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RESUMEN

Este trabajo presenta un modelo de redes neurales para estimar el nowcast del crecimiento del
PIB para el Ecuador a través del estudio de series de tiempo macroeconómicas, con observa-
ciones mensuales desde enero del 2000 hasta junio del 2020. Se utiliza un mecanismo de re
muestreo para obtener un estimador como resultado, desde el cual se pueden construir interva-
los de confianza. Se obtiene una precisión del 90% cuando se analiza el crecimiento relativo al
perı́odo anterior, y una del 30% respecto al valor puntual del crecimiento.
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ABSTRACT

This work presents a neural network approach to estimate the GDP growth nowcast for Ecuador,
through an analysis of macroeconomic time series, which have monthly observations from Jan-
uary 2000 to June 2020. A re-sampling approach is used to build an estimator as a result, from
which we can build confidence intervals to make traditional statistics. A very precise estimation
for the relative growth with respect to the last period is obtained, of about 90%, and just a 30%
for the precise number of the GDP growth.
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1 Introduction

It is on the interests of governments, central banks and the academic spectrum to get the most

accurate predicted data for the economic development of countries. A huge range of approaches

have been used for this respect. Giannone et al. (2008) use a two step estimator where they com-

bine principal component analysis with Kalman filtering techniques that are used to calculate

expected values of common factors that account for colinearity in macroeconomic data.

Another approach was presented by Kuzin et al. (2011) who compare the success of a

mixed data sampling with the mixed frequency var, in order to account for mixed frequency

data (in our data, for example, GDP is recorded quarterly and the rest variables monthly. But no

conclusive statements, other than their use as complements where reached. Ferrara & Simoni

(2019) and Aastveit et al. (2014) also present alternatives to nowcast GDP growth based on

regression analysis with some other details.

In the other hand, neural networks has been increasing its attention to nowcast information

for different kinds of data in the last years as Mengyin et al. (2019) and Pasero & Moniaci (2004)

prove and state in their work. For this work we use a neural network approach to nowcast the

real GDP growth rate for Ecuador as a counter part of the work presented by Gonzalez-Astudillo

& Baquero (2018), which is a time series approach. This work presents the application of a time

series data structure into a neural network that is analyzed over a statistical distribution of its

outcomes.

Further than present a neural network to nowcast pointwise the GDP growth, we create

a distribution of predicted values for every observation of the data set. In this way we test the

accuracy of our estimations. Thus, the result is an estimator for the quarterly GDP growth with

a normal distribution, and the conclusions are based on the confidence intervals build upon the

distribution of all the possible values that the network can take to produce the prediction. Also
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the accuracy of pointwise neural networks with some different approaches on their architecture

are tested. These modifications are not presented as distributions because the computational

cost of these realizations are very high, however some interesting insights are reached. Firstly,

we present how data is obtained and treated for the interest of the networks. Secondly, a method-

ological section discusses the methods by which estimations are done and the details about the

neural network architecture. Finally, results are presented for each model by a classical statisti-

cal analysis due to the characteristics of the estimations, and the neural networks are evaluated

upon their accuracy.

2 Data

2.1 Data Set

The original data set used for this study comes from the data set that Gonzalez-Astudillo &

Baquero (2018) used for their paper, which they kindly share with me. This is a data set of

macroeconomic variables used to elaborate a nowcasting model for the growth rate of the real

GDP of Ecuador by a time series analysis approach. From this data I take only the variables

that has observations for every month from January- 2000 to June - 2020. These variables

correspond to specific economic sectors as explained in Table 1.

