UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Diseño en acero y en hormigón armado y análisis de ciclo de vida de un edificio de mediana altura en la ciudad de Quito

Proyecto de Investigación y Desarrollo

Alejandra Estefanía Cervantes Puma

Pablo Torres, Ph.D. Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Magíster en Ingeniería Civil, Mención Diseño y Construcción de Estructuras Sismo Resistentes

Quito, 15 de mayo del 2021

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN

Diseño en acero y en hormigón armado y análisis de ciclo de vida de un edificio de mediana altura en la ciudad de Quito

Alejandra Estefanía Cervantes Puma

Nombre del Director del Programa:	Fernando Romo
Título académico:	Master of Science
Director del programa de:	Maestría en Ingeniería Civil

Nombre del Decano del colegio Académico:	Eduardo Alba
Título académico:	Doctor of Philosophy
Decano del Colegio:	Colegio de Ciencias e Ingenierías

Nombre del Decano del Colegio de Posgrados:	Hugo Burgos
Título académico:	Doctor of Philosophy

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombre del estudiante:

Alejandra Estefanía Cervantes Puma

Código de estudiante:

00215819

C.I.:

1724681703

Lugar y fecha:

Quito, 15 de mayo de 2021.

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

DEDICATORIA

A mi familia. En especial, a mis padres, por su apoyo incondicional durante toda mi vida.

RESUMEN

En este trabajo se realiza el análisis y diseño de una estructura de mediana altura en la ciudad de Quito. La estructura se diseña tanto en acero como en hormigón armado. Además, se realiza análisis lineal en la estructura de acero y análisis lineal y no lineal en la estructura de hormigón armado. El análisis no lineal se realiza con el objetivo de determinar el desempeño de la estructura. Finalmente, se realiza un análisis de ciclo de vida de la estructura.

Todos los análisis anteriormente mencionados se realizan en base a la normativa nacional e internacional vigente y con la ayuda del software ETABS y SAP2000.

Palabras clave: diseño estructural, hormigón armado, acero, pórticos arriostrados concéntricos, pórticos arriostrados excéntricos, muros estructurales, pushover.

ABSTRACT

In this work, the analysis and design of a medium-height structure in the city of Quito is carried out. The structure is designed in both steel and reinforced concrete. In addition, linear analysis is performed on the steel structure and linear and non-linear analysis on the reinforced concrete structure. Nonlinear analysis is carried out in order to determine the performance of the structure. Finally, a life cycle analysis of the structure is carried out.

All the aforementioned analyzes are carried out based on current national and international regulations and with the help of ETABS and SAP2000 software.

Key words: structural design, reinforced concrete, steel, concentric braced frames, eccentric braced frames, structural walls, pushover.

TABLA DE CONTENIDO

DEDICATORIA	
RESUMEN	
ABSTRACT	
TABLA DE CONTENIDO	
ÍNDICE DE TABLAS	
ÍNDICE DE FIGURAS	
INTRODUCCIÓN	
DESCRIPCIÓN DE LA ESTRUCTURA	
ANÁLISIS LINEAL EN ACERO	
Configuración estructural	
Pórticos arriostados concéntricamente.	27
Estructura con miembros compuestos	29
Diseño del tablero metálico del sistema de nico	20
Características	
Diseño	32
Propiedades de la sección compuesta.	
Máxima Longitud sin Apuntalamiento	
Resistencia de la placa colaborante con carga sobreimpuesta	
Carga muerta sobreimpuesta.	
Carga viva sobreimpuesta	
Carga total sobreimpuesta y chequeo de resistencia	34
Diseño de la losa del sistema de piso	
Disposiciones generales.	
Limitaciones del material.	35
Diseño de refuerzo por temperatura y retracción del fraguado	
Diseño de la vigueta del sistema de piso	
Predimiensionamiento de viguetas	38
Cargas gravitacionales	
Carga viva	
Carga muerta	38
Combinación de cargas.	
Solicitaciones de la estructura	
Cortante último.	
Momento ultimo.	
Diseno de miembros a sección compuesta	
Disposiciones generales.	
Dicaño por flovión	4U 11
Coneral	Δ1
Ancho efectivo	41
Vigas compuestas con conectores de corte	43
Resistencia por flexión positiva	
Diseño por corte	
Miembros de sección doble t y canales	
Revisión de deflexiones.	46
Diseño de anclajes de acero – pernos	
Anclajes de acero en vigas compuestas	49
Resistencia de pernos conectores de corte.	

	50
Requisitos de detallamiento	51
Diseño en ETABS	53
Diseño de la viga del sistema de piso	54
Predimiensionamiento de vigas	54
Cargas gravitacionales.	54
Carga viva sobre vigueta.	
Carga muerta sobre vigueta	
Carga muerta sobre viga	
Combinación de cargas.	
Solicitaciones de la estructura	
Cortante último	
Momento último	
Diseño de miembros a sección compuesta	
Disposiciones generales.	
Limitaciones del material	
Diseño por flexión	
General	
Ancho efectivo	
Vigas compuestas con conectores de corte	
Resistencia por flexión positiva	
Diseño por corte	62
Miembros de sección doble T y canales	62
Revisión de deflexiones.	63
Diseño de anclajes de acero - pernos	65
Anclajes de acero en vigas compuestas.	65
Resistencia de pernos conectores de corte.	65
Número requerido de conectores de corte	66
Diseño en ETABS.	67
Diseño nor resistencia al fuego	69
Pronósito y alcance	69
Clasificación de adificaciones en función del riesge de nórdida de vidas humanas e	
1 1 1 1 1 1 1 1 1 1	amenaza
de combustión	amenaza 69
de combustión	amenaza 69 69
de combustión Determinación de la resistencia requerida contra fuego Diseño de los elementos estructurales para la resistencia requerida	amenaza 69 69 70
de combustión Determinación de la resistencia requerida contra fuego Diseño de los elementos estructurales para la resistencia requerida	amenaza 69 69 70
de combustión Determinación de la resistencia requerida contra fuego Diseño de los elementos estructurales para la resistencia requerida Diseño por vibraciones	amenaza 69 69 70
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. 	amenaza
 Determinación de la resistencia requerida contra fuego Determinación de la resistencia requerida contra fuego Diseño de los elementos estructurales para la resistencia requerida Diseño por vibraciones Diseño para excitación producida por la caminata de las personas 	amenaza
 Determinación de la resistencia requerida contra fuego Determinación de la resistencia requerida contra fuego Diseño de los elementos estructurales para la resistencia requerida Diseño por vibraciones Evaluation criteria for human comfort Diseño para excitación producida por la caminata de las personas Diseño por vibraciones Joist panel mode	amenaza
 Classificación de cunicaciónes en función del nesgo de perduda de vidas numanas o de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joiseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Carga efectiva del panel. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Carga efectiva del panel. Girder panel mode. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Ancho efectivo. Carga efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Ancho efectivo. Carga efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración 	amenaza
 de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones. Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Ancho efectivo. Carga efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración la compuesta. Modulo dinámico de la estructura. Ancho efectivo. Carga efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración . Inercia transformada de la estructura. Ancho efectivo. Carga efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración . Inercia transformada de la sección compuesta. 	amenaza
de combustión de la resistencia requerida contra fuego Determinación de la resistencia requerida contra fuego Diseño de los elementos estructurales para la resistencia requerida Diseño por vibraciones Evaluation criteria for human comfort Diseño para excitación producida por la caminata de las personas Diseño por vibraciones Joist panel mode Módulo dinámico de la estructura Ancho efectivo para vibración Peso soportado por unidad de longitud Deformaciones Frecuencia del piso Momento transformado de inercia de la vigueta y la losa de hormigón Carga efectivo Carga efectiva del panel Módulo dinámico de la estructura. Ancho efectivo Carga efectiva del panel Módulo dinámico de la estructura. Ancho efectivo Carga efectiva del panel. Módulo dinámico de la estructura. Ancho efectivo para vibración Peso soportado por unidad de longitud. Perecuencia del panel. Módulo dinámico de la estructura. Ancho efectivo. Deformaciones. Peso soportado por unidad de longitud. Deformaciones. Peso soportado por unidad de longitud. Deformaciones. Peso soportado por unidad de longitud. Deformaciones. Peso soportado por unidad de longitud. Deformaciones. Distence de la sección compuesta Peso soportado por unidad de longitud.	amenaza
de combustión de la resistencia requerida contra fuego	amenaza
de combustión. Determinación de la resistencia requerida contra fuego. Diseño de los elementos estructurales para la resistencia requerida. Diseño por vibraciones . Evaluation criteria for human comfort. Diseño para excitación producida por la caminata de las personas. Diseño por vibraciones. Joist panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Inercia transformada de la sección compuesta. Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Ancho efectivo. Carga efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración. Frecuencia del piso. Momento transformado de inercia de la vigueta y la losa de hormigón. Ancho efectiva del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración Inercia transformada de la sección compuesta. Frecuencia del panel. Girder panel mode. Módulo dinámico de la estructura. Ancho efectivo para vibración Inercia transformada de la sección compuesta. Frecuencia del piso. Frecuencia del piso. Morta de la sección compuesta Peso soportado por unidad de longitud. Deformaciones. Frecuencia del piso.	amenaza

Ancho efectivo	83
Carga efectiva del panel	84
Combined panel mode	84
Frecuencia del sistema	84
Carga efectiva del sistema	84
Aceleración del sistema.	85
Cortante basal de diseño según la norma NEC – SE – DS	86
Espectro elástico de diseño (componente horizontal).	86
Factor de zona	87
Coeficientes de perfil de suelo F _a , F _d y F _s	88
Fa: Coeficiente de amplificación de suelo en la zona de período corto	89
F _d : Amplificación de las ordenadas del espectro elástico de respuesta de	
desplazamientos para diseño en roca	89
Fs: Comportamiento no lineal de los suelos	90
Razón entre la aceleración espectral Sa (T=0.1s) y el PGA para el período de retorno	
seleccionado	90
Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicaciór	1
geográfica del proyecto	90
Períodos límite de vibración	91
Coeficiente de Importancia I	92
Factor de Reducción de Resistencia Sísmico R	92
Coeficientes de configuración estructural	93
Configuración en Elevación	93
Configuración en planta	93
Irregularidades y coeficientes de configuración estructural	94
Periodo fundamental de vibración.	96
Cortante basal	96
Fuerzas sísmicas con análisis estático y dinámico	97
Análisis estático	97
Análisis dinámico	97
Verificación de derivas de entreniso según NFC-SF-DS	102
Sentido X - PRM	104
Sentido Y - PAC	105
Verificación de modos vibratorios	106
	100
Diseno estructural de los porticos resistentes a momento.	. 107
Diseno de vigas del PKM	107
Solicitaciones maximas a corte y momento.	
clasification de la section y verification de la relation ancho/espesor	108 1
Varificación de los estados límitos de resistor sie	108 108
Verificación de los estados límites de resistencia Estado límite de fluencia	108 108 109
Verificación de los estados límites de resistencia Estado límite de fluencia Estado límite de corte	108 108 109 109
Verificación de los estados límites de resistencia Estado límite de fluencia Estado límite de corte Verificación de las condiciones de servicio	108 108 109 109 109 109
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales	108 108 109 109 109 110 111
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016	108 108 109 109 109 110 111 112
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PBM	108 108 109 109 110 111 112 114
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte. momento y axial	108 108 109 109 109 110 111 112 114 114
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor.	108 108 109 109 110 111 112 114 114 115
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia.	108 108 109 109 110 111 112 114 114 115 116
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión.	108 108 109 109 110 111 112 114 114 115 116 116
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión. Diseño por corte.	108 108 109 109 110 111 112 114 114 115 116 118
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión. Diseño por corte. Estado límite de fluencia.	108 108 109 109 110 111 112 114 114 115 116 118 119
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión. Diseño por corte. Estado límite de fluencia.	108 108 109 109 110 111 112 114 114 115 116 118 119 119
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión. Diseño por corte. Estado límite de fluencia. Fluencia. Pandeo lateral-torsional.	108 108 109 109 110 111 112 114 114 115 116 118 119 119 119
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión. Diseño por corte. Estado límite de fluencia. Fluencia. Pandeo lateral-torsional. Estado límite de flexo-compresión.	108 108 109 109 110 111 112 114 114 115 116 118 119 119 119 120
Verificación de los estados límites de resistencia. Estado límite de fluencia. Estado límite de corte. Verificación de las condiciones de servicio. Requerimientos adicionales. Comprobación resultados ETABS 2016. Diseño de columnas del PRM. Solicitaciones máximas a corte, momento y axial. Clasificación de la sección y verificación de la relación ancho/espesor. Verificación de los estados límites de resistencia. Resistencia a compresión. Diseño por corte. Estado límite de fluencia. Fluencia. Pandeo lateral-torsional. Estado límite de flexo-compresión. Comprobación resultados ETABS 2016.	108 108 109 109 110 111 112 114 114 115 116 116 118 119 119 119 120 121

Diseño estructural de los pórticos arriostrados concéntricos	126
Diseño de vigas del PAC	
Solicitaciones máximas a corte y momento	
Diseño por flexión	
General	
Ancho efectivo	
Vigas compuestas con conectores de corte	
Resistencia por flexión positiva	
Diseño por corte	
Miembros de sección doble T y canales	
Revisión de deflexiones.	
Diseño de anclajes de acero – pernos	
Anclajes de acero en vigas compuestas	
Resistencia de pernos conectores de corte.	
Número requerido de conectores de corte	
Comprobación resultados ETABS 2016	
Diseño de la Columna del PAC.	
Solicitaciones máximas a corte, momento y axial.	
Clasificación de la sección y verificación de la relación ancho/espesor	
Verificación de los estados límites de resistencia.	
Resistencia a compresión	
Diseño por corte	
Estado límite de fluencia.	
Fluencia.	
Pandeo lateral-torsional.	
Estado limite de flexo-compresion	
Comprobacion resultados ETABS 2016	
Diseno de riostras del PAC.	
Unasilicación de las este des límites de resistencia	
Verificación de los estados limites de resistencia.	
Estado límite de tracción	
Estado IIIIIte de l'accion	
Disoño por Canacidad	
Discho por capacidad	
Diseño Estructural de las Columnas a Carga Vertical	156
Solicitaciones de las columnas del sistema gravitacional	
Solicitaciones máximas a corte, momento y axial	
Clasificación de la sección y verificación de la relación ancho/espesor	
Verificación de los estados límites de resistencia	
Diseño por fuerza axial	
Limitaciones	
Resistencia a la compresión	
Transferencia de carga	
Fuerzas externas aplicadas a la sección de acero	
Conexiones de corte	160
Conexión de la Riostra del Pórtico Arriostrado Concéntrico	
Miembros de los pórticos arriostrados concéntricos	
Diseño	
Resistencia esperada a tensión de la riostra.	
Resistencia esperada a compresión de la riostra	
Tamaño de la soldadura entre la riostra y la cartela	
Determinación de la longitud de traslapo requerida entre riostra – cartela	
Chequeo de que la conexión del arriostramiento puede acomodarse al pandeo	de la riostra. 165
Determinación del espesor de la cartela para el estado límite de fluencia a tens sección Whitmore	sión en la
Resistencia al desgarramiento en bloque	
Geometría de la cartela	

Chequeo a esfuerzo de fluencia de la sección Whitmore	169
Chequeo de pandeo por flexo-compresión en la sección Whitmore	170
Chequeo del área neta efectiva de la riostra	172
Diseño de la soldadura de conexión entre la riostra y las barras de refuerzo	173
Determinar las fuerzas en las superficies de contacto (cartela-viga-columna)	174
Diseño de la soldadura de conexión alma de la viga a la columna	175
Diseño de la soldadura de conexión cartela-viga	176
Diseño de la soldadura de conexión aleta de la viga a la columna	177
Diseño de la soldadura de conexión cartela-columna	177
Conexión Placa Extendida	
Secciones de la estructura	
Limitantes de geometría conexión 4E	
Especificaciones de Conexión 4E	
Aiuste de pernos.	
Requisitos de instalación	
Control de calidad y garantía de calidad	
Diseño placa extremo.	
Momentos v cortantes últimos.	
Diámetro del perno requerido	
Grosor requerido de placa	
Fuerza actuante en el ala de la viga.	
Resistencia a fluencia del cortante	
Resistencia a rotura del cortante	
Esfuerzo de rotura por cortante en los pernos	
Desgarramiento y aplastamiento de la placa de extremo	
Diseño placa extremo – columna	
Chequear el ala de la columna por flexión	
Flexión en la aleta de la columna	
Fluencia local del alma de la columna	
Pandeo en el alma de la columna	
Arrugamiento en el alma de la columna	
Requerimiento de platinas de continuidad por resistencia	
Espesor y ancho mínimo de la placa de continuidad	
Soldaduras de placas de continuidad.	
Chequeo de la zona de panel	194
Tamaño de las placas de enchape	195
Placa Base a Momento	
Pórticos resistentes a momento.	
Solicitaciones	197
Diseño de la placa base.	
Pórticos arriostrados concéntricos.	
Solicitaciones	
Diseño de la placa base	
ΑΝΑΊ ΙSIS Ι ΙΝΕΑΙ ΕΝ ΗΟΡΜΙζΟΝ ΑΡΜΑΠΟ	208
Estructuración del edificio	
Configuración en elevación	
Configuración en planta	
Irregularidades y coeficientes de configuración estructural.	
Cortante basal de diseño según la norma NEC – SE – DS y justificación de	los
valores obtenidos	213
Cortante basal de diseño	213
Espectro elástico de diseño (componente horizontal)	213
Factor de zona	213
Coeficientes de perfil de suelo Fa, Fd y Fs	214
Razón entre la aceleración espectral Sa (T=0.1s) y el PGA para el período de r	etorno
seleccionado	

Factor usado en el espectro de diseño elástico, cuyos valores dependen	de la ubicación
geográfica del proyecto	214
Coeficiente de Importancia I	215
Factor de reducción de resistencia sísmico R	215
Coeficientes de configuración estructural.	215
Periodo fundamental de vibración	215
Comportamiento global del edificio	
Verificación de derivas de entrepiso según NEC-SE-DS	
Sección de muro inicial.	219
Sismo en dirección X	
Sismo en dirección Y	
Deriva global de techo Du/H, comparada contra mínimo de ACI318-19	
Desplazamiento y deriva de techo en dirección X	
Desplazamiento y deriva de techo en dirección Y	
Derivas inelásticas de piso X & Y	
Deriva global X & Y	226
Sentido X	226
Sentido Y	
Coeficiente de estabilidad para deformaciones y cargas obtenidas pa	ara el sismo
de diseño	
Cargas verticales por piso, combinación D+L	
Cortantes sísmico por piso	
Derivas por piso calculada en el centro de masa	
Cálculo del índice de estabilidad, Qi	230
Diseño a corte de la sección crítica de uno de los muros T	
Pier en la dirección X.	
Pier en la dirección Y.	
Cuantía de acero requerida	234
Diseño a flexocompresión	236
Dirección X	
Dirección Y.	
Dissão do elementos do hordo	244
Disello de elementos de borde	
Para la dirección V.	
Fala la ullection 1	
Eje nietro para la dirección positiva X	247
Fie neutro para la dirección nositiva V	240 249
Fie neutro para la dirección negativa V	250
Flemento de horde – caso 2 v 3	
Elemento de borde – caso 1	252
Elemento de borde – caso 2 v 3	254
Elemento de borde – caso 4	
Elemento de borde – caso 1.	
Elemento de borde – caso 2 v 3	
Elemento de borde – caso 4.	
Verificación a Corte la sección crítica del muro considerando amnlif	icación
dinámica v sobrerresistencia a flexión	
Dirección en X	257
Dirección en Y	
ANÁLISIS NO LINEAL EN HORMIGÓN ARMADO	266
Simplificación del modelo.	
Carga puntual muorta	
Carga puntual ninerta	2/9 / 2. م ع د
Carga puntual viva	

Carga distribuida muerta	
Carga distribuida viva	
Fuerza resultante muerta	
Fuerza resultante viva	
Validación de periodos	
Modelo inicial	
Modelo simplificado	
Definición del comportamiento no lineal de los muros	
Elemento de borde – caso 1: confinado	
Elemento de borde – caso 2: confinado	
Elemento de borde – caso 3: confinado	291
Caso 1 – 4: no confinado	
Caso 2 – 3: no confinado	
Análisis Estático No Lineal	
Dirección X (positiva y negativa)	
Dirección Y (positiva y negativa)	
Validación general del modelo	
Validación de los resultados comparando la flexión que toman los r	nuros al fluir
con la capacidad obtenida a partir de un análisis seccional	
Curvas de capacidad	
ANÁLISIS DE CICLO DE VIDA	
CONCLUSIONES	
REFERENCIAS	

ÍNDICE DE TABLAS

Tabla 1. Configuración de resistencia sísmica	25
Tabla 2. Peso de la sección compuesta	33
Tabla 3. Mallas Armex tipo R con apertura cuadrada	36
Tabla 4. Carga muerta sobre la vigueta	55
Tabla 5. Composite Deck Fire Resistance Ratings	70
Tabla 6. Parámetros de las series de Fourier para individuos	
Tabla 7 Carga viva superimpuesta recomendada para análisis de vibración	78
Tabla 8 Valores recomendados para amortiguamiento	70
Tabla 0. Coeficiente de amplificación de suelo en la zona de período corto	05 80
Table 10. Amplificación de las ordenadas del espectre elístico de respueste de	09
desentes meno diseño en nece	00
Table 11. Comportante no lineal de los suelos	89
Tabla 11. Comportamiento no lineal de los suelos	90
Tabla 12. Variables para el espectro elastico de diseno	91
Tabla 13. Coeficiente de Importancia I	92
Tabla 15. Centros de masa y rigidez obtenidos de ETABS	94
Tabla 17. Relación entre derivas máximas de diafragma y derivas promedio	94
Tabla 18. Coeficientes de configuración en planta y elevación	95
Tabla 19. Cortante basal en X	97
Tabla 20. Cortante basal en Y	97
Tabla 24. Síntesis de la filosofía de diseño	102
Tabla 25. Valores de deriva máximos	102
Tabla 26. Relación de masas paricipantes	106
Tabla 27. Miembros de los pórticos arriostrados concéntricos	162
Tabla 28. Secciones de la estructura	179
Tabla 29 Limitantes de geometría conexión 4E	179
Tabla 30 Chequeo de limitantes de geometría conexión 4E	180
Tabla 31. Sistemas estructurales de hormigón armado	209
Tabla 37. Centros de masa y rigidez	207
Table 32. Centros de masa y figlica	211
Table 33. Integulatidad torsional de la estructura	212
Tabla 34. Contante basal	210
Tabla 35. Valores maximos de deriva	219
Tabla 36. Derivas inelasticas de piso en dirección X y Y	223
Tabla 3/. Fuerzas por piso de la combinación D+L	228
Tabla 38. Cortante sísmico por piso	228
Tabla 39. Fuerza axial por piso	229
Tabla 40. Derivas de piso calculadas en el centro de masa	229
Tabla 41. Indice de estabilidad	230
Tabla 42. Fuerzas de diseño de los piers	237
Tabla 43. Desplazamientos en los centros de los diafragmas	245
Tabla 44. Refuerzo transversal para elementos de borde	252
Tabla 45. Variables para el detallamiento de refuerzo transversal	253
Tabla 46. Factor de sobreresistencia	256
Tabla 47. Relación de momento probable sobre momento último	260
Tabla 48. Fuerzas en los pier	264
Tabla 49. Resumen de masas por diafragma	274
Tabla 50. Área tributaria	
Tabla 51 Periodos modales y frecuencias	282
Tabla 52 Periodo del modelo simplificado	282
1 uotu 52. 1 ontouo uot mouoto simpimoudo	205

Tabla 53. Periodo	os modales y f	frecuencias	3
-------------------	----------------	-------------	---

ÍNDICE DE FIGURAS

Figura 1. Vista en elevación de la estructura	. 21
Figura 2. Vista en planta de la estructura	. 22
Figura 3. Configuración estructural en acero	. 23
Figura 4. Disposición de vigas y viguetas	. 24
Figura 5. Vista en elevación de los PRM	. 25
Figura 6. Vista en planta de los PRM	. 26
Figura 7. Vista en elevación de los PAC	27
Figura 8. Vista en planta de los PAC	28
Figura 9. Perfiles metálicos según sistema estructural y gravitacional	. 29
Figura 14. Distribución de cargas en la viga	. 56
Figura 15. Detalle constructivo de un sistema de piso	. 71
Figura 16. Respuesta de un sistema con masa-resorte-amortiguado ante una fuerza	
sinusoidal	. 72
Figura 17. Limites de tolerancia recomendados para confort humano	.74
Figura 18 Procedimiento para evaluar la vibración	75
Figura 19 Cortante basal de diseño V - NFC	86
Figura 20 Espectro elástico de diseño	87
Figure 21. Zones sísmices de Ecuedor	88
Figura 22 Factor 7 por zona sísmica	. 00
Figure 22. Pactor Σ por zona sistinca	. 00
rigura 25. Kazon entre la acceleración espectral Sa (1–0.15) y el FOA para el periodo	
Elevere 24. Esster usado en al espectro de diseño aléstico, suves valores denorden de	. 90
rigura 24. Factor usado en el espectro de diseño elastico, cuyos valores dependen de	10
Eisen 25 Devis des l'unite de proyecto.	
Figura 25. Periodos limite de vibración.	
Figura 26. Espectro elastico de diseno en aceleraciones	91
Figura 2/. Periodo de la estructura	. 96
Figura 29. Caso de carga en X	. 98
Figura 30. Caso de carga en Y	. 99
Figura 31. Ajuste de corte basal	100
Figura 32. Ajuste del cortante dinámico	101
Figura 33. Control de derivas en sentido X	104
Figura 34. Control de derivas en sentido Y	105
Figura 35. Vista en planta de los PRM	107
Figura 36. Solicitaciones máximas a corte y momento de la viga del PRM	108
Figura 37. Deflexión vertical máxima	110
Figura 38. Solicitaciones máximas a cortante y momento de la columna	114
Figura 39. Solicitaciones máximas a axial de la columna	115
Figura 40. Vista en planta de los PAC	126
Figura 43. Solicitaciones máximas a corte y momento	139
Figura 44. Solicitaciones máximas a axial.	140
Figura 45. Solicitación máxima a axial de la riostra.	148
Figura 46. Solicitaciones máximas a corte y momento	156
Figura 47. Solicitaciones máximas a axial	157
Figura 49. Solicitaciones típicas en conexiones de base de columna	197
Figura 50. Placa base	198
Figura 51. Placa base	203
Figura 52. Vista en 3D de la estructura	208
Figure 53 Vista en planta de la estructura	210
1 15010 55. Vibu on plana do la ostruotara	<u>~</u> 10

Figura 54. Espectro elástico de diseño	. 214
Figura 55. Periodo fundamental de vibración	. 216
Figura 56. Sección de muro inicial	. 220
Figura 57. Sección de muro inicial fisurado	. 220
Figura 58. Sección de muro inicial	. 221
Figura 59. Sección de muro inicial fisurado	. 221
Figura 60. Derivas en dirección X	. 222
Figura 61. Derivas en dirección Y	. 223
Figura 62. Indice de desempeño	. 224
Figura 63. Vista en planta de la estructura	. 231
Figura 64. Propiedades del hormigón	. 233
Figura 66. Cuantía de refuerzo mínima	. 235
Figura 67. Definición de pier labels en ETABS	. 236
Figura 68. Asignación de acero longitudinal en el muro	. 237
Figura 69. Diagrama de interacción en X	. 240
Figura 70. Diagrama de interacción en X	. 241
Figura 71. Diagrama de interacción en X	. 241
Figura 72. Diagrama de interacción en Y.	. 242
Figura 73. Diagrama de interacción en Y	242
Figura 74. Diagrama de interacción en Y	243
Figure 75 Section Designer SAP2000	246
Figure 76 Muro en section designer	247
Figura 77 Momento curvatura dirección X positiva	247
Figura 78 Momento curvatura dirección X negativa	248
Figure 79 Momento curvatura dirección Y nositiva	249
Figura 80 Momento curvatura dirección V negativa	250
Figura 81 Casos de confinamiento en el muro	250
Figura 82 Detallamiento de refuerzo transversal	252
Figura 83 Detallamiento de refuerzo transversal	253
Figura 84 Diagrama de interacción en dirección X	255
Figura 85. Diagrama de interacción en dirección X	257
Figura 86. Diagrama de interacción en dirección X	. 257
Figura 80. Diagrama de interacción en dirección V	258
Figura 88 Diagrama de interacción en dirección V	258
Figura 80. Diagrama de interacción en dirección V	. 250
Figura 00 Modeles estructurales	. 230
Figura 90. Modelos estructurales	. 200
Figura 91. Esquenta de los procedimientos de analisis metasucos	. 201
Figura 92. Propiedades del acero	. 208
Figura 93. Curva estuerzo-deformación del acero	. 208
Figura 94. Relacion estuerzo-deformación propuesta para el normigon	. 209
Figure 95. Definition de materiales	. 270
Figura 96. Asignación de las propiedades no lineales del normigon confinado	.2/0
Figura 9/. Curva estuerzo-deformación del normigon confinado	. 271
Figura 98. Asignación de las propiedades no líneales del normigon no confinado	. 272
Figura 99. Curva estuerzo-deformación del hormigon no continado	. 272
Figura 100. Vista en planta del modelo simplificado	. 273
Figura 101. Asignación de masas	. 275
Figura 102. Resumen de asignación de masas	. 275
Figura 103. Resumen de asignación de masas	. 276
Figura 104. Asignación de diafragmas	. 277

Figura	05. Tipos de diafragmas	277
Figura	06. Vista en 3D de la estructura	278
Figura	07. Fuente de masas	279
Figura	08. Asignación de cargas en el muro	280
Figura	09. Asignación de cargas en el muro	281
Figura	10. Periodo del modelo inicial	282
Figura	11. Definición de propiedades no lineales	285
Figura	12. Curva esfuerzo-deformación del hormigón confinado	286
Figura	13. Curva esfuerzo-deformación del hormigón confinado	287
Figura	14. Curva esfuerzo-deformación del hormigón confinado	288
Figura	15. Curva esfuerzo-deformación del acero	289
Figura	16. Asignación de las propiedades no lineales del refuerzo longitudinal	290
Figura	17. Asignación de las propiedades no lineales del refuerzo longitudinal	291
Figura	18. Asignación de las propiedades no lineales del refuerzo longitudinal	292
Figura	19. Asignación de las propiedades no lineales del refuerzo longitudinal	293
Figura	20. Asignación de las propiedades no lineales de los muros	293
Figura	21. Asignación de las propiedades no lineales de los muros	294
Figura	22. Asignación de las propiedades no lineales de los muros	295
Figura	23. Vista en 3D de la asignación de las propiedades no lineales de los mu	ros296
Figura	24. Definición de la carga estática	297
Figura	25. Nudo del centro de masa	298
Figura	26. Control del análisis estático no lineal	298
Figura	27. Definición del caso de carga Push +X	299
Figura	28. Definición del desplazamiento de control	300
Figura	29. Definición del caso de carga Push +Y	301
Figura	30. Definición del desplazamiento de control	302
Figura	31. Resumen de los estados de carga	303
Figura	32. Componentes de la energía acumulada	303
Figura	33. Momento curvatura SAP2000	304
Figura	34. Capacidad del muro	305
Figura	35. Curva de capacidad en X	305
Figura	36. Curva de capacidad en Y	306
Figura	37. Modelo bilineal de la curva de capacidad +X	306
Figura	38. Modelo bilineal de la curva de capacidad -X	307
Figura	39. Modelo bilineal de la curva de capacidad +Y	307
Figura	40. Modelo bilineal de la curva de capacidad -Y	308
Figura	41. Evaluación EDGE - Energía	312
Figura	42. Evaluación EDGE – Agua	313
Figura	43. Evaluación EDGE - Materiales en Hormigón Armado	313
Figura	44. Evaluación EDGE -Materiales en Acero	314

INTRODUCCIÓN

En el presente trabajo de titulación se realiza el diseño estructural de un edificio de mediana altura en la ciudad de Quito. El diseño estructural se realiza en base a la normativa vigente en Ecuador y normativa internacional. Además, el diseño estructura se realiza en acero y en hormigón armado.

