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Abstract

In recent years there has been a deep interest in artificial neural networks (ANNs), computing

systems inspired by biological neural networks. An ANN involves a complex network intercon-

nected by nodes called artificial neurons, it sums N weighted inputs and passes the result through

a non-linear transfer function. Some approaches are used to develop a neural network based on

CMOS devices.

Key words: ANN, artificial neurons, transfer function, activation function, Sigmoid, Softmax,

CMOS technology.

This thesis presents the design and analysis of sigmoid and softmax function denominated as

an activation function. Proposed circuits pretend to be calibrated in order to obtain low power

consumption as possible. The performance of these simulations is developed by using 0.18 um

CMOS technology parameters. The circuit operates at 0.5 V and 1 V supply voltage. For each

configuration it is aimed to select the most optimal option in terms of energy.
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RESUMEN

En los últimos años ha existido un profundo interés en las redes neuronales artificiales (ANN

siglas en inglés), sistemas informáticos inspirados en las redes neuronales biológicas. Una red neu-

ronal artificial involucra una red compleja interconectada por nodos llamados neuronas artificiales,

suma N entradas ponderadas y pasa el resultado a través de una función de transferencia no lin-

eal. Se utilizan algunos enfoques para desarrollar una red neuronal basada en dispositivos CMOS.

Esta tesis presenta el diseño y análisis de la función Sigmoid y Softmax denominada función de

activación. Los circuitos propuestos pretenden ser calibrados para obtener el menor consumo de

energı́a posible. El rendimiento de estas simulaciones se desarrolla utilizando parámetros de tec-

nologı́a CMOS de 0,18 µm. El circuito funciona con una tensión de alimentación de 0,5 V y 1 V.

Para cada configuración se pretende seleccionar la opción con mejor optimización en términos de

energı́a.

Palabras clave: ANN, neuronas artificiales, función de transferencia, función de activación,

Sigmoid, Softmax, tecnologı́a CMOS.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Several neural network based computing models have been figured out in the last few years in

order to develop hardware to be capable to perform human-like cognitive computing [1] reaching

great success recently consequently, the hardware implementation of artificial intelligence is still

essential in many applications[2]. Although the software version is essential where many GPUs

are used, the hardware implementation is required for avoid bulky systems and high power con-

sumption [2].

Artificial neural net models also known as connectionist models, or parallel distributed pro-

cessing models, bring for to accomplish good performance via dense interconnection of simple

computational elements, artificial neural structure is based on our knowledge of biological nervous

system [3].

Many problems can be resolved by ANNs in the areas of signal processing, surface classifica-

tion, object detection, electronic nose, pattern recognition, medical applications, navigation, and

control. Nevertheless, in this field software simulations are not only developed but also analysis

and studying of capabilities about ANN models and computational algorithms based on neural

networks. In addition, hardware implementations are needing because of its advantage in inherent

parallelism of neural networks [4].

1.1 Neural Networks

Exists some problems that cannot be formulated as an algorithm because depend in subtle factors

in which our brain can calculate. The main goal in this situation is that computers do not have

the capability to learn, even though computers have processing units and memory and perform the

most complex numerical calculations in a very short time, they are not adaptive. Theoretically the

14
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computer should be more powerful than our brain, computers contains transistors with a switching

time of 10−9 seconds. The brain contains 1011 neurons, but these only have a switching time of

about 10−3 seconds.

The largest part of the brain is working continuously, while the largest part of the computer

is only passive data storage. Meanwhile computer is unchanging, the brain as a biological neural

network can reorganize itself during its ”lifespan” and therefore is able to learn, to compensate

errors and so forth.

Study of artificial neural networks is motivated by the successfully working biological systems,

which in comparison to the overall system consist of very simple but numerous nerve cells that

work massively in parallel and have the capability to learn. Obtaining an explicitly program for a

neural network is not necessary. For instance, it can learn from training samples or by means of

encouragement [5].

1.2 Biological neural networks

The basic and primordial nerve cell, called a neuron, is the fundamental building block of the

biological neural network [6]. The vertebrate nervous system is the burdened to process the entire

information talking about central nervous system which consist of brain and spinal cord, focus on

brain it has four areas, cerebrum, thalamus, cerebellum and truncus cerebri.

The cerebrum is responsible for abstract thinking processes. The cerebellum controls and co-

ordinates motor functions. the thalamus decides which part of the information is transferred to the

cerebrum also hypothalamus controls several processes within the body. All this topic is about the

level of brain areas.

Now about the cellular level of the body there is the level of neurons, neuron is a switch with

information input and output.

As the Figure 1.1 shows, in the neuron the electrical information way starts with dendrites

which receive the information by special connections, the synapses. Synapses are incoming signals

transferred from other neurons or cells to a neuron by special connections [5]. In other words,

neurons are the fundamental computing units of the systems that connect to each other to external
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stimuli through programmable connections[3],[1], [7].

Soma are the dendrites branches and obtain electrical signals from numerous sources to later

be transferred to the nucleus, when dendrites exceeds a certain value also known as threshold value

activates an electrical pulse for later be transmitted to the neurons connected to the current one, the

neuron will fire off an impulsive via its axon. The axon can be viewed as a connection wire [8].

When neuron accept inputs, that have been post-processed in the synaptic, they are condensed

or accumulated to one single pulse. If the neuron is not stimulated enough, itself does not emit a

pulse, consequently the output is nonlinear or not proportional to all inputs.

Figure 1.1: Biological neuron with their main components, weights of inputs are determined
through dendritic biochemistry changes and synapse modification [8]. Image credit: [5]

This building blocks seem simple but the system is relatively complex, due to both the huge

amount of neurons and the number of interconnection between them, obviously with the fact that

the neurons function autonomously and in parallel. The great number of connections is essential

because learning process depends on the growth of new connections that is why synapses role is

important [7].