Table 1: Variables Description

Economic Sector Variable Description Unit

External exp pet Oil exports Millions USD

External exp nopet Non oil exports Millions USD

External imp con Consumption goods imports Millions USD

External imp pri Raw material imports Millions USD

External imp cap Capital goods imports Millions USD
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External imp combust Oil imports Millions USD

Fiscal renta Income tax Millions USD

Fiscal iva Value added tax Millions USD

Fiscal precio petro Oil price USD per barrel

Monetary dep vista Sight deposits Millions USD

Monetary cuasidinero Quasi-money Millions USD

Monetary cartera Private portfolio to expire Millions USD

Oil exp pet Oil exports Millions USD

Oil imp combust Oil imports Millions USD

Oil prod oil National oil production Thousands of barrels

Oil precio petro Oil price USD per barrel

Real ipc Consumer price index 2014=100

Real ipc nab Consumer price index, no food or drinks 2014=100

Real ipp Productor price index 2015=100

Real pib GDP Millions USD

Each one of these variables has monthly observations for the period stated above except

for the GDP, which is recorded quarterly, in this case, we assign to every month in each quarter

the GDP of the quarter.

To complete the original data set we add three lags of the GDP to each observation. In

particular, for each month the first lag is the GDP of the last quarter, the second lag is the GDP

of the second to last quarter before it and so on. In the same way, the rate of change of the GDP

and three lags of it is assigned to each month. This is because the expected variation could be

bias if we take into account only the level of the GDP and not it’s variation. To complete our

data set we add identifiers for each month, quarter and year, this is, twelve monthly identifiers

per year, three for each quarter, and for each year, twenty one in total.
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2.2 Data Transformations

It is clear that the structure of our data set consist on time series for each variable, which is the

determinant factor to the application of neural networks. As Kim et al. (2004) explain, the use of

neural networks over time series has gained attention in the analysis and prediction of financial

indicators. But there exist one key characteristic in which this machine learning technique relies

and it is the stationarity of the time series.

Stationarity is defined as a stochastic process xt : t = 1,2, ... such that for every index set

t1, ..., tm : 1≤ t1 ≤ ...≤ tm, the joint distribution of xt1, ..,xtm is the same as xt1+h, ..,xtm+h for any

integer h. It is important when calculating estimators because it guarantee consistency of them,

that is, as observations increase, the estimators approach to the real value. This is only obtained

when the first and second momentum of the distribution of the estimators do not change along

the time, which means estationarity.

On the other hand, the use of neural networks to predict values of a time series has sta-

tionarity as its main assumption as Kim et al. (2004) states, as it is the only way in which past

observations can be related to present values. Also, as Butler & Kazakov (2011) show, error is

minimized when stationarity is assumed.

But it is conceptually clear why these variables are non stationary, since macroeconomic

indicators usually have trends and have some kind of seasonality, as well as the commodities

prices. To make sure of the non stationarty of the variables, I run an Augmented Dickey Fuller

Test as it is long stated in the literature as Mushtaq (2011) explains. The Augmented Dickey

Fuller Test it the most popular unit root test, it regresses the observation over times on a lagged

observation and a series of p lagged first differences, it tested the hypothesis that the coefficient

of the lagged observation equals one, which means that it has a unit root.
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After this test we failed to reject the null hypothesis of the Augmented Dickey Fuller Test,

that is we do not have enough evidence to prove that the series are stationary. Furthermore, plots

of the series make it clear. So we need to transform data to use a neural network approach. This

test was carried out using python and looping for every series.

So the first thing we do to find a ”more” stationary series is to take the moving average

of variables over each quarter, which is a standard method to treat series that have a trend as

Holt (2004) point out. Also , it accounts for the quarterly data of the GDP, that is, for mixed

frequency in the data. This could be interpreted as if adding more information as the quarter

occurs taking into account previous observations, modify the nowcasting process. That is, the

data is transformed by the following equation

yi =
1
i

i

∑
k=1

yk

where yi ∈ X j for i = 1,2,3 for some j ∈ {1,2, ...,82}, and X is the set of all quarters of the data

set indexed by j. After doing so, series are still stationary so we ended the process of trans-

forming data by taking the difference of the logarithms of the observations over time, that is,

for every yi in the data set modified by the moving average we do the following transformation

yi = logyi− logyi−1

We do this for every non stationary series, that is, the only series that we keep equal after

the moving average are the lags of the variation of the GDP, since the variation is almost by

definition a stationary time series. Note that we do take the difference of the logarithm for GDP

level but not for the variations. After doing so we include the moving average of the percentage

of the variables that are presented in millions of dollars with respect to the GDP level of the

quarter, we include the dummy variables for the month, quarter and years identifiers and finally

the oil price as its pure expression, since the level of this information is clearly a determinant

for the growing rate of the GDP.
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3 Methodology