En el diseño estructural de acero se utilizan dos sistemas estructurales, el primero es compuesto por pórticos resistentes a momento y, el segundo, por pórticos arriostrados concéntricos. En cuanto al diseño de hormigón, se realiza un diseño con muros estructurales como sistema resistente a fuerzas laterales. Además, se determina el desempeño de la estructura a través del uso de procedimientos estáticos no lineales.

La importancia de realizar un correcto diseño estructural es debido a que el Ecuador está ubicado en una zona altamente sísmica. Esto ocasiona que exista una gran cantidad de eventos sísmicos y, como se observó el 16 de abril de 2016, una gran cantidad de infraestructura afectada y pérdidas humanas en caso de no existir un correcto diseño y/o construcción.

DESCRIPCIÓN DE LA ESTRUCTURA

La estructura a diseñar está compuesta por siete pisos y dos subsuelos y se encuentra ubicada en la ciudad de Quito, Pichincha. Esta será construida en un perfil de suelo tipo C. Además, el uso de la estructura es residencial. A continuación, se muestra la vista en elevación y la vista en planta tipo de la estructura.

Figura 1. Vista en elevación de la estructura

La estructura se diseñará en acero y en hormigón armado con el objetivo de realizar un análisis comparativo entre el comportamiento estructural de ambos diseños.

ANÁLISIS LINEAL EN ACERO

Configuración estructural

En cuanto a la configuración estructural, el sistema de resistencia sísmica consiste en Pórticos Resistentes a Momentos en un dirección y Pórticos Arriostrados Concéntricos en la otra dirección. En cuanto al sistema de piso, se utilizarán vigas y viguetas en sistema compuesto con perfiles W. Y, el sistema gravitacional estará compuesto por columnas tubulares rellenas de hormigón.

Figura 3. Configuración estructural en acero

Por otro lado, para el diseño de sistema de piso las vigas se disponen en el sentido corto, mientras que, las viguetas se disponen en el sentido largo y a una separación de 1.63 metros.

El sistema de resistencia sísmica está compuesto por Pórticos Resistentes a Momentos en un dirección y Pórticos Arriostrados Concéntricos en la otra dirección, ambos sistemas con columnas de perfil W. Además, para los pórticos que tomen únicamente carga vertical, se diseñarán columnas rellenas de hormigón. Es importante mencionar que el sistema, en este caso, debe diseñarse como un sistema estructural **especial**. Los sistemas especiales requieren verificaciones y detalles constructivos más estrictos. Esto debido a que se debe asegurar un comportamiento muy dúctil y, esto se logra, mediante la utilización de un factor de modificación de respuesta R mayor (y, por ende, la acción sísmica es menor).

Tabla 1.	Configura	ación de	resistenc	ia sísmica
	0			

Configuración de Resistencia Sísmica		
Sentido X	PRM	
Sentido Y	PAC	

Figura 5. Vista en elevación de los PRM

Los pórticos no arriostrados o pórticos resistentes a momento (PRM) son ensambles rectilíneos de vigas y columnas conectadas entre sí mediante soldaduras, pernos o ambos. Los miembros componentes de estos pórticos quedan sometidos principalmente a momentos flectores y esfuerzos de corte, que controlan su diseño, razón por la que también se los denomina "pórticos a momentos". Además, estos pórticos se caracterizan por su elevada capacidad de disipación de energía. Y, en este proyecto, se utilizarán **pórticos especiales (SMF)** con lo establecido en las especificaciones ANSI/AISC 341-16.

A continuación, se muestra la vista en planta de la estructura. En donde se identifican los PRM en rosado.

Figura 6. Vista en planta de los PRM

Un aspecto fundamental en el diseño de los PRM son las conexiones vigacolumna, las cuales son necesarias desde el punto de vista constructivo y deben asegurar que las vigas pueden desarrollar su capacidad a flexión.

Pórticos arriostados concéntricamente.

Los pórticos arriostrados poseen barras diagonales o riostras las cuales modifican significativamente el comportamiento del pórtico. Esto debido a que se forma una estructura reticulada. Además, su nombre se debe a que las conexiones de las riostras se diseñan de modo tal que se eviten excentricidades. Esta es una condición de diseño usual en cualquier estructura reticulada para evitar que se generen esfuerzos de flexión y corte en las barras que la componen.

Las riostras se pueden disponer según diferentes configuraciones y la adopción de la configuración más conveniente en cada caso se realiza a partir de consideraciones

estructurales, funcionales y eventualmente aspectos estéticos. En este caso, se ha utilizado una configuración de **riostas en X**.

A continuación, se muestra la vista en planta de la estructura. En donde se identifican los PAC en rojo.

Es importante mencionar que, las acciones laterales producen esfuerzos axiales de acción y compresión en la estructura. En cuanto al comportamiento, las columnas resisten principalmente el momento de vuelco originado por las cargas laterales. Por otro lado, las vigas y riostras resisten las fuerzas de corte horizontal. Finalmente, estos pórticos se caracterizan por una elevada rigidez lateral, lo que permite un adecuado control de los desplazamientos.

Estructura con miembros compuestos.

Es importante mencionar que, se pueden combinar miembros compuestos rellenos, embebidos, vigas compuestas con conectores de corte, losas compuestas y eventualmente miembros de acero o de hormigón armado, según los requerimientos particulares de cada caso.

En el caso de PRM, es bastante usual combinar columnas compuestas, embebidas o rellenas, con vigas de acero estructural. Esta solución permite diseñar pórticos cuyas columnas presentan una rigidez y resistencia elevada, mientras que las vigas se montan en obra rápidamente, reduciendo los tiempos de construcción y disminuyendo el uso de encofrados y apuntalamiento. Sin embargo, debido a que las conexiones de este tipo de columnas no están precalificadas, se opta por un diseño que cumpla la normativa, únicamente utilizando perfiles W.

Figura 9. Perfiles metálicos según sistema estructural y gravitacional

Diseño del tablero metálico del sistema de piso

Para el diseño del tablero metálico se usará "Novalosa" que es una lámina de acero estructural galvanizado de forma trapezoidal que es utilizada para la construcción de losas compuestas, como refuerzo, eliminando la necesidad de varillas inferiores, alivianamientos y encofrados.

Una vez que el hormigón alcanza una resistencia mínima de f'c=210 kg/cm2, éste interactúa monolíticamente con la NOVALOSA a través de los resaltes que posee, formando un sistema compuesto.

La losa compuesta es diseñada como una losa de hormigón armado con la placa de acero Novalosa actuando como refuerzo al momento positivo. La losa es diseñada como simplemente apoyada bajo cargas uniformemente repartidas. Este análisis es realizado utilizando la teoría de la sección transformada, de donde se obtienen las propiedades de la sección compuesta.

Si la luz o separación entre apoyos excede la máxima permisible sin apuntalamiento para condición de apoyo doble, se asume que la NOVALOSA deber estar apuntalada, en el momento de la fundición, y hasta que el hormigón fragüé.

La estructura de acero y concreto vinculada de modo apropiado mediante conectores, permite que los dos materiales trabajen como una unidad para reducir las deformaciones y resistir de manera solidaria las cargas que se le imponen al conjunto expresando al máximo lo mejor de sus características individuales.

La característica fundamental que define a la construcción compuesta es la acción simultánea de dos materiales de características y comportamiento diferentes. Esto quiere decir, en el caso de elementos compuestos, que ambos materiales responden como uno solo, y en el caso de sistemas estructurales, los elementos de concreto reforzado y elementos de acero estructural trabajan conjuntamente para resistir las solicitaciones.

Las ventajas de las construcciones compuestas son numerosas entre las cuales se pueden mencionar la reducción en el peso de la estructura de acero (hasta en un 30%), reducción de los costos en la cimentación al emplear una estructura menos pesada, reducción de deflexiones por cargas vivas y muertas sobreimpuestas, vigas de menor altura, también la posibilidad de aumentar las luces entre apoyos, generación de entrepisos más rígidos, lo que conlleva a reducir los costos en general.

Características.

- NOVALOSA es diseñada y fabricada de acuerdo con las normas: ANSI/ ASCE 3-91 (Standard for the Structural Design of Composite Slabs), NTE - INEN 2397 (Placa Colaborante de Acero), y a las especificaciones del Steel Deck Institute (SDI) para Placa Colaborante de Acero.
- El acero usado para la fabricación de NOVALOSA es de grado estructural y cumple con la norma ASTM A653, con galvanizado G90 (Z275) y un límite de fluencia mínimo de 37 ksi (2600 kg/cm2).
- El hormigón a utilizarse debe estar conforme con los capítulos correspondientes del ACI 318, con un esfuerzo mínimo a la compresión f'c=210 kg/cm2. No deberán usarse aditivos que contengan sales con cloruros que puedan corroer la NOVALOSA.
- En base a los códigos de diseño mencionados anteriormente, se debe fundir la losa con una altura mínima de 5 cm sobre la cresta de la NOVALOSA.
- En caso de que se utilice malla electrosoldada por esfuerzos de temperatura y retracción generada por fraguado o para refuerzo negativo, esta armadura deberá estar localizada entre 2.0 y 2.5 cm bajo el nivel superior de la losa de hormigón.

- La deflexión de la losa compuesta no debe exceder los límites especificados en las normas correspondientes bajo la solicitación de cargas sobreimpuestas.
- El refuerzo por temperatura y retracción del fraguado puede realizarse aplicando una malla electrosoldada y debe tener un área mínima de 0,0018 veces al área de hormigón sobre la parte alta de la NOVALOSA, de acuerdo al ACI 318 y a la Norma Ecuatoriana de la Construcción (NEC).
- Todas las placas de NOVALOSA deben estar adecuadamente apoyadas y sujetas en todos los soportes o vigas secundarias para soportar todas las cargas incluidas las de la construcción.
- Cualquier cambio en las placas colaborantes o su instalación debe ser aprobado previamente por el diseñador. Debe evitarse la acumulación del hormigón en sitios donde descarga la carretilla o la tubería de la bomba, para esto, luego de que el hormigón se vierta sobre la losa, inmediatamente deberá esparcírselo.
- Para cohesionar el acero y el hormigón en una pieza mixta se recomienda el uso de perno conector, el cual actúa como anclaje en el hormigón frente a los esfuerzos de tracción, transmite esfuerzos al hormigón, bien por adherencia o bien por presiones de contacto, según la tipología constructiva.

Diseño.

Se utilizará "Novalosa 55" que es una placa colaborante de Steel Deck de la empresa NOVACERO con una altura de onda de 55 mm y de espesor 0.76mm. Cuyas propiedades son descritas por la empresa en la tabla adjunta.

Propiedades de la sección compuesta.

El peso de la sección compuesta se obtiene considerado un espesor de losa de hormigón de 6 cm.

Tabla 2. Peso de la sección compuesta

Peso de la sección compuesta		
Peso Placa Colaborante	7,47	kg/m2
Peso Hormigón	203,80	kg/m2
Peso Sección Compuesta	211,27	kg/m2

Máxima Longitud sin Apuntalamiento.

Para determinar la máxima longitud sin apuntalamiento se consideran 3 vanos y, por lo tanto, la máxima longitud sin apuntalamiento es 2.17 metros.

Debido a que, el esquema propuesto para el diseño de sistema de piso detalla viguetas cada 1.60 metros de separación; no es necesario utilizar apuntalamiento.

Resistencia de la placa colaborante con carga sobreimpuesta.

Las cargas totales sobreimpuestas se refieren a la capacidad de carga sobre la sección compuesta, es decir, únicamente se deben contemplar las cargas adicionales que actuarán sobre la losa sin tomar en cuenta el peso propio del hormigón ni de la NOVALOSA ya que estos ya están considerados en el análisis.

Según el esquema de sistema de piso propuesto y la tabla anterior, el panel soporta una carga de 2007.00 kg/m2 con una separación de 1.60 metros.

Para determinar las cargas totales sobreimpuestas a las que está sometida la sección, se hace referencia al capítulo 1 de la Norma Ecuatoriana de la Construcción (NEC_SE).

Carga muerta sobreimpuesta.

Dentro de la carga muerta se consideran los siguientes componentes:

• Carga de acabados e instalaciones:

Acabados de Piso	80 kg/m ²
Cielo Falso	15 kg/m ²

Instalaciones

 10 kg/m^2

• Carga de mampostería:

Mampostería de 15 cm 200 kg/m^2

Paredes de mampostería construidas con bloques alivianados de hormigón y ligados mediante mortero con un enlucido de 1.0 cm a cada lado de la pared.

• Carga de elementos estructurales:

Peso de la Vigueta (W8x31) 28 kg/m^2

De donde, la carga muerta total sobreimpuesta es de 335 kg/m².

Carga viva sobreimpuesta.

Considerando el uso residencial al que va a ser destinada la estructura, la carga viva total sobreimpuesta es de 200 kg/m².

Carga total sobreimpuesta y chequeo de resistencia.

La carga total sobreimpuesta es de aproximadamente 550 kg/m², la cual es significativamente menor a la permitida (2007 kg/m²), por lo que, se acepta el esquema de diseño propuesto anteriormente.

∴ **0**K

Diseño de la losa del sistema de piso

Disposiciones generales.

Limitaciones del material.

El concreto, acero estructural y barras de acero de refuerzo en sistemas compuestos deben cumplir las siguientes limitaciones:

i. Para la determinación de la resistencia disponible, el concreto debe tener una resistencia de compresión f'c no menor que 215 kgf/cm² (21 MPa) ni mayor que 715 kgf/cm² (70 MPa) en concreto de peso normal y no menor que 215 kgf/cm² (21 MPa) ni mayor que 430 kgf/cm² (42 MPa) en el caso de concreto liviano. En el presente diseño se utilizará concreto liviano.

Propiedades del Hormigón		
fc'	240	kg/cm2
fc' min	215	kg/cm2
fc' max	430	kg/cm2

 $fc'_{min} < fc' < fc'_{max}$

$$215 \ \frac{kg}{cm^2} < 240 \ \frac{kg}{cm^2} < 430 \ \frac{kg}{cm^2}$$

∴ **0**K

 La tensión de fluencia mínima especificada en barras de refuerzo, para el cálculo de la resistencia de un miembro compuesto, no debe exceder de 5630 kgf/cm².

Propiedades del Acero de Refuerzo			
fy min	4200	kg/cm ²	
fy max	5630	kg/cm ²	

$$fy_{min} < fy_{max}$$

$$4200 \ \frac{kg}{cm^2} < 5630 \ \frac{kg}{cm^2}$$

Diseño de refuerzo por temperatura y retracción del fraguado

Para el diseño de refuerzo por temperatura y retracción del fraguado se usan las

mallas electrosoldadas "Mallas Armex Tipo R con apertura cuadrada" de Ideal

Alambrec.

Mallas Armex[®] Tradicional Diámetro [mm] Separación [cm] Sección de Acero as [mm²/m] Peso Tipo de Malla Código Alambre L. Alambre T. Alambre L. Alambre T. As L As T kg/m² kg / plancha 188156 R-126 4,0 4,0 10 10 126 126 1,97 29,48 188164 B-196 5.0 5.0 10 10 196 196 3.07 46.06 10 55,73 188166 R-238 5,5 5,5 10 238 238 3,72 188168 R-283 6,0 6,0 10 10 283 283 4,42 66,32 188172 R-385 7,0 7,0 10 10 385 385 6,02 90,27 R-636 9,0 10 10 636 9,95 149,22 188176 9,0 636 15 15 188150 R-64 3,5 3,5 64 64 1,01 15,17 188152 **R-84** 4.0 4.0 15 15 84 84 1,32 19,81 1,67 188154 R-106 4,5 4,5 15 15 106 106 25,07 188158 R-131 5,0 5,0 15 15 131 131 2,06 30,95 2,50 188160 B-158 5.5 5,5 15 15 158 158 37.45 188161 R-188 6,0 6,0 15 15 188 188 2,97 44,57 R-257 15 15 257 257 4,04 60,66 188167 7,0 7,0 188170 R-335 8.0 8.0 15 15 335 335 5.28 79.23 B-424 15 424 424 6,69 100,28 188173 9,0 9,0 15 188175 R-524 10 10 15 15 524 524 8,25 123,80 30 188148 R-53 4.5 4.5 30 53 53 0.84 12.53 189676 R-503 8,0 8,0 10 10 503 503 7,86 117,90 AsL: Área de acero (mm² / m) de los alambres longitudinales. • AsT: Área de acero (mm² / m) de los alambres transversales. 6.25 x 2.40 = 15m² · Medidas y esp

Tabla 3. Mallas Armex tipo R con apertura cuadrada

Debido a que se utilizará una malla electrosoldada para esfuerzos de temperatura y retracción generada por fraguado o para refuerzo negativo, esta armadura deberá estar localizada entre 2.0 y 2.5 cm bajo el nivel superior de la losa de hormigón.

Como se mencionó anteriormente, el refuerzo por temperatura y retracción del fraguado puede realizarse aplicando una malla electrosoldada (como en este caso) y debe tener un área mínima de 0.0018 veces al área de hormigón sobre la parte alta de la NOVALOSA, de acuerdo con el ACI 318 y la Norma Ecuatoriana de la Construcción (NEC).
$$As_{min} = 0.0018 * b * t$$
$$As_{min} = 0.0018 * 100 \ cm * 6 \ cm$$
$$As_{min} = 1.08 \ \frac{cm^2}{m}$$

Por lo que, se procede a escoger una malla R-131 que está compuesta por 1

varilla de Ø5.0mm @ 15cm. Con esta malla, se obtiene un $As_{colocado} = 1.31 \text{ cm}^2/\text{m}$. De donde:

$$As_{colocado} > As_{min}$$
$$1.31 \frac{cm^2}{m} > 1.08 \frac{cm^2}{m}$$
$$\therefore OK$$

Diseño de la vigueta del sistema de piso

Predimiensionamiento de viguetas.

El predimensionamiento de las viguetas se realiza en función de la relación de la longitud de estas entre 25, de donde:

$$\frac{L}{25} = \frac{5.6 \, m}{25} = 0.22 \, m$$

Por lo tanto, se debe escoger un perfil con altura mínimo de 22 centímetros u 8 pulgadas. Después de algunas iteraciones, el perfil escogido para las viguetas es el W8x31.

Cargas gravitacionales.

Las cargas gravitacionales del sistema de piso se determinaron en base a lo

dispuesto en la Norma Ecuatoriana de la Construcción – Cargas (No Sísmicas).

Carga viva.

La carga viva se determinó en base a la sección 4.2 de la NEC-SE-CG, en donde se menciona la carga viva para cada ocupación. Debido a que, en el caso de análisis se trata de una estructura para uso residencial, la carga viva a considerar es:

$$CV = 2 \ \frac{KN}{m^2} = 200 \ \frac{kg}{m^2}$$

Carga muerta.

La carga muerta se determinó en base a la sección 4.1 de la NEC-SE-CG y a los catálogos de Steel Deck de donde:

Carga Muerta				
Acabados Piso	80	kg/m2		
Cielo Falso	15	kg/m2		
Instalaciones	10	kg/m2		
Tabiquería	200	kg/m2		
Loseta de concreto	203,80	kg/m2		
Placa colaborante SD	7,47	kg/m2		

Vigueta	28,22	kg/m2
C	$CM = 544 \frac{kg}{m^2}$	

Combinación de cargas.

Una vez obtenidas el valor de la CV y CM se procede a realizar la mayoración de las cargas mediante la siguiente combinación:

$$C_1 = 1.2 \ CM + 1.6 \ CV$$

 $C_1 = 1.2 * 544 + 1.6 * 200$
 $C_1 = 973.4 \ \frac{kg}{m^2}$

Solicitaciones de la estructura.

Con las cargas mayoradas se procede a calcular la carga lineal que actuaría sobre la vigueta considerando el área colaborante de una vigueta interna, se detalla a continuación el procedimiento:

$$w = 973.4 \frac{kg}{m^2} * 1.63 m$$

 $w = 1589.9 \frac{kg}{m}$

Cortante último.

Debido a que la vigueta se encuentra sometida a una carga lineal distribuida, el cortante último se obtiene de la siguiente manera:

$$V_{u} = \frac{wl}{2}$$
$$V_{u} = \frac{1589.9 * 5.6}{2}$$
$$V_{u} = 4451.7 \ kg = 4.45 \ ton$$

Momento último.

Debido a que la vigueta se encuentra sometida a una carga lineal distribuida, el momento último se obtiene de la siguiente manera:

$$M_u = \frac{wl^2}{8}$$
$$M_u = \frac{1589.9 * 5.6^2}{8}$$

 $M_u = 6232.4 \ kg \ m = 6.23 \ ton \ m$

Diseño de miembros a sección compuesta.

El diseño de miembros a sección compuesta se realizó en base a las Especificaciones para Construcciones de Acero – AISC 360-10. Se hace referencia únicamente al Capítulo I debido a que se realizó el diseño de miembros compuestos formados por perfiles de acero estructural laminados o armados y concreto estructural actuando en conjunto. Además, el sistema incluye vigas de acero que soportan losas de concreto reforzado conectadas de tal manera que actúan en conjunto para resistir la flexión.

Disposiciones generales.

Limitaciones del material.

El concreto, acero estructural y barras de acero de refuerzo en sistemas compuestos deben cumplir las siguientes limitaciones:

i. Para la determinación de la resistencia disponible, el concreto debe tener una resistencia de compresión f'c no menor que 215 kgf/cm2 (21 MPa) ni mayor que 715 kgf/cm2 (70 MPa) en concreto de peso normal y no menor que 215 kgf/cm2 (21 MPa) ni mayor que 430 kgf/cm2 (42 MPa) en el caso de concreto liviano. En el presente diseño se utilizará concreto liviano.

Propiedades del Hormigón				
Ec	Ec 20000 MPa			
fc'	240	kg/cm2		
fc' min	215	kg/cm2		
fc' max	430	kg/cm2		

$$fc'_{min} < fc' < fc'_{max}$$

$$215 \frac{kg}{cm^2} < 240 \frac{kg}{cm^2} < 430 \frac{kg}{cm^2}$$

:. **OK**

 La tensión de fluencia mínima especificada del acero estructural usada en el cálculo de la resistencia de un miembro compuesto no debe exceder de 5355 kgf/cm2 (525 MPa).

En el presente diseño se utilizarán perfiles hechos con planchas A36.

Acero de Perfiles de Viguetas (A36)				
Es	210000 MPa			
fy	2530	kg/cm2		
fu	4080	kg/cm2		
fy max	5355	kg/cm2		

 $fy < fy_{max}$

$$2530 \ \frac{kg}{cm^2} < 5355 \ \frac{kg}{cm^2}$$

∴ **0**K

Diseño por flexión.

General.

Ancho efectivo.

Cuando las vigas de acero están muy separadas, la losa de concreto no participa de manera uniforme en la resistencia de las vigas compuestas en flexión positiva; la compresión es máxima en la zona situada sobre el patín, y disminuye en puntos cada vez más alejados de él.

El concepto de ancho efectivo es útil para determinar la resistencia de elementos estructurales con esfuerzos no uniformes; el ancho efectivo se obtiene de manera que la fuerza interior calculada suponiendo que actúan en él esfuerzos uniformes, de intensidad igual a la máxima, tenga la misma magnitud y línea de acción que la fuerza interior real, que corresponde a los esfuerzos no uniformes. Introduciendo este concepto se trabaja con esfuerzos uniformes equivalentes, en vez de hacerlo con los reales, de distribución complicada.

El ancho efectivo de la losa de concreto es la suma de los anchos efectivos a cada lado del eje de la viga, cada uno de los cuales no debe exceder:

i. Un octavo de la luz de viga, medida centro a centro de los apoyos;

$$L = \frac{5.6}{8}$$
$$L = 0.7 m$$

ii. Un medio de la distancia el eje de la viga adyacente.

$$L = \frac{1.63}{2}$$
$$L = 0.82 m$$

Por lo que, el ancho efectivo de las viguetas internas es:

$$b_{eff} = \min(0.7 * 2; 0.82 * 2)$$

 $b_{eff} = 1.4 \text{ m}$

Resistencia por flexión positiva.

La resistencia de diseño para flexión positiva $\phi_b M_n$ debe ser determinada por el estado límite de fluencia:

$$\phi_b = 0.90$$

i. Para
$$\frac{h}{t_w} \le 3,76 \sqrt{\frac{E}{F_y}}$$

 M_n debe ser determinado a partir de la distribución de tensiones plásticas en la sección compuesta para el estado límite de fluencia (momento plástico). Es importante mencionar que todos los perfiles actuales ASTM A6 W, S, y HP satisfacen el límite para $F_y \leq 4925 \frac{kg}{cm^2}$

$28.04 \le 106.64$

Por lo tanto, se utiliza el método de distribución de las tensiones plásticas. En este método, la resistencia nominal debe ser calculada suponiendo que los componentes de acero han alcanzado la tensión Fy, en tracción o en compresión, según corresponda; y que los componentes de concreto debido a fuerzas axiales y/o flexión han alcanzado la tensión de 0,85 f°c. Es decir, para obtener la resistencia máxima en flexión de una sección compuesta, la viga de acero está completamente plastificada, en tensión o compresión, dependiendo de la posición del eje neutro plástico y, que los esfuerzos en el área comprimida de concreto son uniformes, iguales a 0.85 f°c y se desprecian los esfuerzos de tensión en el concreto.

Se considera que, para determinar el área de concreto de la sección compuesta para nervios orientados perpendicularmente a las vigas de acero, se despreciará el concreto ubicado bajo del borde superior de la plancha colaborante de acero.

En el presente diseño se considera una acción compuesta completa entre la losa y la sección de acero, y se analiza únicamente la opción de que el eje neutro plástico se

encuentra dentro de la losa de hormigón. Esto debido a que, si el ENP atraviesa la sección de acero, esto quiere decir que la viga estará sometida a esfuerzos de compresión y el diseño no es eficiente, en tal caso, se recomienda aumentar el espesor de la loseta con el fin de que únicamente el hormigón trabaje a compresión y la viga de acero a tensión.

Por equilibrio, la fuerza de tensión es igual a la de compresión:

$$C = T$$
$$T = A_s * F_y$$
$$C = 0.85 * f'_c * b_e * a$$

Con esto, se puede determinar la profundidad del bloque de compresión *a* que, como se mencionó anteriormente, debe encontrarse en el hormigón, por lo que:

$$a = \frac{A_s * F_y}{0.85 * f_c' * b_e * t} < t_c$$

De donde, se puede obtener el momento resistente nominal y, este es igual a:

$$M_n = C * d'$$
$$d' = \frac{d}{2} + h_r + t_c - \frac{a}{2}$$

De donde,

$$M_n = 0.85 * f_c' * b_e * a * \left(\frac{d}{2} + h_r + t_c - \frac{a}{2}\right)$$

La acción colaborante de la vigueta con concreto solicitado en compresión por flexión, el corte nominal entre la viga de acero y la losa de concreto, transferido por anclajes de acero, entre el punto de máximo momento positivo y el punto de momento cero debe ser determinado como el menor valor de acuerdo con los estados límites de aplastamiento del concreto, fluencia en tracción de la sección de acero o la resistencia al corte de los anclajes de acero:

i. Para el estado límite de aplastamiento del concreto

ii. Para el estado límite de fluencia en tracción de la sección de acero

 $C = A_s F_y$ $A_s = 5880 mm^2$ C = 5880 * 249C = 1464.6 KN = 149.4 ton

De donde se obtiene que gobierna el estado límite de fluencia en tracción de la

sección de acero. Por lo que, se procede a calcular la resistencia a flexión:

$$a = \frac{C_{min}}{0.85 * f'_c * b_e}$$
$$a = \frac{5880 * 249}{0.85 * 21 * 1400}$$
$$a = 58.61 mm < t_c = 60 mm$$
$$\therefore OK$$

De donde, se procede a obtener el momento resistente nominal:

$$M_n = 0.85 * f'_c * b_e * a * \left(\frac{d}{2} + h_r + t_c - \frac{a}{2}\right)$$
$$M_n = 0.85 * 210 * 1400 * 58.61 * \left(\frac{203}{2} + 55 + 60 - \frac{58.61}{2}\right)$$
$$M_n = 274.2 \ KN \ m = 28 \ ton \ m$$
$$\emptyset M_n = 0.9 * 28$$
$$\emptyset M_n = 25.2 \ ton \ m$$

Una vez que hemos obtenido la resistencia a flexión, se procede a verificar que la misma sea mayor a la solicitación, de donde:

:: **OK**

Diseño por corte.

La resistencia disponible al corte de vigas compuestas con conectores de corte y anclajes tipo canal deberá ser determinada basada solo en las propiedades de la sección de acero según el Capítulo G.

Miembros de sección doble t y canales.

La resistencia nominal de corte, V_n , se determina a partir de lo siguiente:

$$V_n = 0.6 * F_y * A_w * C_{v1}$$

De donde, para el perfil de análisis:

$$C_{v1} = 1$$

 $V_n = 0.6 * 249 * 203 * 7.24 * 1$
 $V_n = 219.7 \text{ KN} = 22.4 \text{ ton}$
 $\emptyset V_n = 0.9 * 22.4 \text{ ton}$
 $\emptyset V_n = 20.2 \text{ ton}$

Una vez que hemos obtenido la resistencia nominal a corte de la viga, se procede

a verificar que la misma sea mayor a la solicitación, de donde:

Revisión de deflexiones.