1.3 Artificial Neural Networks

“Artificial Neural Network is a computing system made up of a number of simple, highly intercon-

nected processing elements which process information by their dynamic state response to external

inputs.” - Robert Hecht-Nielsen.
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1.3.1 Layers of ANN

Artificial Neural Networks have input layer, output layer and hidden layers, depending of the

application can be more than one.

Figure 1.2: Multi-layered feedforward artificial neural

In Figure 1.2 is possible identify the layers above mentioned, the leftmost layer in this network

is called the input layer, and the neurons within the layer are called input neurons. The rightmost or

output layer holds the output neurons. The middle layer is called a hidden layer since the neurons

in this layer are neither inputs nor outputs. The term “hidden” has a special meaning, nothing more

than “not an input or an output” [9].

1.3.2 Properties of ANN

Some important properties are high level of parallelism, possibility of asynchronous processing,

multidirectional execution, real-time adaptability, robustness with respect to damages and to miss-
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ing data, ability to learn and automatic generalization, no need for additional software, no need

for a fixed configuration, no difference between data and addresses, and, last but not least, well

developed mathematical foundation [10].

Parallelism, a high degree of parallelism in ANN is affected by the fact that each neuron oper-

ates independently of other neurons.

1.3.3 Topology

Topology is one of the criteria in artificial neural networks, and can be used without layers, two-

layered or multi-layered feedforward.

• ANN without layers, each neuron is connected to every other neuron in both directions.

• Two-layered feedforward ANN, as shows Figure 1.3 each input neuron is connected with

each output neuron with a directed connection.

• Multi-layered feedforward, adding one or more additional (hidden) layers of neurons be-

tween the input and the output layer we get a multi-layered feedforward ANN

Figure 1.3: A two-layered feedforward ANN with three input and two output neurons
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Multi-layer perceptron

The most common feed-forward network, it has three layers: an input layer, an output layer and a

hidden layer [11]. Figure 1.2 shows multi-layered feedforward (MLF) artificial neural.

The multilayered perceptron uses the generalized delta learning rule (backpropagation of er-

rors) and in principle is able to learn and calculate any (nonlinear) function [10].

Input and output models are connected by a set of neurons structured in hidden layers, the layers

in these networks are linked by communication connections that are associated with weights which

determine the information passing through them [12].

1.3.4 ANN Training

Single layer neural network (or perceptrons) can be trained using either the Perceptron training rule

or the Adaline rule. The first rule, has an acceptable behaviour when training samples are linearly

separable and updates weights based on the error in the threshold perceptron output. The second

rule Works well even when the training samples are not linearly separable, updates weights based

on the error in the non-threshold linear combination of outputs, affords a base for backpropagation

algorithm, which can learn networks with many interconnected units.

Perceptron training rule

A perceptron is a computational unit that calculates the output based on weighted input parameters.

The process start by initializing the weights from 0 or small random numbers, for each training

sample x(i) compute the output value and update the weights.

The perceptron receives the inputs of sample x and combines them with the weights w to

compute the net input.

The net input is then passed on to the threshold function, which generates a binary output -1

or +1: the predicted class label of the sample. During the learning phase, this output is used to

calculate the error of the prediction and update the weights.
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Adaline Rule (Widrow-Hoff Rule)

In Adaline, the weights are updated based on a linear activation function. The linear activation

function y(x) is the identity function of the net input, is used for learning the weights and a thresh-

old function is used to make the final prediction, which is similar to the unit step function.

Gradient descent rule, often used as part of Adaline algorithm, it is used to find the weights

that minimize the cost function. The main idea behind gradient descent is to go down the hill of

cost function until a local or global minimum point is reached.

1.3.5 Learning Rule

In MLF networks the proper setting of the weights is adjusted by supervised training. The weights

are optimized by means of several examples input models together with their associated required

output pattern. During the training session the weights are modified according to the learning rule

[13]. The most common learning algorithm is the back-propagation learning rule.

Back Propagation Algorithm

Back propagation networks are usually layered, with each layer fully connected to the layers be-

low and above. Data input propagates forward through of each internal layer from the input layer

toward the output layer of the processing units, delivering the network response. Correction mech-

anism starts from the output units and back propagates through each internal layer to the input,

the process continue until RMS error becomes minimum and weights reaches their final state [14].

Back propagation algorithm consists of two propagation, namely forward and backward propaga-

tion.

The back-propagation algorithm involves a forward-propagating step followed by back-propagation.

Both the forward and the back propagation steps are carried out for each pattern presentation dur-

ing training. In each successive layer, every processing unit sums its inputs and then applies a

sigmoid function to compute its output. The output layer of units then produces the output of the

network [14].
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Steps for back-propagation algorithm;

1. Initialize weights to random values in a range around 0

2. Apply the k-th input training pattern

3. Forward propagate the signal till the output of the output layer,

4. Compute errors for the output layer.

5. Back propagate the error to update weights and computer errors for previous layers.

6. loop to step 2 till all training data has been cycled once (one epoch)

7. check if the total error is acceptable then terminate if not initiate another training epoch by

going to step 2.

In the back-propagation approach the weight adaption is made in the path that minimizes the

error. The back-propagation algorithm is thus necessarily a gradient based optimization method

[13]. Therefore, the gradient of the error as a function of the weights must be calculated how it is

shown in figure Figure 1.4.

Figure 1.4: An example of an error surface of an MLF as function of one weight value. The
gradient determines the change of the weight in the next iterations [13]
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1.4 Structure of a Neural Network

A neuron model receives a vectorial input with components xi for later be multiplied by the appro-

priate weights wi that are accumulated and passing the result through a non-linear transfer function

[1], [5].