To construct the nowcast model I build an artificial neural network, which is a statistical

approach to processes of learning, that models posterior probabilities given a set of samples

(Hristev, 1998). Thus, a neural network produces an outcome based on the input sample, this

outcome is processed with weights that are obtained after the algorithm is carried out for the

training sample. The training sample is a subset of the entire data set used for the learning

process, from this subset the neural network receives the input and the output.

The neural network receive information from an input layer, that consist on all the vari-

ables that each observation has. After the input layer there exist a hidden layer, that is a layer

where the neurons are located, each input neuron connects with every neuron in the hidden layer

by the next equation

yi = f (
n

∑
j=0

x jbi j +βi) (1)

where yi is the outcome that arrives to the neuron i of the hidden layer, f is the output

function chosen by convenience, usually it is the sigmoidal function, x j are the inputs neurons

and bi j are the weights associated the neuron i and βi is the bias associated with the neuron i.

This process is repeated for every hidden layer, after the last one, the final output is cal-

culated in the same way. The calculated output is compared with the output given, an error

function is calculated, and based on this, weights are adjusted, in a process called back propa-

gation. This is done several times until the desired outcome is reached.

Finally, the test data set is passed through the neural network and in the best case scenario,

the outcomes should be the same as the real one.
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3.1 First Approach

3.1.1 The algorithm

First of all, for the first neural network, the training set is chosen randomly. Since each obser-

vation has the lag of the GDP and its variations for three periods, as well as identifiers for the

season of the year, then it is not necessary for the network to have short term memory. That is,

to train the network, the first 75% of the data is chosen and the other 25% is assign as the test

data.

The architecture of the neural network used for this model consisted on an input layer

with the data described in the last section, one hidden layer and the output layer. The function

that we choose, that is the function in 1, is the logistic signal function, which is sigmoidal and

strictly increasing, it is given by

f (x) =
1

1+ e−ax ∗b+ c (2)

where a is an scaling factor and we put a = 1, also, for us b = 0.7 and c = −0.35 so the

function’s range goes over the possible outcomes, that represent GDP variations. The first

matrix of weights W1 has the same number of rows as the amount of input neurons and the

same number of columns as the number of neurons in the hidden layer, and the second matrix

of weights W2 has only one column and the same number of rows as the number of neurons in

the hidden layer.

The first step, the dot product of the input neurons and the matrix of weights, for the first

and second stage, is called feed forward. In this first attempt, our function does not receive any

bias term. After doing this, the back propagation algorithm starts. It calculates the error through
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the next function

E(W ) = ∑
i
(yi− f ( f (xiW1)W2))

2 (3)

To adjust the weights we take the derivative of the loss function with respect to the weights

obtaining the next equation to adjust W1

∂E(W )

∂W1
= 2(yi− f ( f (xiW1)W2)) f ′( f (xiW1)W2)W2 f ′(xiW1)Xi (4)

and this one to adjust W2

∂E(W )

∂W2
= 2(yi− f ( f (xiW1)W2)) f ′( f (xiW1)W2) f (xiW1) (5)

We sum these derivatives evaluated to the weights and then we repeat the process. We

repeat the process until the loss function reaches its minimum.

These whole algorithm was implemented in Python from the scratch, using only Numpy

and Pandas libraries.

Predicting macroeconomic variables have the problem that there might be a lot of unob-

servable (or very difficult to measure) variables, such as political stability, worldwide economic

status or people’s expectations. This ’unobservables’ are going to affect the nowcast of GDP

growth, so we aim to capture them in a bias term included in the input of the function.