En base a lo recomendado por el IBC2006 y la Guía de Diseño 03 del AISC

"Serviceability Design Considerations for Steel Building" se verifica que la deflexión

máxima causada por carga viva no debe ser mayor a L/360. Es decir, la deflexión máxima admisible es:

$$\Delta_{adm} = \frac{L}{360}$$
$$\Delta_{adm} = \frac{5600}{360} = 16mm$$

Debido a que la carga que se ejerce sobre la vigueta es distribuida, la deformación puede calcularse a través de la siguiente expresión considerando a una viga simplemente apoyada:

$$\Delta = \frac{5w_{CV}L^4}{384 E I_{LB}}$$

De donde, es importante mencionar que la I_{LB} es la inercia transformada de la sección compuesta. Esta inercia se obtiene considerando que el eje neutro se ubica fuera de la losa de concreto, por lo que,

$$\overline{y} = \frac{A_{ct} * 0.5t_c + A_a y_a}{A_{ct} + A_a}$$
$$\overline{y} = \frac{nA_a}{b_e} \left(\sqrt{\left(1 + \frac{2b_e y_a}{nA_a}\right)} \cdot 1 \right) \le t_c$$

De donde,

$$n = \frac{E_s}{E_c} = 10$$

Con la relación de los módulos de elasticidad de los materiales, se procede a calcular el área transformada de concreto:

$$A_{ct} = \frac{b_e}{n} t_c$$
$$A_{ct} = \frac{1400}{10} * 60$$
$$A_{ct} = 8385 \ mm^2$$

De la misma manera, se procede a calcular la inercia transformada de la

siguiente manera:

$$I_t = I_{ct} + I_a + A_{ct}(\bar{y} - 0.5t_c^2) + A_a(y_a - \bar{y})^2$$

De donde,

$$\bar{y} = \frac{A_{ct} * 0.5t_c + A_a y_a}{A_{ct} + A_a}$$
$$\bar{y} = \frac{8385 * 0.5 * 60 + 5880 * (60 + 55 + 203 * 0.5)}{8385 + 5880}$$
$$\bar{y} = 107 \ mm$$

Y,

$$I_{ct} = \frac{b_e * t_c^3}{12 * n}$$
$$I_{ct} = \frac{1400 * 60^3}{12 * 10}$$
$$I_{ct} = 2515599 \ mm^4$$

Por lo que, reemplazando los valores obtenidos anteriormente, se obtiene que la inercia transformada es igual a:

$$I_t = 169351640 \ mm^4$$

Y, la carga actuante sobre la vigueta es:

$$w_{CV} = 200 * 1.63$$
$$w_{CV} = 327 \frac{kg}{m}$$

Con los valores anteriores obtenidos, se puede determinar la deflexión de la vigueta:

$$\Delta_c = \frac{5w_{CV}L^4}{384 EI_{LB}}$$

$$\Delta_c = \frac{5 * 13 * 5600^4}{384 * 200349.86 * 169351640}$$
$$\Delta_c = 1.23 \ mm$$

Una vez obtenida la deformación, se procede a verificar que la misma sea menor a la admisible:

$$\Delta_c < \Delta_{adm}$$
$$1.23 < 16 mm$$
$$\therefore \mathbf{OK}$$

Diseño de anclajes de acero – pernos.

Anclajes de acero en vigas compuestas.

Resistencia de pernos conectores de corte.

La resistencia nominal de un perno de corte embebido en una losa de concreto sólido o en una losa compuesta con plancha colaborante de acero debe ser determinada como:

$$Q_n = 0.5 * A_{sa} * \sqrt{f_c' E_c} \le R_g * R_f * A_{sa} * F_u$$

Considerando pernos de diámetro ³/₄'' o 19 mm:

$$Q_n = 0.5 * A_{sa} * \sqrt{f_c' E_c}$$
$$Q_n = 0.5 * 284 * \sqrt{21 * 21538}$$
$$Q_n = 95 KN = 9.7 ton$$

Para la segunda parte de la expresión, los valores de los coeficientes se obtienen de la siguiente tabla:

$$R_g R_f A_{sa} F_u = 1 * 0.6 * 284 * 490$$
$$R_g R_f A_{sa} F_u = 83.4 \text{ KN}$$
$$R_g R_f A_{sa} F_u = 8.5 \text{ ton}$$

Por lo que, la resistencia de los pernos conectores de corte es:

$$Q_n = 9.7 \le 8.5$$
$$Q_n = 8.5 \ ton$$

Número requerido de conectores de corte.

El corte horizontal total en la interfase entre la viga de acero y la losa de concreto debe suponerse que es transferida por conectores de cortante. La fuerza de corte horizontal total transferido por anclajes de acero V', entre el punto de máximo momento positivo y el punto de momento cero debe ser determinado como el menor valor de los siguientes estados límite:

i. Para el estado límite de aplastamiento del concreto:

$$V' = 0.85 * f_c' * A_c$$
$$V' = 1499 KN$$

ii. Para el estado límite de fluencia en tracción de la sección de acero:

$$V' = F_y * A_s$$
$$V' = 1465 KN$$

iii. Para el estado límite de resistencia del conector de corte:

$$V' = \Sigma Q_n$$

 $V' = 1583 KN$

Por lo que, el corte horizontal total es:

$$V' = 149.4 \ ton$$

El número de anclajes de acero requeridos entre cualquier fuerza concentrada y

el punto más cercano de momento cero debe ser suficiente para desarrollar el máximo momento requerido en el punto de la carga concentrada. Para esto, es necesario determinar mediante las especificaciones del Steel Deck la separación existente entre valles que, en este caso, es 300 mm. Por lo que, el número de valles existentes son 19.

Una vez determinados los valles existentes a lo largo de la vigueta, se procede a calcular el número de conectores necesarios:

$$n_{stud} = \frac{V'}{Q_n}$$

 $n_{stud} = \frac{149.7}{8.5} = 18 \ conectores$

 $n_{stud} < n_{valle}$

18 < 19

∴ **OK**

\therefore 1 conector por valle

Requisitos de detallamiento.

i. El esfuerzo de fluencia de los conectores de cortante no puede ser menor a Fu = 4600 kg/cm^2 .

Se utiliza conectores de cortante tipo Nelson Stud con $F_u = 490$ MPa

∴ **OK**

 La longitud de los conectores de corte no debe ser inferior a cuatro diámetros del perno desde la base al extremo de la cabeza del perno después de ser instalado.
 Se considera pernos con longitud de 100 mm.

$$l > 4d_{sa}$$

100 > 4 * 19
100 > 76 mm

∴ **OK**

iii. El espesor mínimo de loseta de hormigón sobre el Steel panel es de 5cm.

 $t_c > 5 \ cm$ $6 > 5 \ cm$ $\therefore OK$

- iv. Los conectores de corte deben tener por lo menos 25 mm de recubrimiento lateral de concreto.
- v. La altura del conector de cortante, soldado a la viga de acero debe ser 1 ¹/₂ in (38 mm) más grande que la altura del nervio hr, y debe quedar con un recubrimiento de por lo menos ¹/₂ in (13 mm).

$$h_{req \ stud} = 55 + 38 = 93 \ mm$$
$$h_{stud} = 100 \ mm$$
$$h_{stud} > h_{req \ stud}$$
$$100 > 93$$
$$\therefore OK$$

 $h_t = 55 + 60 = 115 \ mm$ $h_{rec} = 115 - 100 = 15 \ mm$ $h_{rec} > 13$ 15 > 13 $\therefore OK$

vi. El espaciamiento mínimo de conectores (medido centro a centro) debe ser de cuatro diámetros en cualquier dirección. Para vigas compuestas que no contengan anclajes dentro de los nervios de la plancha colaborante orientadas perpendicularmente a la viga de acero, se permite usar un límite de espaciamiento mayor de seis diámetros a lo largo del eje longitudinal de la viga.

$$s > 4d_{sa}$$

300 > 4 * 19 300 > 76 mm

∴ **OK**

vii. El espaciamiento máximo de conectores de corte no debe exceder ocho veces el espesor total de losa ni 90 cm (900 mm).

s < min (8e;900) 300 < min (8 * 60;900) 300 < 480 mm ∴ OK

Diseño en ETABS.

None

N/A

At Left, at Right

A continuación, se presentan los resultados del diseño en el software ETABS,

los cuales presentan valores muy cercanos a los obtenidos en los literales anteriores.

Story: Planta Baja		Beam B104 Length: 7 m Trib. A			Beam B104			o. Area: 0 m²	
Location: X= 4.713 A36	33 m Y= 18.	.81 m		W8X31				Nc	shear studs No camber
			Composite I	Deck Prope	rties				_
	Deck	Cover (m)	w _c (tonf/m³)	f'c (MPa)	b _{eff} (m)	Ec (S) (MPa)	Ec (D) (MPa)	Ec (V) (MPa)	-

0

N/A

N/A

N/A

0

Loading (DCmpS1 combo)					
	Constr.	Dead	SDL	Live NR	Factored
Line Load (tonf/m) 0 m→7 m	0.000	0.046	0.000	0.000	0.065
Point Load (tonf) @ 5.6 m	0.0000	9.568E-06	0.0000	0.0000	1.340E-05

N/A

End Reactions							
	Constr.	Dead	SDL	Live NR	Combo	Factored	
I end (tonf)	0.0000	0.1618	0.0000	0.0000	DCmpS1	0.2265	
J end (tonf)	0.0000	0.1618	0.0000	0.0000	DCmpS1	0.2266	

Strength Checks						
	Combo	Factored	Design	Ratio	Pass	
Shear at Ends (tonf)	DCmpS1	0.2266	20.2178	0.011	\checkmark	
Construction Bending (tonf-m)	DCmpC1	0.3947	10.0937	0.039	\checkmark	
Partial Comp. Bending (tonf-m)	DCmpS1	0.3947	10.0937	0.039	\checkmark	

	Actual	Allowable	Ratio	Pass	
Pre-composite Defl. (m)	0.00153	No Limit	N/A	N/A	
Post-composite Defl. (m)	0	0.02917	0.000	\checkmark	
Live Load Defl. (m)	0	0.01944	0.000	\checkmark	
Total Defl. (m)	0.00153	0.02917	0.053	\checkmark	

Constructability and Serviceability Checks

Section Properties				
	PNA (m)	l (m⁴)	ΦMո (tonf-m)	
Steel (L _b = 7 m C _b = 1.136)	0.1016	0.000046	10.0937	
Vibrations Check (E _c = 33509)	0.1016	0.000046	N/A	

Diseño de la viga del sistema de piso

Predimiensionamiento de vigas.

El predimensionamiento de las vigas se realiza en función de la relación de la longitud de estas entre 25, de donde:

$$\frac{L}{25} = \frac{4.9 \, m}{25} = 0.2 \, m$$

Por lo tanto, se debe escoger un perfil con altura mínimo de 20 cm. Después de algunas iteraciones, el perfil escogido para las vigas es el W10X22.

Cargas gravitacionales.

En el caso del análisis de vigas se tiene dos tipos de cargas gravitacionales: concentradas y distribuidas. Esto debido a que, las cargas de la vigueta se transfieren a la viga a manera de cargas concentradas y el peso propio de la viga se considera como carga distribuida.

Las cargas gravitacionales del sistema de piso se determinaron en base a lo dispuesto en la Norma Ecuatoriana de la Construcción – Cargas (No Sísmicas) y son las mismas que para las viguetas.

Carga viva sobre vigueta.

La carga viva se determinó en base a la sección 4.2 de la NEC-SE-CG, en donde se menciona la carga viva para cada ocupación. Debido a que, en el caso de análisis se trata de una estructura para uso residencial, la carga viva a considerar es:

$$CV = 2 \ \frac{KN}{m^2} = 200 \ \frac{kg}{m^2}$$

Carga muerta sobre vigueta.

La carga muerta se determinó en base a la sección 4.1 de la NEC-SE-CG y a los catálogos de Steel Deck de donde:

Tabla 4. Carga muerta sobre la vigueta

Carga Muerta					
Acabados Piso	80	kg/m2			
Cielo Falso	15	kg/m2			
Instalaciones	10	kg/m2			
Tabiquería	200	kg/m2			
Loseta de concreto	203,80	kg/m2			
Placa colaborante SD	7,47	kg/m2			
Vigueta	28,22	kg/m2			

$$CM = 544 \ \frac{kg}{m^2}$$

Carga muerta sobre viga.

La carga muerta que actúa sobre la viga es el peso propio de la misma, de donde, debido al perfil escogido el valor es el siguiente:

$$CM_{viga} = 32.7 \ \frac{kg}{m}$$

Combinación de cargas.

Una vez obtenidas el valor de la CV y CM se procede a realizar la mayoración de las cargas mediante la siguiente combinación:

i. Mayoración de Cargas Concentradas provenientes de la Vigueta

$$P_u = \frac{(1.2 \ CM + 1.6 \ CV) * L}{2}$$

$$P_u = \frac{(1.2 * 544 + 1.6 * 200) * 5.6}{2}$$

$$P_u = 4451.7 \ kg$$

$$P_u = 4.45 \ ton$$

ii. Mayoración de Cargas Distribuidas provenientes del Peso Propio de la Viga

$$w_u = 1.2 CM_{viga}$$
$$w_u = 1.2 * 32.7$$
$$w_u = 39.24 \frac{kg}{m}$$
$$w_u = 0.039 \frac{ton}{m}$$

Solicitaciones de la estructura.

Para obtener las solicitaciones de la estructura se considera la siguiente

disposición de cargas, tal como se mencionó anteriormente:

Figura 10. Distribución de cargas en la viga

Cortante último.

Debido a que la viga se encuentra sometida a una carga lineal distribuida y dos cargas concentradas, el cortante último se obtiene de la siguiente manera:

$$V_u = P_u + \frac{w_u l}{2}$$
$$V_u = 4.45 + \frac{0.039 * 4.9}{2}$$

$$V_u = 4.55 \ ton$$

Momento último.

Debido a que la viga se encuentra sometida a una carga lineal distribuida y dos cargas concentradas, el momento último se obtiene de la siguiente manera:

$$M_u = P_u a + \frac{w_u l^2}{8}$$
$$M_u = 4.45 * 1.63 + \frac{0.039 * 4.9^2}{8}$$
$$M_u = 7.39 \ ton \ m$$

Diseño de miembros a sección compuesta.

El diseño de miembros a sección compuesta se realizó en base a las Especificaciones para Construcciones de Acero – AISC 360-10. Se hace referencia únicamente al Capítulo I debido a que se realizó el diseño de miembros compuestos formados por perfiles de acero estructural laminados o armados y concreto estructural actuando en conjunto. Además, el sistema incluye vigas de acero que soportan losas de concreto reforzado conectadas de tal manera que actúan en conjunto para resistir la flexión.

Disposiciones generales.

Limitaciones del material.

El concreto, acero estructural y barras de acero de refuerzo en sistemas compuestos deben cumplir las siguientes limitaciones:

i. Para la determinación de la resistencia disponible, el concreto debe tener una resistencia de compresión f°c no menor que 215 kgf/cm2 (21 MPa) ni mayor que 715 kgf/cm2 (70 MPa) en concreto de peso normal y no menor que 215 kgf/cm2 (21 MPa) ni mayor que 430 kgf/cm2 (42 MPa) en el caso de concreto liviano. En el presente diseño se utilizará concreto liviano.

Propiedades del Hormigón				
Ec 20000 MPa				
fc'	240	kg/cm2		
fc' min	215	kg/cm2		
fc' max	430	kg/cm2		

$$fc'_{min} < fc' < fc'_{max}$$

$$215 \ \frac{kg}{cm^2} < 240 \ \frac{kg}{cm^2} < 430 \ \frac{kg}{cm^2}$$

∴ **OK**

 La tensión de fluencia mínima especificada del acero estructural usada en el cálculo de la resistencia de un miembro compuesto no debe exceder de 5355

kgf/cm2 (525 MPa).

En el presente diseño se utilizarán perfiles hechos con planchas A572.

Acero de P	Acero de Perfiles de Viguetas (A572)					
Es	210000	MPa				
fy	3515	kg/cm2				
fu	4570	kg/cm2				
fy max	5355	kg/cm2				

 $fy < fy_{max}$

$$3515 \; \frac{kg}{cm^2} < 5355 \; \frac{kg}{cm^2}$$

∴ **0**K

Diseño por flexión.

General.

Ancho efectivo.

El ancho efectivo de la losa de concreto es la suma de los anchos efectivos a cada lado del eje de la viga, cada uno de los cuales no debe exceder:

i. Un octavo de la luz de viga, medida centro a centro de los apoyos;

$$L = \frac{4.9}{8}$$
$$L = 0.61 m$$

ii. Un medio de la distancia el eje de la viga adyacente.

$$L = \frac{4.9}{2}$$
$$L = 2.45 m$$

Por lo que, el ancho efectivo de las viguetas internas es:

$$b_{eff} = \min(0.61 * 2; 2.45 * 2)$$

 $b_{eff} = 1.23 \text{ m}$

Vigas compuestas con conectores de corte.

Resistencia por flexión positiva.

La resistencia de diseño para flexión positiva $\phi_b M_n$ debe ser determinada por el estado límite de fluencia:

$$\phi_b = 0,90$$

i. Para
$$\frac{h}{t_w} \le 3,76 \sqrt{\frac{E}{F_y}}$$

 M_n debe ser determinado a partir de la distribución de tensiones plásticas en la sección compuesta para el estado límite de fluencia (momento plástico). Es importante mencionar que todos los perfiles actuales ASTM A6 W, S, y HP satisfacen el límite para $F_y \leq 4925 \frac{kg}{cm^2}$

 $42.46 \le 90.61$

Por lo tanto, se utiliza el método de distribución de las tensiones plásticas. El cual fue explicado a detalle en el diseño de la vigueta.

Como se mencionó anteriormente, se considera una acción compuesta completa entre la losa y la sección de acero, y se analiza únicamente la opción de que el eje neutro plástico se encuentra dentro de la losa de hormigón. Esto debido a que, si el ENP atraviesa la sección de acero, esto quiere decir que la viga estará sometida a esfuerzos de compresión y el diseño no es eficiente, en tal caso, se recomienda aumentar el espesor de la loseta con el fin de que únicamente el hormigón trabaje a compresión y la viga de acero a tensión.

Por equilibrio, la fuerza de tensión es igual a la de compresión:

$$C = T$$
$$T = A_s * F_y$$
$$C = 0.85 * f_c' * b_e * a$$

Con esto, se puede determinar la profundidad del bloque de compresión *a* que, como se mencionó anteriormente, debe encontrarse en el hormigón, por lo que:

$$a = \frac{A_s * F_y}{0.85 * f_c' * b_e * t} < t_c$$

De donde, se puede obtener el momento resistente nominal y, este es igual a:

$$M_n = C * d'$$
$$d' = \frac{d}{2} + h_r + t_c - \frac{a}{2}$$

De donde,

$$M_n = 0.85 * f_c' * b_e * a * \left(\frac{d}{2} + h_r + t_c - \frac{a}{2}\right)$$

Para la acción colaborante de la vigueta con concreto solicitado en compresión por flexión, el corte nominal entre la viga de acero y la losa de concreto, transferido por anclajes de acero, entre el punto de máximo momento positivo y el punto de momento cero debe ser determinado como el menor valor de acuerdo con los estados límites de i. Para el estado límite de aplastamiento del concreto

$$C = 0.85 f_c' A_c$$
$$h_c = 60 + \frac{55}{2} = 87.5 mm$$
$$C = 0.85 * 21 * 87.5 * 1223$$
$$C = 1913.3 KN = 195.2 ton$$

ii. Para el estado límite de fluencia en tracción de la sección de acero

$$C = A_s F_y$$

 $A_s = 4190 mm^2$
 $C = 4190 * 345$
 $C = 1445.5 KN = 147.45 ton$

De donde se obtiene que gobierna el estado límite de fluencia en tracción de la sección de acero. Por lo que, se procede a calcular la resistencia a flexión:

$$a = \frac{C_{min}}{0.85 * f'_c * b_e}$$
$$a = \frac{4190 * 345}{0.85 * 21 * 1223}$$
$$a = 66.11 mm < t_c = 87.5 mm$$

∴ **OK**

De donde, se procede a obtener el momento resistente nominal:

$$M_n = 0.85 * f'_c * b_e * a * \left(\frac{d}{2} + h_r + t_c - \frac{a}{2}\right)$$
$$M_n = 0.85 * 210 * 1223 * 66.11 * \left(\frac{203}{2} + 55 + 87.5 - \frac{66.11}{2}\right)$$

 $M_n = 304.9 \text{ KN } m = 31.1 \text{ ton } m$ $\emptyset M_n = 0.9 * 31.1$ $\emptyset M_n = 28 \text{ ton } m$

Una vez que hemos obtenido la resistencia a flexión, se procede a verificar que la misma sea mayor a la solicitación, de donde:

Diseño por corte.

La resistencia disponible al corte de vigas compuestas con conectores de corte y anclajes tipo canal deberá ser determinada basada solo en las propiedades de la sección de acero según el Capítulo G.

Miembros de sección doble T y canales.

La resistencia nominal de corte, V_n , se determina a partir de lo siguiente:

$$V_n = 0.6 * F_y * A_w * C_{v1}$$

De donde, para el perfil de análisis:

$$C_{v1} = 1$$

 $V_n = 0.6 * 345 * 1580 * 1$
 $V_n = 327 \ KN = 33.4 \ ton$
 $\emptyset V_n = 0.9 * 33.4 \ ton$
 $\emptyset V_n = 30 \ ton$

Una vez que hemos obtenido la resistencia nominal a corte de la viga, se procede a verificar que la misma sea mayor a la solicitación, de donde:

Revisión de deflexiones.

En base a lo recomendado por el IBC2006 y la Guía de Diseño 03 del AISC "Serviceability Design Considerations for Steel Building" se verifica que la deflexión máxima causada por carga viva no debe ser mayor a L/360. Es decir, la deflexión máxima admisible es:

$$\Delta_{adm} = \frac{L}{360}$$

$$\Delta_{adm} = \frac{4900}{360} = 14 \, mm$$

Debido a que la carga que se ejerce sobre la vigueta es distribuida, la deformación puede calcularse a través de la siguiente expresión considerando a una viga simplemente apoyada:

$$\Delta = \frac{5w_{CV}L^4}{384 E I_{LB}}$$

De donde, es importante mencionar que la I_{LB} es la inercia transformada de la sección compuesta. Esta inercia se obtiene considerando lo siguiente.

Se procede a verificar la posición del eje neutro, de la siguiente manera:

$$\bar{y} = \frac{n * A_a}{b_e} \left(\sqrt{1 + \frac{2 * b_e * y_a}{n * A_a}} - 1 \right) \le t_c$$

$$\bar{y} = \frac{9.3 * 4190}{1225} \left(\sqrt{1 + \frac{2 * 1225 * (87.5 + 55 + 0.5 * 203)}{9.3 * 4190}} - 1 \right) \le t_c$$

$\bar{y}=97\geq 87.5\,mm$

Por lo que, el eje neutro se ubica fuera de la losa de concreto, es decir, en la

sección de acero, por lo que,

$$\bar{y} = \frac{A_{ct} * 0.5t_c + A_a y_a}{A_{ct} + A_a}$$

De donde,

$$n = \frac{E_s}{E_c} = 9.3$$

Con la relación de los módulos de elasticidad de los materiales, se procede a calcular el área transformada de concreto:

$$A_{ct} = \frac{b_e}{n} t_c$$
$$A_{ct} = \frac{1225}{9.3} * 87.5$$
$$A_{ct} = 11523 \ mm^2$$

De la misma manera, se procede a calcular la inercia transformada de la siguiente manera:

$$I_t = I_{ct} + I_a + A_{ct}(\bar{y} - 0.5t_c^2) + A_a(y_a - \bar{y})^2$$

De donde,

$$\bar{y} = \frac{A_{ct} * 0.5t_c + A_a y_a}{A_{ct} + A_a}$$
$$\bar{y} = \frac{11523 * 0.5 * 87.5 + 41.90 * (87.5 + 55 + 203 * 0.5)}{11523 + 4190}$$
$$\bar{y} = 97 \ mm$$

Y,

$$I_{ct} = \frac{b_e * t_c^3}{12 * n}$$
$$I_{ct} = \frac{1225 * 87.5^3}{12 * 9.3}$$

$$I_{ct} = 7351864 \ mm^4$$

Por lo que, reemplazando los valores obtenidos anteriormente, se obtiene que la inercia transformada es igual a:

$$I_t = 179669244 \ mm^4$$

Y, la carga actuante sobre la viga es:

$$w_{CV} = 200 * 5.6$$
$$w_{CV} = 1120 \frac{kg}{m}$$

Con los valores anteriores obtenidos, se puede determinar la deflexión de la

vigueta:

а

$$\Delta_c = \frac{5w_{CV}L^4}{384 EI_{LB}}$$
$$\Delta_c = \frac{5*1.12*4900^4}{384*200349.86*179669244}$$
$$\Delta_c = 2.34 mm$$

$$\Delta_c < \Delta_{adm}$$

$$1.23 < 14 mm$$

$$\therefore OK$$

Diseño de anclajes de acero – pernos.

Anclajes de acero en vigas compuestas.

Resistencia de pernos conectores de corte.

La resistencia nominal de un perno de corte embebido en una losa de concreto

sólido o en una losa compuesta con plancha colaborante de acero debe ser determinada

como:

$$Q_n = 0.5 * A_{sa} * \sqrt{f_c' E_c} \le R_g * R_f * A_{sa} * F_u$$

Considerando pernos de diámetro ³/₄'' o 19 mm:

$$Q_n = 0.5 * A_{sa} * \sqrt{f_c' E_c}$$
$$Q_n = 0.5 * 284 * \sqrt{21 * 21538}$$
$$Q_n = 95 KN = 9.7 ton$$

Para la segunda parte de la expresión, los valores de los coeficientes se obtienen de la siguiente tabla:

$$R_g R_f A_{sa} F_u = 1 * 0.75 * 284 * 490$$
$$R_g R_f A_{sa} F_u = 104.2 KN$$
$$R_g R_f A_{sa} F_u = 10.6 ton$$

Por lo que, la resistencia de los pernos conectores de corte es:

$$Q_n = 9.72 \le 10.6$$

 $Q_n = 9.72 \ ton$

Número requerido de conectores de corte.

El corte horizontal total en la interfase entre la viga de acero y la losa de concreto debe suponerse que es transferida por conectores de cortante. La fuerza de corte horizontal total transferido por anclajes de acero V', entre el punto de máximo momento positivo y el punto de momento cero debe ser determinado como el menor valor de los siguientes estados límite:

i. Para el estado límite de aplastamiento del concreto:

$$V' = 0.85 * f_c' * A_c$$

 $V' = 1913 KN$

ii. Para el estado límite de fluencia en tracción de la sección de acero:

$$V' = F_y * A_s$$
$$V' = 1445 KN$$

iii. Para el estado límite de resistencia del conector de corte:

 $V' = \Sigma Q_n$

Considerando un espaciamiento de 15 cm entre cada stud,

$$V' = 3051 \, KN$$

Por lo que, el corte horizontal total es:

$$V' = 147 \ ton$$

El número de anclajes de acero requeridos entre cualquier fuerza concentrada y el punto más cercano de momento cero debe ser suficiente para desarrollar el máximo momento requerido en el punto de la carga concentrada.

Para esto, se considera un espaciamiento de 15 cm entre la colocación de cada stud. Por lo que, el número de conectores de cortantes que se podrían colocar son 32.

Una vez determinados los posibles conectores de corte que se podrían colocar a lo largo de la viga, se procede a calcular el número de conectores necesarios:

$$n_{stud} = \frac{V'}{Q_n}$$

$$n_{stud} = \frac{147}{9.72} = 30 \text{ conectores}$$

$$n_{stud} < n_{adm}$$

$$30 < 32$$

$$\therefore OK$$

\therefore 1 conector @15cm

Diseño en ETABS.

A continuación, se presentan los resultados del diseño en el software ETABS, los cuales presentan valores muy cercanos a los obtenidos en los literales anteriores. Story: Planta Baja Location: X= 5.53 m Y= 9.96 m A572 Gr50 Beam B15

W10X26

Length: 4.9 m Trib. Area: 0 m² 2,2,2 0.019 m \emptyset studs No camber

			Compo	site Deck I	Properties				
	Deck	Cover (m)	w₀ (tonf/m³)	f'c (MPa)	Ribs	b _{eff} (m)	Ec (S) (MPa)	Ec (D) (MPa)	E₀ (V) (MPa)
At Left, at Right	DECK	0.06	2.4028	20.59	II	0.6125	21538	21538	29076

Loading (DCmpC1 combo)						
	Constr.	Dead	SDL	Live NR	Factored	
Line Load (tonf/m) 0 m→4.9 m	0.000	0.039	0.000	0.000	0.054	
Point Load (tonf) @ 1.6333 m	0.0000	0.2531	0.0000	0.0000	0.3544	
Point Load (tonf) @ 3.2667 m	0.0000	0.2531	0.0000	0.0000	0.3544	

Loading (DCmpS1 combo)					
	Constr.	Dead	SDL	Live NR	Factored
Line Load (tonf/m) 0 m→4.9 m	0.000	0.039	0.000	0.000	0.054
Point Load (tonf) @ 1.6333 m	0.0000	0.2531	0.0000	0.0000	0.3544
Point Load (tonf) @ 3.2667 m	0.0000	0.2531	0.0000	0.0000	0.3544

	End Reactions						
	Constr.	Dead	SDL	Live NR	Combo	Factored	
I end (tonf)	0.0000	0.3446	0.0000	0.0000	DCmpS1	0.4824	
J end (tonf)	0.0000	0.3432	0.0000	0.0000	DCmpS1	0.4804	

Strength Checks						
	Combo	Factored	Design	Ratio	Pass	
Shear at Ends (tonf)	DCmpS1	0.4824	36.4898	0.013	\checkmark	
Construction Bending (tonf-m)	DCmpC1	0.6946	15.9672	0.044	\checkmark	
Positive Bending (tonf-m)	DCmpS1	0.6946	16.2492	0.043	\checkmark	

Constructability	and Se	rviceability	Checks

	Actual	Allowable	Ratio	Pass
Constr. Dead Defl. (m)	0.00096	No Limit	N/A	N/A
Post-concrete Defl. (m)	0	0.02042	0.000	\checkmark
Live Load Defl. (m)	0	0.01361	0.000	\checkmark
Total Defl. (m)	0.00096	0.02042	0.047	\checkmark
Walking Acceleration ap/g (β = 0.03 P _o = 289)	0	0.005	0.000	\checkmark

Section Properties						
	PNA (m)	l (m⁴)	ΦM _n (tonf-m)			
Steel fully braced	0.13081	0.00006	16.2492			
Vibrations Check ($E_c = 29076$)	0.03769	0.000254	N/A			

Vibration	Frequency	/ Parameters

Element	L (m)	l _{eff} (m⁴)	D (m⁴-m)	В (m)	W (tonf)	Δ (m)	f _n (Hz)
Slab		0.000005	0.000005/1.96				
Beam	4.9 m	0.000254	0.000254/1.96	2*1.8459	1.5*1798818931	0.00023 m	37.537
Panel					2698228397	0.00023 m	37.537

Diseño por resistencia al fuego

Debido a que la Norma Ecuatoriana de la Construcción NEC no establece requisitos para protección contra incendios, se utiliza el Reglamento Colombiano de Construcción Sismo Resistente (NSR – 10), Título J – Requisitos de Protección Contra Incendios en Edificaciones.