Perceptron which is historically possibly the earliest artificial neuron that was proposed by

Roseblatt in 1985 is also the basic block of nearly all Artifitial Neural Networks [8], Figure 1.5

seems like a perceptron which takes several binary inputs x1, x2, ... and produces a single binary

output [9], further above mention that perceptron can be two-layered or multi-layered depending

on the topology used.

Figure 1.5: Basic model of an structure artificial neuron

Weights denoted as w1, w2, ... in the artificial model are related to the synaptic connections in

biological neurons. Managing elements are typically developed by the equation which characterize

the model of an artificial neuron as follows [1], [15],[16]:

y = f

(
N∑
i=1

wixi

)
(1.1)
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Figure 1.6: Model of an artificial neuron

The weighted sum is called the activation function, and the threshold function f (also can be a

sigmoidal, hyperbolic tangent or radial basis function [11]) is called the output function. An output

function can return more than two different values. An activation and an output function together

are called the combination function [10], Figure 1.6 shows the model of an artificial neuron, the

synapse is excitatory when the weight is positive, but if it is negative the synapses is inhibitory, this

happens because artificial neurons can get either excitatory or inhibitory inputs. Excitatory inputs

cause summing process by adding the next neuron while the inhibitory inputs cause it to subtract

[17].

Finally, is a fact that neural network consist in processing units called neurons multiplied with

weighted connections between those neurons.

1.4.1 Propagation function

Figure 1.7 shows data processing of a neuron, propagation functions receive output signals of other

neurons and transform them in order to be processed by the activation function that is why the

network input is the result of the propagation function.The calculation starts with the first hidden

layer and consequently through the other layers towards the output layer [10].



24

Figure 1.7: Data processing of a neuron,image credit:[5]

1.4.2 Activation Function

A combination function involves two parts: an activation function and output function.

Activation functions are functions used in neural networks to calculates the weighted sum of

input and biases, it is used to determine if a neuron can be fired or not [18], it correlates the output

of a neuron to its input based on the neuron’s input activity level [12]. It uses and manipulates

the presented data through some gradient processing usually gradient descent and subsequently

generate an output for the neural network, that holds the parameters in the data [18]. Activation

function can be either linear or non-linear depending on the function it represents, and are used to

control the outputs of out neural networks[18], the most frequently used activation function is the

linear activation function, implemented as a weighted sum.

Non-linear functions are needed in neural networks. It is required of a neural network to learn,

characterize and process any data and any arbitrary complex function which maps the inputs to

the outputs. Neural Networks are also known as Universal Function Approximators which, this

functions have been developed to calculate and learn any function given to them. Any possible

process can be represented as a functional computation in Neural Networks [19].

Some of the frequently non-linear functions used consist of: the threshold, piecewise linear,

sigmoid, tangent hyperbolic, and the Gaussian function [12], [20],[15], [21], [22] which also are

used in analogue neural networks.

Exist another important functions like step and saturated, the step function is called hard-

limiting transfer function because of the binary output states. The saturated linear, logistic sigmoid

and hyperbolic tangent functions are softlimiting transfer functions because of the constant neuron

output states. [1].

Observe from Equation 1.1 that the neuron as a processing node develop into the operation of
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summation of its weighted inputs [6]. Subsequently, because of its activation function, it develops

nonlinear operation f(x);

y =
1

1 + e−x
(1.2)

Sigmoid Activation Function

The most common activation function is the sigmoid function which is continuously differentiable

[8]. This function is used for predicting probability based output and has been applied successfully

in binary classification problems, it is also known as squashing function in some literature [18]. .

Taking the Equation 1.2 as a reference, the sigmoid function is developed as;

y =
1

1 + e−ax
(1.3)

From Equation 1.3 such that for;

x 7→


x→ −∞ ⇔ y → 0

x→ 0 ⇔ y = 0.5

x→∞ ⇔ y → 1

(1.4)

.

Figure 1.8 shows sigmoid function, observe that follows the conditions refers in Equation 3.1,

observe that the slope of function is given by exponential a.
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Figure 1.8: Sigmoid activation function

The sigmoid function performs a sort o f “soft” threshold that is rounded (and differentiable)

compared to step function [14].

Hyperbolic Tangent Function

There is another popular active function whose shape is rather similar to Sigmoid function ex-

pressed like;

y = tanh(ax) (1.5)

Like sigmoid in this case the considerations are the following and Figure 1.9 shows this condi-

tions ;

x 7→


x→ −∞ ⇔ y → −1

x→ 0 ⇔ y = 0

x→∞ ⇔ y → 1

(1.6)
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.

Figure 1.9: Hyperbolic Tangent activation function

S shaped curves are considering Sigmoid and Tanh, where sigmoid is limited between 0 and

1 and Tanh is limited between -1 and 1. Here, all functions with S shaped curve between 0 and 1

are called sigmoid-like functions and with S shaped curved between -1 and 1 are called Tanh-like

functions [23].

Threshold Function

The simplest active function is hard-switch limits threshold element [8] represented as Equation 1.7

and shown in Figure 1.10;

y =

1 for x ≥ 0

0 for x < 0
(1.7)

.
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Figure 1.10: Threshold activation function

Softmax Function

The Softmax function is another type of activation function used in neural computing [18]. The

softmax function is used in machine learning to give a probabilistic interpretation to outputs of clas-

sification models [24]. As the softmax function plays an important role in the machine learning

models the several approximations have been proposed. Softmax function, also called softargmax

or normalized exponential function, considering a mathematical function that allows an input vec-

tor of K real numbers and regulates it into a probability distribution comprising of K probabilities

proportional to the exponentials of the input numbers [25], [26]. The Softmax function produces an

output which is a range of values between 0 and 1 [19], with the sum of the probabilities been equal

to 1 [18]. The main difference between the Sigmoid and Softmax AF is that the Sigmoid is used in

binary classification while the Softmax is used for multivariate classification tasks [18],[19].

