'c b
12.957 mm

≔Mhogx =⋅⋅⋅Asx_top fy2
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

25.05 ⋅kN m

≔MSup1 92.96 ―――
⋅kN m

m
≔MSpan1 107.73 ―――

⋅kN m

m
≔Mext ⋅⋅67 kN m ―

c2

b

≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

≔λmoment =―――
MSup1

MSpan1

0.863 =λmoment 0.863

≔Msx =++Msagx ⋅λmoment Mhogx Mext 75.268 ⋅kN m

≔Ps1 ⋅E.F ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅⋅2 (( +1 β)) Msx wACI_x =Ps1 209.562 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝122.7 mm
2 ⎞⎠ ≔b 2150 mm

≔a3 =――――
⋅Asy_bott fy2

⋅⋅0.85 f'c b
8.196 mm

≔Msagy =⋅⋅⋅Asy_bott fy2
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.553 ⋅kN m

≔Asy_top ⋅20 ⎛⎝201.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy1

⋅⋅0.85 f'c b
23.571 mm

≔Mhogy =⋅⋅⋅Asy_top fy1
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

39.446 ⋅kN m

=λmoment 0.863

≔Msy =+Msagy ⋅λmoment Mhogy 48.591 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 160.956 ――
kN

m



Dead Load 
Effect: ≔vDL 1.38 ――

kN

m
≔L 2000 mm

≔br ――
1700

2
mm

=β 1

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
――――――

⋅2 Msy

⋅β ⎛⎝ -wACI_y vDL⎞⎠
780.39 mm

≔ls =――
1700

2
mm 850 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β ⎛⎝ -wACI_y vDL⎞⎠ ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β ⎛⎝ -wACI_y vDL⎞⎠

=Ps2 124.531 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 458.625 kN



SLAB L11
STRIP 1 CALCULATIONS

Material Properties: ≔f'c 43.1 MPa

Calculations: =av 185 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=a ⎛⎝ ⋅2 103 ⎞⎠ mm

≔br ――
1700

2
mm

≔b 1700 mm

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 132.67 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅15 ⎛⎝201.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy1

⋅⋅0.85 f'c b
27.027 mm

≔Msagx =⋅⋅⋅Asx_bott fy1
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

41.136 ⋅kN m



≔Asx_top ⋅15 ⎛⎝122.7 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA 
model of the slab

≔a2 =――――
⋅Asx_top fy2

⋅⋅0.85 f'c b
15.663 mm

≔Mhogx =⋅⋅⋅Asx_top fy2
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

24.817 ⋅kN m

≔MSup1 104.87 ―――
⋅kN m

m
≔MSpan1 115.37 ―――

⋅kN m

m
≔Mext ⋅⋅112 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.909 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.909

≔Msx =++Msagx ⋅λmoment Mhogx Mext 83.459 ⋅kN m

≔Ps1 ⋅E.F ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅⋅2 (( +1 β)) Msx wACI_x =Ps1 210.452 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝122.7 mm
2 ⎞⎠ ≔b 2150 mm

≔a3 =――――
⋅Asy_bott fy2

⋅⋅0.85 f'c b
9.908 mm

≔Msagy =⋅⋅⋅Asy_bott fy2
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.46 ⋅kN m

≔Asy_top ⋅20 ⎛⎝201.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy1

⋅⋅0.85 f'c b
28.493 mm

≔Mhogy =⋅⋅⋅Asy_top fy1
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.676 ⋅kN m

=λmoment 0.909

≔Msy =+Msagy ⋅λmoment Mhogy 49.616 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 146.395 ――
kN

m



Dead Load 
Effect: ≔vDL 1.38 ――

kN

m
≔L 2000 mm

≔br =――
1700

2
mm 850 mm

=β 1

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
――――――

⋅2 Msy

⋅β ⎛⎝ -wACI_y vDL⎞⎠
827.216 mm

≔ls =――
1700

2
mm 850 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β ⎛⎝ -wACI_y vDL⎞⎠ ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β ⎛⎝ -wACI_y vDL⎞⎠

=Ps2 119.959 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 450.369 kN



SLAB L12
STRIP 1 CALCULATIONS

Material Properties: ≔f'c 44.1 MPa

Calculations: =av 185 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=a ⎛⎝ ⋅2 103 ⎞⎠ mm

≔br ――
1700

2
mm

≔b 1700 mm

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 134.201 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅15 ⎛⎝201.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy1

⋅⋅0.85 f'c b
26.414 mm

≔Msagx =⋅⋅⋅Asx_bott fy1
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

41.227 ⋅kN m



≔Asx_top ⋅15 ⎛⎝122.7 mm
2 ⎞⎠ Support Moment and Span 

moment where taken from 
SCIA model of the slab≔a2 =――――

⋅Asx_top fy2

⋅⋅0.85 f'c b
15.308 mm

≔Mhogx =⋅⋅⋅Asx_top fy2
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

24.848 ⋅kN m

≔MSup1 96.60 ―――
⋅kN m

m
≔MSpan1 114.26 ―――

⋅kN m

m
≔Mext ⋅⋅56 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.845 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.845

≔Msx =++Msagx ⋅λmoment Mhogx Mext 72.116 ⋅kN m

≔Ps1 ⋅E.F ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅⋅2 (( +1 β)) Msx wACI_x =Ps1 196.754 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝122.7 mm
2 ⎞⎠ ≔b 2150 mm

≔a3 =――――
⋅Asy_bott fy2

⋅⋅0.85 f'c b
9.683 mm

≔Msagy =⋅⋅⋅Asy_bott fy2
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.472 ⋅kN m

≔Asy_top ⋅20 ⎛⎝201.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy1

⋅⋅0.85 f'c b
27.847 mm

≔Mhogy =⋅⋅⋅Asy_top fy1
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.777 ⋅kN m

=λmoment 0.845

≔Msy =+Msagy Mhogy 53.249 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 148.083 ――
kN

m



Dead Load 
Effect: ≔vDL 1.38 ――

kN

m
≔L 2000 mm

≔br =――
1700

2
mm 85 cm

=β 1

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
――――――

⋅2 Msy

⋅β ⎛⎝ -wACI_y vDL⎞⎠
852.023 mm

≔ls =――
1700

2
mm 850 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β ⎛⎝ -wACI_y vDL⎞⎠ ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β ⎛⎝ -wACI_y vDL⎞⎠