Propósito y alcance.

Es necesario determinar el grupo y subgrupo de la estructura en base a los Grupos de Ocupación. De donde se puede decir que la estructura corresponde al Grupo R (Residencial). Por lo que, el diseño por resistencia al fuego será basado en la sección K.2.6.

Clasificación de edificaciones en función del riesgo de pérdida de vidas humanas o amenaza de combustión.

Con el fin de evaluar la resistencia requerida al fuego, todas las edificaciones deben clasificarse en categorías dependiendo del grupo de uso de la edificación en función del área construida o en función del potencial combustible.

El área total de construcción de la estructura es menor a 5000 m² y posee 7 pisos, por lo que, la categoría a la que pertenece es a la categoría I.

Determinación de la resistencia requerida contra fuego.

Los elementos estructurales y demás elementos de construcción deben tener como mínimo las resistencias al fuego normalizadas en la siguiente tabla:

Debido a que la estructura pertenece a la Categoría I, entonces la resistencia requerida al fuego normalizado NTC 1480 (ISO 834) es de 2 horas.

Diseño de los elementos estructurales para la resistencia requerida.

Para realizar el diseño se hace uso de las tablas de diseño de la empresa

VULCRAFT. La tabla por utilizar es: "Composite Deck Fire Resistance Ratings" y se

muestra a continuación:

Tabla 5. Composite Deck Fire Resistance Ratings

VULCRAFT[®]

Restrained Assembly	Type of	Concrete	U.L. Classified Deck Type Unrestrained Bea																	
Rating	Protection	Type (1)	Design No. (2,3,4)	Fluted Deck	Cellular Deck (5)	Rating														
			D914 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1 Hr.														
ave nr.	Unprotected Deck	21/2 LW	D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.														
	Exposed Grid	2 1/2° NW	D216 +	1.5VL,1.5VLI,2VLI,3VLI	2VLP, 3VLP	2,3 Hr.														
		2" NW&LW	D743 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.														
			D703 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1.5 Hr.														
1			[D712 *	3VLI	3VLP	2 Hr.													
	Cementitious	2 1/2" NW&I W	D722 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2 Hr.														
			D739 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3,4 Hr.														
		l í	D759	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.														
1		2" NW&LW	D859 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.														
			D832 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.														
1	Sprayed Fiber	2 1/2*	D847 *	2VLI,3VLI	3VLP	1,1.5,3 Hr.														
1 Hr.		NW&LW	D858 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,4 Hr.														
		1	D871 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.														
1			D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
		1 1	D914 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1 Hr.														
			2 1/2" LW	D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.													
		1	D918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
	Unprotected Deck	1	D919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
1			D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
			D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.														
		3 1/2" NW	D918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
	Gypsum Board	2 1/2" NW	D502 *	1.5VL,1.5VLI,2VLI,3VLI	2VLP, 3VLP	1.5,2 Hr.														
		2" NW&LW	D743 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.														
	Cementitious	Cementitious	Cementitious		D703 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1.5 Hr.												
				Cementitious								8	Commenting of				D712 *	3VLI	3VLP	2 Hr.
					2 1/2" NW&LW	D722 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2 Hr.											
			D739 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3,4 Hr.														
		[D759	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.														
		2" NW&LW	D859 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.														
			D832 *	1.5VLI,2VLI,3VLI	3VLP	1,1.5,2,3 Hr.														
11/2 Hr.	Sprayed Fiber	2 1/2"	D847 *	2VLI,3VLI	3VLP	1,1.5,3 Hr.														
		NW&LW	D858 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,4 Hr.														
			D871 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.														
		1	D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
		3" LW	D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.														
			D919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
	Unprotected Deck		D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.														
		singifotected beck	Unprotected Deck		D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.												
	4" NW	D918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.															

COMPOSITE DECK FIRE RESISTANCE RATINGS

Concrete thickness is thickness of slab above deck, in. Safer to the U.L. "Fire Resistance Directory" for the necessary construction details. Saluar dock finish shall be galvanized. Subset deck finish is not critical when used in D2-- & D5-- Series designs. Deck finish shall be galvanized or phosphatized/painted. Fluted deck finish is critical for fire resistance. Fluted deck finish shall be galvanized or phosphatized/painted. Fluted deck finish is critical for fire resistance. Fluted deck finish shall be galvanized or phosphatized/painted. Fluted deck finish is critical for fire resistance. Fluted deck finish shall be galvanized or phosphatized/painted. Spray-applied fire protection and is U.L. approved for use in the denoted D7-- & D8-- Series designs. Denotes fluted deck finish is critical of referensistance. Fluted deck finish shall be galvanized or phosphatized/painted. Fluted deck finish and is critical for fire resistance. Fluted deck finish shall be galvanized or phosphatized/painted. Fluted deck finish is critical for fire resistance. Fluted deck finish shall be galvanized or phosphatized/painted. Vulcraft cellular deck units are approved by U.L. for use as electrical raceways under U.L. Standard 209.

70

54

Debido a que, la resistencia requerida es de 2 horas y el material a ocupar es

Gypsum Board, es necesario que el espesor de concreto sobre el Steel Deck sea de 2.5

pulgadas, es decir, que sea mayor a 63.5 mm. Además, debe cumplir con la

especificación D502.

Es importante mencionar que en el espesor del concreto se considera 3 mm adicionales debido al mortero.

Espesor Concreto > Espesor Mínimo Concreto

64 > 63,5 *mm*

∴ **0**K

A continuación, se muestra el detalle contructivo de un sistema de piso que cumple con la especifición D502. El detalle constructivo fue obtenido del CGC Company en su publicación "Fire – Resistant Assemblies SA-100".

cig. wt. 2 • 12.7 mm (1//2 gypsum Pane - metal furring 391 mm - joints finished (15%") • 50 mm (2") cd) SHEETROCK FIRECODE C Core nannel 610 mm (24") o.c. crete on riblath or steel deck over joist
--	--

Figura 11. Detalle constructivo de un sistema de piso

Diseño por vibraciones

El diseño por vibración de la estructura se realizó en base a las Guías de Diseño en Acero: "Vibrations of Steel – Framed Structural Systems Due to Human Activity" del AISC.

Fig. 1-5. Steady-state response of mass-spring-damper system to sinusoidal force.

Figura 12. Respuesta de un sistema con masa-resorte-amortiguado ante una fuerza sinusoidal

En la guía mencionada anteriormente se menciona que varios investigadores han medido las cargas dinámicas inducidas por humanos al caminar y correr. De donde, los investigadores obtuvieron las series de Fourier para diversas actividades individuales. Las formas de onda medidas se transformaron de Fourier en espectros correspondientes. Los valores a frecuencias armónicas proporcionaron estimaciones del coeficiente dinámico para cada armónico de fuerza significativo. Los experimentos también proporcionaron estimaciones del rango esperado de frecuencias de paso. La frecuencia de paso, fstep, que causa la respuesta máxima se selecciona dentro del rango para que una frecuencia armónica coincida con una frecuencia natural y cause resonancia.
Activity	Source	Source Q, Ib		Dynamic Coefficients, α _i	Phase Lag, ¢ _i , radians
Walking	Rainer et al. (1988) Allen and Murray (1993)	157	1.6–2.2	0.5, 0.2, 0.1, 0.05	
	Willford et al. (2007) Smith et al. (2007) Davis and Murray (2010)	168	1.6–2.2	0.4, 0.07, 0.06, 0.05	0, -π/2, π, π/2
	Rainer et al. (1988)	*	1.6-4.0	1.4, 0.4, 0.2, 0.1	(-)
Running	Bachmann et al. (1995)	*	2.0-3.0	1.6, 0.7, 0.2	
	ISO (2007)	*	2.0-4.0	1.4, 0.4, 0.1	_
Stair descent	Kerr and Bishop (2001) Davis and Murray (2009) Davis and Avci (2015)	168	1.6–4.0	1.1, 0.2, 0.09, 0.06	-

Tabla 6. Parámetros de las series de Fourier para individuos

Finalmente, el parámetro más importante para el diseño y la evaluación de la capacidad de servicio de vibración de los sistemas de estructura de piso es generalmente la frecuencia natural.

Evaluation criteria for human comfort

La respuesta humana al movimiento estructural es un fenómeno muy complejo que involucra la magnitud del movimiento, el entorno que rodea al sensor y el sensor humano. Un movimiento continuo (estado estacionario) puede ser más desagradable que el movimiento causado por un impacto poco frecuente (transitorio). El umbral de percepción del movimiento del piso en un lugar de trabajo ocupado puede ser más alto que en un apartamento tranquilo. La reacción de una persona mayor que vive en el piso 50 puede ser considerablemente diferente de la de un adulto joven que vive en el segundo piso de un complejo de apartamentos, si ambos están sujetos a la misma moción.

La reacción de las personas que sienten vibraciones depende en gran medida de lo que están haciendo. A las personas en oficinas o residencias no les gusta la vibración "claramente perceptible" (aceleración máxima por encima del 0.5% de la aceleración de la gravedad, 0.5% g), mientras que las personas que participan en una actividad aceptarán vibraciones de 10 a 30 veces mayores. (5% a 15% g o más). Las personas que cenan al lado de una pista de baile, levantan pesas al lado de un gimnasio de aeróbicos o se paran en un centro comercial o en una pasarela peatonal interior aceptarán algo intermedio (aproximadamente 1.5% g). Las personas en un puente peatonal al aire libre o en una escalera monumental también tolerarán aceleraciones más altas. La sensibilidad dentro de cada ocupación también varía con la duración de la vibración y la lejanía de la fuente. Se observa que estos límites son para frecuencias de vibración entre 4 y 8 Hz, que es el rango de frecuencias de resonancia de los órganos internos humanos. Fuera de este rango de frecuencia, las personas aceptan aceleraciones más altas.

Fig. 2-1. Recommended tolerance limits for human comfort.

A continuación, se presenta la aceleración máxima de pisos, puentes peatonales, entre otras ocupaciones. Estos límites deben compararse con la aceleración producida por la estructura y verificar que la misma se encuentre en el rango permisible. Para la estructura de análisis se establece como límite una aceleración 0.5% de g.

Diseño para excitación producida por la caminata de las personas.

El criterio de diseño para las excitaciones producidas al caminar se basa en la respuesta dinámica de la viga de acero y los sistemas de piso con viguetas a las fuerzas para caminar.

El criterio recomendado para pisos de edificios de baja frecuencia establece que el sistema de piso es satisfactorio si la aceleración máxima, ap, debido a la excitación al caminar como una fracción de la aceleración de la gravedad, g, se determina a partir de:

$$\frac{a_p}{g} = \frac{P_o e^{-0.35fn}}{\beta W}$$

No excede el límite de aceleración de tolerancia establecido anteriormente en base al gráfico y que depende de la ocupación de la estructura. A continuación, se muestra el procedimiento de evaluación de aceleraciones en el piso:

```
A. FLOOR SLAB
      Determine uniformly distributed weight, total depth, deck height, and effective depth, de
     Calculate n = E_*/(1.35E_*).
B. JOIST PANEL MODE
      Calculate I<sub>j</sub> (see Section 3.4 if trusses or Section 3.5 if open web joists).
     Calculate w_i and \Delta_i = \frac{5w_j c_j}{384E_s I_i}
     Calculate f_j = 0.18 \sqrt{g/\Delta_j}
     Determine D_s for slab and deck or estimate using D_s = (12d_e^3)/12n.
     Calculate D_i = I_i/S.
      Calculate B_j = C_j (D_s/D_j)^{\frac{1}{2}} L_j \leq (\frac{3}{2}) (floor width).
     C_j = 2.0 for interior panels; 1.0 for edge panels.
     Calculate W_j = w_j B_j L_j (x 1.5 if continuous or web connected or 1.3 if joist bottom chords are extended, and an adjacent beam or girder span is greater than 0.7 times the joist or beam span of the bay).
C. GIRDER PANEL MODE
      For each girder
      Calculate Ig (Section 3.4 if a truss; Section 3.5 if a joist girder; Section 3.5 if open web joists are supported).
     Calculate w_g and \Delta_g = \frac{5w_g L_g^4}{304E_s I_g} with correction if only one beam is supported at midspan (see Section 3.1).
     Calculate f_g = 0.18 \sqrt{g/\Delta_g} and D_g = I_g/L_i.
     Use average of supported joist span lengths, if different, for L_{j^*}
If girder frequencies are different, base remainder of calculations on the girder with lower frequency.
      For interior panel, calculate B_g = C_g \left( D_j / D_g \right)^{1/4} L_j \leq (\%) \text{ (floor length)}
         C_q = 1.8 if shear connected; 1.6 if not.
      For edge panel, calculate B_g = \left(\frac{2}{3}\right)L_j.
     Calculate W_g = w_g B_g L_g (\times 1.5 \text{ if girder is continuous over the top of supporting columns and an adjacent girder span is greater than 0.7 times the girder span in the bay).
D. COMBINED PANEL MODE
      Calculate I_n = 0.18 \sqrt{g/(\Delta_j + \Delta_g)}.
      If B_j > L_g, reduce \Delta_g by L_g/B_j \ge 0.5 (Equation 4-6).
      Calculate W = \frac{\Delta_j}{\Delta_j + \Delta_g} W_j + \frac{\Delta_g}{\Delta_j + \Delta_g} W_g
      Estimate 8 using values from Table 4-2.
     Calculate \frac{a_p}{\beta} = \frac{P_0 \exp(-\cos f_n)}{\beta W} where P_0 = 65 lb or as modified for a particular design (see Section 4.1.1).
      Compare \frac{a_p}{g} to \frac{a_o}{g} from Table 4-1.
```

Figura 14. Procedimiento para evaluar la vibración

Es importante mencionar que el diseño por vibraciones de la estructura se realiza para el estado más crítico, el cual sería en los bordes del sistema de piso.

Diseño por vibraciones.

Joist panel mode.

Módulo dinámico de la estructura.

Se determina el módulo dinámico de la estructura, tal como se muestra a continuación:

$$\eta = \frac{E_s}{1.35 E_c}$$
$$\eta = \frac{200350}{1.35 * 21538} = 6.89$$

Ancho efectivo para vibración.

Una vez que se ha obtenido el módulo dinámico se procede a calcular la inercia transformada del sistema compuesto. Esto mediante la transformación de la losa de hormigón que se encuentra sobre el Steel Deck. Para esto es necesario determinar el ancho efectivo para vibración, tal como se muestra a continuación:

$$b_{eff} = \min(0.4L; S)$$

 $b_{eff} = \min(0.4 * 5600; 1633)$
 $b_{eff} = 1633 mm$

Una vez establecido el ancho efectivo, se utiliza el módulo dinámico para transformalo:

$$b_{tr1v} = \frac{b_{eff}}{\eta}$$

$$b_{tr1v} = \frac{1633}{6.89} = 237 \ mm$$

Inercia transformada de la sección compuesta.

Una vez obtenido el ancho efectivo, se procede a determinar el Eje Neutro del sistema de piso, para esto se considera el área transformada del ancho efectivo de la losa de hormigón, tal como se realizó anteriormente y esto muestra a continuación:

$$\bar{y} = 168 mm$$

 $I_t = 99559148.20 mm^4$

Como se menciona en la sección 3.5 de la guía, las deformaciones y la excentricidad en los puntos del panel de la viga causan que la flexibilidad del miembro sea mayor que la calculada suponiendo solo deformaciones de flexión. De la investigación realizada por Band y Murray (1996), el momento efectivo de inercia, es decir, que explica ambos efectos, puede estimarse utilizando:

$$I_e = \frac{1}{\frac{\gamma}{I_{chords}} + \frac{1}{I_{comp}}}$$

$$C_r = 0.90 * \left(1 - e^{-0.28 \left(\frac{L}{D}\right)}\right)^{2.8} \le 0.9$$
$$C_r = 0.90 * \left(1 - e^{-0.28 \left(\frac{5600}{203}\right)}\right)^{2.8} \le 0.9$$
$$C_r = 0.9 \le 0.9$$

$$\gamma = \frac{1}{C_r} - 1$$

$$\gamma = \frac{1}{0.9} - 1 = 0.11$$

$$I_j = \frac{1}{\frac{0.11}{45800000} + \frac{1}{99559148.20}} = 1.95 * 10^8 mm^4$$

$$I_j = 79997833 \ mm^4$$

Peso soportado por unidad de longitud.

Una vez establecida la inercia efectiva se procede a calcular el peso soportado por unidad de longitud considerando la carga muerta de la estructura y la carga viva sugerida:

Tabla 7. Carga viva superimpuesta recomendada para análisis de vibración

Table 3-1. Recommended Superimposed Live Loads for Walking Vibration Analyses						
Occupancy Recommended Live Load, psf						
Paper office	11					
Electronic office	6–8					
Residence	6					
Assembly area	0					
Shopping mall	0					

$$w_j = \frac{CM + 0.25 * CV}{S}$$
$$w_j = 594 \frac{kg}{m^2}$$

Deformaciones.

Se procede a calcular las deformaciones del sistema de piso como se muestra a continuación:

$$\Delta_j = \frac{5w_j L_j^4}{384E_s I_j}$$
$$\Delta_j = \frac{5*0.594*5600^4}{384*200350*79997833}$$
$$\Delta_j = 7.6 \ mm$$

Frecuencia del piso.

Una vez establecidas las deformaciones se procede a calcular la frecuencia de vibración del sistema de piso y a verificar que la misma no sea menor o igual a la

frecuencia de vibración establecida en secciones anteriores ocasionada por la excitación de la caminata de las personas.

$$f_j = 0.18 \sqrt{\frac{g}{\Delta_j}}$$
$$f_j = 0.18 \sqrt{\frac{9810}{7.6}} = 6.46$$

De donde, se procede a verificar que sea mayor a la excitación de la caminata por personas:

$$f_j > 3 Hz$$

6.46 > 3 Hz
 $\therefore OK$

Momento transformado de inercia de la vigueta y la losa de hormigón.

Una vez establecida la inercia transformada se determina el momento transformado de inercia de la vigueta:

$$D_j = \frac{I_j}{S}$$
$$D_j = \frac{79997833}{1633} = 48978 \ mm^3$$

Se muestra también el momento transformado de inercia de la losa de hormigón:

$$D_s = \frac{d_e^3}{\eta}$$
$$D_s = \frac{60^3}{6.89} = 2612.3 \ mm^3$$

Ancho efectivo.

Una vez establecidos todos los parámetros anteriores, se procede a calcular el ancho efectivo de la vigueta:

$$B_j = C_j \left(\frac{D_s}{D_j}\right)^{0.25} \le \frac{2}{3}$$
 Floor width

Debido a que estamos analizando un vano exterior, $C_j = 1$

$$B_j = 1 * \left(\frac{2612.3}{48978}\right)^{0.25} \le \frac{2}{3} * 21 m$$
$$2691.2 \le 14000$$

∴ **OK**

Carga efectiva del panel.

Finalmente, se obtiene la carga efectiva del panel de la siguiente manera, se considera un aumento del 1.5 debido a que es continua:

$$W_j = w_j B_j L_j * 1.5$$
$$W_j = \frac{0.971}{1633} * 2691.2 * 5600 * 1.5$$
$$W_j = 13439.1 \ kg$$

Girder panel mode.

Módulo dinámico de la estructura.

Se determina el módulo dinámico de la estructura, tal como se muestra a continuación:

$$\eta = \frac{E_s}{1.35 E_c}$$

$$\eta = \frac{200350}{1.35 * 21538} = 6.89$$

Ancho efectivo para vibración

Una vez que se ha obtenido el módulo dinámico se procede a calcular la inercia transformada del sistema compuesto. Esto mediante la transformación de la losa de hormigón que se encuentra sobre el Steel Deck. Para esto es necesario determinar el ancho efectivo para vibración, tal como se muestra a continuación:

> $b_{eff} = \min(0.4L; S)$ $b_{eff} = \min(0.4 * 4900; 5600)$ $b_{eff} = 1960 mm$

Una vez establecido el ancho efectivo, se utiliza el módulo dinámico para transformalo:

$$b_{tr1v} = \frac{b_{eff}}{\eta}$$

 $b_{tr1v} = \frac{1960}{6.88} = 284.5 \ mm$

Inercia transformada de la sección compuesta

Una vez obtenido el ancho efectivo, se procede a determinar el Eje Neutro del sistema de piso, para esto se considera el área transformada del ancho efectivo de la losa de hormigón, tal como se muestra a continuación:

$$\bar{y} = 151.3 \ mm$$

 $I_t = 129192544.5 \ mm^4$

Como se menciona en la sección 3.5 de la guía, las deformaciones y la excentricidad en los puntos del panel de la viga causan que la flexibilidad del miembro sea mayor que la calculada suponiendo solo deformaciones de flexión. De la investigación realizada por Band y Murray (1996), el momento efectivo de inercia, es decir, que explica ambos efectos, puede estimarse utilizando:

$$\begin{split} I_e &= \frac{1}{\frac{\gamma}{I_{chords}} + \frac{1}{I_{comp}}} \\ C_r &= 0.90 * \left(1 - e^{-0.28 \left(\frac{L}{D}\right)}\right)^{2.8} \le 0.9 \\ C_r &= 0.90 * \left(1 - e^{-0.28 \left(\frac{4900}{203}\right)}\right)^{2.8} \le 0.9 \\ C_r &= 0.9 \le 0.9 \\ \gamma &= \frac{1}{C_r} - 1 \\ \gamma &= \frac{1}{0.9} - 1 = 0.11 \\ I_g &= \frac{1}{\frac{0.11}{49100000} + \frac{1}{129192544.5}} \\ I_g &= 99235332 \, mm^4 \end{split}$$

Peso soportado por unidad de longitud.

Una vez establecida la inercia efectiva se procede a calcular el peso soportado por unidad de longitud considerando la carga muerta de la estructura y la carga viva sugerida:

$$w_g = \frac{CM + 0.25 CV}{S}$$
$$w_g = 3389 \frac{kg}{m^2}$$

Deformaciones.

Se procede a calcular las deformaciones del sistema de piso como se muestra a continuación:

$$\Delta_g = \frac{5w_j L_j^4}{384E_s I_j}$$

$$\Delta_g = \frac{5 * 3389 * 4900^4}{384 * 200350 * 129192544.5}$$
$$\Delta_g = 12.6 \ mm$$

Frecuencia del piso.

Una vez establecidas las deformaciones se procede a calcular la frecuencia de vibración del sistema de piso y a verificar que la misma no sea menor o igual a la frecuencia de vibración establecida en secciones anteriores ocasionada por la excitación de la caminata de las personas.

$$f_g = 0.18 \sqrt{\frac{g}{\Delta_g}}$$

 $f_g = 0.18 \sqrt{\frac{9810}{12.6}} = 5.03 \, Hz$
 $f_j > 3Hz$
 $5.03 > 3 \, Hz$
 $\therefore OK$

Momento transformado de inercia de la vigueta y la losa de hormigón.

Una vez establecida la inercia transformada se determina el momento

transformado de inercia de la vigueta:

$$D_g = \frac{I_j}{L_j}$$
$$D_g = \frac{99235332}{5600} = 17721 \frac{mm^4}{mm}$$

Ancho efectivo.

Una vez establecidos todos los parámetros anteriores, se procede a calcular el ancho efectivo de la vigueta:

$$B_g = C_g \left(\frac{D_j}{D_g}\right)^{0.25} \le \frac{2}{3}$$
 Floor width

Debido a que estamos analizando un vano exterior, $C_j = 1.8$

$$B_g = 1.8 * \left(\frac{48978}{17721}\right)^{0.25} \le \frac{2}{3} * 15 m$$
$$14107 \ge 10000$$
$$B_g = 10000 mm$$

Carga efectiva del panel.

Finalmente, se obtiene la carga efectiva del panel de la siguiente manera, se considera un aumento del 1.5 debido a que es continua:

$$W_g = w_g B_g L_g * 1.5$$
$$W_g = \frac{3389}{5600} * 10000 * 4900 * 1.5$$
$$W_g = 44482.9 \ kg$$

Combined panel mode.

Frecuencia del sistema.

Se procede a calcular la frecuencia natural de vibración del sistema con las

deformaciones de vigas y viguetas:

$$f_n = 0.18 \sqrt{\frac{g}{(\Delta_g + \Delta_j)}}$$
$$f_n = 0.18 \sqrt{\frac{9810}{(7.6 + 12.6)}}$$
$$f_n = 3.97 \ Hz$$

Carga efectiva del sistema.

$$W = \frac{\Delta_j}{\Delta_g + \Delta_j} W_j + \frac{\Delta_g}{\Delta_g + \Delta_j} W_g$$

$$W = \frac{7.6}{7.6 + 12.6} W_j + \frac{12.6}{7.6 + 12.6} W_g$$
$$W = 32765.4 \ kg$$

Aceleración del sistema.

Para determinar la aceleración en unidades de gravedad del sistema se puede utilizar valores de amortiguamiento de la siguiente tabla:

Tabla 8. Valores recomendados para amortiguamiento
--

Table 4-2. Recommended Component Damping Values for Use in Equation 4-1							
Ratio of ActualComponentDamping-to-Critical Damping, β							
Structural system	0.01						
Ceiling and ductwork	0.01						
Electronic office fit-out	0.005						
Paper office fit-out	0.01						
Churches, schools and malls	0.0						
Full-height dry wall partitions in bay 0.02 to 0.05*							
*Depending on the number of partitions in the bay and their location; nearer the center of the bay provides more damping.							

$$\beta = 5\%$$

$$\frac{a_p}{g} = \frac{P_o e^{-0.35fn}}{\beta W}$$

Donde P_o se toma como 65 lb:

$$\frac{a_p}{g} = \frac{29.48 \ e^{-0.35 \times 3.97}}{0.05 \times 32765.4}$$

Finalmente se procede a verificar que la aceleración que está experimentando la

estructura sea menor a la aceleración máxima permisible establecida para confort:

$$\frac{a_p}{g} \le 0.50\% g$$

 $0.44\% \, g \le 0.50\% \, g$

∴ **0**K

Cortante basal de diseño según la norma NEC - SE - DS

En este apartado, se hará referencia al método de diseño basado en fuerzas (DBF). En donde, las estructuras deben diseñarse para resistir fuerzas sísmicas provenientes de las combinaciones de las fuerzas horizontales actuantes.

Acorde a la NEC – 15, el DBF puede realizarse a través de tres métodos de análisis; estático, análisis dinámico espectral y análisis dinámico paso a paso en el tiempo. Por lo que, para la determinación de las fuerzas sísmicas laterales de la estructura, se utilizará análisis estático y análisis dinámico espectral.

El cortante basal total de diseño V, a nivel de cargas últimas, aplicado a una estructura en una dirección especificada, se determinará mediante las expresiones:

$\mathbf{V} = \frac{IS_a(T_a)}{R\phi_P\phi_E}$	2 W	
Dónde		
$S_a(T_a)$	Espectro de diseño en aceleración; véase en la sección [3.3.2]	
Ø _P y Ø _E	Coeficientes de configuración en planta y elevación; véase en la sección [5.3]	
I	Coeficiente de importancia; se determina en la sección [4.1]	
R	Factor de reducción de resistencia sísmica; véase en la sección [6.3.4]	
V	Cortante basal total de diseño	
W	Carga sísmica reactiva; véase en la sección [6.1.7]	
Ta	Período de vibración; véase en la sección [6.3.3]	

Figura 15. Cortante basal de diseño V - NEC

Espectro elástico de diseño (componente horizontal).

El espectro de respuesta elástico de aceleraciones S_a, expresado como fracción de la aceleración de la gravedad, para el nivel del sismo de diseño, consistente con:

- El factor de zona sísmica Z,
- El tipo de suelo del sitio de emplazamiento de la estructura
- La consideración de los valores de los coeficientes de amplificación de suelo
 F_a, F_d, F_s.

- sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplaza Sa Espectro de respuesta elástico de aceleraciones (expresado como fracción de la aceleración de la
- Espectro de respuesta elástico de aceleraciones (expresado como fracción de la aceleración de la gravedad g). Depende del período o modo de vibración de la estructura
- T Período fundamental de vibración de la estructura
- T₀ Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- ${\bf T}_{\rm C}$ ~ Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- Z Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g

Figura 16. Espectro elástico de diseño

Factor de zona.

Para los edificios de uso normal, se usa el valor de Z, que representa la aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción

de la aceleración de la gravedad.

El sitio donde se construirá la estructura estará definido por una de las seis zonas

sísmicas del Ecuador, caracterizada por el valor del factor de zona Z, de la siguiente

figura:

Figura 1. Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z

Figura 17. Zonas sísmicas de Ecuador

El mapa de zonificación sísmica para diseño proviene del resultado del estudio de peligro sísmico para un 10% de excedencia en 50 años (periodo de retorno 475 años), que incluye una saturación a 0.50 g de los valores de aceleración sísmica en roca en el litoral ecuatoriano que caracteriza la zona VI.

Zona sísmica	L	11	111	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Figura 18. Factor Z por zona sísmica

Coeficientes de perfil de suelo F_a , $F_d y F_s$.

El suelo en el que se emplazará la estructura es tipo D, el que está definido con los siguientes parámetros:

D	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V₅ ≥ 180 m/s
	Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones	50 > N ≥ 15.0 100 kPa > S _u ≥ 50 kPa

F_a: *Coeficiente de amplificación de suelo en la zona de período corto.*

	Zona sísmica y factor Z							
Tipo de perfil del subsuelo	10	Ш		IV.	V	VI		
	0.15	0.25	0.30	0.30 0.35		≥0.5		
A	0.9	0.9	0.9	0.9	0.9	0.9		
В	1	1	1	1	1	1		
с	1.4	1.3	1.25	1.23	1.2	1.18		
D	1.6	1.4	1.3	1.25	1.2	1.12		
E	1.8	1,4	1.25	1.1	1.0	0.85		
F	Véase <u>T</u>	abla 2 : Cla	sificación d	e los perfile	es de suelo	y la secci		

Tabla 9. Coeficiente de amplificación de suelo en la zona de período corto

 F_d : Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca.

Tabla 10. Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca.