The softmax function is a sigmoid function normalized respect to all the input of the output
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level, the softmax function is defined by the Equation 1.8;

f(xi) =
exi∑M
j=1 e

xj
for i = 1, ...,M. (1.8)

.

After applying Softmax, each element will be in the range of 0 to 1, and the elements will add

up to 1 how it is shown in Figure 1.11.

Figure 1.11: Softmax activation function

1.5 State of Art

Research in ANNs has resulted in a variety of models and learning algorithms. There are several

ANN models considering paradigms. The differences between ANN models are their topology

and their way of learning and recalling information. The most commonly used and widely applied

model is the multi-layer perceptron (MLP) [27]. There are two main phases in the operation of any
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ANN, learning and recall phase.

Learning phase, the network is qualified so that application of a set of inputs produces the

preferred set of outputs. Learning is accomplished by sequentially applying input vectors while

adjusting network weights according to a predetermined process.

Recall phase: Deals with how the trained network processes a stimulus presented to its input

layer and produces response at its output layer. Depending on the network connections, the recall-

ing process can be a feed-forward or a feedback. A commonly used supervised learning algorithm

is the Back Propagation algorithm [14], [27]

1.5.1 Recent Advances

An interesting development with a low-power analogue complementary metal oxide semiconductor

(CMOS) artificial neuron circuit is presented in [15] called Ghomi Solution, the analogue neuron

is composed of multiplier and programmable activation function circuits. It is a four-quadrant

multiplier and has a single ended current, its programmability of activation function improves the

neural network design process while enables the proposed neuron circuit to be used properly in

learning algorithms such as back propagation.
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Figure 1.12: Modified programmable sigmoid activation function generator circuit

Figure 1.12 implementation lead to a significant reduction in power consumption and area. So,

the power consumption for neuron circuit is only 15 µW at a 1V supply voltage. The performance

uses 0.18 mm CMOS technology parameters[15].

Another recently and similiar work is proposed by [28] it is a new NMOS/PMOS design pro-

posed for realizing the sigmoid function as the activation function. Transistors are biased using

only one biasing voltage, it operates in triode and saturation regions providing an accurate approx-

imation of the sigmoid function. In the neuron presented in Figure 1.14, the input to the neuron is

the summation current from the synapses. Depending on the value of the input current, a voltage

is generated at the output node. This neuron, named a resistive-type neuron, has a resistive-like

nature. [28]
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Figure 1.13: Schematic of the proposed resistive-type sigmoidal neuron

As the paper mention, this solution use only one biasing voltage, it uses transistors in both

triode and saturation region to get the sigmoid function. The proposed is more accurately compared

to the previous design specially in linear region, while it consumes less area. It can be used in

analog implementation of activation functions for both pure analog neural networks and HNNs.

A Design of a passive resistive-type neuron is proposed in [23] to generate the hyperbolic

tangent function as the activation function. The proposed resistive-type neuron has the advantage

of not needing any biasing voltage and therefore its power consumption is low. It proposed neuron

is applied in a large neural network.
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Figure 1.14: Schematic proposed passive resistive-type neuron

The proposed neuron is a passive circuit which consists of two PMOS/NMOS transistors and

a small resistor.The standby power is zero and the operation power consumption between -200 µA

and 200 µA is 62.5 µW . The area estimation is based on the full costumed layout design of the

proposed neuron in 180 nm which it is about 39 µm2. [23]

A proposed solution is also used as a reference for this work, the proposal serves as a guide to

find a better behavior, this solution is detailed in the third chapter for a better understanding of the

applied neural network.



CHAPTER 2

SIMULATION ENVIROMENTAL

All the simulations are done in LTspice®and confirmed in Cadence®–Virtuoso®. We will show

characteristics, parameters and considerations in order to simulate the best circuit considering the

main approach about the active function that is related.

SPICE (Simulation Program with Integrated Circuits Emphasis, often written as Spice) envi-

ronment turn into an analysis platform of many design software digital and analog alike.

SPICE is the most popular software code because of its elements can be used automatically

without user interference. The program is managed from the design platform GUI while the user

operates the graphical elements. Circuit simulation programs, of which SPICE and derivatives are

the most renowned, take a text net list describing transistors, resistors, capacitors, inductors, diodes,

and others. The general equations produced are nonlinear, differential, algebraic equations which

are solved using implicit integration methods, Newton’s method and sparse matrix techniques.

The LTspice platform is very user-friendly and allows for extensive circuit analysis. Each of

the elements and functions added can be configured, as well as the schematic preferences and

waveforms. Finally we can run and visualize the behavior of the circuit at any point of operation.

There are different types of analysis and simulations that can be configured to obtain the desired

results.

2.1 Transient Analysis

A time domain transient analysis allows to plot parameters such as voltage or current against time.

If you are looking at an output you can see the behavior over a specified length of time.

34
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2.2 AC Analysis

Ac analysis provides the frequency response of your circuit. The output waveform is the bode plot

that shows the amplitude and phase across a specified frequency range, and the options for this

AC analysis are sufficient. It is possible to plot the frequency response as a bode plot, in Cartesian

coordinate plane with the real and imaginary axis and even as a Nyquist graph.

2.3 DC Sweep and Transfer Analysis

A DC Sweep is a type of simulation that lets to vary voltage or current of a specified device while

DC Transfer function calculates the low frequency gain and the input and output resistances of the

circuit.