=Ps2 124.698 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 446.15 kN



ANNEX 2: KRUGER SLAB CALCULATIONS

SLAB P16A

STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
3000

2
mm ――

300

2
mm ≔b 3000 mm ≔c1 300 mm

≔br =――
3000

2
mm 1500 mm ≔a ――

3000

2
mm ≔c2 300 mm

≔dx 121 mm ≔dy 121 mm ≔d ―――
+dx dy

2
=d 12.1 cm

Material Properties: ≔f'c 35 MPa ≔fy 480 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 111.515 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant



Flexural
Capacity:

≔Asx_bott ⋅24 ⎛⎝153.9 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
19.865 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

19.691 ⋅kN m

≔Asx_top 0 mm2 Support Moment and Span 
moment where taken from 
SCIA model of the slab≔a2 =――――

⋅Asx_top fy

⋅⋅0.85 f'c b
0 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

0 ⋅kN m

≔MSup1 20.70 ―――
⋅kN m

m
≔MSpan1 28.13 ―――

⋅kN m

m
≔Mext ⋅⋅53 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.736 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.736

≔Msx =++Msagx ⋅λmoment Mhogx Mext 24.991 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 105.583 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity

Data: ≔av -――
3000

2
mm ――

300

2
mm ≔b 3000 mm ≔c1 300 mm

≔a ――
3000

2
mm ≔c2 300 mm

Flexural
Capacity:

≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
19.865 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

19.691 ⋅kN m



≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
0 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

0 ⋅kN m

=λmoment 0.736 Support Moment and Span 
moment where taken from 
SCIA model of the slab

≔Msy =+Msagy ⋅λmoment Mhogy 19.691 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 111.515 ――
kN

m

Dead Load 
Effect: ≔vDL 1.11 ――

kN

m

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 93.253 kN ≔Ps4 Ps3

≔P +++Ps1 Ps2 Ps3 Ps4 =P 397.671 kN



SLAB P30A
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av +――
3000

2
mm ――

300

2
mm ≔b 3000 mm ≔c1 300 mm

≔a ――
3000

2
mm ≔c2 300 mm

≔dx 121 mm ≔dy 121 mm ≔d ―――
+dx dy

2
=d 12.1 cm

Material Properties: ≔f'c 35 MPa ≔fy 480 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 111.515 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅24 ⎛⎝153.9 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
19.865 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

19.691 ⋅kN m

≔Asx_top 0 mm2

Support Moment and Span 
moment where taken from 
SCIA model of the slab

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
0 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

0 ⋅kN m

≔MSup1 17.43 ―――
⋅kN m

m
≔MSpan1 24.75 ―――

⋅kN m

m
≔Mext ⋅⋅86 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.704 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.704



≔Msx =++Msagx ⋅λmoment Mhogx Mext 28.291 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 112.337 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity

Data: ≔av -――
3000

2
mm ――

300

2
mm ≔b 3000 mm ≔c1 300 mm

≔a ――
3000

2
mm ≔c2 300 mm

Flexural
Capacity:

≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
19.865 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

19.691 ⋅kN m

≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
0 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

0 ⋅kN m

=λmoment 0.704

≔Msy =+Msagy ⋅λmoment Mhogy 19.691 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 111.515 ――
kN

m

Dead Load 
Effect: ≔vDL 1.11 ――

kN

m



≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 93.253 kN ≔Ps4 Ps3

≔P +++Ps1 Ps2 Ps3 Ps4 =P 411.181 kN



ANNEX 3: HAMMILL & GHALI SLAB CALCULATIONS

SLAB NH1
STRIP 1 CALCULATIONS
Data: ≔av -1075 mm 250 mm ≔b 1075 mm

≔a -1075 mm ――
250

2
mm ≔c1 250 mm

≔dx 114 mm ≔dy 114 mm ≔c2 250 mm

≔d ―――
+dx dy

2
=d 11.4 cm

Material Properties: ≔f'c 46.8 MPa ≔fy 440 MPa

Calculations: ≔br =-1075 mm ――
250

2
mm 950 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.767

≔β 1



One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 123.927 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅7 ⎛⎝113.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
8.146 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

8.905 ⋅kN m

Support Moment and Span 
moment where taken from 
SCIA model of the slab

≔Asx_top ⋅9 ⎛⎝176.7 mm2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
16.363 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

17.22 ⋅kN m

≔MSup1 41.87 ―――
⋅kN m

m
≔MSpan1 112.56 ―――

⋅kN m

m
≔Mext ⋅⋅43 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.372 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.372

≔Msx =++Msagx ⋅λmoment Mhogx Mext 25.311 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

639.121 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 79.205 kN



STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅7 ⎛⎝113.1 mm2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
8.146 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

8.905 ⋅kN m

≔Asy_top ⋅9 ⎛⎝176.7 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
16.363 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

17.22 ⋅kN m

=Mext 10 ⋅kN m

=λmoment 0.372 ≔Mext ⋅⋅43 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 25.311 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 123.927 ――
kN

m

Dead Load 
Effect: Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length: ≔l =

‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

639.121 mm

≔ls =1075 mm 1075 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_y

=Ps2 79.205 kN

≔P +Ps1 Ps2 =P 158.409 kN



SLAB NH2
STRIP 1 CALCULATIONS
Data: ≔av -1075 mm 250 mm ≔b 1075 mm

≔a -1075 mm ――
250

2
mm ≔c1 250 mm

≔dx 114 mm ≔dy 114 mm ≔c2 250 mm

≔d ―――
+dx dy

2
=d 11.4 cm

Material Properties: ≔f'c 46.8 MPa ≔fy 440 MPa

Calculations: ≔br =-1075 mm ――
250

2
mm 950 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.767

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 123.927 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅7 ⎛⎝113.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
8.146 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

8.905 ⋅kN m

≔Asx_top ⋅9 ⎛⎝176.7 mm2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
16.363 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