	Zona sismica y factor Z							
Tipo de perfil del subsuelo	1	1	III	IV	V	VI		
	0.15	0.25	0.30	0.35	0.40	≥0.5		
A	0.9	0.9	0.9	0.9	0.9	0.9		
В	1	1	1	1	1	1		
с	1.36	1.28	1.19	1.15	1.11	1.06		
D	1.62	1.45	1.36	1.28	1.19	1.11		
E	2.1	1.75	1.7	1.65	1.6	1.5		
E	Véase	Tabla 2 : C	lasificación	de los perf	iles de suel	lo y 10.6.4		

	Zona sismica y factor Z							
Tipo de perfil del subsuelo	Ū.	II 5 0.25	0.30	IV	V 0.40	VI		
	0.15			0.35		≥0.5		
A	0.75	0.75	0.75	0.75	0.75	0.75		
В	0.75	0.75	0.75	0.75	0.75	0.75		
с	0.85	0.94	1.02	1.06	1.11	1.23		
D	1.02	1.06	1.11	1.19	1.28	1.40		
E	1.5	1.6	1.7	1.8	1.9	2		
F	Véase	Tabla 2 : C	lasificación	de los perf	iles de suel	o y 10.6.4		

Tabla 11. Comportamiento no lineal de los suelos

Razón entre la aceleración espectral Sa (T=0.1s) y el PGA para el período de retorno seleccionado.

Estos factores varían dependiendo de la región del Ecuador, adoptando los

siguientes valores:

η= 1.80 Provincias de la Costa (excepto Esmeraldas),

η= 2.48 : Provincias de la Sierra, Esmeraldas y Galápagos

η= 2.60 : Provincias del Oriente

Figura 19. Razón entre la aceleración espectral Sa (T=0.1s) y el PGA para el período de retorno seleccionado

Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto.

Figura 20. Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto.

Períodos límite de vibración

Figura 21. Períodos límite de vibración

A continuación, se presentan los componentes considerandos y el espectro

elástico de diseño que se utilizará en el presente diseño:

Tabla 12. Variables para el espectro elástico de diseño

e elastice de diselle	
Tipo de Suelo	D
Z	0.4
Fa	1.20
Fd	1.19
Fs	1.28
η	2.48
То	0.13
Тс	0.70
r	1

Figura 22. Espectro elástico de diseño en aceleraciones

Coeficiente de Importancia I

El propósito del factor I es incrementar la demanda sísmica de diseño para

estructuras, que por sus características de utilización o de importancia deben

permanecer operativas o sufrir menores daños durante y después de la ocurrencia del

sismo de diseño.

Tabla 13. Coeficiente de Importancia I

Categoria	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Factor de Reducción de Resistencia Sísmico R

El factor R permite una reducción de las fuerzas sísmicas de diseño, lo cual es permitido siempre que las estructuras y sus conexiones se diseñen para desarrollar un mecanismo de falla previsible y con adecuada ductilidad, donde el daño se concentre en secciones especialmente detalladas para funcionar como rótulas plásticas.

Además, Los factores de reducción de resistencia R dependen realmente de algunas variables, tales como:

- Tipo de estructura
- Tipo de suelo
- Periodo de vibración considerado

• Factores de ductilidad, sobre resistencia, redundancia y amortiguamiento de una estructura en condiciones límite

Como se observa a continuación, la NEC no contiene información para estructuras de acero. Por lo tanto, para determinar el factor de reducción de resistencia sísmica, se hace referencia al ASCE7-16, de donde:

Para el sistema de Pórticos Arriostrados Concéntricamente (PAC) el valor de R es 6. Además, para Pórticos Resistentes a Momento (PRM) el valor de R es 8. Sin embargo, debido a que en el otro sentido se tiene un R menor (6), se toma como valor máximo R = 6*1.25 = 7.50.

Coeficientes de configuración estructural.

Configuración en Elevación

A continuación, se detalla la configuración estructural en elevación de la estructura.

Acorde a la imagen que corresponde a la Tabla 11: Configuraciones estructurales recomendadas de la NEC – 15, se observa que la estructura posee alturas de entrepiso constante en todos los niveles.

Es importante mencionar que, acorde a la imagen que corresponde a la Tabla 12: Configuraciones estructurales no recomendadas de la NEC – 15, se observa que la estructura no posee ninguna irregularidad, tales como: ejes verticales discontinuos o muros soportados por columnas, piso débil ni columna corta.

Configuración en planta.

A continuación, se detalla la configuración estructural en planta de la estructura.

Acorde a la imagen que corresponde a la Tabla 11: Configuraciones estructurales recomendadas de la NEC – 15, y con la ayuda de ETABS, se observa que la estructura posee los mismos centros de masa y rigidez.

	T	ABLE: Cent	ers of Mas	s and Rigid	lity		
Story	Diaphragm	Mass X	Mass Y	XCM	YCM	XCR	YCR
		tonf-s²/m	tonf- s²/m	m	m	m	m
Sexto Piso	D1	6.06	6.06	7.82	12.99	7.88	12.59
Quinto Piso	D1	12.97	12.97	7.81	12.62	7.88	12.71
Cuarto Piso	D1	12.98	12.98	7.81	12.62	7.88	12.82
Tercer Piso	D1	12.99	12.99	7.81	12.62	7.88	12.92
Segundo Piso	D1	13.01	13.01	7.81	12.62	7.88	13.03
Primer Piso	D1	13.01	13.01	7.81	12.62	7.88	13.11

Tabla 14. Centros de masa y rigidez obtenidos de ETABS

De la tabla anterior, se puede concluir que los centros de masa y rigidez son prácticamente los mismos. Por lo que, se trata de una configuración en planta ideal.

Irregularidades y coeficientes de configuración estructural.

Se procede a verificar si la estructura presenta irregularidades tanto en planta como en elevación, para determinar si se usarán los coeficientes de configuración estructural, que penalicen al diseño con fines de tomar en cuenta dichas irregularidades, responsables de un comportamiento estructural deficiente ante la ocurrencia de un sismo.

Dichos coeficientes de configuración estructural incrementan el valor del cortante de diseño, con la intención de proveer de mayor resistencia a la estructura, pero no evita el posible comportamiento sísmico deficiente de la edificación (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Por simple inspección, se observa que la estructura no posee irregularidades del tipo 2, 3 y 4. Para corroborar la irregularidad tipo 1 se procede a usar ETABS y determinar así el valor Δ .

Tabla 15. Relación entre derivas máximas de diafragma y derivas promedio

	TABLE: Diaph	ragm Max/A	vg Drifts		
Story	Load	Item	Max	Avg	Ratio
	Case/Combo		Drift	Drift	
Segundo	SY Max	Diaph D1	0,00000	0,00000	1,41
Subsuelo		X			

Primer Subsuelo	SY Max	Diaph D1 X	0,00001	0,00000	1,39
Sexto Piso	SX Max	Diaph D1 X	0,00155	0,00144	1,08
Segundo Subsuelo	SX Max	Diaph D1 X	0,00002	0,00002	1,05
Segundo Subsuelo	SY Max	Diaph D1 Y	0,00001	0,00001	1,03
Primer Subsuelo	SY Max	Diaph D1 Y	0,00002	0,00002	1,03
Quinto Piso	SX Max	Diaph D1 X	0,00213	0,00208	1,03
Primer Subsuelo	SX Max	Diaph D1 X	0,00003	0,00003	1,03
Primer Piso	SX Max	Diaph D1 X	0,00340	0,00332	1,02
Segundo Piso	SX Max	Diaph D1 X	0,00346	0,00339	1,02
Tercer Piso	SX Max	Diaph D1 X	0,00316	0,00312	1,01
Primer Piso	SY Max	Diaph D1 Y	0,00233	0,00230	1,01
Tercer Piso	SY Max	Diaph D1 Y	0,00334	0,00331	1,01
Segundo Piso	SY Max	Diaph D1 Y	0,00310	0,00307	1,01
Cuarto Piso	SX Max	Diaph D1 X	0,00271	0,00269	1,01
Cuarto Piso	SY Max	Diaph D1 Y	0,00314	0,00311	1,01
Quinto Piso	SY Max	Diaph D1 Y	0,00292	0,00290	1,01
Sexto Piso	SY Max	Diaph D1 Y	0,00266	0,00265	1,01

De donde se observa que, el máximo radio, correspondiente a Δ es igual a 1.406, por lo que, es necesario aplicar un coeficiente de reducción de configuración estructural en planta.

Tabla 16. Coeficientes de configuración en planta y elevación

Φ _P	0.9
Φ_{E}	1

Periodo fundamental de vibración.

El período de vibración aproximativo de la estructura T, para cada dirección principal, será estimado a partir de uno de los 2 métodos descritos a continuación.

El valor de T obtenido al utilizar estos métodos es una estimación inicial razonable del período estructural que permite el cálculo de las fuerzas sísmicas a aplicar sobre la estructura y realizar su dimensionamiento. Empezando con el Método 1 establecido en la NEC – 15:

De donde, para la estructura de análisis:

 $T = Ct \cdot hn^{\alpha}$ $T = 0.082 \cdot 23.2^{0.8}$ T = 0.89 seg

Continuando con el Método 2 establecido en la NEC – 15:

De donde, con la ayuda de ETABS, se obtuvo que:

Figura 23. Periodo de la estructura 3-D View Mode Shape (Modal) - Mode 1 - Period 1.428

 $T = 1.43 \, seg$

Sin embargo, el valor de T_a calculado según el Método 2 no puede ser mayor en un 30% al valor de T_a calculado con el Método 1. Debido a que, esto sucede, el valor del periodo de la estructura será tomado de la siguiente manera:

```
T = 0.89 \cdot 1.3
T = 1.16 seg
```

Cortante basal.

Finalmente, con la información detallada en las secciones anteriores, se procede a calcular el cortante basal, el cual será diferente para cada dirección, debido a que, sus sistemas estructurales son diferentes entre sí:

Tabla 17. Cortante basal en X

(Cortante Basal - X	
Ta	1.16	s
Sa	0.72	g
I	1	-
R	7.5	-
фР	0.90	-
φ _E	1	-
Vx	10.61%	W

Tabla 18. Cortante basal en Y

	Cortante Basal - Y	
Ta	1.16	S
Sa	0.72	g
I	1	-
R	6	-
ΦР	0.90	-
φ _E	1	-
Vy	13.27%	W

Fuerzas sísmicas con análisis estático y dinámico

Tanto el análisis estático como el dinámico se realizan con ayuda del software

ETABS 2016.

Análisis estático.

Con los coeficientes de base definidos y tomando en cuenta la excentricidad del

5% que establece la NEC, se obtuvieron los siguientes cortantes:

Sx estático	73.93	ton
Sy estático	92.47	ton

Análisis dinámico.

Para el análisis dinámico se considera que la carga reactiva es el 100% de la

carga muerta.

Para realizar el análisis dinámico, se define el espectro de respuesta para ambas direcciones, de la siguiente manera:

Load Case Name		SX		Design
Load Case Tupe		Deserves Seaster		Design
Evaluate Objects in this C		Response Spectrur	n v	Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc1)		
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U1	EspNEC - sR	0.1333	Add
				Advanced
				Advanced
ther Parameters				
Modal Load Case		Modal	v	
		1. O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'		
Modal Combination Meth	od	CQC	~	
Modal Combination Meth	iod Response	CQC Rigid Frequency, f1	~	
Modal Combination Meth	nod Response	CQC Rigid Frequency, f1 Rigid Frequency, f2	~ ~	
Modal Combination Meth	iod Response	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~ ~	
Modal Combination Meth	rod Response ion, td	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		
Modal Combination Meth	iod Response ion, td Type	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		
Modal Combination Meth	nod Response ion, td Type al Combination Scale	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		
Modal Combination Meth	nod Response ion, td Type al Combination Scale Constant at 0.05	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	- Modify/Show	
Modal Combination Meth	ion, td Type Constant at 0.05	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	Modify/Show	

• Espectro de Respuesta en X

Figura 24. Caso de carga en X

• Espectro de Respuesta en Y

Load Case Name		SY		Design
Load Case Type		Besponse Spectru	m v	Notee
Evolude Objects in this G		Net Applicable		Notes
Mass Source	loop			
Mass Source		Previous (MsSrc1)	1	
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U2	EspNEC - sR	0.1667	Add
				Delete
ther Parameters				
Modal Load Case		Modal	~	
Modal Combination Meth	od	CQC	~	
Include Rigid F	lesponse	Rigid Frequency, f1		
		Rigid Frequency, f2		
		Periodic + Rigid Type		
Earthquake Durati	on, td			
Directional Combination	Гуре	SRSS	~	
Absolute Direction	al Combination Scale	Factor		
	Constant at 0.05		Modify/Show	
Modal Damping			Modify/Show	
Modal Damping Diaphragm Eccentricity	0 for All Diaphragm	15		

Figura 25. Caso de carga en Y

Con estos casos de carga definidos en base al espectro de respuesta inelástico, se

procede a determinar los cortantes basales dinámicos, los cuales se presentan a

continuación:

Vx dinámico	56.03	ton
Vy dinámico	82.89	ton

Una vez obtenidos los cortantes dinámicos, se debe realizar el ajuste del cortante basal dinámico analizando los resultados obtenidos por el análisis estático de la siguiente manera:

b. Ajuste del corte basal de los resultados obtenidos por el análisis dinámico
 El valor del cortante dinámico total en la base obtenido por cualquier método de análisis dinámico, no

debe ser:

- < 80% del cortante basal V obtenido por el método estático (estructuras regulares)
- < 85% del cortante basal V obtenido por el método estático (estructuras irregulares).

Figura 26. Ajuste de corte basal

Debido a que se está analizando una estructura regular, el valor del cortante dinámico total en la base no debe ser menor al 80% del cortante basal obtenido por el método estático, tal como se muestra a continuación:

$V_{xmin} = 0.8 \cdot 73.93$	$V_{ymin} = 0.8 \cdot 92.47$
$V_{xmin} = 59.14 \ ton$	$V_{ymin} = 73.98ton$
$V_{xdin} = 56.03 ton$	$V_{ydin} = 82.89ton$
$V_{xdin} < V_{xmin}$	$V_{ydin} \ge V_{ymin}$
∴ Ajustar	∴ ОК

Por lo que, se observa en el sentido X se debe realizar una corrección para que el cortante dinámico sea igual al cortante mínimo estático. Esta corrección se muestra a continuación:

Load Case Name		SX		Design
Load Case Type		Response Spectr	um	V Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc1)	
ads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U1	EspNEC - sR	0.1407	Add
				Advancer
ner Parameters	-			Advanced
ner Parameters Modal Load Case		Modal		Advanced
ner Parameters Modal Load Case Modal Combination Meth	od	Modal CQC		Advanced
ner Parameters Modal Load Case Modal Combination Meth	od	Modal CQC Rigid Frequency, f1	· · · · · · · · · · · · · · · · · · ·	Advanced
ner Parameters Modal Load Case Modal Combination Meth Dinclude Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	· · · · · · · · · · · · · · · · · · ·	
ner Parameters Modal Load Case Modal Combination Meth	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Petrodic + Rigid Type		Advanced
ner Parameters Modal Load Case Modal Combination Meth Dinclude Rigid F Earthquake Durati	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		
ner Parameters Modal Load Case Modal Combination Meth Dinclude Rigid F Earthquake Durati Directional Combination	od Response on, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		
her Parameters Modal Load Case Modal Combination Meth Directional Combination Absolute Direction	od Response on, td Type al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		Advanced
ner Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response on, td Type al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS	Modify/Show	Advanced

Figura 27. Ajuste del cortante dinámico

Una vez realizada esta corrección al factor de escala del caso de carga del espectro de respuesta, se procede a verificar nuevamente que los cortantes dinámicos cumplan con los requerimientos establecidos en la NEC – 15, de donde:

$$V_{x \min} = 59.14 \text{ ton}$$
$$V_{x \dim} = 59.14 \text{ ton}$$
$$V_{x \dim} \ge V_{x \min}$$
$$\therefore OK$$
$$V_{y \min} = 73.98 \text{ ton}$$
$$V_{y \dim} = 82.89 \text{ ton}$$
$$V_{y \dim} \ge V_{y \min}$$
$$\therefore OK$$

Verificación de derivas de entrepiso según NEC-SE-DS

Los controles de las derivas de piso son fundamentales en el diseño de una estructura, a tal punto que en la mayoría de los casos las secciones son diseñadas en base a este criterio; se hace este control con el fin de evitar daños estructurales excesivos en la edificación y los daños en los elementos no estructurales podrían ser considerables.

Tabla 19. Sintesis de la mosoria de disend	Tabla	19.	Síntesis	de	la	filosofía	de	diseño
--	-------	-----	----------	----	----	-----------	----	--------

Nivel de desempeño estructural (prevención)	Elementos estructurales	Elementos no estructurales	Tasa anual de excedencia
Servicio	Ningún daño	Ningún daño	0.023
Daño	Ningún daño	Daños	0.01389
Colapso	Cierto grado de daño	Daños considerables	0.00211

Tabla 8: Síntesis de la filosofía de diseño

Teniendo en cuenta que las derivas de piso son desplazamientos horizontales relativos de un piso respecto a su piso consecutivo, obtenidos bajo cargas horizontales en cada dirección de la estructura.

El control de la deriva de piso se lleva a cabo mediante el cálculo de derivas inelásticas máximas de piso (Δ_M) causadas por el sismo de diseño. Además, la deriva máxima para cualquier piso no excederá los límites de deriva inelástica establecidos en la tabla siguiente, en la cual la deriva máxima se expresa como un porcentaje de la altura de piso:

Tabla 20.	Valores	de	deriva	máximos

Estructuras de:	∆ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

Tabla 7 : Valores de Am máximos, expresados como fracción de la altura de piso

 $\Delta_{M max} = 0.02$

Donde,

 Δ_M : Deriva máxima inelástica.

 Δ_E : Deriva elástica.

R: Factor de reducción de resistencia.

$$\Delta_M < \Delta_{M max}$$
$$\Delta_{M max} = 0.75 \cdot R \cdot \Delta_E$$

• Deriva Elástica permitida en dirección X – PRM

$$R = 7.5$$
$$\Delta_E = \frac{0.02}{0.75 \cdot 7.5}$$
$$\Delta_E = 0.0036 = 0.36\%$$

• Deriva Elástica permitida en dirección Y – PAC

$$R = 6$$
$$\Delta_E = \frac{0.02}{0.75 \cdot 6}$$
$$\Delta_E = 0.0044 = 0.44\%$$

Es importante mencionar que, las derivas de piso se calcularon en base al sismo de diseño con una excentricidad positiva y negativa del 5% en cada dirección de la estructura.

Sentido X – PRM

Figura 28. Control de derivas en sentido X

∴ **OK**

Figura 29. Control de derivas en sentido Y

 $\Delta_{Epermitida} > \Delta_{E}$ 0.0036 > 0.0032

∴ **0**K

Verificación de modos vibratorios

Los modos vibratorios, son propiedades dinámicas del sistema y cada uno de ellos corresponde a un período, una frecuencia y un grado de libertad, además que un modo representa la forma natural de vibración del sistema; el primer modo de vibración corresponde al primer período o también llamado período fundamental del sistema, debido a que este es el más importante y el más influyente, que junto con el segundo modo de vibración generalmente son los predominantes en el análisis dinámico de la estructura.

Razón por la cual para el presente diseño se revisó que los dos primeros modos vibratorios sean traslacionales llevándose más del 90% de la masa total de la estructura en cada una de las direcciones horizontales principales.

Tabla 21. Relación de masas paricipantes

TABLE: N	Iodal Partic				
Case	Mode	Period	UX	UY	Sum RZ
		sec			
Modal	1	1,428	0,419	0,000	0,002
Modal	2	1,165	0,000	0,382	0,002
Modal	3	0,905	0,000	0,000	0,246

Se puede observar en los resultados anteriores que los dos primeros modos de vibración son traslacionales, lo cual es muy importante en el diseño de la estructura ya que se puede concluir que no existe el problema de torsión en planta. Diseño estructural de los pórticos resistentes a momento.

Figura 30. Vista en planta de los PRM

Esta estructura se diseña y se verifica bajo la consideración de que se forma un mecanismo dúctil de disipación de energía mediante rótulas plásticas en vigas. El proceso comienza usualmente verificando las vigas a partir de los resultados del análisis elástico de la estructura con las combinaciones de carga reglamentarias. Para asegurar la efectiva formación del mecanismo de deformación plástica que se asume en el diseño, se deben realizar una serie de verificaciones adicionales. Así, por ejemplo, se aplican conceptos del diseño por capacidad para comprobar que la resistencia flexional de las columnas sea mayor que la de las vigas.

Diseño de vigas del PRM.

El diseño de vigas del pórtico resistente a momento se realizó en base al Reglamento de Diseño Sismoresistente de Construcciones de Acero – ANSI/AISC 341-16. Se hace referencia únicamente al Capítulo 4 debido a que se realizó el diseño de pórticos no arriostados.

Solicitaciones máximas a corte y momento.

Figura 31. Solicitaciones máximas a corte y momento de la viga del PRM

$$V_u = 15.48 \ ton$$

 $M_u = 22.63 \ ton \ m$

Clasificación de la sección y verificación de la relación ancho/espesor.

En primer lugar, se procede a clasificar la sección a partir de los criterios indicados en la Tabla B4.1b del ANSI/AISC 360-16 para elementos en compresión sometidos a flexión.

Por lo tanto, se demuestra que la sección de la viga no es esbelta. Esto permite no considerar los estados límites vinculados al pandeo local. Además, por tratarse de un pórtico no arriostrado especial, se debe verificar que las secciones cumplan con las relaciones ancho/espesor de la Tabla D1.1 del ANSI/AISC 341-16 para miembros con alta ductilidad. Además, se concluye que tanto las alas como los patines son sísmicamente compactos.
Verificación de los estados límites de resistencia.

La sección de la viga, en este caso, es una sección compacta, de modo que no se consideran los estados límites relacionados con el pandeo local. Además, como la viga se encuentra vinculada en toda su longitud a la losa de hormigón armado (que se comporta como un diafragma rígido en su plano) no se considera el estado límite de pandeo lateral-torsional.

Estado límite de fluencia.

Para verificar el estado límite de fluencia, se debe determinar el momento plástico a partir de las propiedades de la sección:

$$M_n = Z_x F_y$$

$$M_n = 1800000 mm^3 * 345 MPa$$

$$M_n = 621 KN m = 63.34 ton m$$

$$\emptyset M_n = 57 ton m$$

Una vez que hemos obtenido la capacidad del sistema procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

Estado límite de corte.

La resistencia disponible al corte de vigas del pórtico resistente a momento deberá ser determinada basada solo en las propiedades de la sección de acero según el Capítulo G.

La resistencia nominal de corte, V_n , se determina a partir de lo siguiente:

$$V_n = 0.6 * F_y * A_w * C_v$$

De donde, para el perfil de análisis:

$$C_v = 1$$

 $V_n = 0.6 * 345 * 5095 * 1$
 $V_n = 1054.71 \text{ KN} = 107.58 \text{ ton}$
 $\emptyset V_n = 107.6 \text{ ton}$

Una vez que hemos obtenido la capacidad del sistema procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

$$\emptyset V_n > V_u$$

107.6 > 152 ton
 $\therefore OK$

Verificación de las condiciones de servicio.

Para este análisis, las combinaciones de carga en servicio son D+L. Con estas cargas, se determinan las flechas o deflexiones verticales máximas a partir de los resultados del análisis estructural, obteniéndose en este caso:

Joint Element. 2301 Story: Planta Baja Ux = 0.071 Uy = -0.025 Uz = -3.796 Rx = 0.000750 Ry = -0.000140
Rz = -0.000010

Figura 32. Deflexión vertical máxima

$$f = 3.8 mm$$

Las deformaciones causadas por esta combinación de carga deben ser menores a la siguiente expresión:

$$f_{perm} = min\left(\frac{L}{300}; 10\right)$$
$$f_{perm} = min\left(\frac{4900}{300}; 10\right) = 10 mm$$

Una vez obtenida la flecha permitida, se procede a verificar que la misma sea mayor a la presentada en el análisis:

Requerimientos adicionales.

La viga, por formar parte de un pórtico resistente a momento especial, debe cumplir condiciones adicionales, estos son:

- Los extremos de la viga se consideran como zonas protegidas y además debe proveerse arriostramiento lateral de ambas alas.
- El ala superior está arriostrada adecuadamente por la losa de hormigón armado, mientras que deben disponerse arriostramientos para asegurar la estabilidad lateral del ala inferior. La separación máxima de estos arriostramientos es:

$$L_{b max} = 0.095 \frac{r_y E}{R_y F_y}$$

 $L_{b max} = 0.095 * \frac{33 * 200349.86}{1.1 * 345}$

$$\mathcal{L}_{b max} = 1.65 m$$

Por lo que, para este caso, se depende disponer de dos arriostramientos laterales para la viga de longitud 4.9 metros. Estos arriostramientos vinculan el ala inferior con la losa de hormigón armado.

Comprobación resultados ETABS 2016.

A continuación, se adjunta los resultados del diseño de la viga con el software

ETABS 2016.

ETABS 2016 Steel Frame Design AISC 360-10 Steel Section Check (Strength Summary)

Element Details										
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification			
Planta Baja	B14	506	0.27432	DStIS3	Special Moment Frame	W21X50	Seismic HD			

LLRF and Demand/Capacity Ratio							
L (m) LLRF Stress Ratio Lir							
4 90000	1	1					

Analysis and Design Parameters							
Provision	Analysis	2nd Order	Reduction				
LRFD	Direct Analysis	General 2nd Order	Tau-b Fixed				

Stiffness Reduction Factors								
αPr /Py	αPr /Pe	τ _b	EA factor	El factor				
-0.004	-3.036E-04	1	0.8	0.8				

Seismic Parameters									
Ignore Seismic Code?	Ignore Special EQ Load?	Plug Welded?	SDC	I	Rho	S _{DS}	R	Ω_0	Cd
No	No	Yes	С	1	1	1.19	6	2.5	4.5

Design Code Parameters									
Φb	Φα	Φτγ	Фтғ	Φν	Φv-RI	Φντ			
0.9	0.9	0.9	0.75	0.9	1	1			

Section Properties									
A (m²)	J (m⁴)	I₃₃ (m⁴)	l₂₂ (m⁴)	A _{v3} (m²)	A _{v2} (m²)				
0.0095	4.745E-07	0.00041	0.00001	0.0045	0.0051				

Design Properties									
S ₃₃ (m³)	S ₂₂ (m³)	Z ₃₃ (m³)	Z ₂₂ (m³)	r₃₃ (m)	r ₂₂ (m)	C _w (m⁵)			
0.00155	0.000125	0.001803	0.0002	0.20781	0.03306	0			

Material Properties							
E (tonf/m ²)	f _y (tonf/m²)	Ry	α				
20430000	35200	1.099	NA				

Stress Check forces and Moments									
Location (m)	Pu (tonf)	M _{u33} (tonf-m)	M _{u22} (tonf-m)	V _{u2} (tonf)	Vu3 (tonf)	T _u (tonf-m)			
0.27432	1.3243	-23.7835	-0.0002	-16.8262	0.0069	-0.0009			

Axial Force & Biaxial Moment Design Factors (H1.2,H1-1b)

	L Factor	K1	K2	B ₁	B ₂	Cm
Major Bending	0.888	1	1	1	1	1
Minor Bending	0.25	1	1	1	1	1

Parameters for Lateral Torsion Buckling

L _{ltb}	L _{ltb} K _{ltb} C	
0.25	1	1.234

Demand/Capacity (D/C) Ratio Eqn.(H1.2,H1-1b)

D/C Ratio =	(Pr /2Pc) + (Mr33 /Mc33) + (Mr22 /Mc22)
0.419 =	0.002 + 0.416 + 2.821E-05

Axial Force and Capacities

P _u Force (tonf)	φP _{nc} Capacity (tonf)	φP _{nt} Capacity (tonf)
1.3243	249.6277	300.4484

Moments and Capacities							
M _u Moment (tonf-m) φM _n (tonf-m) φM _n No LTB (tonf-m) φM _n Cb=1 (to							
Major Bending	23.7835	<mark>57.1056</mark>	57.1056	57.1056			
Minor Bending	0.0002	6.3335					

Shear Design Vu Force (tonf) φVn Capacity (tonf) Stress Ratio Major Shear 16.8262 107.6982 0.156 Minor Shear 0.0069 85.6842 8.045E-05

End Reaction Major Shear Forces

Left End Reaction (tonf) Load Combo		Right End Reaction (tonf)	Load Combo
45.346	DStIS6	43.4751	DStIS6

De donde, se verifica que los resultados obtenidos son correctos.

∴ **OK**

Diseño de columnas del PRM.

El diseño de columnas del pórtico resistente a momento se realizó en base al Reglamento de Diseño Sismoresistente de Construcciones de Acero – ANSI/AISC 341-16. Se hace referencia únicamente al Capítulo 4 debido a que se realizó el diseño de pórticos no arriostados.

Es importante mencionar que, las columnas deben resistir esfuerzos de flexión, axiales y de corte, como resultado de las combinaciones de carga reglamentarias.

Solicitaciones máximas a corte, momento y axial.

Figura 33. Solicitaciones máximas a cortante y momento de la columna.

Figura 34. Solicitaciones máximas a axial de la columna. $V_u = 10.20 \text{ ton}$

 $M_u = 22.54 \ ton \ m$ $P_u = 148.77 \ ton$

Clasificación de la sección y verificación de la relación ancho/espesor.

Al igual que en el diseño de la viga, se procede a clasificar la sección a partir de los criterios indicados en la Tabla B4.1b del ANSI/AISC 360-16. A diferencia del caso de la viga, cuando se realiza la clasificación de la columna, se debe definir si el ala y alma se encuentran sometidas a flexión o compresión para aplicar los criterios de clasificación definidos en las mencionadas tablas. Sin embargo, la columna a analizar se encuentra sometida a flexo-compresión, situación que no se considera explícitamente en dichos criterios de clasificación. Es por ello que, se aplican los criterios más estrictos, en forma conservadora, que son los correspondientes a los miembros sujetos a compresión. Por lo tanto, se demuestra que la sección de la columna no es esbelta, lo que indica que no deben considerarse los estados límites vinculados al pandeo local.

Además, por tratarse de un pórtico no arriostrado especial, se debe verificar que las secciones cumplan con las relaciones ancho/espesor de la Tabla D1.1 del ANSI/AISC 341-16 para miembros con alta ductilidad.

Verificación de los estados límites de resistencia.

La columna debe verificar los estados límites de resistencia, al igual que se realizó para la viga. Pero, a diferencia de la última, se debe considerar los estados límites correspondientes a flexión, carga axial y corte.

De acuerdo con el ANSI/AISC 360-16, la verificación para acciones combinadas de flexión y carga axial se debe realizar en base a los criterios indicados en la Sección H1 del mencionado reglamento. Es importante mencionar que existen diversos métodos para comprobar la capacidad a acciones combinadas, por ejemplo: diagrama de interacción o mediante la determinación de la resistencia de diseño a flexión y a compresión separadamente y luego la aplicación de la ecuación de interacción.