Thus, we add a bias term to the input for the activation function, recall that in the original

model the outputs for each neuron hi of the hidden layer are defined by

hi = f (xW1i)
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where f is the function defined in the equation 1. and the final output is given by

yi = f (hW2)

For this time we include a bias term that accounts for unobserved changes, so then the output in

each neuron of the hidden layer is given by

hi = f (xW1i +bi)

and the final output by

yi = f (hW2 + c)

. We also do this process for a neural network that has 5∗|X | neurons in the hidden layer, where

|X | is the size of the input layer, more precisely, the number of input variables.

3.1.2 The application

We get our results by repeating the process described above, one thousand of times. This

approaches is taken with the aim of producing an estimator for the GDP nowcast, rather than

a pointwise prediction. For every iteration we save the same test set, but we choose randomly

80% of the training set to train the network. After each training process, test data is evaluated

in the final network. Thus, the result is the is a distribution of one thousand observations for the

predicted value of the test set. Optimization with neural networks attempt to find a local minima

of the loss function in the training set that can be generalized to any set of information that is

given over all the possible solutions, that is the learning process. Thus, the random choice of

the training set accounts for the possibility of finding an spurious minima if we take always the

same training set, which could not be generalized to any set of input information (Aggarwalet al.

, 2018).
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This whole process is iterated thirteen times, each one for different number of neurons in

the hidden layers. The total number of neurons for each time is defined by

nix

for n = 2,2.5,3, ...,8, by this process we can test if different amount of neurons produce better

predictions. Thus, to evaluate the predicted values of the network we compare the actual value

with the confidence interval of the distribution of predicted values for each observation.

To evaluate the evolution of the loss function over the epochs, random realizations of the

training process are selected, obtaining the function described in Figure 1, where it can be seen

that it reaches a minimum before the one hundred epochs. Although the loss function is strictly

decreasing, a huge limitation of the architecture presented here for the neural network is that

the loss function is bounded below at a level of 20% less than the initial loss value. Further

modifications are required in order to decrease the loss function closer to zero.

Figure 1: Loss Function

Epochs
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3.2 Modifications

3.2.1 Not random training set

The first modification to the presented model is to take the same outcome distribution production

by one thousand repetitions but for no random selected training set. As the result, we get one

thousand predicted values for each observation on the last 25% of the observations. We do this

process for a neural network that has 5∗ |X | neurons in the hidden layer, where |X | is the size of

the input layer, more precisely, the number of input variables. This is to evaluate if the random

assumption actually drives to better outcomes in the network.

3.2.2 Original data set

In order to prove if the literature agreements to smooth the data are accurate enough to gen-

eralize to this problem, we compare our result found in the initial application and in the first

modification with the same model applied to the original data set. That is, without taking time

average and differences of logarithms to the time series. As neural networks are also understand

as a learning process that receives raw data from the environment (in this case the macroeco-

nomic situation of the country) and predicts an output, this is the only way to prove if it is

necessary to preprocess data to get better outcomes.

3.2.3 Learning rate

Every model above is computed with a learning rate of 0.01, for this modification we compute

our network with a learning rate of 0.001. Clearly, this implies that more epochs to train the

network are necessary, but this computational cost could compensate the bias in the precision
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of the network generated by this rate. As we got better results with a non random choice of the

training set we apply this modification to a non random selected training set.

3.2.4 Economic sector

The last modification to our model is motivated by the economic structure. As described in

Table 1 the variables of each observation correspond to different economic sectors: real, mon-

etary, fiscal, external and oil. Each sector has its own dynamics, but they also influence each

other. In this section we assign input neurons to neurons in the hidden layer divided by their

economic sector. Thus, we ’cut’ the connections between input neurons and those assigned

only to each sector. The amount of neurons assigned to each sector is divided equally, that is

total number of neurons/5 for each sector.

3.3 Pointwise models

To compare results with a more traditional approach, we also produce models to have pointwise

prediction for GDP growth nowcast. This models have the architecture explained above as no

random, for different learning rates: 0.1, 0.01, 0.001, 0.0001 and 0.000001. Also we analyse

the architecture of the network divided by economic sector for the same learning rates. In this

case we evaluate the precision of the network by the root mean square error.