17.22 ⋅kN m



≔MSup1 39.86 ―――
⋅kN m

m
≔MSpan1 106.01 ―――

⋅kN m

m
≔Mext ⋅⋅40 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.376 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.376

≔Msx =++Msagx ⋅λmoment Mhogx Mext 24.682 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

631.137 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 78.215 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅7 ⎛⎝113.1 mm2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
8.146 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

8.905 ⋅kN m

≔Asy_top ⋅9 ⎛⎝176.7 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
16.363 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

17.22 ⋅kN m

=λmoment 0.376 ≔Mext ⋅⋅40 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 24.682 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_y 123.927 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length: ≔l =

‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

631.137 mm

≔ls =1075 mm 1075 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_y

=Ps2 78.215 kN

≔P +Ps1 Ps2 =P 156.431 kN



ANNEX 4: NARAYANI NARASHIMAN SLAB CALCULATIONS

SLAB L1
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 4 will carry the same capacity

Data: ≔av -――
2280

2
mm 305 mm ≔b 2280 mm

≔br 0 mm ≔a -――
2280

2
mm ――

305

2
mm

≔dx 135 mm ≔dy 135 mm ≔c1 305 mm

≔d ―――
+dx dy

2
=d 13.5 cm ≔c2 305 mm

Material Properties: ≔f'c 33 MPa ≔fy 398 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 116.481 ――
kN

m
Size effect consideration in  expression of one way shear 
capacity at the interface between the strip and quadrant

=av 83.5 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=dx 13.5 cm



Flexural
Capacity:

≔Asx_bott ⋅18 ⎛⎝201.06 mm
2 ⎞⎠ Bending moment capacity 

determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
22.522 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

23.843 ⋅kN m

≔Asx_top ⋅18 ⎛⎝201.06 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA model 
of the slab

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
22.522 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

23.843 ⋅kN m

≔MSup1 63.21 ―――
⋅kN m

m
≔MSpan1 52.19 ―――

⋅kN m

m
≔Mext ⋅⋅-122 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

1.211 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 1

≔Msx =++Msagx ⋅λmoment Mhogx Mext 31.365 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 120.887 kN ≔Ps4 Ps1

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅18 ⎛⎝201.06 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
22.522 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

23.843 ⋅kN m

≔Asy_top ⋅18 ⎛⎝201.06 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
22.522 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

23.843 ⋅kN m

=λmoment 1



≔Msy =+Msagy ⋅λmoment Mhogy 47.685 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 116.481 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔Ps2 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msy wACI_y =Ps2 149.056 kN ≔Ps3 Ps2

≔P +++Ps1 Ps2 Ps3 Ps4 =P 539.885 kN



SLAB ES2
STRIP 1 CALCULATIONS

Data: ≔av -1295 mm 305 mm ≔b 2280 mm ≔c1 305 mm

≔br ――
2280

2
mm ≔a -1295 mm ――

305

2
mm ≔c2 305 mm

≔dx 134 mm ≔dy 134 mm ≔d ―――
+dx dy

2

Material Properties: ≔f'c 33 MPa ≔fy 398 MPa

Calculations: =av 99 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=dx 13.4 cm



≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 115.905 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅10 ⎛⎝201.06 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
12.512 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

13.675 ⋅kN m

≔Asx_top ⋅10 ⎛⎝201.06 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA 
model of the slab

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
12.512 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

13.675 ⋅kN m

≔MSup1 82.51 ―――
⋅kN m

m
≔MSpan1 63.12 ―――

⋅kN m

m
≔Mext ⋅⋅78 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

1.307 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 1



≔Msx =++Msagx ⋅λmoment Mhogx Mext 37.783 ⋅kN m

≔Ps1 2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 132.352 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅18 ⎛⎝201.06 mm
2 ⎞⎠ ≔b 1295 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
39.653 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.733 ⋅kN m

≔Asy_top ⋅18 ⎛⎝201.06 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
39.653 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.733 ⋅kN m

=λmoment 1

≔Msy =+Msagy ⋅λmoment Mhogy 77.465 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 115.905 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

1156.158 mm

≔ls =――
1700

2
mm 850 mm



≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps2 98.519 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 329.39 kN



SLAB ES5
STRIP 1 CALCULATIONS

Data: ≔av -1295 mm 305 mm ≔b 2280 mm ≔c1 305 mm

≔br ――
2280

2
mm ≔a -1295 mm ――

305

2
mm ≔c2 305 mm

≔dx 134 mm ≔dy 134 mm ≔d ―――
+dx dy

2

Material Properties: ≔f'c 33 MPa ≔fy 398 MPa

Calculations: =av 99 cm ≔E.F if

else

>――
2 dx

av
1

‖
‖
‖‖

――
2 dx

av

‖
‖ 1

=E.F 1 Calculation of Enhancement 
Factor (E.F) due to loads close 
to supports=dx 13.4 cm

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 115.905 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant



Flexural
Capacity:

≔Asx_bott ⋅10 ⎛⎝201.06 mm
2 ⎞⎠ Bending moment capacity 

determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
12.512 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

13.675 ⋅kN m

≔Asx_top ⋅10 ⎛⎝201.06 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA model 
of the slab

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
12.512 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

13.675 ⋅kN m

≔MSup1 82.51 ―――
⋅kN m

m
≔MSpan1 63.12 ―――

⋅kN m

m
≔Mext ⋅⋅112 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

1.307 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 1

≔Msx =++Msagx ⋅λmoment Mhogx Mext 42.332 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 140.092 kN

STRIP 2 CALCULATIONS
Because of symmetry, strip 2 and strip 3 will carry the same capacity

Flexural
Capacity:

≔Asy_bott ⋅18 ⎛⎝201.06 mm2 ⎞⎠ ≔b 1295 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
39.653 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.733 ⋅kN m

≔Asy_top ⋅18 ⎛⎝201.06 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
39.653 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

38.733 ⋅kN m



≔MSup2 61.84 ―――
⋅kN m

m
≔MSpan2 22.86 ―――

⋅kN m

m

=λmoment 1

≔Msy =+Msagy ⋅λmoment Mhogy 77.465 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 115.905 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