Finally there are several steps to create your own model in LTspice. A model consists of a

subcircuit and a symbol.

There are two ways to examine a circuit in LTspice by changing the value for a particular pa-

rameter: that means change manually by entering each value and then resimulate the circuit to

view the response, or use the .step command to sweep across a range of values in a single simula-

tion run. This command is helpful since in particular this thesis pretends to perform simulations in

search of the best behavior, so a data sweep allows a better selection and processing of information.

Particularly for the development of this thesis we used a particular model, 0.18 nm technology for

the CMOS.



CHAPTER 3

PROPOSED SOLUTIONS

As mentioned in the previous chapter, Artificial Neural Networks (ANNs) have been develop suc-

cessfully and reached great success recently, the merits of the hardware-based neural networks

over those of the software-based ones are processing speed and power consumption [2].

This chapter shows the method and simulation methodologies for the analysis of the active

functions both sigmoid and softmax. It is mentioned the approach used for knowing the model

based on artificial neural network behavior, which is a requirement to simulate active functions

circuits. Furthermore, a brief description of the simulation structure is presented. Finally, is shown

comparisons between both functions.

3.0.1 Sigmoid Function

In the previous chapter had been mentioned that activation function produces the output of each

layer in the feed forward neural networks according to the value of its input. Activations functions

such as tangent hyperbolic and sigmoid are nonlinear functions and generate an S shaped curve.

But Sigmoid is used more due to the simplest hardware implementation of his derivate tangent

hyperbolic.

It has been repeatedly mentioned that sigmoid is considered as a nonlinear function and the

output range is from 0 to 1, sigmoid function is defined as Equation 1.3. Considering that analog

activation functions are generally less in area and power consumption than digital implementa-

tions[28], [29], [30]. Analog can be susceptible to mismatch and circuit variations.

From an analytical point of view the Sigmoid function can be divided into 5 main regions as

shown below.

36
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Figure 3.1: Approximation sigmoid function

y 7→



y = 0 for x < −6

y = ex

1+ex
for −6 < x < −0.6

y = 1
2

+ x
4

for −0.6 < x < 0.6

y = ex

1+ex
for 0.6 < x < 6

y = 1 for x > 6

(3.1)

.

There is another reference circuit described in [28],the goal is to design a circuit that replicates

as faithfully as possible the trend described above. The starting circuit is the one described in [28],

the solution proposed is referenced in this paper as follows;
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Figure 3.2: Schematic of Golnar proposed sigmoid solution

Where the right side of the circuit is the one intended for polarization, more precisely it must

polarize the gate of all other transistors at a voltage equal to VDD/2. The left circuit instead is

the one that takes care of the sigmoidal activation function. Also in this case you can analyze

the branches of the left circuit separately. The first branch dominates the phases where the input

current is much lower or much higher than zero, where the output voltage must be stable at 0 or

VDD respectively. While the second branch dominates the transition phase where the input current

is close to 0 and the output voltage is close to VDD/2.

In this way the circuit can be analyzed in three distinct regions how it is shown in table :

Table 3.1: Operating regions

Region Iin Vout M1 M2 M3 M4 M5 M6
I << 0 0 ≤ Vout ≤ VB − Vtn CUT-OFF SAT SAT LIN SAT SAT

< 0 VB − Vtn ≤ Vout ≤ VB
II = 0 Vout = VB CUT-OFF CUT-OFF SAT SAT SAT SAT

> 0 VB ≤ Vout ≤ VB + VtP
III >> 0 VB + Vtp ≤ Vout ≤ VDD SAT CUT-OFF LIN SAT SAT SAT

With VB = VDD/2. The transfer characteristic of the circuit is shown in Figure 3.3.



39

Figure 3.3: Schematic of Golnar proposed vs sigmoid solution

As can be seen from the image above, the circuit faithfully replicates the sigmoid behavior

especially in the linear region, showing a larger error in the two outer regions.

3.0.2 Proposed Sigmoid Function

The objective of the proposed solution is to improve the response of the circuit in regions where

VDD << VDD
2

and VDD >> VDD
2

. Compared to the starting circuit, the proposed solution has the

following architecture.

Because the transistors are changing their state from the saturation region to the cut-off region,

it can be intrinsically presumed that there are spikes in the transitions, unfortunately, these peaks

considered as noise influence directly to the total circuit, also affects to currents that are close to

zero which not allow following the function. Figure 3.4 shows the proposed circuit to approximate

the sigmoid function.
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Figure 3.4: Schematic of the proposed sigmoid neuron

Qualitative Analysis

From a qualitative point of view the structure is very similar to the reference one, where the right

circuit is concerned to provide the correct polarization of the transistors, while, again, the left

branches dominate in two distinct regions. The first dominates when the current is much lower or

much higher than zero, while the second when the current is close to zero.

The circuit shown is divided into two sections on the left side is the sigmoid function and on

the right side the bias as show in Figure 3.5.
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Figure 3.5: Schematic of the proposed sigmoidal neuron, Bias and Sigmoid function sections.

From circuit, transistors M5 and M6 are sized to develop bias voltage at Vdd/2, while transistor

M1, M2, M3, M4, M7 and M8 produce the sigmoid function. Vb1 is equal to Vb2 and are considered

as reference voltage, the aim is to bias the transistors. The length of all transistor is the same,

particularly for this proposal lengh is 1 µ m. The following Table 3.2, shows the aspect radio of

each transistor.