4 Results

Results are presented as follows. Firstly, the number of times that the real value of the GDP

growth relies between the confidence interval of our estimations for each model presented in the
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last section. The a comparison between distributions of the predicted values of our models is

presented. At the end, a ranking of the pointwise models is presented based on their root mean

square error.

4.1 First Results

Recall that the first model presented as the neural network described in the methodology section,

where the 25% of the data set is chosen as the test set, but each time that the network is trained

only the 80% of the remaining 75% is chosen as the training set. The training set is chosen

randomly from the 75% each time. When we apply the test set to the neural network we find

that in the 30% of the time our network predicts with a 95% of confidence the real value of the

GDP. To build the confidence intervals of our estimations we use 1.96 standard deviations away

from the mean. To check if this is appropriate I ran a Shapiro-Wilk test to ensure normality. In

every distribution of our results we fail to reject the null hypothesis at a 95% confidence level,

thus we prove that distributions are normal. Distributions of estimated values look like Figure

2.

Figure 2: Random Sample Result Distribution
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In the other hand, results given by the no random training set model give the exact same

result, so no significant change is reached. While using a ten times smaller learning rate in-

creases the predicted values to the 32%. Furthermore, the model that divides the input neurons

with respect to their economic sector decreases the predicted values to the 24%.

4.2 Original data set

Now we compare these results with the network tested and trained with the original data set.

That is, no moving average, logarithms or first differences are taken. For the first attempt, same

architecture as the base model is taken, and randomly selected training sets are used to train the

network each iteration. Same process is repeated, but no normal distribution is reached, every

sample looks like the one shown in Figure 3. As it is clear by its distribution in the histogram,

no normality can be assumed. Therefore, in order to test how accurate predictions are, two non

parametric tests are performed: Kruskal Wallis and Wilcoxon tests. Both gives very different

results. Kruskal Wallis performed to every distribution failed to reject the the null hypotheis

that means are equal, giving a 100% accuracy. while Wilcoxon test gives 30%.

Figure 3: Original Data Trained
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None of these test gives conclusive results given that no ergodicity is presented in time

series that are used to train the network. Thus, different approaches are needed to compare

the performance of the network with raw data. As Figure 3 shows, results suggest non linear

relations. To eliminate linearity from the model, one more hidden layer is added to the network.

Although normality is reached with this new architecture, we get no better predictions, further-

more, all the predictive power is lost. Under this approach it is easily seen that smooth data

produced better outcomes than row data.

4.3 Pointwise predictions

For our pointwise prediction the results correspond to a no random training set model with

different learning rates, and the model that divides neurons of the input layer according to their

economic sector. The Table 2 ranks these models in this sense. It shows that the optimal learning

rate is 0.0001 for both types of network. Greater learning rates do not produce comparable

outcomes since RMSE produced there are more than one hundred times bigger.

Table 2: Root Mean Square Error

Type Learning Rate RMSE

No sector 0.0001 0.0087

Sector 0.0001 0.0087

No sector 0.000001 0.0088

Sector 0.000001 0.0091

No sector 0.001 0.0103

Sector 0.001 0.0099
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5 Conclusion

Learning rates in our model, as well as the amount of neurons and layers do not present a

linear relation with respect to the accuracy of predictions. Furthermore, treated data produce not

only more comparable outcomes with the real values of the predicted data, but more accurate

predictions with respect to the distribution of the estimators. Normality is given as a conse-

quence of data treatment, however the estimators distribution suggest that a more non linear

approach may be taken in order to analyse outcomes produced by the raw data.

Using neural networks to predict time series data present a lot of particularities that de-

pend on the hyper parameters and on the data structure itself. Further investigation is needed in

order to improve the accuracy of the model. As it is taken as an estimator, computational cost

may result high when recurrent methods are taken. Also more statistical analysis is required in

order to compare results produced by original data set with the modified data structure, since

approaching normality take a very high opportunity cost in the accuracy of the model.
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