1156.158 mm

≔ls =――
1700

2
mm 850 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps2 98.519 kN

≔Ps3 Ps2

≔P ++Ps1 Ps2 Ps3 =P 337.13 kN



ANNEX 5: ZAGHLOOL SLAB CALCULATIONS

SLAB ZI (1)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔dx 121 mm ≔dy 121 mm ≔a -1067 mm ――
267

2
mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c1 267 mm

≔c2 267 mm

Material Properties: ≔f'c 33 MPa ≔fy 379 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1



One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 108.282 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅14 ⎛⎝113.1 mm
2 ⎞⎠

Bending moment capacity determined 
with Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
20.051 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.665 ⋅kN m

≔Asx_top ⋅14 ⎛⎝113.1 mm
2 ⎞⎠ Support Moment and Span 

moment where taken from 
SCIA model of the slab≔a2 =――――

⋅Asx_top fy

⋅⋅0.85 f'c b
20.051 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.665 ⋅kN m

≔MSup1 24.49 ―――
⋅kN m

m
≔MSpan1 57.46 ―――

⋅kN m

m
≔Mext ⋅⋅19 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.426 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.426

≔Msx =++Msagx ⋅λmoment Mhogx Mext 28.522 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

725.817 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 78.593 kN



STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
17.186 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.468 ⋅kN m

≔Asy_top ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
17.186 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.468 ⋅kN m

=λmoment 0.426 ≔Mext ⋅⋅19 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 25.39 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 108.282 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length: ≔l =

‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

684.801 mm

≔ls =1075 mm 1075 mm

≔Ps2 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps2 74.151 kN

≔P +Ps1 Ps2 =P 152.744 kN



SLAB ZII (1)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔a -1067 mm ――
267

2
mm ≔c1 267 mm

≔dx 121 mm ≔dy 121 mm ≔c2 267 mm

≔d ―――
+dx dy

2
=d 12.1 cm

Material Properties: ≔f'c 33 MPa ≔fy 389 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 108.282 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅14 ⎛⎝113.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
20.58 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

17.064 ⋅kN m

≔Asx_top ⋅14 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
20.58 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

17.064 ⋅kN m



≔MSup1 38.99 ―――
⋅kN m

m
≔MSpan1 102.19 ―――

⋅kN m

m
≔Mext ⋅⋅39 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.382 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.382

≔Msx =++Msagx ⋅λmoment Mhogx Mext 33.333 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

784.653 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 84.964 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
17.64 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.82 ⋅kN m

≔Asy_top ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
17.64 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.82 ⋅kN m

=λmoment 0.382 ≔Mext ⋅⋅39 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 30.234 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 108.282 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

747.283 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps1 80.917 kN

≔P +Ps1 Ps2 =P 155.069 kN



SLAB ZII (2)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔dx 121 mm ≔dy 121 mm ≔a -1067 mm ――
267

2
mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c1 267 mm

≔c2 267 mm

Material Properties: ≔f'c 33 MPa ≔fy 405 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 108.282 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅20 ⎛⎝113.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
30.609 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

24.23 ⋅kN m

≔Asx_top ⋅20 ⎛⎝113.1 mm
2 ⎞⎠ Support Moment and 

Span moment where 
taken from SCIA model 
of the slab

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
30.609 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

24.23 ⋅kN m



≔MSup1 48.35 ―――
⋅kN m

m
≔MSpan1 135.97 ―――

⋅kN m

m
≔Mext ⋅⋅53 kN m ―

c2

b

≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

≔λmoment =―――
MSup1

MSpan1

0.356 =λmoment 0.356

≔Msx =++Msagx ⋅λmoment Mhogx Mext 46.108 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

922.84 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 99.927 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
18.365 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

15.38 ⋅kN m

≔Asy_top ⋅12 ⎛⎝113.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
18.365 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

15.38 ⋅kN m

=λmoment 0.356 ≔Mext ⋅⋅53 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 34.111 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 108.282 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

793.756 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps1 85.949 kN

≔P +Ps1 Ps2 =P 160.101 kN



SLAB ZII (3)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔dx 118 mm ≔dy 118 mm ≔a -1067 mm ――
267

2
mm

≔d ―――
+dx dy

2
=d 11.8 cm ≔c1 267 mm

≔c2 267 mm

Material Properties: ≔f'c 28 MPa ≔fy 451 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 98.086 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅16 ⎛⎝201.06 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
57.132 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

32.469 ⋅kN m

≔Asx_top ⋅16 ⎛⎝201.06 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
57.132 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

32.469 ⋅kN m



≔MSup1 46.62 ―――
⋅kN m

m
≔MSpan1 141.67 ―――

⋅kN m

m
≔Mext ⋅⋅58 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.329 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.329

≔Msx =++Msagx ⋅λmoment Mhogx Mext 57.668 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

1084.368 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 105.443 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅14 ⎛⎝201.06 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
49.991 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

29.545 ⋅kN m

≔Asy_top ⋅14 ⎛⎝201.06 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
49.991 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

29.545 ⋅kN m

=λmoment 0.329 ≔Mext ⋅⋅58 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 53.781 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 98.086 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

⎛⎝ ⋅1.047 103 ⎞⎠ mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps1 102.715 kN

≔P +Ps1 Ps2 =P 176.866 kN



SLAB ZII (6)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔dx 121 mm ≔dy 121 mm ≔a -1067 mm ――
267

2
mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c1 267 mm

≔c2 267 mm

Material Properties: ≔f'c 34 MPa ≔fy 381 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅14 ⎛⎝113.1 mm
2 ⎞⎠ Bending moment capacity 

determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
19.564 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.79 ⋅kN m

≔Asx_top ⋅14 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
19.564 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.79 ⋅kN m



≔MSup1 16.18 ―――
⋅kN m

m
≔MSpan1 80.01 ―――

⋅kN m

m
≔Mext ⋅⋅39 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.202 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.202

≔Msx =++Msagx ⋅λmoment Mhogx Mext 29.944 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

738.16 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 81.131 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝113.1 mm2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
16.769 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.572 ⋅kN m

≔Asy_top ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
16.769 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.572 ⋅kN m

=λmoment 0.202 ≔Mext ⋅⋅39 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 27.278 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