Resistencia a compresión.

La resistencia de diseño para compresión nominal P_n debe ser determinada basada en el estado límite de pandeo por flexión de la siguiente manera:

$$P_n = F_{cr}A_g$$

La tensión de pandeo por flexión se determina dependiendo de:

a) Para
$$\frac{KL_c}{r} \le 4.71 \sqrt{\frac{E}{F_y}} \circ \frac{F_y}{F_e} \le 2.25$$

 $L_c = 2664.1 \ mm$
 $\frac{KL_c}{r_x} = \frac{1 * 2664.1}{208}$

$$\frac{KL_c}{r_x} = 12.81$$
$$\frac{KL_c}{r_y} = \frac{1 * 2664.1}{33}$$
$$\frac{KL_c}{r_y} = 80.73$$

Por lo que,

$$80.73 \le 4.71 \sqrt{\frac{E}{F_y}}$$

$$80.73 \le 113.50$$

Por lo que,

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$

De donde,

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{KL}{r}\right)^{2}}$$
$$F_{e} = \frac{\pi^{2} * 200349.86}{80.7^{2}}$$
$$F_{e} = 303.4 MPa$$

Entonces,

$$F_{cr} = \left[0,658^{\frac{345}{303.4}}\right] * 345$$
$$F_{cr} = 214.35 MPa$$

Una vez obtenida
$$F_{cr}$$
 se procede a calcular la capacidad de la columna de la siguiente manera:

$$P_n = F_{cr}A_g$$

 $P_n = 214.35 * 17600$

Una vez que hemos obtenido la capacidad de la columna procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

Diseño por corte.

La resistencia disponible al corte de vigas del pórtico resistente a momento deberá ser determinada basada solo en las propiedades de la sección de acero según el Capítulo G.

La resistencia nominal de corte, V_n , se determina a partir de lo siguiente:

$$V_n = 0.6 * F_v * A_w * C_v$$

De donde, para el perfil de análisis:

$$C_v = 1$$

 $V_n = 0.6 * 345 * 8070 * 1$
 $V_n = 3341.1 \text{ KN} = 340.8 \text{ ton}$
 $\emptyset V_n = 255.6 \text{ ton}$

Una vez que hemos obtenido la resistencia a corte de la columna procedemos a

verificar que la misma sea mayor a las solicitaciones, de donde:

$$\emptyset V_n > V_u$$

255.6 > 10.2 ton

∴ **OK**

Estado límite de fluencia.

La resistencia nominal a flexión M_n debe ser el menor valor obtenido de acuerdo con los estados límites de fluencia (momento plástico) y pandeo lateral-torsional.

Fluencia.

$$M_n = M_p = F_y Z_x$$

De donde,

$$M_n = 345 * 3620000$$

 $M_n = 1248.9 KN m = 127.4 ton m$

Pandeo lateral-torsional.

En este caso, nos encontramos en la siguiente condición:

a) $L_p < L_b$

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$

$$\begin{split} & M_n \\ = 2.27 * \left[1248.9 * 1000 - (1248.9 * 1000 - 0.7 * 345 * S_x) \left(\frac{2342 - 1980.7}{15280.47 - 1980.7} \right) \right] \\ & \leq 1248.9 * 1000 \end{split}$$

$$M_n = 2804.9 \ KN \ m = 286.1 \ ton \ m$$

Por lo que, la resistencia a fluencia es:

$$M_n = 127.4 \ ton \ m$$

Una vez que hemos obtenido la resistencia a fluencia de la columna procedemos

a verificar que la misma sea mayor a las solicitaciones, de donde:

∴ **0**K

Estado límite de flexo-compresión.

Como se mencionó anteriormente, la verificación para acciones combinadas de flexión y carga axial se debe realizar en base a los criterios indicados en la Sección H1. De donde,

a) Cuando
$$rac{P_{u}}{\phi P_{n}} \geq 0,2$$

$$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) < 1$$

b) Cuando $\frac{P_u}{\phi P_n} < 0,2$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) < 1$$

Dado que,

$$\frac{P_u}{\emptyset P_n} = \frac{148.8}{3395.3}$$
$$0.43 > 0.2$$

Entonces, utilizamos la siguiente expresión para verificar el correcto

comportamiento:

$$\frac{P_u}{P_c} + \frac{8}{9} \left(\frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cy}} \right) < 1$$

De donde,

$$\frac{1459}{3772.5} + \frac{8}{9} \left(\frac{221.2}{196.3} + \frac{12.8}{1248.9} \right) < 1$$
$$0.6 < 1$$

∴ **0**K

A continuación, se adjunta los resultados del diseño de la columna con el

software ETABS 2016.

ETABS 2016 Steel Frame Design AISC 360-10 Steel Section Check (Strength Summary)

Element Details Level Element Unique Name Location (m) Combo Element Type Section Classification DStIS3 Planta Baja C6 187 0 Special Moment Frame W21X93 Seismic HD

LLRF and Demand/Capacity Rat

L (m)	LLRF	Stress Ratio Limit
3.20000	0.438	1

Analysis and Design Parameters						
Provision Analysis 2nd Order Reduction						
LRFD	Direct Analysis	General 2nd Order	Tau-b Fixed			

Stiffness Reduction Factors						
$\alpha P_r / P_y \qquad \alpha P_r / P_e \qquad \tau_b \qquad EA factor EI factor$						
0.246	0.14	1	0.8	0.8		

Seismic Parameters									
Ignore Seismic Code?	Ignore Seismic Ignore Special EQ Load? Plug Welded? SDC I Rho S _{DS} R Ω ₀ C _d							Cd	
No	No	Yes	С	1	1	1.19	6	2.5	4.5

Design Code Parameters								
Φb	Φα	Φτγ	Фтғ	Φν	Φv-RI	Φντ		
0.9	0.9	0.9	0.75	0.9	1	1		

Section Properties							
A (m ²) J (m ⁴) I ₃₃ (m ⁴) I ₂₂ (m ⁴) A _{v3} (m ²) A _{v2} (m ²)							
0.0176	0.000003	0.000862	0.000039	0.0101	0.0081		

Design Properties						
S ₃₃ (m³)	S ₂₂ (m ³)	Z ₃₃ (m³)	Z ₂₂ (m ³)	r ₃₃ (m)	r ₂₂ (m)	C _w (m⁵)
0.003141	0.000362	0.003622	0.000569	0.22118	0.04686	0

Material Properties				
E (tonf/m ²)	f _y (tonf/m²)	Ry	α	
20430000	35200	1.099	NA	

Stress Check forces and Moments						
Location (m)	Pu (tonf)	M _{u33} (tonf-m)	Mu22 (tonf-m)	Vu2 (tonf)	Vu ₃ (tonf)	T _u (tonf-m)
0	-152.6575	-22.5708	-0.4752	0	0	-0.0001

Axial Force & Biaxial Moment Design Factors (H1-1a)

	L Factor	K1	K2	B1	B ₂	Cm
Major Bending	0.835	1	1	1	1	1

	L Factor	K₁	K2	B1	B ₂	Cm
Minor Bending	0.835	1	1	1	1	0.453

Litb	Kltb	Cb
0.835	1	2.132

Demand/Capacity (D/C) Ratio Eqn.(H1-1a)				
D/C Ratio =	(Pr /Pc) + (8/9)(Mr33 /Mc33) + (8/9)(Mr22 /Mc22)			
<mark>0.545 =</mark>	0.347 + 0.175 + 0.023			

Axial Force and Capacities				
P _u Force (tonf)	φP _{nc} Capacity (tonf)	φP _{nt} Capacity (tonf)		
152.6575	439.9921	557.9757		

Moments and Capacities					
	Mu Moment (tonf-m)	φM _n (tonf-m)	φM _n No LTB (tonf-m)	φM _n Cb=1 (tonf-m)	
Major Bending	22.5708	<mark>114.7304</mark>	114.7304	107.8857	
Minor Bending	0.4752	<mark>18.0142</mark>			

Shear Design				
	V _u Force (tonf)	φV _n Capacity (tonf)	Stress Ratio	
Major Shear	0	170.7038	0.06	
Minor Shear	0	<mark>192.0564</mark>	0.003	

Diseño por capacidad.

En los pórticos especiales no arriostrados es muy importante verificar el cumplimiento del mecanismo de deformación plástica a partir del concepto de

"columna fuerte-viga débil".

$$\frac{\Sigma M_{pc}^{*}}{\Sigma M_{pb}^{*}} > 1$$

Para ello se deben determinar la suma de los momentos plásticos en las columnas y vigas. Además, para este análisis se considera el uso de una conexión End Plate de 4 pernos, el procedimiento se muestra a continuación.

Primeramente, el numerador representa la suma de los momentos plásticos en las columnas por encima y debajo del nudo, considerando la reducción por efecto de la carga axial:

$$M_{pc}^{*} = \Sigma Z_c \left(F_{yc} - \frac{P_r}{A_g} \right)$$

Donde:

 Z_c es el módulo plástico de la columna

 P_r es la resistencia requerida a compresión de la columna De donde,

$$M_{pc}^{*} = \left[3620000 \left(345 - \frac{1459}{17600}\right)\right]$$
$$M_{pc}^{*} = 1248.6 \, KNm = 127.4 \, ton \, m$$

En segundo lugar, el denominador representa la suma de la resistencia flexional esperada en las vigas, proyectada en la cara de la columna:

$$M_{pb}^{*} = M_{pr} + M_{v}$$

Donde:

 M_{pr} es el momento máximo probable en la viga

 M_{pr}

 M_v es el momento adicional en la viga debido a la amplificación producida por corte desde la rótula plástica hasta el eje de la columna

Debido a que se está considerando una conexión "Four-Bolt Stiffened", los momentos se calculan de la siguiente manera:

$$\begin{split} M_{pr} &= C_{pr} R_y F_y Z_e \\ C_{pr} &= \frac{F_y + F_u}{2F_y} \leq 1.2 \\ C_{pr} &= \frac{345 + 450}{2 * 345} \leq 1.2 \\ C_{pr} &= 1.15 \leq 1.2 \\ \end{split} \\ M_{pr} &= 1.15 * 1.1 * 350 * 1800000 \\ M_{pr} &= 787.1 \ KN \ m = 80.3 \ ton \ m \end{split}$$

Por otro lado,

$$M_{v} = V_{u}S_{h}$$
$$V_{u} = \frac{2M_{pr}}{L_{h}} + \frac{w_{u}L_{h}}{2}$$

Donde:

 S_h es la distancia de la cara de la columna a la rótula plástica y es el menor valor entre:

$$S_{h} = \begin{cases} \frac{d}{2} \\ 3 * b_{bf} \end{cases}$$
$$S_{h} = \begin{cases} \frac{528}{2} = 264 \\ 3 * 166 = 498 \end{cases}$$
$$S_{h} = 264 mm$$

Y, L_h es la distancia entre rótulas plásticas:

$$L_{h} = L - 2\left(\frac{d_{c}}{2}\right) - 2 S_{h}$$
$$L_{h} = 4900 - 2\frac{549}{2} - 2 * 264$$
$$L_{h} = 3823 mm$$

Además,

$$w_{u} = 1.2D + 1.6L$$

$$w_{u} = 6.16 + 3.14$$

$$w_{u} = 11.39 \frac{KN}{m^{2}} = 1.16 \frac{ton}{m^{2}}$$

$$V_{u} = \frac{2M_{pr}}{L_{h}} + \frac{w_{u}L_{h}}{2}$$

$$V_{u} = \frac{2 * 80.3}{3.82} + \frac{1.16 * 3.82}{2}$$

$$V_{u} = 44.2 ton$$

Finalmente,

$$M_{pb}^{*} = M_{pr} + M_{v}$$

 $M_{pb}^{*} = 80.3 + 44.2 * 0.264$
 $M_{pb}^{*} = 91.95 \ ton \ m$

Finalmente, se procede a verificar si se cumple el requisito de columna fuerte -

viga débil, considerando que existen dos vigas:

$$\frac{\Sigma M_{pc}^{*}}{\Sigma M_{pb}^{*}} > 1$$
$$\frac{127.4 * 2}{91.95 * 2} > 1$$
$$\frac{254}{183.9} = 1.38 > 1$$

∴ **0**K

Diseño estructural de los pórticos arriostrados concéntricos.

Figura 35. Vista en planta de los PAC

Los pórticos de acero con arriostramientos concéntricos representan una solución estructural conveniente para suministrar resistencia y rigidez lateral en edificios de baja y mediana altura. Este tipo de estructura se caracteriza porque los ejes centrales de los miembros componentes se cortan en un punto, formando así una estructura reticulada. Es por ello que las acciones laterales de viento y sismo inducen, principalmente, esfuerzos axiales en los miembros del pórtico arriostrado. El sistema se destaca por su elevada rigidez lateral, la que permite controlar adecuadamente los desplazamientos laterales para cumplir los requerimientos de diseño.

Los pórticos especiales arriostrados concéntricamente (SCBF) se diseñan para desarrollar deformaciones inelásticas significativas, mediante la fluencia y pandeo de las riostras. En estructuras típicas, el comportamiento inelástico de las riostras puede iniciarse para valores moderados de la distorsión lateral de piso (del orden de 0.3 a 0.5%) y, ante la ocurrencia de sismos severos, las riostras pueden desarrollar deformaciones axiales muy elevadas, por lo que, se requiere un diseño adecuado de todos los componentes estructurales para evitar fallas prematuras.

Diseño de vigas del PAC.

El diseño de vigas del pórtico arriostrado concéntrico se realizó en base al Reglamento de Diseño Sismoresistente de Construcciones de Acero – ANSI/AISC 341-16. Se hace referencia únicamente al Capítulo 4. Además, es importante mencionar que la viga de los PAC son vigas con conexión simple (a corte), por lo que, se diseña como compuesta.

Solicitaciones máximas a corte y momento.

• Mayoración de Cargas Concentradas provenientes de la Vigueta

$$P_u = \frac{(1.2 CM + 1.6 CV) * L}{2}$$

$$P_u = \frac{(1.2 * 544 + 1.6 * 200) * 5.6}{2}$$

$$P_u = 4451.7 kg$$

$$P_u = 4.45 ton$$

Mayoración de Cargas Distribuidas provenientes del Peso Propio de la Viga

$$w_u = 1.2 \ CM_{viga}$$
$$w_u = 1.2 \ * \ 32.7$$
$$w_u = 39.24 \ \frac{kg}{m}$$
$$w_u = 0.039 \ \frac{ton}{m}$$

Para obtener las solicitaciones de la estructura se considera la siguiente

disposición de cargas:

• Cortante Último

Debido a que la viga se encuentra sometida a una carga lineal distribuida y dos cargas concentradas, el cortante último se obtiene de la siguiente manera:

$$V_{u} = P_{u} + \frac{w_{u}l}{2}$$
$$V_{u} = 4.45 + \frac{0.039 * 4.9}{2}$$
$$V_{u} = 4.55 \ ton$$

• Momento Último

Debido a que la viga se encuentra sometida a una carga lineal distribuida y dos cargas concentradas, el momento último se obtiene de la siguiente manera:

$$M_u = P_u a + \frac{w_u l^2}{8}$$
$$M_u = 4.45 * 1.63 + \frac{0.039 * 4.9^2}{8}$$
$$M_u = 7.39 \ ton \ m$$

Diseño por flexión.

General.

Ancho efectivo.

El ancho efectivo de la losa de concreto es la suma de los anchos efectivos a cada lado del eje de la viga, cada uno de los cuales no debe exceder:

a) Un octavo de la luz de viga, medida centro a centro de los apoyos;

$$L = \frac{5.35}{8}$$
$$L = 0.67 m$$

b) Un medio de la distancia el eje de la viga adyacente.

$$L = \frac{5.6}{2}$$
$$L = 2.8 m$$

Por lo que, el ancho efectivo de las viguetas internas es:

$$b_{eff} = \min(0.67 * 2; 2.8 * 2)$$

 $b_{eff} = 1.34 \text{ m}$

Vigas compuestas con conectores de corte.

Resistencia por flexión positiva.

La resistencia de diseño para flexión positiva $\phi_b M_n$ debe ser determinada por el estado límite de fluencia:

$$\phi_{b} = 0,90$$

a) Para
$$\frac{h}{t_w} \le 3,76 \sqrt{\frac{E}{F_y}}$$

 M_n debe ser determinado a partir de la distribución de tensiones plásticas en la sección compuesta para el estado límite de fluencia (momento plástico). Es importante mencionar que todos los perfiles actuales ASTM A6 W, S, y HP satisfacen el límite para

$$F_y \le 4925 \frac{kg}{cm^2}$$
$$42.46 \le 90.61$$

Por lo tanto, se utiliza el método de distribución de las tensiones plásticas. El cual fue explicado a detalle en el diseño de la vigueta.

Como se mencionó anteriormente, se considera una acción compuesta completa entre la losa y la sección de acero, y se analiza únicamente la opción de que el eje neutro plástico se encuentra dentro de la losa de hormigón. Esto debido a que, si el ENP atraviesa la sección de acero, esto quiere decir que la viga estará sometida a esfuerzos de compresión y el diseño no es eficiente, en tal caso, se recomienda aumentar el espesor de la loseta con el fin de que únicamente el hormigón trabaje a compresión y la viga de acero a tensión.

De la imagen anterior se puede verificar que por equilibrio, la fuerza de tensión es igual a la de compresión:

$$C = T$$
$$T = A_s * F_y$$
$$C = 0.85 * f'_c * b_e * a$$

Con esto, se puede determinar la profundidad del bloque de compresión *a* que, como se mencionó anteriormente, debe encontrarse en el hormigón, por lo que:

$$a = \frac{A_s * F_y}{0.85 * f_c' * b_e * t} < t_c$$

De donde, se puede obtener el momento resistente nominal y, este es igual a:

$$M_n = C * d'$$
$$d' = \frac{d}{2} + h_r + t_c - \frac{d}{2}$$

De donde,

$$M_n = 0.85 * f_c' * b_e * a * \left(\frac{d}{2} + h_r + t_c - \frac{a}{2}\right)$$

Para la acción colaborante de la vigueta con concreto solicitado en compresión por flexión, el corte nominal entre la viga de acero y la losa de concreto, transferido por anclajes de acero, entre el punto de máximo momento positivo y el punto de momento cero debe ser determinado como el menor valor de acuerdo con los estados límites de aplastamiento del concreto, fluencia en tracción de la sección de acero o la resistencia al corte de los anclajes de acero:

a) Para el estado límite de aplastamiento del concreto

$$C = 0.85 f_c' A_c$$

$$h_c = 60 + \frac{55}{2} = 82.5 mm$$

$$C = 0.85 * 21 * 82.5 * 1338$$

$$C = 1969.6 KN = 200.9 ton$$

- b) Para el estado límite de fluencia en tracción de la sección de acero
 - $C = A_s F_y$ $A_s = 4190 mm^2$ C = 4190 * 345C = 1445.5 KN = 147.45 ton

De donde se obtiene que gobierna el estado límite de fluencia en tracción de la sección de acero. Por lo que, se procede a calcular la resistencia a flexión:

$$a = \frac{C_{min}}{0.85 * f'_c * b_e}$$
$$a = \frac{4190 * 345}{0.85 * 21 * 1337.5}$$
$$a = 60.55 mm < t_c = 82.5 mm$$
$$\therefore OK$$

De donde, se procede a obtener el momento resistente nominal:

$$M_n = 0.85 * f'_c * b_e * a * \left(\frac{d}{2} + h_r + t_c - \frac{a}{2}\right)$$
$$M_n = 0.85 * 210 * 1337.5 * 60.55 * \left(\frac{203}{2} + 55 + 82.5 - \frac{60.55}{2}\right)$$
$$M_n = 342.20 \text{ KN } m = 34.9 \text{ ton } m$$
$$\emptyset M_n = 0.9 * 34.9$$
$$\emptyset M_n = 31.4 \text{ ton } m$$

Una vez que hemos obtenido la resistencia a flexión, se procede a verificar que la misma sea mayor a la solicitación, de donde:

31.4 > 4.55 ton m

:: **OK**

Diseño por corte.

La resistencia disponible al corte de vigas compuestas con conectores de corte y anclajes tipo canal deberá ser determinada basada solo en las propiedades de la sección de acero según el Capítulo G.

Miembros de sección doble T y canales.

La resistencia nominal de corte, V_n , se determina a partir de lo siguiente:

$$V_n = 0.6 * F_y * A_w * C_{v1}$$

De donde, para el perfil de análisis:

$$C_{v1} = 1$$

 $V_n = 0.6 * 345 * 1580 * 1$
 $V_n = 327 \ KN = 33.4 \ ton$
 $\emptyset V_n = 0.9 * 33.4 \ ton$
 $\emptyset V_n = 30 \ ton$

Una vez que hemos obtenido la resistencia nominal a corte de la viga, se procede

a verificar que la misma sea mayor a la solicitación, de donde:

$$\emptyset V_n > V_u$$

 $30 > 7.4 \ ton$
 $\therefore OK$

Revisión de deflexiones.

En base a lo recomendado por el IBC2006 y la Guía de Diseño 03 del AISC

"Serviceability Design Considerations for Steel Building" se verifica que la deflexión

máxima causada por carga viva no debe ser mayor a L/360. Es decir, la deflexión máxima admisible es:

$$\Delta_{adm} = \frac{L}{360}$$
$$\Delta_{adm} = \frac{5350}{360} = 14.9 \ mm$$

Debido a que la carga que se ejerce sobre la vigueta es distribuida, la deformación puede calcularse a través de la siguiente expresión considerando a una viga simplemente apoyada:

$$\Delta = \frac{5w_{CV}L^4}{384 E I_{LB}}$$

De donde, es importante mencionar que la I_{LB} es la inercia transformada de la sección compuesta. Esta inercia se obtiene considerando lo siguiente:

Se procede a verificar la posición del eje neutro, de la siguiente manera:

$$\bar{y} = \frac{n * A_a}{b_e} \left(\sqrt{1 + \frac{2 * b_e * y_a}{n * A_a}} - 1 \right) \le t_c$$
$$\bar{y} = \frac{9.3 * 4190}{1338} \left(\sqrt{1 + \frac{2 * 1338 * (87.5 + 55 + 0.5 * 259)}{9.3 * 4190}} - 1 \right) \le t_c$$

$$\bar{y} = 100 \ge 87.5 \, mm$$

Por lo que, el eje neutro se ubica fuera de la losa de concreto, es decir, en la sección de acero, por lo que,

$$\bar{y} = \frac{A_{ct} * 0.5t_c + A_a y_a}{A_{ct} + A_a}$$

De donde,

$$n = \frac{E_s}{E_c} = 9.3$$

Con la relación de los módulos de elasticidad de los materiales, se procede a calcular el área transformada de concreto:

$$A_{ct} = \frac{b_e}{n} t_c$$
$$A_{ct} = \frac{1338}{9.3} * 87.5$$
$$A_{ct} = 12581 \ mm^2$$

De la misma manera, se procede a calcular la inercia transformada de la siguiente manera:

$$I_t = I_{ct} + I_a + A_{ct}(\bar{y} - 0.5t_c^2) + A_a(y_a - \bar{y})^2$$

De donde,

Y,

$$\bar{y} = \frac{A_{ct} * 0.5t_c + A_a y_a}{A_{ct} + A_a}$$
$$\bar{y} = \frac{12581 * 0.5 * 87.5 + 4190 * (87.5 + 55 + 259 * 0.5)}{12581 + 4190}$$
$$\bar{y} = 101 \, mm$$

$$I_{ct} = \frac{b_e * t_c^3}{12 * n}$$
$$I_{ct} = \frac{1338 * 87.5^3}{12 * 9.3}$$

$$I_{ct} = 8026996 \ mm^4$$

Por lo que, reemplazando los valores obtenidos anteriormente, se obtiene que la

inercia transformada es igual a:

$$I_t = 220881235 \ mm^4$$

Y, la carga actuante sobre la viga es:

$$w_{CV} = 200 * 5.6$$
$$w_{CV} = 1120 \frac{kg}{m}$$

Con los valores anteriores obtenidos, se puede determinar la deflexión de la

vigueta:

$$\Delta_c = \frac{5w_{CV}L^4}{384 EI_{LB}}$$
$$\Delta_c = \frac{5*1.12*5350^4}{384*200349.86*220881235}$$
$$\Delta_c = 2.70 mm$$

Una vez obtenida la deformación, se procede a verificar que la misma sea menor a la admisible:

 $\Delta_c < \Delta_{adm}$ 2.70 < 15 mm $\therefore OK$

Diseño de anclajes de acero – pernos.

Anclajes de acero en vigas compuestas.

Resistencia de pernos conectores de corte.

La resistencia nominal de un perno de corte embebido en una losa de concreto

sólido o en una losa compuesta con plancha colaborante de acero debe ser determinada como:

$$Q_n = 0.5 * A_{sa} * \sqrt{f_c' E_c} \le R_g * R_f * A_{sa} * F_u$$

Considerando pernos de diámetro ³/₄" o 19 mm:

$$Q_n = 0.5 * A_{sa} * \sqrt{f_c' E_c}$$
$$Q_n = 0.5 * 284 * \sqrt{21 * 21538}$$
$$Q_n = 95 KN = 9.7 ton$$

Para la segunda parte de la expresión, los valores de los coeficientes se obtienen de la siguiente tabla:

$$R_g R_f A_{sa} F_u = 1 * 0.75 * 284 * 490$$

 $R_g R_f A_{sa} F_u = 104.2 \ KN$

$$R_g R_f A_{sa} F_u = 10.6 \ ton$$

Por lo que, la resistencia de los pernos conectores de corte es:

$$Q_n = 9.72 \le 10.6$$
$$Q_n = 9.72 \ ton$$

Número requerido de conectores de corte.

El número de anclajes de acero requeridos entre cualquier fuerza concentrada y el punto más cercano de momento cero debe ser suficiente para desarrollar el máximo momento requerido en el punto de la carga concentrada.

En este caso y, a diferencia de las viguetas, el Steel Deck se encuentra ubicado de forma paralela a la viga, por lo que, no es necesario calcular el número de valles existentes.

El corte horizontal total en la interfase entre la viga de acero y la losa de concreto debe suponerse que es transferida por conectores de cortante. La fuerza de corte horizontal total transferido por anclajes de acero V', entre el punto de máximo momento positivo y el punto de momento cero debe ser determinado como el menor valor de los siguientes estados límite:

a) Para el estado límite de aplastamiento del concreto:

$$V' = 0.85 * f_c' * A_c$$
$$V' = 2089 KN$$

b) Para el estado límite de fluencia en tracción de la sección de acero

$$V' = F_y * A_s$$
$$V' = 1445 KN$$

c) Para el estado límite de resistencia del conector de corte

$$V' = \Sigma Q_n$$

Considerando un espaciamiento de 15 cm entre cada stud,

$$V' = 3337 KN$$

Por lo que, el corte horizontal total es:

$$V' = 147 \ ton$$

El número de anclajes de acero requeridos entre cualquier fuerza concentrada y el punto más cercano de momento cero debe ser suficiente para desarrollar el máximo momento requerido en el punto de la carga concentrada.

Para esto, se considera un espaciamiento de 15 cm entre la colocación de cada stud. Por lo que, el número de conectores de cortantes que se podrían colocar son 35.

Una vez determinados los posibles conectores de corte que se podrían colocar a lo largo de la viga, se procede a calcular el número de conectores necesarios:

$$n_{stud} = \frac{V'}{Q_n}$$

 $n_{stud} = \frac{147}{9.72} = 30 \text{ conectores}$ $n_{stud} < n_{adm}$ 30 < 35

∴ **OK**

\therefore 1 conector @15cm

Comprobación resultados ETABS 2016.

A continuación, se adjunta los resultados del diseño de la viga con el software

ETABS 2016.

Story: Planta Baja	Beam B3	Length: 5.35 m Trib. Area: 13.11 m ²
Location: X= 3.08 m Y= 12.635 m		6 0.019 m Ø studs
A572 Gr50	W10X26	No camber

Composite Deck Properties

	Deck	Cover (m)	Wc (tonf/m³)	f'c (MPa)	Ribs	b _{eff} (m)	E₀ (S) (MPa)	E₀ (D) (MPa)	E₀ (V) (MPa)
At Left	None	N/A	N/A	0	N/A	0	N/A	N/A	N/A
At Right	DECK	0.06	2.4028	20.59	T	0.66875	21538	21538	29076

137

_oading (D	CmpS2 cor	nbo)		
Constr.	Dead	SDL	Live NR	Factored
0.00	1.36	0.00	0.49	2.41
	Loading (DO Constr. 0.00	Loading (DCmpS2 corConstr.Dead0.001.36	coading (DCmpS2 combo)Constr.DeadSDL0.001.360.00	Coading (DCmpS2 combo)Constr.DeadSDLLive NR0.001.360.000.49

		End	Reactions			
	Constr.	Dead	SDL	Live NR	Combo	Factored
I end, J end (tonf)	0.00	3.39	0.00	1.22	DCmpS2	6.02

	Stren	gth Checks			
	Combo	Factored	Design	Ratio	Pass
Shear at Ends (tonf)	DCmpS2	6.02	36.49	0.165	\checkmark
Construction Bending (tonf-m)	DCmpC1	5.91	16.25	0.364	\checkmark
Positive Bending (tonf-m)	DCmpS2	7.50	16.25	0.462	\checkmark

Constructability and Serviceability Checks

	Actual	Allowable	Ratio	Pass
Constr. Dead Defl. (m)	0.00886	No Limit	N/A	N/A
Post-concrete Defl. (m)	0.0032	0.02229	0.143	\checkmark
Live Load Defl. (m)	0.0032	0.01486	0.215	\checkmark
Total Defl. (m)	0.01206	0.02229	0.541	\checkmark
Walking Acceleration ap/g (β = 0.03 P _o = 289)	0.000799	0.005	0.160	\checkmark

Section P	roperties		
	PNA (m)	l (m⁴)	ΦM _n (tonf-m)
Steel fully braced	0.13081	0.00006	16.25
Vibrations Check (Ec = 33509,29076)	0.0138	0.00022	N/A

Vibration Frequency Parameters

Element	L (m)	l _{eff} (m⁴)	D (m⁴-m)	В (m)	W (tonf)	Δ (m)	f _n (Hz)
Slab		0.000015	0.000015/1.07				
Beam	5.35 m	0.00022	0.00022/1.07	2*2.7238	1.5*17.55	0.00263 m	10.985
Panel					26.33	0.00263 m	10.985

Diseño de la Columna del PAC.

El diseño de columnas del pórtico resistente a momento se realizó en base al Reglamento de Diseño Sismoresistente de Construcciones de Acero – ANSI/AISC 341-16. Se hace referencia únicamente al Capítulo 4 debido a que se realizó el diseño de pórticos no arriostados.