Table 3.2: Transistors Aspect Radio

Transistor M1=M7 M2=M8 M3=M5 M4=M6
W/L 5.3 2.7 8 1.7

In this way the circuit can be analyzed in three distinct regions, Table 3.3 below summarizes

the operation of each transistor, it operates in all regions, cut-off, saturation and lineal and input

current range is from -6nA to 6nA.
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Table 3.3: Operating regions

Region Iin Vout M1 M2 M3 M4 M5 M6 M7 M8
I << 0 0 ≤ Vout ≤ 4VT CUT-OFF LIN SAT LIN SAT SAT CUT-OFF CUT-OFF

< 0 4VT ≤ Vout ≤ VDD/2
II = 0 Vout = VDD/2 LIN LIN SAT SAT SAT SAT CUT-OFF CUT-OFF

> 0 VDD/2 ≤ Vout ≤ VDD − 4VT
III >> 0 VDD − 4VT ≤ Vout ≤ VDD LIN CUT-OFF LIN SAT SAT SAT CUT-OFF CUT-OFF

In order to obtain Vout and for ease of calculation, threshold voltage of NMOS and PMOS are

considered to be the same in all the equations, the constant K is an experimental value of 5mV.

Table 3.4 shows initial assumptions to obtain this analysis.

Table 3.4: Initial Assumptions

Parameter Value
I0,n = I0,p = I0 564 nA
Vth,n = Vth,p = Vth 400 mV
λD,n = λD,p = λD 0.0205
nn = np = n 1.3

Figure 3.6 shows the transfer characteristic with sizing proposed in Table 3.2

Figure 3.6: Comparison sigmoid function Taylor Series vs Propose
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As can be seen from the image above, compared to the previous solution, the circuitry more

faithfully replicates the sigmoid in all three regions. Moreover, compared to the previous solution,

the circuit is designed to work with a supply voltage of 500 mV compared to 1.2 V of the reference

solution. From an analytical point of view the response of the circuit has been divided into three

main regions.

Quantitative Large Signal Analysis

For a deep analysis, each region is developed to obtain Vout, In region I, considering Iin <<

0, Vout <<
VDD
2

, output voltage is shown in Equation 3.2. The input negative currents causes a

small voltage in the output. Therefore, transistor M1 turns off and M4 enters in linear operation,

while M5 and M6 are in saturation. The current which enter from input/output node is smaller for

M2 and M3. Transistors M7 and M8 are off.

Vout = 0 +
Vout − Vth

n
+ VT ln

I0,2 + I0,1

(
1− e−k

)
Iin

 (3.2)

.

While current increase, output voltage consequently increase, and this causes changes in tran-

sistor to operate in other region. How it is observed in Table 3.3, region II consider three stages,

when currents is less than zero that means negative, when the current is zero and when it is grater

than zero therefore positive. When current is negative the current from M3 is greater than current

in M4, while output voltage increase current in M3 decrease and M4 increase until currents get

cancelling each other. Finally output voltage keep increasing and current of transistor M4 is grater

than the current in M3, being in the stage when input current is positive. In region II, considering

Iin ≈ 0, Vout ≈ VDD
2

, output voltage is shown in Equation 3.3.

Vout = Iin
nVT

2I0,2λD
e
− 2Vconst+λDVDD−2Vth

2nVT +
VDD

2
(3.3)

.

In region III the input current in completely positive and it generates transistor M1 and M3
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operates in linear region. In region III, considering Iin >> 0, Vout >>
VDD
2

, output voltage is

shown in Equation 3.4.

Vout = VDD −
Vout − Vth

n
+ VT ln

I0,2 + I0,1

(
1− e−k

)
e
−VDD

VT

Iin

 (3.4)

.

Taking into account the initial assumptions from Table 3.4 and the last analysis to obtain Vout

the following Figure 3.7 shows the relation between ideal and proposed.

Figure 3.7: Ideal and the proposed (from the equations) sigmoid Function

Properties

An essential property that characterize this circuit focuses on transistors M3 and M4, by changing

its aspect radio it is possible to modify the slope of the characteristic function in the linear region
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as it is shown in Figure 3.8, maintaining Io,n = Io,p.

Wp =
µu

µp

Wn (3.5)

.

Figure 3.8: Comparison sigmoid function at different weight

Error Analysis

The following Figure 3.9 shows the perceptual error of the sigmoid function taking into account

Equation 1.3 as ideal function and the response of the circuit propose as real data. As can be

observed the highest peak identified by the green circle is the maximum error obtained in the

linear region.

ERROR(%) =
|Vout,real − Vout,ideal|

VDD

· 100 (3.6)

.



46

Figure 3.9: Error graph between real and ideal sigmoid function

Power Consumption

About power consumption, for its calculation, the voltage VDD and the current passing through the

source line are related, see Equation 3.7 .

Power = VDD · |IVDD | (3.7)

.

For proposal sigmoid solution, Figure 3.10 allows observing power consumption and identify

specific regions such as minimum and maximum power consumption and standby power.
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Figure 3.10: Power consumption proposed sigmoid function, red circle identifies the maximum
power consumption when Iin = −6nA and in the same way green circle represents the minimum
power consumption when Iin = 6nA, moreover blue circles identify standby power when Iin = 0

This proposed is considered as reference for the following analysis. The error average is 3.1

%. About average power consumption the obtained result is 4.31 nW, maximum consumption 5.30

nW, minimum 900pW and standby power consumption 4.65nW.

3.0.3 Softmax Function

As mentioned in previous chapter, the softmax function is a sigmoid function normalized respect

to all the input of the output level. Applying a softmax relates all the elements, which implies that

the distinct probabilities produced by the softmax function are interrelated.

The Softmax approximation is given by Equation 1.8, and the proposed functions is defined in

Equation 3.8.

y =
ex1

ex1 +
∑M

i=2 e
xi

(3.8)
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.

Figure 3.11shows the approximation of a Softmax function applied in analog implementation.