704.531 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps1 77.435 kN

≔P +Ps1 Ps2 =P 151.587 kN



SLAB ZII (8)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔dx 121 mm ≔dy 121 mm ≔a -1067 mm ――
267

2
mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c1 267 mm

≔c2 267 mm

Material Properties: ≔f'c 36 MPa ≔fy 382 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 113.097 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅14 ⎛⎝113.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
18.525 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.912 ⋅kN m

≔Asx_top ⋅14 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
18.525 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.912 ⋅kN m



≔MSup1 33.13 ―――
⋅kN m

m
≔MSpan1 119.60 ―――

⋅kN m

m
≔Mext ⋅⋅39 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.277 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.277

≔Msx =++Msagx ⋅λmoment Mhogx Mext 31.356 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

744.648 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 84.217 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝113.1 mm2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
15.879 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.668 ⋅kN m

≔Asy_top ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
15.879 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.668 ⋅kN m

=λmoment 0.277 ≔Mext ⋅⋅39 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 28.49 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 113.097 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

709.801 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps1 80.276 kN

≔P +Ps1 Ps2 =P 154.428 kN



SLAB ZIII (1)
STRIP 1 CALCULATIONS

Data: ≔av -1067 mm 267 mm ≔b 1067 mm

≔dx 121 mm ≔dy 121 mm ≔a -1067 mm ――
267

2
mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c1 267 mm

≔c2 267 mm

Material Properties: ≔f'c 34 MPa ≔fy 379 MPa

Calculations: ≔br =-1067 mm ――
267

2
mm 933.5 mm

Calculation of Torsion Factor ( ) for loads close to the β

support and asymmetric conditions≔β =⋅2 ―
br

b
1.75

≔β 1

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅14 ⎛⎝113.1 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
19.461 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.709 ⋅kN m

≔Asx_top ⋅14 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
19.461 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

16.709 ⋅kN m



≔MSup1 42.82 ―――
⋅kN m

m
≔MSpan1 125.16 ―――

⋅kN m

m
≔Mext ⋅⋅132 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.342 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.342

≔Msx =++Msagx ⋅λmoment Mhogx Mext 55.457 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

⎛⎝ ⋅1.005 103 ⎞⎠ mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 110.41 kN

STRIP 2 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
16.681 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.501 ⋅kN m

≔Asy_top ⋅12 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
16.681 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

14.501 ⋅kN m

=λmoment 0.342 ≔Mext ⋅⋅53 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 32.725 ⋅kN m



One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msy

⋅β wACI_y

771.672 mm

≔ls =1075 mm 1075 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_y ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msy β wACI_y

=Ps1 84.815 kN

≔P +Ps1 Ps2 =P 158.966 kN



SLAB ZIV (1)
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1829

2
mm ――

267

2
mm ≔b 1829 mm

≔br ――
1829

2
mm ≔a ――

1829

2
mm

≔dx 121 mm ≔dy 121 mm ≔c1 267 mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c2 267 mm

Material Properties: ≔f'c 27 MPa ≔fy 476 MPa

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor ( ) for β

loads close to the support and 
asymmetric conditions



One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 97.945 ――
kN

m
Size effect consideration in  expression of one way shear 
capacity at the interface between the strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅22 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 965 mm

Bending moment capacity determined 
with Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
53.479 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

30.889 ⋅kN m

≔Asx_top ⋅22 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
53.479 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

30.889 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA 
model of the slab

≔MSup1 28.60 ―――
⋅kN m

m
≔MSpan1 31.97 ―――

⋅kN m

m

≔λmoment =―――
MSup1

MSpan1

0.895 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.895

≔Msx =+Msagx ⋅λmoment Mhogx 58.522 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

1093.164 mm ≔ls =――
1700

2
mm 850 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 83.253 kN

≔Ps2 Ps1



STRIP 3 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅13 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 1829 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
16.673 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

11.51 ⋅kN m

≔Asy_top ⋅13 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
16.673 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

11.51 ⋅kN m

=λmoment 0.895 ≔Mext ⋅⋅-48 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 14.801 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 97.945 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔Ps3 2 ‾‾‾‾‾‾‾‾‾⋅Msy wACI_y =Ps3 76.148 kN

≔P ++Ps1 Ps2 Ps3 =P 242.654 kN



SLAB ZV (1)
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1829

2
mm ――

267

2
mm ≔b 1829 mm

≔br ――
1829

2
mm ≔a ――

1829

2
mm

≔dx 121 mm ≔dy 121 mm ≔c1 267 mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c2 267 mm

Material Properties: ≔f'c 34 MPa ≔fy 474 MPa

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor ( ) for β

loads close to the support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅22 ⎛⎝113.1 mm2 ⎞⎠ ≔b 965 mm

Bending moment capacity determined 
with Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
42.29 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

32.585 ⋅kN m



≔Asx_top ⋅22 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
42.29 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

32.585 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA model 
of the slab

≔MSup1 44.18 ―――
⋅kN m

m
≔MSpan1 52.72 ―――

⋅kN m

m

≔λmoment =―――
MSup1

MSpan1

0.838 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.838

≔Msx =+Msagx ⋅λmoment Mhogx 59.892 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

1043.948 mm ≔ls =――
1700

2
mm 850 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 93.424 kN

≔Ps2 Ps1

STRIP 3 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅13 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 1829 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
13.185 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

11.64 ⋅kN m

≔Asy_top ⋅13 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
13.185 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

11.64 ⋅kN m



=λmoment 0.838 ≔Mext ⋅⋅-48 kN m ―
c1

b

≔Msy =++Msagy ⋅λmoment Mhogy Mext 14.387 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 109.91 ――
kN

m

Dead Load 
Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔Ps3 2 ‾‾‾‾‾‾‾‾‾⋅Msy wACI_y =Ps3 79.529 kN

≔P ++Ps1 Ps2 Ps3 =P 266.377 kN



SLAB ZV (2)
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1829

2
mm ――

267

2
mm ≔b 1829 mm

≔br ――
1829

2
mm ≔a ――

1829

2
mm

≔dx 121 mm ≔dy 121 mm ≔c1 267 mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c2 267 mm