Es importante mencionar que, las columnas deben resistir esfuerzos de flexión, axiales y de corte, como resultado de las combinaciones de carga reglamentarias.

	tion				End Offse	et Location	
O Load Case	Load C	ombination	O M	odal Case	I-End	0.0000	m
Envolvente	~	Max and Min	~		J-End	2.9384	m
					Length	3.2000	m
Component		Display	y Locatio	n			
Major (V2 and M3)	~	0.5	now Max	O Scrol	for Values		
				0			
Shear V2							
Silical V2							
					_	Max = 1.04 to	onf
						Max = 1.04 to at 2.9384 m	nf
						Max = 1.04 to at 2.9384 m Min = -0.88 to at 2.9384 m	nf nf
						Max = 1.04 to at 2.9384 m Min = -0.88 to at 2.9384 m	onf
Moment M3					-	Max = 1.04 to at 2.9384 m Min = -0.88 to at 2.9384 m	onf onf
Moment M3						Max = 1.04 to at 2.9384 m Min = -0.88 to at 2.9384 m Max = 3.91 to	onf onf
Moment M3						Max = 1.04 to at 2.9384 m Min = -0.88 to at 2.9384 m Max = 3.91 to at 0.0000 m	onf onf
Moment M3						Max = 1.04 to at 2.9384 m Min = -0.88 to at 2.9384 m Max = 3.91 to at 0.0000 m Min = -3.84 to	onf onf onf-m

Solicitaciones máximas a corte, momento y axial.

Figura 36. Solicitaciones máximas a corte y momento.

Figura 37. Solicitaciones máximas a axial.

$$V_u = 1.04 \text{ ton}$$

 $M_u = 3.91 \text{ ton } m$
 $P_u = 164.13 \text{ ton}$

Clasificación de la sección y verificación de la relación ancho/espesor.

Se procede a clasificar la sección a partir de los criterios indicados en la Tabla B4.1b del ANSI/AISC 360-16. Cuando se realiza la clasificación de la columna, se debe definir si el ala y alma se encuentran sometidas a flexión o compresión para aplicar los criterios de clasificación definidos en las mencionadas tablas. Sin embargo, la columna a analizar se encuentra sometida a flexo-compresión, situación que no se considera explícitamente en dichos criterios de clasificación. Es por ello que, se aplican los criterios más estrictos, en forma conservadora, que son los correspondientes a los miembros sujetos a compresión. Por lo tanto, se demuestra que la sección de la columna no es esbelta, lo que indica que no deben considerarse los estados límites vinculados al pandeo local.

Además, se verifica que las secciones cumplan con las relaciones ancho/espesor de la Tabla D1.1 del ANSI/AISC 341-16 para miembros con alta ductilidad:

Verificación de los estados límites de resistencia.

La columna debe verificar los estados límites de resistencia, al igual que se realizó para la viga. Pero, a diferencia de la última, se debe considerar los estados límites correspondientes a flexión, carga axial y corte.

De acuerdo con el ANSI/AISC 360-16, la verificación para acciones combinadas de flexión y carga axial se debe realizar en base a los criterios indicados en la Sección H1 del mencionado reglamento. Es importante mencionar que existen diversos métodos para comprobar la capacidad a acciones combinadas, por ejemplo: diagrama de interacción o mediante la determinación de la resistencia de diseño a flexión y a compresión separadamente y luego la aplicación de la ecuación de interacción.

Resistencia a compresión.

La resistencia de diseño para compresión nominal P_n debe ser determinada basada en el estado límite de pandeo por flexión de la siguiente manera:

$$P_n = F_{cr}A_g$$

La tensión de pandeo por flexión se determina dependiendo de:

a) Para
$$\frac{KL_c}{r} \le 4.71 \sqrt{\frac{F}{F_y}} \circ \frac{F_y}{F_e} \le 2.25$$

 $L_c = 2664.1 \ mm$
 $\frac{KL_c}{r_x} = \frac{1 * 2664.1}{154}$
 $\frac{KL_c}{r_x} = 17.3$

$$\frac{KL_c}{r_y} = \frac{1 * 2664.1}{63}$$
$$\frac{KL_c}{r_y} = 42.29$$

Por lo que,

$$42.3 \le 4.71 \sqrt{\frac{E}{F_y}}$$

 $42.3 \leq 113.50$

Por lo que,

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$

De donde,

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{KL}{r}\right)^{2}}$$
$$F_{e} = \frac{\pi^{2} * 200349.86}{42.3^{2}}$$
$$F_{e} = 1105.78 MPa$$

Entonces,

$$F_{cr} = \left[0,658^{\frac{345}{1105.78}}\right] * 345$$
$$F_{cr} = 302.77 MPa$$

Una vez obtenida F_{cr} se procede a calcular la capacidad de la columna de la siguiente manera:

$$P_n = F_{cr}A_g$$

 $P_n = 302.77 * 15500$
 $P_n = 4692.86 MPa$
 $P_n = 478.67 ton$

Una vez que hemos obtenido la capacidad de la columna procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

Diseño por corte.

La resistencia nominal de corte, V_n , se determina a partir de lo siguiente:

$$V_n = 0.6 * F_v * A_w * C_v$$

De donde, para el perfil de análisis:

 $C_v = 1$ $V_n = 0.6 * 345 * 4719 * 1$ $V_n = 1953.67 \text{ KN} = 199.27 \text{ ton}$ $\emptyset V_n = 149.46 \text{ ton}$

Una vez que hemos obtenido la resistencia a corte de la columna procedemos a

verificar que la misma sea mayor a las solicitaciones, de donde:

 $\emptyset V_n > V_u$

149.46 > 1.04 ton

∴ **OK**

Estado límite de fluencia.

Fluencia.

$$M_n = M_p = F_y Z_x$$

De donde,

$$M_n = 345 * 2280000$$

 $M_n = 786.6 \text{ KN } m = 80.23 \text{ ton } m$

Pandeo lateral-torsional.

En este caso, nos encontramos en la siguiente condición:

a)
$$L_p < L_b$$

 $M_n = C_b \left[M_p - (M_p - 0.7F_yS_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$
 $M_n = 2.27 * \left[7866 * 1000 - (7866 * 1000 - 0.7 * 345 * S_x) \left(\frac{2342 - 1980.7}{15280.47 - 1980.7} \right) \right]$
 $\le 1248.9 * 1000$

$$M_n = 1784.25 \ KN \ m = 181.99 \ ton \ m$$

Por lo que, la resistencia a fluencia es:

$$M_n = 80.23 \ ton \ m$$

Una vez que hemos obtenido la resistencia a fluencia de la columna procedemos

a verificar que la misma sea mayor a las solicitaciones, de donde:

Estado límite de flexo-compresión.

Como se mencionó anteriormente, la verificación para acciones combinadas de flexión y carga axial se debe realizar en base a los criterios indicados en la Sección H1. De donde,

a) Cuando
$$\frac{P_u}{\phi P_n} \ge 0,2$$
$$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) < 1$$

b) Cuando $\frac{P_u}{\phi P_n} < 0,2$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) < 1$$

Dado que,

$$\frac{P_u}{\emptyset P_n} = \frac{1609}{4223.6}$$

0.38 > 0.2

Entonces, utilizamos la siguiente expresión para verificar el correcto comportamiento:

$$\frac{P_u}{P_c} + \frac{8}{9} \left(\frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cy}} \right) < 1$$

De donde,

$$\frac{1609}{4692.86} + \frac{8}{9} \left(\frac{38.3}{786.6} + \frac{13.73}{199.82} \right) < 1$$
$$0.45 < 1$$
$$\therefore OK$$

Comprobación resultados ETABS 2016.

A continuación, se adjunta los resultados del diseño de la columna con el

software ETABS 2016.

ETABS 2016 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

	Element Details									
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification			
Planta Baja	C4	12	0	DStIS4	Special Moment Frame	W14X82	Seismic HD			

LLRF a	LLRF and Demand/Capacity Ratio						
L (m)	LLRF	Stress Ratio Limit					
3.20000	0.479	1					

Analysis and Design Parameters						
Provision	2nd Order	Reduction				
LRFD	Direct Analysis	General 2nd Order	Tau-b Fixed			

Stiffness Reduction Factors							
αPr /Py	αPr /Pe	τ _b	EA factor	El factor			
-0.006	-3.683E-04	1	0.8	0.8			

	Seismic Parameters							
;	Ignore Special	Plua Welded?	SDC	I	Rho	Sns	R	

Ignore Seismic Code?	Ignore Special EQ Load?	Plug Welded?	SDC	I	Rho	S _{DS}	R	Ω_0	Cd
No	No	Yes	С	1	1	1.19	6	2.5	4.5

Design Code Parameters								
Φ_{b}	Φc	Φ_{TY}	Φ_{TF}	Φν	Φv-RI	Φντ		
0.9	0.9	0.9	0.75	0.9	1	1		

	Section Properties						
A (m ²) J (m ⁴) I ₃₃ (m ⁴) I ₂₂ (m ⁴) A _{v3} (m ²) A _{v2} (m ²)							
0.0155	0.000002	0.000367	0.000062	0.0111	0.0047		

Design Properties						
S33 (m³) S22 (m³) Z33 (m³) Z22 (m³) r33 (m) r22 (m) Cw (m)						C _w (m ⁶)
0.002019	0.00048	0.002278	0.000734	0.15389	0.06308	0

Material Properties						
E (tonf/m ²) f_y (tonf/m ²) R_y α						
20430000	35200	1.099	NA			

(ASCE 12.4.3.2(5): (1.2+0.2*SDS)*D + 1.0*L + OMEGA0*QE)

Stress Check forces and Moments								
Location (m) Pu (tonf) Mu33 (tonf-m) Mu22 (tonf-m) Vu2 (tonf) Vu3 (tonf) Tu (tonf								
0	-363.95	0	0	0	0	0		

Axial Force & Biaxial Moment Design Factors (H1-1a)

	L Factor	K1	K2	B ₁	B ₂	Cm
Major Bending	0.918	1	1	1	1	1
Minor Bending	0.509	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Litb	Kltb	Cb
1	1	2.154

Demand/Capacity (D/C) Ratio Eqn.(H1-1a)

D/C Ratio =	(Pr /Pc) + (8/9)(Mr33 /Mc33) + (8/9)(Mr22 /Mc22)
0.838 =	0.838 + 0 + 0

Axial Force and Capacities					
P _u Force (tonf)	φP _{nc} Capacity (tonf)	φP _{nt} Capacity (tonf)			
363.95	434.17	490.53			

Moments and Capacities							
	M _u Moment (tonf-m)	φM _n (tonf-m)	φM _n No LTB (tonf-m)	φM _n Cb=1 (tonf-m)			
Major Bending	0	72.16	72.16	70.21			
Minor Bending	0	23.26					

	Shear Design						
	V _u Force (tonf)	φV _n Capacity (tonf)	Stress Ratio				
Major Shear	0	99.37	0.02				
Minor Shear	0	211.8	9.49E-05				

Diseño de riostras del PAC.

El diseño de riostras del pórtico arriostrado concéntrico se realizó en base al

Reglamento de Diseño Sismoresistente de Construcciones de Acero - ANSI/AISC 341-

16. Se hace referencia únicamente al Capítulo 5 debido a que se realizó el diseño de

pórticos arriostados concéntricos.

Las especificaciones definen dos condiciones principales para las riostras: (i)

esbeltez máxima y (ii) resistencia requerida.

	tion		End Offse	t Location	
O Load Case	Load Comb	ination O Modal Case	I-End	0.0000	m
Envolvente	∨ Ma	ax and Min 🛛 🗸	J-End	4.1708	m
			Length	4.1708	m
Component		Display Location			
Axial (P and T)	~	● Show Max ○ S	croll for Values		
Axial Force P					
Axial Force P				Max = 18.1775	tonf
Axial Force P				Max = 18.1775 at 4.1708 m Min = -45.1762	tonf
Axial Force P				Max = 18.1775 at 4.1708 m Min = -45.1762 at 0.0000 m	tonf tonf
Axial Force P				Max = 18.1775 at 4.1708 m Min = -45.1762 at 0.0000 m	tonf tonf
Axial Force P				Max = 18.1775 at 4.1708 m Min = -45.1762 at 0.0000 m Max = 0.0000 t	tonf tonf onf-m
Axial Force P				Max = 18.1775 at 4.1708 m Min = -45.1762 at 0.0000 m Max = 0.0000 t at 4.1708 m Min = 0.0000 to	tonf tonf onf-m

Figura 38. Solicitación máxima a axial de la riostra.

$$P_u = 45.2 \ ton$$

Clasificación de la sección y verificación de la relación ancho/espesor

Las riostras de los pórticos especiales arriostrados concéntricamente deben satisfacer los requerimientos para miembros de ductilidad elevada.

Verificación de los estados límites de resistencia.

Estado límite de compresión.

Se determina la esbeltez de la riostra, considerando en forma conservadora la longitud de pandeo, L. Esto debido a que, para realizar la determinación exacta de dicha longitud se debería conocer el detalle de conexión de la riostra, el cual se presentará en las siguientes secciones. Además, se considera que la riostra está articulada en ambos extremos, esto implica que el factor de longitud efectiva es k=1.0, de modo que:

$$\frac{kL}{r} \le 200$$

$$\frac{1 * 4171}{67.27} \le 200$$
$$62 \le 200$$
$$\therefore OK$$

En este caso particular, como se trata de una riostra de sección tubular sin elementos esbeltos, se verifica solamente el estado límite de pandeo flexional. Para esto, se procede a determinar la sección crítica elástica:

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{kL}{r}\right)^{2}}$$
$$F_{e} = \frac{\pi^{2} * 200349.9}{\left(\frac{1 * 4171}{67.27}\right)^{2}}$$
$$F_{e} = 514.3 MPa$$

La tensión crítica de diseño F_{cr} se determina mediante dos ecuaciones según se trate de pandeo elástico o inelástico. En este caso:

$$\frac{kL}{r} < 4,71 \sqrt{\frac{E}{F_y}}$$
$$62 < 112.4$$

Por lo que,

$$F_{cr} = 0,658^{\frac{F_y}{F_e}}F_y$$
$$F_{cr} = 0,658^{\frac{352}{514.3}} * 352$$
$$F_{cr} = 264.3 MPa$$

Finalmente, la resistencia de diseño se determina como:

$$P_n = \emptyset F_{cr} A_g$$

 $P_n = 0.9 * 264.3 * 5969$

$$P_n = 1577.8 \ KN$$

 $P_n = 160.9 \ ton$

Una vez que hemos obtenido la capacidad del sistema procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

Estado límite de tracción.

Se procede a determinar la fluencia en el área bruta, de la siguiente manera:

$$T_n = F_y A_g$$
$$T_n = 352 * 5969$$
$$T_n = 2101 KN$$
$$T_n = 214.3 ton$$

Después, se procede a verificar la rotura en el área neta. En este caso es necesario determinar el área neta efectiva, la que depende de las características de la conexión ubicada en los extremos de la riostra. De manera conservadora, se utiliza la misma área que la utilizada en la verificación de la fluencia en el área bruta, por lo que:

$$T_n = F_u A_e$$
$$A_e = A_g U$$
$$A_e = 5969 * 1$$
$$T_n = 485 * 5969$$
$$T_n = 2895 KN$$
$$T_n = 295.3 ton$$

Una vez que hemos obtenido la capacidad del sistema procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

Es importante mencionar que, la resistencia de diseño a tracción es

significativamente mayor que la resistencia a compresión. Sin embargo, no resulta sencillo optimizar el diseño a tracción, por ejemplo, disminuyendo la sección de la riostra, dado que ello implicaría también reducir la resistencia de diseño a compresión, la que es ligeramente superior a la resistencia requerida.

Comprobación resultados ETABS 2016.

A continuación, se adjunta los resultados del diseño de la columna con el software ETABS 2016.

ETABS 2016 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

				Eleme	nt Details	6				
Level	Element	Unique Name	Locati	on (m)	Combo	Ele	ement Type	•	Section	Classification
Planta Baja	D2	624	6.23	3398	DStIS4	Specia	al Moment Fr	ame	D15x0.7	Seismic HD
			LLRF a	nd Dem	and/Capa	city Rati	o			
		I	_ (m)	LLRF	Stre	ss Ratio	Limit			
		6	6.23398	1		1				
			Analys	sis and D)esign Pa	rameter	s			
		Provision	Anal	ysis	2nd	Order	Reduc	tion	-	
		LRFD	Direct A	nalysis	General	2nd Order	· Tau-b F	ixed	_	
				· · · · · ·					-	
	Stiffness Reduction Factors									
		αPr /Py	α	Pr /Pe	1	ъ	EA factor	EI1	factor	
		0.247	0	.654		1	0.8		0.8	

Seismic Parameters

Ignore Seismic Code?	Ignore Special EQ Load?	Plug Welded?	SDC	I	Rho	S _{DS}	R	Ω_0	Cd
No	No	Yes	С	1	1	1.19	6	2.5	4.5

Design Code Parameters						
Φ_{b}	Φc	Φ_{TY}	Φ_{TF}	Φv	Фv-Ri	Фут
0.9	0.9	0.9	0.75	0.9	1	1

Section Properties							
A (m ²)	J (m⁴)	l₃₃ (m⁴)	I22 (m ⁴)	A _{v3} (m ²)	A _{v2} (m ²)		
0.0031	0.000016	0.000008	0.000008	0.0016	0.0016		

Design Properties						
S ₃₃ (m ³)	S ₂₂ (m ³)	Z ₃₃ (m ³)	Z ₂₂ (m ³)	r ₃₃ (m)	r ₂₂ (m)	C _w (m ⁶)
0.000107	0.000107	0.000143	0.000143	0.05062	0.05062	

Material Properties					
E (tonf/m ²)	f _y (tonf/m²)	Ry	α		
20430000	35200	1.099	NA		

HSS Section Parameters				
HSS Welding Reduce HSS Thickness				
ERW	No			

Stress Check forces and Moments

Location (m)	P _u (tonf)	M _{u33} (tonf-m)	M _{u22} (tonf-m)	V _{u2} (tonf)	V _{u3} (tonf)	T _u (tonf-m)
6.23398	-27.35	0.14	-0.01	0.06	1.628E-03	-2.242E-03

Axial Force & Biaxial Moment Design Factors (H1-1a)

	L Factor	K ₁	K2	B ₁	B ₂	Cm
Major Bending	0.5	1	1	1	1	1
Minor Bending	1	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Litb	Kitb	Сь
1	1	2.162

D/C Ratio =	$(P_r / P_c) + Sqrt[((8/9)(M_{r33} / M_{c33}))^2 + ((8/9)(M_{r22} / M_{c22}))^2]$
0.857 =	0.829 + Sqrt[(0.028) ² + (0.001) ²]

Axial Force and Capacities

P _u Force (tonf)	φP _{nc} Capacity (tonf)	φP _{nt} Capacity (tonf)
27.35	33	99.63

Moments and Capacities

	M _u Moment (tonf-m)	φMո (tonf-m)	φM _n No LTB (tonf-m)	φM _n Cb=1 (tonf-m)
Major Bending	0.14	4.54	4.54	4.54
Minor Bending	0.01	4.54		

Torsion Moment and Capacities

T _u Moment (to	onf-m)	T _n Capacity	(tonf-m)	-m) φT _n Capacity (tonf-m) 7.29	
-2.242E-03	3	8.09			
		Shear	Design		
	V _u F	orce (tonf) φV _n Capacity (tonf) Stress		ress Ratio	
Major Shear		0.06	29	.89	0.002
Minor Shear	1.628E-03		29	.89	5.447E-05
		End Reaction	n Axial For	ces	
Left End Reaction (t End Reaction (tonf) Load Combo		Right Er	nd Reaction (tonf)	Load Combo
-27.59		DStIS6		-27.35	DStIS6

Diseño por Capacidad

El ANSI/AISC 341-16 indica, para los pórticos especiales arriostrados concéntricamente, que las solicitaciones de vigas, columnas y conexiones, debe determinarse considerando las acciones sísmicas limitadas por capacidad.

 a) Análisis en el que las riostras desarrollan su resistencia esperada a tracción y compresión. La resistencia esperada se calcula considerando la probable sobrerresistencia del material y sin incluir los factores de resistencia:

Se calcula primero la resistencia esperada a tracción:

$$T_{ne} = R_y F_y A_g$$

 $T_{ne} = 1.1 * 352 * 5969$
 $T_{ne} = 2311.2 \ KN$
 $T_{ne} = 235.7 \ ton$

Después, se calcula la resistencia esperada a compresión:

$$P_{ne} = \min\left(R_{y}F_{y}A_{g}, \frac{1}{0,887}F_{cr}A_{g}\right)$$

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{kL}{r}\right)^{2}}$$

$$F_{e} = \frac{\pi^{2} * 200349.9}{\left(\frac{1 * 4171}{67.27}\right)^{2}}$$

$$F_e = 514.3 MPa$$

La tensión crítica de diseño F_{cr} se determina mediante dos ecuaciones según se trate de pandeo elástico o inelástico. En este caso:

$$\frac{kL}{r} < 4,71 \sqrt{\frac{E}{F_y}}$$

Por lo que,

$$F_{cr} = 0.658 \frac{F_y}{F_e} F_y$$

$$F_{cr} = 0.658 \frac{352}{514.3} * 352$$

$$F_{cr} = 282.5 MPa$$

$$\frac{1}{0.887} F_{cr} A_g = \frac{1}{0.887} * 282.4 * 5969$$

$$\frac{1}{0.887} F_{cr} A_g = 1901.4 KN$$

Por lo que,

$$P_{ne} = \min \left(R_y F_y A_g, \frac{1}{0.887} F_{cr} A_g \right)$$
$$P_{ne} = \min (2311.2, 1901.4)$$
$$P_{ne} = 1901.4 \ KN$$
$$P_{ne} = 194 \ ton$$

 b) Análisis en el que las riostras desarrollan su resistencia esperada a tracción y compresión.

Se calcula primero la máxima tracción esperada:

$$T_{u \ max} = 2T_n \cos \theta + P_{ne} \cos \theta + P_u$$
$$T_{u \ max} = 2 * 2311.2 \cos 50.1 + 1901 * \cos 50.1 + 520$$
$$T_{u \ max} = 3665 \ KN$$

$$T_{u \max} = 373.8 \text{ ton}$$
$$\emptyset T_n > T_{u \max}$$
$$\therefore OK$$

Después, se calcula la máxima compresión esperada:

$$P_{u \ max} = 2T_n \cos \theta + P_{ne} \cos \theta + P_u$$

$$P_{u \ max} = 2 * 2311.2 \cos 50.1 + 1901 * \cos 50.1 + 686$$

$$P_{u \ max} = 4871 \ KN$$

$$P_{u \ max} = 496.8 \ ton$$

$$\emptyset P_n > P_{u \ max}$$

∴ **0**K

Diseño Estructural de las Columnas a Carga Vertical.

El diseño de miembros a sección compuesta se realizó en base a las Especificaciones para Construcciones de Acero – AISC 360-10. Se hace referencia únicamente al Capítulo I debido a que se realizó el diseño de miembros compuestos formados por perfiles de acero estructural laminados o armados y concreto estructural actuando en conjunto.

Solicitaciones de las columnas del sistema gravitacional

A continuación, se muestran las máximas solicitaciones (envolventes) a las que están sometidas las columnas del sistema de resistencia a carga gravitacional.

		End Offse	t Location	
O Load Case 💿 Load	Combination O Modal Case	I-End	0.0000	m
Envolvente 🗸	Max and Min V	J-End	2.6641	m
		Length	3.2000	m
Component	Display Location			
Major (v2 and M3)		croil for values		
Shear V2			Max = 0.39 tonf at 2.6641 m Min = -0.37 tonf at 2.6641 m	

Solicitaciones máximas a corte, momento y axial

Figura 39. Solicitaciones máximas a corte y momento

		End Offse	et Location
O Load Case 💿 Load	Combination O Modal Case	I-End	0.0000 m
Envolvente	✓ Max and Min ✓	J-End	2.6641 m
		Length	3.2000 m
Component	Display Location		
Avial Force P		Tor values	
			Max = -92.88 tonf
-		_	at 0.0000 m Min = -177 07 tonf
			at 0.0000 m
Torsion T			
Torsion T			Max = 2.517E-03 tonf-
Torsion T			Max = 2.517E-03 tonf- at 2.6641 m Min = -0.01 tonf-m

Figura 40. Solicitaciones máximas a axial

$$V_u = 0.39 \ ton$$

 $P_u = 178 \ ton$

Clasificación de la sección y verificación de la relación ancho/espesor.

Se procede a clasificar la sección a partir de los criterios indicados en la Tabla

B4.1b del ANSI/AISC 360-16.

Por lo tanto, se demuestra que la sección de la columna no es esbelta, lo que

indica que no deben considerarse los estados límites vinculados al pandeo local.

Verificación de los estados límites de resistencia.

Diseño por fuerza axial.

Limitaciones.

Para las columnas compuestas embebidas se aplican las siguientes limitaciones:

 a) El área de la sección del núcleo de acero debe ser por lo menos el 1% de la sección compuesta total

$$0.1 A < A_s$$

 $0.1 * 32580.2 < 8710 mm^2$
 $3258 < 8710 mm^2$
 $\therefore OK$

Resistencia a la compresión.

La resistencia de diseño para compresión $\emptyset_c P_n$ para miembros compuestos rellenos con doble simetría cargados axialmente deberá ser determinada para el estado límite de pandeo por flexión de la siguiente manera:

Primero, se procede a calcular la rigidez efectiva de una sección compuesta:

$$EI_{eff} = E_s I_s + E_s I_{sr} + c_3 E_c I_c$$

$$c_3 = 0.6 + 2 \left(\frac{A_s}{A_c + A_s}\right) \le 0.9$$

$$c_3 = 0.6 + 2 \left(\frac{8710}{32580.2 + 8710}\right) \le 0.9$$

$$c_3 = 0.9$$

$$EI_{eff} = 1.30 * 10^{10} KN mm^2$$

a) Para $\frac{P_{no}}{P_e} \le 2,25$

$$P_n = P_{no} \left[0,658^{\frac{P_{no}}{P_e}} \right]$$

De donde,

$$P_{no} = F_y A_s + F_{yr} A_{sr} + 0.85 f'_c A_c$$
$$P_{no} = 345 * 8710 + 0 + 0.85 * 21 * 32580.2$$

 $P_{no} = 3586.5 \ KN$

De la misma manera,

$$P_e = \frac{\pi^2 (EI_{eff})}{L_c^2}$$
$$P_e = \frac{\pi^2 (1.30 * 10^{10})}{3.2^2}$$
$$P_e = 12559.2 \text{ KN}$$

De donde,

$$\frac{P_{no}}{P_e} \le 2.25$$
$$\frac{3586.5}{12559.2} \le 2.25$$
$$0.29 \le 2.25$$

Con esta información, se puede calcular la capacidad de la columna:

$$P_n = P_{no} \left[0,658^{\frac{P_{no}}{P_e}} \right]$$
$$P_n = 3586.5 \left[0,658^{\frac{3586.5}{12559.2}} \right]$$
$$P_n = 3182.5 \ KN$$

Una vez que hemos obtenido la capacidad del sistema procedemos a verificar

que la misma sea mayor a las solicitaciones, de donde:

$$\phi_c = 0.75$$

 $\phi_r P_r$
 $0.75 * 3182.5 > 2358 KN$
 $2387 > 2358 KN$

∴ **O**K

Transferencia de carga.

Fuerzas externas aplicadas a la sección de acero.

Cuando la fuerza externa total es aplicada directamente en la sección de acero, la fuerza requerida a transferir al concreto V_r' se determina de la siguiente manera:

$$V'_{r} = P_{r} \left(1 - \frac{F_{y}A_{s}}{P_{no}} \right)$$
$$V'_{r} = 2358.2 \left(1 - \frac{345 * 8710}{3587} \right)$$
$$V'_{r} = 382.4 \text{ KN}$$
$$V'_{r} = 39 \text{ ton}$$

Conexiones de corte.

Cuando las fuerzas son transferidas en un miembro compuesto embebido o en un miembro compuesto relleno mediante conectores de corte, la resistencia disponible al corte de los conectores de corte debe ser determinada como sigue:

$$R_c = \Sigma Q_{nv}$$

Donde, considerando pernos de 19 mm de diámetro:

$$Q_{nv} = F_u A_{sa}$$

 $Q_{nv} = 4500 * 284$
 $Q_{nv} = 138.93 \ KN$
 $Q_{nv} = 14.17 \ ton$
 $\emptyset Q_{nv} = 0.65 * 14.17$
 $\emptyset Q_{nv} = 9.21 \ ton$

Con la capacidad obtenida, se puede calcular el número de conectores necesarios de la siguiente manera:

$$n = \frac{V_r'}{\emptyset Q_{nv}}$$
$$n = 5$$

Conexión de la Riostra del Pórtico Arriostrado Concéntrico

Uno de los aspectos más importantes en el diseño de estructuras de acero es la elección adecuada de las diversas conexiones estructurales para dar estabilidad a dichas estructuras. La solución de cómo conectar ciertos elementos estructurales depende de muchos factores, tales como, criterio y experiencia del estructuralista, del fabricante y del montador, una buena estructuración desde la concepción del proyecto, forma y tamaño de las piezas a conectar, la magnitud y distribución de los esfuerzos actuantes en los elementos estructurales afectados, tipo de unión (soldada o atornillada), y características físicas y químicas del material de los miembros estructurales.

El costo de las conexiones representa un porcentaje importante del costo total de la estructura de acero, por eso, en la etapa del diseño deberán tomarse precauciones para desarrollar conexiones económicas, sin poner en riesgo los niveles de seguridad especificados en la normatividad vigente.

Miembros de los pórticos arriostrados concéntricos.

Los PAC se encuentran conformados con columnas y vigas de perfil W.

Además, la riostra es un perfil tubular. Esta información se muestra a continuación:

Tabla 22. Miembros	de los	pórticos	arriostrados	concéntricos

Elemento	Sección	
Columna	W14x82	
Viga	W10x22	
Riostra	T 200x200x10	

Diseño.

Resistencia esperada a tensión de la riostra.

A continuación, se detalla el procedimiento que se siguió para determinar la resistencia esperada a tensión de la riostra:

 $T_{ne} = R_y F_y A_g$

$$T_{ne} = 1.1 * 352 * 5969$$

$$T_{ne} = 2311 \text{ KN}$$
$$T_{ne} = 235.7 \text{ ton}$$

Resistencia esperada a compresión de la riostra.

$$P_{ne} = \frac{1}{0.887} F_{cre} A_g$$

Donde F_{cre} se calcula con ayuda de las ecuaciones del esfuerzo crítico pero multiplicando el esfuerzo de fluencia por R_{y} .