Figure 3.11: Schematic of a Softmax propose

The following Figure 3.12 shows three important sections to take into account in order to

understand Sigmoid function.
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Figure 3.12: Schematic of a Softmax propose

The yellow section identified with resistors let to perform the linear transformation from current

to voltage. Voltage Vin1 or Vin2 can be calculated by the following equation;

Vin1 =
VDD +R · I1

2
(3.9)

.

The three blocks in green section formed by transistors M5, M6 and M7 perform the trans-

formation from voltage to current in order to obtain an exponential relationship how is shown in

Equation 3.10

Iexp ≈ I0 · e
Vin−Vth
nVT (3.10)

.

Red section in other hand is a block that performs the analog division between input of the
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current node and the sum of the other input of the output level.

Iout ≈ Iscale ·
Iexp,1

Iexp,1 + Iexp,2
(3.11)

.

Taking the scale current into account, the following Figure 3.13 shows the behaviour of the

output current (Iout) in relation to the current I1. It can be seen how the function varies depending

on the value of this parameter, while the maximum output current value increases to this scale

current value.

From Equation 3.11, it can be observed that there is a direct dependence of the output current

Iout and the scale current Iscale, because the expressions have a direct proportional relationship.

Figure 3.13: Softmax function behavior varyingIscale

On the other hand there are also modifications in the function when the current I2 is changed,

which depending of the type of data, positive or negative, it is in charge of moving the function to

the right or left, as shown in Figure 3.14
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Figure 3.14: Softmax function behavior varying I2

Finally there is a dependence by varying resistors, it allows the function vary its slope. Fig-

ure 3.15 shows the above mentioned variation.

Figure 3.15: Softmax function behavior varying Resistance

Figure 3.16 shows the first result of this proposed that is considered as reference for the fol-
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lowing analysis. The error average is 0.61 % and the maximum power consumption 286.03 nW

Figure 3.16: Softmax function proposed results



CHAPTER 4

RESULTS

This chapter provides the simulations and main results of the thesis. As it was mentioned in the

previous chapter, the proposed sigmoid circuit is compared with the approximation of the sigmoid

function that uses Taylor series. It offers a smoother and more precision response and this design

is simulated at 180nm CMOS technology. About Softmax neuron similar results are obtained but

due to the software used and internal conditions the region closer to Vdd presents an abrupt drop in

data.

4.1 Sigmoid analysis

Starting from circuit proposed in Figure 3.4 and applying the dimensions established in Table 3.2,

the initial result obtained is shown in Figure 4.1, input data is current and it has a range from -6nA

to 6nA. Figure 4.1 shows the real response applied in Ltspice, the aim is to change the aspect radio

in order to obtain a more approximate solution to the real function taking into account the power

consumption and the minimum possible error.
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Figure 4.1: Sigmoid proposed solution applied in Ltspice

The previous Figure 4.1 mentioned shows the proposed solution very close to real sigmoid

function, the following figure allows to identify the percentage error of the relation of both figures,

it can be noticed that exist a high percentage of error in positive current input zone, but the average

eventually is within the range less than 5%.

Figure 4.2: Sigmoid percentage error between real and proposed function
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First we start by varying the NMOS transistors localized at the top of the circuit M3 and M5

from 5µm to 10µm in steps of 2µm. Figure 4.3 represent the variation previously mentioned and

consider the parameters shown in Table 4.1.

Table 4.1: Dimensions and parameters for sigmoid proposed active function Varying M3 and M5

Parameter Value
Iin -6 nA to 6 nA
VDD 500 mV
M1 = M7 5.3µm
M2 = M8 2.7µm
M3=M5 5µm to 10 µm
M4 = M6 1.7µm

Figure 4.3: Sigmoid result by varying width of M3 and M5

How we can observe the best behaviour for M3 and M5 is at 5µm of weight which is very close

to the real function. By varying transistors M4 and M5 significant changes are not sensed, transis-

tors vary from 1.4µm to 2µm in steps of 0.2µm as shown in Figure 4.4, the rest of parameters are

detail in Table 4.2.

In this case, the changes are not noticeable, basically they are all far from the real function, so

it must be identified that the voltages Vb1 and Vb2 are at VDD/2.
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Table 4.2: Dimensions and parameters for sigmoid proposed active function Varying M4 and M6

Parameter Value
Iin -6 nA to 6 nA
VDD 500 mV
M1 = M7 5.3µm
M2 = M8 2.7µm
M3 = M5 8 µm
M4=M6 1.4µm to 2 µm

Figure 4.4: Sigmoid result by varying width of M4 and M6

I decide to modify just transistor M4 until obtain the closest value to VDD/2 for this purpose

the best response is at W=1.78 µm for M4. From this modification and again varying the NMOS

M3 and M5 transistors, the results obtained are shown in Figure 4.5, and the parameters can be

identified in Table 4.3
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Table 4.3: Dimensions and parameters for sigmoid proposed active function Varying M3 and M5
at M6 fixed

Parameter Value
Iin -6 nA to 6 nA
VDD 500 mV
M1 = M7 5.3µm
M2 = M8 2.7µm
M3=M5 5µm to 10 µm
M4 1.7µm
M6 1.78µm

Figure 4.5: Sigmoid result by varying width of M3 and M5

Now the best response is in M5 at 5µm of weight, the following Figure 4.6 and Figure 4.7

shows error and power consumption respectively in order to verify its feasibility. In this case

the highest percentage of error fluctuated in 2.5%, but the goal is the average at 0.90365% what

determines the accuracy of the answer. The next Figure 4.7 shows power consumption behaviour

and maximum, minimum and standby points. The average consumption is 4.37e-09 W.
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Figure 4.6: Sigmoid percentage error between real and modified proposed function

Figure 4.7: Sigmoid power consumption



59

4.2 Softmax analysis

An analysis similar to the sigmoid function must be done in this section, in the same way applying

the schematic from Figure 4.8 the initial graph obtained is shown in figure, the initial dimensions

are shown in Table 4.4, for this study the current input goes from -100 to 100nA, and particularly

for this analysis the output data is the current variable compared with sigmoid where output data

is voltage. But it is possible convert this variable by adding a resistor.