Material Properties: ≔f'c 40 MPa ≔fy 474 MPa

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 119.214 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅32 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 965 mm

Bending moment capacity determined 
with Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
52.286 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

45.024 ⋅kN m



≔Asx_top ⋅32 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
52.286 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

45.024 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA 
model of the slab

≔MSup1 54.18 ―――
⋅kN m

m
≔MSpan1 59.43 ―――

⋅kN m

m

≔λmoment =―――
MSup1

MSpan1

0.912 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.912

≔Msx =+Msagx ⋅λmoment Mhogx 86.071 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

⎛⎝ ⋅1.202 103 ⎞⎠ mm ≔ls =――
1700

2
mm 850 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 101.332 kN

≔Ps2 Ps1

STRIP 3 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅14 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 1829 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
12.069 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

12.596 ⋅kN m

≔Asy_top ⋅14 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
12.069 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

12.596 ⋅kN m

=λmoment 0.912 ≔Mext ⋅⋅-94 kN m ―
c1

b



≔Msy =++Msagy ⋅λmoment Mhogy Mext 10.357 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 119.214 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔Ps3 2 ‾‾‾‾‾‾‾‾‾⋅Msy wACI_y =Ps3 70.277 kN

≔P ++Ps1 Ps2 Ps3 =P 272.941 kN



SLAB ZV (3)
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1829

2
mm ――

267

2
mm ≔b 1829 mm

≔br ――
1829

2
mm ≔a ――

1829

2
mm

≔dx 118 mm ≔dy 118 mm ≔c1 267 mm

≔d ―――
+dx dy

2
=d 11.8 cm ≔c2 267 mm

Material Properties: ≔f'c 39 MPa ≔fy 475 MPa

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 115.761 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅24 ⎛⎝201.1 mm
2 ⎞⎠ ≔b 965 mm

Bending moment capacity determined with 
Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
71.665 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

52.12 ⋅kN m



≔Asx_top ⋅24 ⎛⎝201.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
71.665 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

52.12 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA model 
of the slab

≔MSup1 56.88 ―――
⋅kN m

m
≔MSpan1 65.16 ―――

⋅kN m

m

≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

≔λmoment =―――
MSup1

MSpan1

0.873 =λmoment 0.873

≔Msx =+Msagx ⋅λmoment Mhogx 97.616 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

⎛⎝ ⋅1.299 103 ⎞⎠ mm ≔ls =――
1700

2
mm 850 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 98.397 kN

≔Ps2 Ps1

STRIP 3 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅12 ⎛⎝201.1 mm
2 ⎞⎠ ≔b 1829 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
18.906 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

18.164 ⋅kN m

≔Asy_top ⋅12 ⎛⎝201.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
18.906 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

18.164 ⋅kN m

=λmoment 0.873 ≔Mext ⋅⋅-104 kN m ―
c1

b



≔Msy =++Msagy ⋅λmoment Mhogy Mext 18.837 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 115.761 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔Ps3 2 ‾‾‾‾‾‾‾‾‾⋅Msy wACI_y =Ps3 93.394 kN

≔P ++Ps1 Ps2 Ps3 =P 290.187 kN



SLAB ZV (6)
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1829

2
mm ――

267

2
mm ≔b 1829 mm

≔br ――
1829

2
mm ≔a ――

1829

2
mm

≔dx 121 mm ≔dy 121 mm ≔c1 267 mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c2 267 mm

Material Properties: ≔f'c 34 MPa ≔fy 476 MPa

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor 
( ) for loads close to the β

support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅22 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 965 mm

Bending moment capacity determined 
with Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
42.469 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

32.693 ⋅kN m



≔Asx_top ⋅22 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
42.469 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

32.693 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA 
model of the slab

≔MSup1 48.65 ―――
⋅kN m

m
≔MSpan1 115.10 ―――

⋅kN m

m

≔λmoment =―――
MSup1

MSpan1

0.423 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.423

≔Msx =+Msagx ⋅λmoment Mhogx 46.512 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

919.979 mm ≔ls =――
1700

2
mm 850 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 93.424 kN

≔Ps2 Ps1

STRIP 3 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅13 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 1829 mm

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
13.24 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

11.686 ⋅kN m

≔Asy_top ⋅13 ⎛⎝113.1 mm2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
13.24 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

11.686 ⋅kN m

=λmoment 0.423 ≔Mext ⋅⋅-88 kN m ―
c1

b



≔Msy =++Msagy Mhogy Mext 10.525 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 109.91 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msy wACI_y =Ps3 68.025 kN

≔P ++Ps1 Ps2 Ps3 =P 254.872 kN



SLAB ZVI (1)
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1829

2
mm ――

267

2
mm ≔b 1829 mm

≔br ――
1829

2
mm ≔a ――

1829

2
mm

≔dx 121 mm ≔dy 121 mm ≔c1 267 mm

≔d ―――
+dx dy

2
=d 12.1 cm ≔c2 267 mm

Material Properties: ≔f'c 26 MPa ≔fy 476 MPa

≔β if ≤≤0 ―
br

b
―
1

2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

if

else if

≤≤0 ―
a

dx
2.5

‖
‖
‖‖

⋅⋅0.8 ―
a

dx
―
br

b

>―
a

dx
2.5

‖
‖
‖‖

⋅2 ―
br

b

=β 1 Calculation of Torsion Factor ( ) for β

loads close to the support and asymmetric 
conditions

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_x 96.114 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅22 ⎛⎝113.1 mm
2 ⎞⎠ ≔b 965 mm

Bending moment capacity determined 
with Whitney's stress block diagram≔a1 =――――

⋅Asx_bott fy

⋅⋅0.85 f'c b
55.536 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

30.552 ⋅kN m



≔Asx_top ⋅22 ⎛⎝113.1 mm
2 ⎞⎠

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
55.536 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

30.552 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA 
model of the slab

≔MSup1 45.19 ―――
⋅kN m

m
≔MSpan1 60.98 ―――

⋅kN m

m

≔λmoment =―――
MSup1

MSpan1

0.741 ≔λmoment if

else

>λmoment 1
‖
‖ 1

‖
‖λmoment

=λmoment 0.741

≔Msx =+Msagx ⋅λmoment Mhogx 53.193 ⋅kN m

Check for Loaded 
Length:

≔l =
‾‾‾‾‾‾‾‾
―――

⋅2 Msx

⋅β wACI_x

1052.084 mm ≔ls =――
1700

2
mm 850 mm

≔Ps1 if

else

>l ls
‖
‖ ⋅⋅β wACI_x ls

‖
‖‖

‾‾‾‾‾‾‾‾‾‾‾‾‾⋅⋅2 Msx β wACI_x

=Ps1 81.697 kN

≔Ps2 Ps1

STRIP 3 CALCULATIONS

Flexural
Capacity:

≔Asy_bott ⋅13 ⎛⎝113.1 mm
2 ⎞⎠

≔a3 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
32.817 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a3

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

20.253 ⋅kN m

≔Asy_top ⋅13 ⎛⎝113.1 mm
2 ⎞⎠

≔a4 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
32.817 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a4

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

20.253 ⋅kN m

=λmoment 0.741 ≔Mext ⋅⋅-107 kN m ―
c1

b



≔Msy =++Msagy Mhogy Mext 10.901 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠

――
kN

m

=wACI_y 96.114 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrantDead Load 

Effect:
Dead Load Effect Neglected due to Testing Setup which is vertical

≔am 673.47 mm ≔L 1829 mm

≔Ps3
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

⋅⋅⋅⋅2 β
⎛
⎜
⎝
―――
L

-L am

⎞
⎟
⎠
Msy wACI_y =Ps3 57.592 kN

≔P ++Ps1 Ps2 Ps3 =P 220.985 kN



ANNEX 6: ANIS SLAB CALCULATIONS

SLAB B.3
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm ≔c1 203 mm

≔br 0
≔a ――
1524

2
mm ≔c2 203 mm

≔dx 76 mm ≔dy 76 mm ≔d ―――
+dx dy

2
=d 76 mm

Material Properties:

≔f'c 38 MPa ≔fy 330 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 85.22 ――
kN

m
Size effect consideration in  expression of one way 
shear capacity at the interface between the strip and 
quadrant

Flexural
Capacity:

≔Asx_bott ⋅18 ⎛⎝122.7 mm2 ⎞⎠ Bending moment capacity determined 
with Whitney's stress block diagram



≔a1 =――――
⋅Asx_bott fy

⋅⋅0.85 f'c b
14.806 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.66 ⋅kN m

≔Asx_top 18 ((122.7)) mm2

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
14.806 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.66 ⋅kN m

≔MSup1 13.38 ―――
⋅kN m

m
≔MSpan1 40.2 ―――

⋅kN m

m
≔Mext ⋅⋅-18 kN m ―

c2

b

≔λmoment =―――
MSup1

MSpan1

0.333 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.333

≔Msx =++Msagx ⋅λmoment Mhogx Mext 6.478 ⋅kN m

≔Ps1 2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 46.994 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity
Data:

≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm

≔br 0
≔a ――
1524

2
mm ≔c1 203 mm ≔c2 203 mm

Flexural
Capacity: ≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
14.806 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.66 ⋅kN m



≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
14.806 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.66 ⋅kN m

=λmoment 0.333

≔Msy =+Msagy ⋅λmoment Mhogy 8.876 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 85.22 ――
kN

mDead Load 
Effect:

≔vDL 0.25 ――
kN

m

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 54.926 kN ≔Ps4 Ps3

≔P +++Ps1 Ps2 Ps3 Ps4 =P 203.838 kN



SLAB B.4
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm ≔c1 203 mm

≔br 0
≔a ――
1524

2
mm ≔c2 203 mm

≔dx 76 mm ≔dy 76 mm ≔d ―――
+dx dy

2
=d 76 mm

Material Properties:

≔f'c 37 MPa ≔fy 330 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 84.091 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅18 ⎛⎝122.7 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram

≔a1 =――――
⋅Asx_bott fy

⋅⋅0.85 f'c b
15.206 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.64 ⋅kN m

≔Asx_top 18 ((122.7)) mm2

Support Moment and 
Span moment where 
taken from SCIA model 
of the slab

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
15.206 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.64 ⋅kN m

≔MSup1 10.37 ―――
⋅kN m

m
≔MSpan1 32.00 ―――

⋅kN m

m



≔λmoment =―――
MSup1

MSpan1

0.324 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.324

≔Mext ⋅⋅-26 kN m ―
c2

b

≔Msx =++Msagx ⋅λmoment Mhogx Mext 5.329 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 42.337 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity
Data:

≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm

≔br 0
≔a ――
1524

2
mm ≔c1 203 mm ≔c2 203 mm

Flexural
Capacity: ≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
15.206 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.64 ⋅kN m

≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
15.206 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.64 ⋅kN m

=λmoment 0.324

≔Msy =+Msagy ⋅λmoment Mhogy 8.792 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m



Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 84.091 ――
kN

m

Dead Load 
Effect: ≔vDL 0.25 ――

kN

m

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 54.3 kN ≔Ps3 Ps4

≔P +++Ps1 Ps2 Ps3 Ps4 =P 194.525 kN



SLAB B.5
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm ≔c1 203 mm

≔br 0
≔a ――
1524

2
mm ≔c2 203 mm

≔dx 76 mm ≔dy 76 mm ≔d ―――
+dx dy

2
=d 76 mm

Material Properties:

≔f'c 36 MPa ≔fy 330 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 82.947 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅18 ⎛⎝122.7 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram

≔a1 =――――
⋅Asx_bott fy

⋅⋅0.85 f'c b
15.629 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.62 ⋅kN m

≔Asx_top 18 ((122.7)) mm2

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
15.629 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.62 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA model 
of the slab

≔MSup1 13.73 ―――
⋅kN m

m
≔MSpan1 30.25 ―――

⋅kN m

m



≔λmoment =―――
MSup1

MSpan1

0.454 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.454

≔Mext ⋅⋅-39 kN m ―
c2

b

≔Msx =++Msagx ⋅λmoment Mhogx Mext 4.429 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 38.335 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity
Data:

≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm

≔br 0
≔a ――
1524

2
mm ≔c1 203 mm ≔c2 203 mm

Flexural
Capacity: ≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
15.629 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.62 ⋅kN m

≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
15.629 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.62 ⋅kN m

=λmoment 0.454

≔Msy =+Msagy ⋅λmoment Mhogy 9.624 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m



Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 82.947 ――
kN

m

Dead Load 
Effect: ≔vDL 0.25 ――

kN

m

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 56.423 kN ≔Ps3 Ps4

≔P +++Ps1 Ps2 Ps3 Ps4 =P 186.522 kN



SLAB B.6
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm ≔c1 203 mm

≔br 0
≔a ――
1524

2
mm ≔c2 203 mm

≔dx 76 mm ≔dy 76 mm ≔d ―――
+dx dy

2
=d 76 mm

Material Properties:

≔f'c 39 MPa ≔fy 330 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 86.334 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅18 ⎛⎝122.7 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram

≔a1 =――――
⋅Asx_bott fy

⋅⋅0.85 f'c b
14.427 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.678 ⋅kN m

≔Asx_top 18 ((122.7)) mm2

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
14.427 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.678 ⋅kN m

Support Moment and 
Span moment where 
taken from SCIA model 
of the slab

≔MSup1 16.22 ―――
⋅kN m

m
≔MSpan1 29.17 ―――

⋅kN m

m



≔λmoment =―――
MSup1

MSpan1

0.556 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.556

≔Mext ⋅⋅-54 kN m ―
c2

b

≔Msx =++Msagx ⋅λmoment Mhogx Mext 3.198 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 33.234 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity
Data:

≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm

≔br 0
≔a ――
1524

2
mm ≔c1 203 mm ≔c2 203 mm

Flexural
Capacity: ≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
14.427 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.678 ⋅kN m

≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
14.427 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.678 ⋅kN m

=λmoment 0.556 Support Moment and Span 
moment where taken from 
SCIA model of the slab

≔Msy =+Msagy ⋅λmoment Mhogy 10.391 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m



Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 86.334 ――
kN

m

Dead Load 
Effect: ≔vDL 0.25 ――

kN

m

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 59.817 kN ≔Ps3 Ps4

≔P +++Ps1 Ps2 Ps3 Ps4 =P 176.32 kN



SLAB B.7
STRIP 1 CALCULATIONS
Because of symmetry, strip 1 and strip 2 will carry the same capacity

Data: ≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm ≔c1 203 mm

≔br 0
≔a ――
1524

2
mm ≔c2 203 mm

≔dx 76 mm ≔dy 76 mm ≔d ―――
+dx dy

2
=d 76 mm

Material Properties:

≔f'c 42 MPa ≔fy 330 MPa

One - Way 
Shear:

≔wACI_x ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dy

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m

=wACI_x 89.593 ――
kN

m
Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

Flexural
Capacity:

≔Asx_bott ⋅18 ⎛⎝122.7 mm2 ⎞⎠ Bending moment capacity 
determined with Whitney's 
stress block diagram

≔a1 =――――
⋅Asx_bott fy

⋅⋅0.85 f'c b
13.396 mm

≔Msagx =⋅⋅⋅Asx_bott fy
⎛
⎜
⎝

-dx ―
a1

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.728 ⋅kN m

≔Asx_top 188 ((122.7)) mm2

≔a2 =――――
⋅Asx_top fy

⋅⋅0.85 f'c b
139.915 mm

≔Mhogx =⋅⋅⋅Asx_top fy
⎛
⎜
⎝

-dx ―
a2

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c2

b

⎞
⎟
⎠

6.127 ⋅kN m

≔MSup1 12.23 ―――
⋅kN m

m
≔MSpan1 25.99 ―――

⋅kN m

m



≔λmoment =―――
MSup1

MSpan1

0.471 ≔λmoment if

else

>λmoment 1
‖
‖1

‖
‖λmoment

=λmoment 0.471

≔Mext ⋅⋅-66 kN m ―
c2

b

≔Msx =++Msagx ⋅λmoment Mhogx Mext 0.82 ⋅kN m

≔Ps1 ⋅2 ‾‾‾‾‾‾‾‾‾⋅Msx wACI_x =Ps1 17.141 kN ≔Ps2 Ps1

STRIP 3 CALCULATIONS
Because of symmetry, strip 3 and strip 4 will carry the same capacity
Data:

≔av -――
1524

2
mm ――

203

2
mm ≔b 1524 mm

≔br 0
≔a ――
1524

2
mm ≔c1 203 mm ≔c2 203 mm

Flexural
Capacity: ≔Asy_bott Asx_bott

≔a5 =――――
⋅Asy_bott fy

⋅⋅0.85 f'c b
13.396 mm

≔Msagy =⋅⋅⋅Asy_bott fy
⎛
⎜
⎝

-dy ―
a5

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.728 ⋅kN m

≔Asy_top Asx_top

≔a6 =――――
⋅Asy_top fy

⋅⋅0.85 f'c b
139.915 mm

≔Mhogy =⋅⋅⋅Asy_top fy
⎛
⎜
⎝

-dy ―
a6

2

⎞
⎟
⎠

⎛
⎜
⎝
―
c1

b

⎞
⎟
⎠

6.127 ⋅kN m

=λmoment 0.471

≔Msy =+Msagy ⋅λmoment Mhogy 9.611 ⋅kN m

One - Way 
Shear:

≔wACI_y ⋅

⎛
⎜
⎜
⎜⎝

⋅⋅⋅0.166 ――
dx

mm

‾‾‾‾‾
――
f'c

MPa

⎛
⎜
⎝
―――
100 mm

d

⎞
⎟
⎠

―
1

3
⎞
⎟
⎟
⎟⎠
――
kN

m



Size effect consideration in  expression of one 
way shear capacity at the interface between the 
strip and quadrant

=wACI_y 89.593 ――
kN

m

Dead Load 
Effect: ≔vDL 0.25 ――

kN

m

≔Ps3 ⋅2 ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⋅Msy
⎛⎝ -wACI_y vDL⎞⎠ =Ps3 58.607 kN ≔Ps3 Ps4

≔P +++Ps1 Ps2 Ps3 Ps4 =P 144.134 kN