Table 4.4: Dimensions and parameters for Softmax proposed active function Initial conditions

Parameter Value
I1 -100 nA to 100 nA
I2 0 nA
Iscale 10 nA
VDD 500 mV
M5 = M6 = M7 4µm
M1 = M2 5µm
M3 = M4 5µm
R 5MΩ

Figure 4.8: Softmax proposed solution with initial parameters

The first consideration is vary resistor R, in this way is possible to find the correct slope how it

is shown in Figure 4.9. R varies from 5 MΩ to 15 MΩ. The best response is between 8 MΩ and
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9 MΩ.

Figure 4.9: Softmax proposed solution varying R

Modifying the upper and lower transistors, is not so relevant since the curve is maintained in

spite of any change, it is possible to change the curve in the positive section by varying weight

because as you can see it does not reach the level of 10nA and it has a sharp drop, which would

cause in this area a high percentage of error. Another direct solution is to vary Iscale current until

it reaches 10nA, since this parameter controls the upper level of the curve.

The next analysis is shown in Figure 4.11 taking as reference resistor of 8 MΩ, and varying

the transistors M1, M2, M3 and M4.
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Figure 4.10: Softmax proposed solution varying M1, M2, M3 and M4.

The next figure consider the width of M1 10µm and resistor 8 MΩ because illustrates a better

behaviour. Table 4.5 shows all the parameters

Table 4.5: Softmax parameters

Parameter Value
I1 -100 nA to 100 nA
I2 0 nA
Iscale 10 nA
VDD 500 mV
M5 = M6 = M7 3µm
M1 = M2 10µm
M3 = M4 5µm
R 8MΩ
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Figure 4.11: Softmax proposed solution with modified parameters

To solve the falling behavior of the curve we consider modifying a little the Iscale, with the ob-

jective that it can reach the maximum value of the curve and the response is shown in the following

figure.

The error and power consumption are shown in the following figures respectively;

Figure 4.12: Softmax percentage error
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Figure 4.13: Softmax solution power consumption input current from-100 nA to 100 nA

An important aspect that can be highlighted is that the average error is high in the range of -100

nA to 100 nA but if the range is reduced from -50 nA to 50 nA, the average error also decreases,

reaching a value of 2.87%.

Figure 4.13 shows Power comsuption which average is 412 nW, the maximum consumption

is 3.77e-6 W. But if we reduce the input range, power consumption decrease drastically how it

is shown in figure Figure 4.14 the average power consumption decrease at 81.79 nW, Maximum

power consumption diminish at 230 nW
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Figure 4.14: Softmax solution power consumption input current from-50 nA to 50 nA

The results obtained are represented in the following table to make a comparative analysis

between all the proposed solutions. The following table relates sigmoid results;

Table 4.6: Power Consumption comparative solutions

Power Consumption AVERAGE[nW ] MAX[nW ] MIN[nW ] STANDBY[nW ]
GHOMI 4.28 5.81 2.37 4.65
GOLNAR 4.98 7.04 3.44 4.78
REFERENCE 4.31 5.30 900pW 4.65
SHAMI 369 1.56uW 0 0
PROPOSED 4.37 5.01 2.46 4.74

Finally about softmax activation function between reference and proposed considering input

range from -50nA to 50nA because shows the minimum error and using Iscale = 10nA; the max-

imum power consumption in reference solution is 286.03 nW meanwhile in proposed solution is

230 nW.

These results as mentioned above are executed in the software Ltspice, while the reference

circuit is simulated in Cadence, which is why the results are different and with a great difference,

for example in Figure 4.11, in the positive zone of the softmax function, there is an abrupt fall of

data, causing a high percentage of error in that section.



CHAPTER 5

CONCLUSION

This thesis describe brief description of activation functions specifically sigmoid and softmax func-

tion that are used in the field of deep learning and also about the importance of activation functions

in developing an effective and efficient deep learning model and improving the performance of ar-

tificial neural networks. Activation Functions can improve the learning rate. Firstly, we have given

a description of activation functions, then we have given a brief analysis about previous proposed

solutions.

CMOS analogue neurons as activation function circuits are proposed, these circuits have its

particularity for each analysis but the requirement to obtain the minimum power consumption is

developed. The performance of the proposed circuit is simulated in Ltspice using 0.18 mm CMOS

technology parameters.

The behavior of sigmoid and softmax as active functions have a basic structure composed by

NMOS and PMOS transistor which depending on the analysis, their operates in cut-off, triode and

saturation regions. In order to characterize its behavior, Ltspice design environment was used.

Since simple sigmoid activation function circuit is proposed and modifying some parameters,

we finally lead to a significant reduction in power consumption compared with similar solution as

reference. So, the maximum power consumption for neuron circuit is 5.01 nW at a 0.5V supply

voltage, showing a less power consumption respect to the previous circuits.

In the same way for the softmax function, since input range from -50nA to 50nA and supply

voltage is 0.5V the maximum power consumption in reference solution is 286.03 nW meanwhile

in proposed solution is 230 nW.

Finally, as a summary, the results the results obtained are equal or even better in terms of

power consumption with respect to the reference solutions, but considering certain aspects and

65
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certain ranges where the behavior of the function is closer to the real one. But the results achieved

have been satisfactory.
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