Se determina la esbeltez de la riostra, considerando en forma conservadora la longitud de pandeo, L. Esto debido a que, para realizar la determinación exacta de dicha longitud se debería conocer el detalle de conexión de la riostra. Además, se considera que la riostra está articulada en ambos extremos, esto implica que el factor de longitud efectiva es k=1.0, de modo que:

$$\frac{kL}{r} \le 200$$

$$\frac{1 * 4171}{67} \le 200$$

$$62 \le 200$$

$$\therefore OK$$

En este caso particular, como se trata de una riostra de sección tubular sin elementos esbeltos, se verifica solamente el estado límite de pandeo flexional. Para esto, se procede a determinar la sección crítica elástica:

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{kL}{r}\right)^{2}}$$
$$F_{e} = \frac{\pi^{2} * 200349.9}{\left(\frac{1 * 4171}{67}\right)^{2}}$$

La tensión crítica de diseño F_{cr} se determina mediante dos ecuaciones según se trate de pandeo elástico o inelástico. En este caso:

$$\frac{kL}{r} < 4.71 \sqrt{\frac{E}{F_y}}$$

Por lo que,

$$F_{cr} = 0.658^{\frac{F_y}{F_e}} F_y$$
$$F_{cr} = 0.658^{\frac{352}{514.3}} * 352$$
$$F_{cr} = 282.5 MPa$$

Finalmente, la resistencia esperada a compresión:

$$P_{ne} = \frac{1}{0.887} F_{cre} A_g$$

$$P_{ne} = \frac{1}{0.887} * 282.5 * 5969$$

$$P_{ne} = 1901 KN$$

$$P_{ne} = 193.9 ton$$

Tamaño de la soldadura entre la riostra y la cartela.

Para determinar el tamaño de la soldadura de filete, se asume en el diseño un electrodo de E7018 con $F_{E7018} = 490 MPa$ y una soldadura de 10 mm.

Se calcula L de la imagen anterior de la siguiente manera:

$$L = \frac{P_u}{4 * \varphi * 0,60F_{EXX} * 0,70 * w}$$
$$L = \frac{2311.2}{4 * 0.75 * 0.60 * 490 * 0.70 * 10}$$
$$L = 371 mm$$

Por lo que, se escoge un L_w de 40 cm.

Determinación de la longitud de traslapo requerida entre riostra – cartela.

El estado límite de rotura por cortante en la pared de la riostra es usado para determinar la longitud mínima de traslapo riostra-cartela.

Para determinar la rotura por cortante del elemento se utiliza la siguiente ecuación:

$$R_n = 0.60 F_u A_{nv}$$

En donde A_{nv} es tomada como el área de la sección transversal de las cuatro paredes de la riostra de espesor t, por lo que:

$$R_n = 0.60 F_u (4 * l * t)$$

De donde, se puede determinar la longitud de la soldadura de filete mínima para el traslapo riostra-cartela de la siguiente manera:

$$l \ge \frac{P_u}{\varphi(0,60)F_u(4t)}$$
$$l \ge \frac{2311.2}{0.75 * 0.60 * 400 * 4 * 10}$$
$$l \ge 321 mm$$

Por lo que, los 40 cm requeridos por la soldadura de filete controlan la longitud requerida de traslapo riostra-cartela.

Chequeo de que la conexión del arriostramiento puede acomodarse al pandeo de la riostra.

Las conexiones de riostra diseñadas para tolerar las rotaciones impuestas por el pandeo de la riostra deben tener suficiente capacidad de rotación para tolerar la rotación requerida para la deriva de piso de diseño. La tolerancia a la rotación inelástica se verifica típicamente con el uso de una sola cartela a la que la riostra se suelda, de modo que entre el extremo de la riostra y la línea de fluencia haya al menos una distancia igual al doble del espesor de la cartela.

Determinación del espesor de la cartela para el estado límite de fluencia a tensión en la sección Whitmore.

Para la determinación del espesor de la cartela, se asume un ángulo $\emptyset = 30^{\circ}$. Con esto, se puede determinar para el extremo de la riostra la longitud de la cartela en la sección Whitmore de la siguiente manera:

$$w_p = D_{riostra} + 2 l_w \tan \emptyset$$
$$w_p = 200 + 2 * 400 \tan 30^\circ$$
$$w_p = 662 mm$$

Luego, se determina el mínimo espesor de la cartela en base al estado de límite de fluencia a tensión:

$$R_n = F_y w_p t_p$$

De donde, se puede determinar el mínimo espesor de la siguiente manera:

$$t_p \ge \frac{P_u}{\emptyset F_y w_p}$$
$$t_p \ge \frac{2311}{0.9 * 352 * 662}$$
$$t_p \ge 11 mm$$

Por lo que, se escoge una cartela de espesor $t_p = 14 mm$ y de acero ASTM

A572Gr50 con un $F_y = 352MPa$.

Resistencia al desgarramiento en bloque.

La resistencia por el estado límite de desgarramiento en bloque a lo largo de la

falla de cortante es:

$$R_{n} = 0.60F_{u}A_{nv} + U_{bs}F_{u}A_{nt} \le 0.60F_{y}A_{gv} + U_{bs}F_{u}A_{nt}$$

$$U_{bs} = 1$$

Para determinar el área neta se utiliza la siguiente expresión:

 $A_{nt} = t_p D$ $A_{nt} = 14 * 200$ $A_{nt} = 2800 mm^2$ $A_{gv} = A_{nv}$ $A_{gv} = 2 * l_w * t_p$ $A_{gv} = 2 * 400 * 14$ $A_{gv} = 11200 mm^2$

Dado que el área bruta a cortante A_{gv} y el área neta a cortante A_{nv} son iguales en este caso, la componente de la fluencia del cortante $0.60F_yA_{gv}$ es más pequeña que la componente a la ruptura del cortante $0.60F_uA_{nv}$:

Una vez que hemos obtenido la capacidad del sistema procedemos a verificar que la misma sea mayor a las solicitaciones, de donde:

∴ **0**K

Geometría de la cartela.

Para determinar la geometría de la cartela, se utilizan las siguientes expresiones:

El ancho del borde la cartela d se obtiene a partir del diámetro de la cartela y un espacio asignado entre el perfil HSS y la esquina de la cartela, dicho espacio se asume como 50 mm.

d = 50 + 200 = 250 mm

Para obtener e_b y e_c se toma en cuenta la altura de los perfiles de las vigas y columnas, respectivamente, tal como se muestra a continuación:

$$e_b = \frac{247}{2} = 123 mm$$

 $e_c = \frac{337}{2} = 169 mm$

Como se mencionó anteriormente y, debido a que es el ángulo máximo para determinar la sección Whitmore, se define a $\emptyset = 30^\circ$ y dada la geometría de la estructura $\theta = 25^\circ$.

Es importante mencionar que, la conexión de la riostra debe diseñarse para resistir los momentos flexionantes o rotaciones impuestas por el pandeo de la riostra. Esto puede ser logrado cumpliendo cualquiera de las siguientes dos opciones:

- Diseñar la conexión de la riostra para que soporte los momentos flexionantes impuestos por el pandeo de la riostra con una resistencia de diseño mínima de 1,1R_yM_p de la riostra con respecto al eje crítico de pandeo.
- Diseñar la conexión para tolerar las rotaciones impuestas por el pandeo de la riostra, debe tener suficiente capacidad de rotación para tolerar la rotación requerida para la deriva de piso de diseño.

Este diseño de conexión satisface el último punto debido a que se proporciona la capacidad de rotación dejando la mínima distancia de desplazamiento entre el extremo de la riostra y la línea de influencia 2t = 31,75 mm, por lo que, se usa un valor de 50 mm para permitir un posible incremento del espesor de la cartela debido a que los cálculos se realizaron con $l_w = 30 cm$. De donde:

$$a = \frac{d}{2} + (l_w + 2t) \tan \emptyset$$

$$a = \frac{250}{2} + (400 + 2 * 10) \tan 30^{\circ}$$
$$a = 367.5 \ mm$$

Una vez establecido a se puede determinar L de la siguiente manera:

$$L = \sqrt{(e_b \tan \theta + a \sin \theta \tan \theta)^2 + (e_b + a \sin \theta)^2}$$

$$L = \sqrt{(123 * \tan 39.9^\circ + 367.5 * \sin 39.9^\circ \tan 39.9^\circ)^2 + (123 + 367.5 * \sin 39.9^\circ)^2}$$
$$L = 468.12 mm$$

Por lo que, se utiliza un L de 470 mm.

$$L_{A} = \frac{a}{\cos \theta} + e_{b} \tan \theta - e_{c}$$
$$L_{A} = \frac{367.5}{\cos 39.9^{\circ}} + 123 * \tan 39.9^{\circ} - 169$$
$$L_{A} = 413.7 \ mm$$

Por lo que, se utiliza un L_A de 420 mm.

$$L_B = (L + l_w + 2t)\cos\theta + \frac{d}{2}\sin\theta - e_b$$
$$L_B = (468.12 + 400 + 50)\cos 39.9^\circ + \frac{250}{2}\sin 39.9^\circ - 123$$
$$L_B = 526.7 \ mm$$

Por lo que, se utiliza un L_B de 530 mm.

Finalmente, se procede a calcular l_b de la siguiente manera:

$$l_b = a \tan \theta + 2t$$
$$l_b = 367.5 * \tan 39.9^\circ + 50$$
$$l_b = 357.3 mm$$

Chequeo a esfuerzo de fluencia de la sección Whitmore.

La resistencia por el estado límite de fluencia en la sección Whitmore se calcula

de la siguiente manera:

$$\begin{split} & \emptyset R_n = 0.90 F_y w_p t \\ & \emptyset R_n = 0.90 * 352 * 662 * 14 \\ & \emptyset R_n = 2642 \ KN \end{split}$$

Una vez que hemos obtenido la capacidad de la sección se procede a verificar que la misma sea mayor a las solicitaciones, de donde:

Chequeo de pandeo por flexo-compresión en la sección Whitmore.

Para el chequeo de pandeo por flexo-compresión en la sección Whitmore, en 2006 el autor Dowswell definió un espesor crítico para la cartela, el cual se obtiene de la siguiente manera:

 $L' = l_w + 2t$ L' = 400 + 2 * 14L' = 428 mm $c = l_b \cos \theta - \frac{d}{2} \sin \theta$ $c = 357.3 * \cos 39.9^\circ - \frac{250}{2} \sin 39.9^\circ$ c = 193.9

Con esta información, se puede obtener el espesor crítico de la cartela:

$$t_{\beta} = 1.5 \sqrt{\frac{F_{y}c^{3}}{E_{s}l_{b}}}$$
$$t_{\beta} = 1.5 \sqrt{\frac{352 * 193.9^{3}}{200350 * 357.27}}$$

$t_{\beta} = 8.98 mm$

Una vez establecido el espesor crítico de la cartela, se verifica que el espesor de esta sea mayor, de donde:

$$t_{\beta} < t$$

8.98 < 14 mm
 $\therefore OK$

Sin embargo, como el espesor t = 14 mm es mayor que el espesor crítico, la sección es compacta y se debe chequear la resistencia, tal como se muestra a continuación:

$$\frac{Kl_b}{r} = \frac{0.60 * 357.27}{4.04} = 53.04$$
$$4.71 \sqrt{\frac{E}{F_y}} = 112.37 MPa$$
$$\frac{Kl_b}{r} \le 4,71 \sqrt{\frac{E}{F_y}}$$

 $53.04 \le 112.37 MPa$

Para esto, se procede a determinar la sección crítica elástica:

$$F_e = \frac{\pi^2 E}{\left(\frac{kL}{r}\right)^2}$$
$$F_e = \frac{\pi^2 * 200350}{(53.04)^2}$$
$$F_e = 702.87 MPa$$

Entonces, debido a esta comprobación:

$$F_{cr} = 0,658^{\frac{F_y}{F_e}}F_y$$
$$F_{cr} = 0,658^{\frac{352}{702.87}} * 352$$

$$F_{cr} = 285.4 MPa$$

Finalmente, la resistencia esperada es la siguiente:

Una vez que hemos obtenido la capacidad de la sección se procede a verificar

que la misma sea mayor a las solicitaciones, de donde:

Chequeo del área neta efectiva de la riostra.

Se establece que el área neta efectiva debe ser mayor que el área bruta, de donde:

$$A_n = A_g - 2(t_p + 2s)t_{des}$$

Se asume un s = 1,6 mm en cada lado de la riostra para proveer un espacio libre para el montaje.

$$A_n = 5969 - 2(14 + 2 * 1,6) * 10$$

 $A_n = 5625 mm^2$

De la tabla de Factores por Rezago de Cortante para Conexiones en Miembros a Tensión, se puede determinar dicho factor para secciones PTE circulares con platina de conexión única y concéntrica de la siguiente manera:

$$l_w \ge 1.3 * D$$
$$400 \ge 1.3 * 200$$

Por lo tanto, U = 1 y:

$$A_e = UA_n$$

$$A_e = 1 * (5625) = 5625 mm^2$$

 $A_e < A_g$
 $5625 < 5969 mm^2$

Debido a que $A_e < A_g$ se necesita refuerzo adicional. El área aproximada de reforzamiento requerido A_{rn} , es el área removida, pero la posición del refuerzo reducirá U a un valor menor que 1. Por lo tanto, el área requerida de reforzamiento puede ser obtenida de:

$$(A_n + A_{rn})U \ge A_g$$
$$U = 0.80$$
$$A_{req} = \frac{A_g}{0.80} - A_n$$
$$A_{req} = \frac{5969}{0.80} - 5625$$
$$A_{req} = 1836 \ mm^2$$

Por lo tanto, se usarán dos placas de 70 x 14mm de acero ASTM A572 grado 50, con un área total de:

$$A_{rn} = 2 * 70 * 14 = 1960 mm^2$$

1960 > 1836 mm²
 $\therefore OK$

Diseño de la soldadura de conexión entre la riostra y las barras de refuerzo

Las conexiones del refuerzo a la riostra deben tener la resistencia suficiente para desarrollar la resistencia esperada del refuerzo a cada lado de la sección reducida.

$$A_{ref} = 1960 \ mm^2$$

 $R_y F_y A_{ref} = 1.1 * 352 * 1960$
 $R_y F_y A_{ref} = 759 \ KN$

Considerando para la longitud de la soldadura 2 cordones de 5 mm de electrodo E7018.

$$L = \frac{759}{2 * (0.60 * 490 * 0.707 * 5)} = 365 mm$$

Por lo que, se usan dos cordones de soldadura en filete de 5 mm en una longitud de 370 mm a cada lado de la sección reducida.

Determinar las fuerzas en las superficies de contacto (cartela-viga-columna).

 $\propto = \overline{\alpha} = 190.62 mm$ $\beta = 214.87 mm$ $r = \sqrt{(\alpha + e_c)^2 + (\beta + e_b)^2} = 468 mm$

Haciendo un control de las fuerzas de la riostra:

$$H_{uc} = \frac{e_c}{r} P_u$$

$$H_{uc} = \frac{169}{468} * 1901$$

$$H_{uc} = 684.4 KN$$

$$H_{ub} = \frac{\alpha}{r} P_u$$

$$H_{ub} = \frac{190.62}{468} * 1901$$

$$H_{ub} = 774.3 KN$$

$$V_{uc} = \frac{\beta}{r} P_u$$

$$V_{uc} = \frac{214.87}{468} * 1901$$

$$V_{uc} = 718.4 KN$$

$$V_{ub} = \frac{e_b}{r} P_u$$

$$V_{ub} = \frac{123}{468} * 1901$$
$$V_{ub} = 501.2 \text{ KN}$$
$$M_{uc} = H_{uc}(\beta - \overline{\beta})$$
$$M_{uc} = 26 \text{ KNm}$$

La sumatoria de las fuerzas verticales deben ser igual a la componente vertical de la fuerza de la riostra. Igualmente, con las fuerzas horizontales, por lo que, se muestra la comprobación a continuación:

$$V_{uc} + V_{ub} = P_u \sin \theta$$
718.4 + 501.2 = 1901 * sin 39.9°
1219.6 = 1219.6
$$\therefore OK$$

$$H_{uc} + H_{ub} = P_u \cos \theta$$
684.4 + 774.3 = 1901 * cos 39.9°
1458.7 = 1458.7
$$\therefore OK$$

Diseño de la soldadura de conexión alma de la viga a la columna.

Se determina el área de las aletas de la siguiente manera:

$$A_f = t_f b_f$$
$$A_f = 1334.4 \ mm^2$$

Se determina el área del alma de la siguiente manera:

$$A_{w} = A_{g} - 2A_{f}$$
$$A_{w} = 1521 \ mm^{2}$$
$$N_{uf} = \frac{1334.4}{4190} * 774.3$$

$$N_{uf} = 246.6 \, KN$$

$$N_{uw} = \frac{1521}{4190} * 774.3$$

$$N_{uw} = 281 \, KN$$

$$F_R = \sqrt{246.6^2 + 281^2}$$

$$F_R = 373.9 \, KN$$

$$\theta = \tan^{-1} \left(\frac{281}{247}\right)$$

$$\theta = 48.7^\circ$$

Se procede a calcular el tamaño de la soldadura de la siguiente manera:

$$F_{nw} = 0.60 F_{EXX} (1 + 0.5 \sin \theta^{1.5})$$
$$F_{nw} = 0.60 * 490 * (1 + 0.5 \sin 48.7^{1.5})$$
$$F_{nw} = 389.8 MPa$$

La resistencia de la soldadura es:

Para soldar el alma de la viga a la aleta se usarán 2 cordones de soldadura de filete de 3 mm.

Diseño de la soldadura de conexión cartela-viga.

$$V_{ub} = 501.2 \text{ KN}$$
$$H_{ub} = 774.3 \text{ KN}$$
$$F_R = 922.3 \text{ KN}$$
$$L_A = 420 \text{ mm}$$

$$\theta = \tan^{-1} \left(\frac{774.3}{501.2} \right) = 32.92^{\circ}$$

$$F_{nw} = 0.60 F_{EXX} (1 + 0.5 \sin \theta^{1.5})$$

 $F_{nw} = 0.60 * 490 * (1 + 0.5 \sin 32.92^{\circ 1.5})$

$$F_{nw} = 352.89 \, MPa$$

La resistencia de la soldadura es:

Para soldar la cartela a la viga se usarán 2 cordones de soldadura de filete de 6

mm.

Diseño de la soldadura de conexión aleta de la viga a la columna.

$$L = 285.9 mm$$
$$w = \frac{246.6}{0.75 * (0.60 * 490 * 0.707 * 285.9)}$$
$$w = 1.66 mm$$

Para soldar la aleta de la viga a la columna, se soldará con soldadura de filete de 2 mm.

Diseño de la soldadura de conexión cartela-columna.

$$F_{n} = H_{uc} + \frac{2M_{uc}}{L}$$

$$F_{n} = 684.4 + \frac{2 * 26}{500}$$

$$F_{n} = 684.5 KN$$

$$V_{uc} = 718.4 KN$$

$$F_{R} = 992.3 KN$$

$$\theta = \tan^{-1} \left(\frac{684.4}{718.4}\right)$$
$$\theta = 43.6^{\circ}$$
$$F_{nw} = 0,60 \ F_{EXX} (1 + 0.5 \sin \theta^{1.5})$$
$$F_{nw} = 0,60 * 490 * (1 + 0.5 \sin 43.62^{1.5})$$
$$F_{nw} = 378.2 \ MPa$$

La resistencia de la soldadura es:

$$\label{eq:w} \begin{split} & \ensuremath{\emptyset} R_n = \ensuremath{\emptyset} F_{nw} A_{we} \\ & \ensuremath{w} = \frac{992.3}{2*0.75*378.2*0.707*530} \\ & \ensuremath{w} = 4.67 \ mm \end{split}$$

Para soldar la cartela a la columna se usarán 2 cordones de soldadura de filete de 5 mm.

Conexión Placa Extendida

Las conexiones de placa extendida atornillada se hacen soldando la viga a una placa en su extremo y atornillando esta placa a la aleta de la columna. Existen tres configuraciones de placa extrema que se encuentran precalificadas bajo las disposiciones sísmicas de la AISC. En este diseño, se utilizará una conexión de cuatro pernos sin rigidizar (4E).

Los estados límites que deben ser chequeados son: fluencia por flexión de la viga, fluencia por flexión de las placas extremo, fluencia de la zona de panel, rotura por tensión en los pernos de la placa extremo, rotura por cortante en los pernos de la placa de extremo, rotura de varias uniones soldadas y cargas concentradas en la columna.

Los criterios de diseño proporcionan una resistencia suficiente en los elementos de las conexiones para garantizar que la deformación inelástica de la conexión se logra por la fluencia de la viga.

Secciones de la estructura

El sistema de resistencia sísmica está conformado por PRM que se encuentran conformado con los siguientes elementos estructurales:

Tabla 23. Secciones de la estructura

Elemento	Sección
Viga	W21x50
Columna	W21x93

Limitantes de geometría conexión 4E.

A continuación, se muestran la verificación de cumplimiento de los limitantes de

geometría de la conexión con 4 pernos sin rigidizar (4E).

Tabla 24. Limitantes de geometría conexión 4E

Placa			
t _p	55	mm	
b _p	270	mm	

g	145	mm
$p_{ m fo}$	50	mm
p_{fi}	50	mm
d _e	100	mm

Tabla 25. Chequeo de limitantes de geometría conexión 4E

Limitaciones de Geometría					
Parámetro	Máximo (mm)	Mínimo (mm)	Cumple		
\mathbf{t}_{bf}	19	10	OK		
b _{bf}	235	152	OK		
d _b	1400	349	OK		
t _p	57	13	OK		
b _p	273	178	OK		
g	152	102	OK		
$p_{\rm fi}, p_{\rm fo}$	114	38	OK		

Por otro lado, se procede a calcular las siguientes distancias:

$$h_o = d_p + p_{fo} - \frac{t_f}{2}$$

 $h_o = 528 + 50 - \frac{13.6}{2}$
 $h_o = 571.2 \ mm$

$$h_1 = d_p - t_f - p_{fi} - \frac{t_f}{2}$$
$$h_1 = 528 - 50 - 3 * \frac{13.6}{2}$$
$$h_1 = 458 mm$$

Especificaciones de Conexión 4E.

Ajuste de pernos.

Los pernos de alta resistencia serán pretensionados y se ajustarán a la norma ASTM A325 / ASTM A325 M, A490 / A490M, F1852 o F2280, a menos que otro tipo de pernos estén permitido para una conexión específica.
Requisitos de instalación.

Se harán de conformidad con las provisiones sísmicas de la AISC y la especificación de la RCSC, con excepción de lo que se indique específicamente en la AISC-358 de conexiones precalificadas.

Control de calidad y garantía de calidad.

Control de calidad y aseguramiento de la calidad deben estar de acuerdo con las provisiones sísmicas de la ANSI/AISC-341.

Diseño placa extremo.

Momentos y cortantes últimos.

Se procede a calcular el momento probable M_{pr} a una distancia S_h de la cara de la columna.

$$M_{pr} = C_{pr}R_yF_yZ_k$$

De donde, se calcula C_{pr} que es el factor para tener en cuenta la fuerza pico de la conexión, incluyendo el endurecimiento por deformación, restricción loca, refuerzo adicional y otras condiciones de conexión. Además, R_y es la relación del esfuerzo de la fluencia esperada y el esfuerzo de fluencia mínima.

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$$
$$\frac{352 + 450}{2 * 352} \le 1.2$$
$$1.15 \le 1.2$$
$$\therefore OK$$

Entonces, se obtiene que:

$$M_{pr} = \frac{1.15 * 1.1 * 350 * 1800000}{10^6}$$
$$M_{pr} = 787.1 \text{ KN m}$$

$$M_{pr} = 80.3 \ ton \ m$$

Después, se procede a calcular S_h que representa la distancia desde la cara de la columna a la rótula plástica. De donde,

$$S_{h} = \min\left(\frac{d}{2}; 3b_{bf}\right)$$
$$S_{h} = \min\left(\frac{528}{2}; 3*166\right)$$
$$S_{h} = 264 mm$$

Después, se procede a calcular L_h que representa la distancia entre rótulas plásticas, de donde:

$$L_{h} = L - 2\left(\frac{d_{c}}{2}\right) - 2S_{h}$$
$$L_{h} = 4900 - 2\left(\frac{549}{2}\right) - 2 * 264$$
$$L_{h} = 3823 mm$$

Una vez obtenidas las distancias, se procede a calcular la carga distribuida última, de donde:

$$w_u = 1.2D + 1.6L$$

 $w_u = 6.16 + 3.14$
 $w_u = 11.39 \frac{KN}{m}$

Una vez obtenidas las cargas últimas distribuidas, se procede a calcular el

cortante último V_u con los parámetros definidos anteriormente:

$$V_u = \frac{2M_{pr}}{L_h} + \frac{w_u L_h}{2}$$
$$V_u = \frac{2*787.1}{3823} + \frac{11.39*3823}{2}$$
$$V_u = 433.5 \ KN$$

$$V_u = 44.22 \ ton$$

De donde,

$$M_f = M_{pr} + V_u S_h$$

 $M_f = 80.3 + 44.22 * 264$
 $M_f = 91.95 \ ton \ m$

Diámetro del perno requerido.

Se procede a calcular el $d_{b req}$ tal como se muestra a continuación:

$$d_{b req} = \sqrt{\frac{2 M_f}{\pi \, \emptyset_n F_{nt}(h_o + h_1)}}$$
$$d_{b req} = \sqrt{\frac{2 * 901.5}{\pi * 0.9 * 790 * (571.2 + 458)}}$$
$$d_{b req} = 28.01 \, mm$$

Por lo que, el diámetro de pernos escogido es de 30 mm.

Grosor requerido de placa.

$$t_{p \, req} = \sqrt{\frac{1.11 \, M_f}{\emptyset_a F_{yp} Y_p}}$$

En donde,

$$Y_p = \frac{b_p}{2} \left[h_1 \left(\frac{1}{p_{fi}} + \frac{1}{s} \right) + h_o \left(\frac{1}{p_{fo}} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[h_1 (p_{fi} + s) \right]$$

De donde,

$$s = \frac{1}{2}\sqrt{b_pg} > p_{fi}$$
$$\frac{1}{2}\sqrt{270 * 140} > p_{fi}$$

∴ **0**K

Por lo que,

$$Y_p = \frac{b_p}{2} \left[h_1 \left(\frac{1}{p_{fi}} + \frac{1}{s} \right) + h_o \left(\frac{1}{p_{fo}} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[h_1 (p_{fi} + s) \right]$$
$$Y_p = \frac{270}{2} \left[458 * \left(\frac{1}{50} + \frac{1}{98.9} \right) + 571.2 \left(\frac{1}{50} \right) - \frac{1}{2} \right] + \frac{2}{145} \left[458 * (50 + 98.9) \right]$$
$$Y_p = 4274.7 \ mm$$

De donde,

$$t_{p \ req} = \sqrt{\frac{1.11 \ M_f}{\emptyset_d F_{yp} Y_p}}$$
$$t_{p \ req} = \sqrt{\frac{1.11 * 901.5}{1.1 * 350 * 4274.7}}$$
$$t_{p \ req} < t_p$$
$$24.7 < 25 \ mm$$

∴ **OK**

Por lo que, se selecciona un espesor de placa de extremo t_p igual a 25 mm.

Fuerza actuante en el ala de la viga.

Se procede a calcular la fuerza actuante en el ala de la viga, de la siguiente

manera:

$$F_{fu} = \frac{M_f}{d - t_{bf}}$$
$$F_{fu} = \frac{901.5}{528 - 13.6}$$
$$F_{fu} = 1752.5 \ KN$$

Resistencia a fluencia del cortante.

Después, se procede a verificar la resistencia a fluencia del cortante, si es conexión de cuatro pernos no rigidizado (4E) tal como es este ejemplo, se realiza lo siguiente:

$$\frac{F_{fu}}{2} < \emptyset R_n$$

$$\frac{F_{fu}}{2} < \emptyset \ 0.6F_{yp}b_pt_p$$

$$\frac{1752.5}{2} < 0.9 * 0.6 * 350 * 270 * 25$$

$$876.3 < 1417.5 \ KN$$

$$\therefore OK$$

Resistencia a rotura del cortante.

Después, se procede a verificar la resistencia a rotura del cortante de la conexión de cuatro pernos no rigidizado (4E), tal como es este ejemplo, se realiza lo siguiente:

$$\frac{F_{fu}}{2} < \emptyset R_n$$
$$\frac{F_{fu}}{2} < \emptyset \ 0.6F_{up}A_n$$

De donde, A_n representa el área neta de la placa extendida:

$$A_n = (25 - 2 * (30 + 3)) * 25$$
$$A_n = 5100 \ mm^2$$
$$\frac{1752.5}{2} < 0.75 * 0.6 * 450 * 5100$$
$$876.3 < 1377 \ KN$$
$$\therefore OK$$

Por lo que, se continúa trabajando con un espesor de placa de extremo t_p igual a 25 mm.

Esfuerzo de rotura por cortante en los pernos.

Se procede a determinar el esfuerzo de rotura por cortante en los pernos de la siguiente manera:

$$V_u < \emptyset R_n = \emptyset n_b F_{nv} A_b$$

433.5 < 0.75 * 4 * 457 * 706.86
433.5 < 1292.1 KN
 $\therefore OK$

Desgarramiento y aplastamiento de la placa de extremo.

Se procede a determinar el esfuerzo de rotura por cortante en los pernos de la siguiente manera:

$$V_u < \emptyset R_n = n_i \emptyset r_{ni} + n_o \emptyset r_{no}$$

De donde, la resistencia para un perno interior r_{ni} es:

$$r_{ni} = 1.2L_{c}tF_{u}$$

$$L_{ci} = (p_{fi} + t_{fb} + p_{fo}) - (d_{b} + 3.2)$$

$$L_{ci} = (50 + 13.6 + 50) - (38.1 + 3.2)$$

$$L_{ci} = 80.4 mm$$

$$r_{ni} < 2.4d_{b}tF_{u}$$

1.2 * 80.4 * 25 * 450 < 2.4 * 30 * 25 * 450

$$1085.4 < 810 \ KN$$

$$r_{ni} = 810 \ KN$$

De donde, la resistencia para un perno exterior r_{no} es:

$$r_{no} = 1.2L_{co}tF_{u}$$
$$L_{co} = \frac{d_{p} - h_{o} - p_{fo}}{2} - 0.5 * (d_{b} + 3.2)$$

$$L_{co} = \frac{200 - 571.22 - 50}{2} - 0.5 * (30 + 3.2)$$
$$L_{co} = 58.4 mm$$
$$r_{no} < 2.4d_b tF_u$$
$$1.2 * 58.4 * 30 * 450 < 2.4 * 30 * 25 * 450$$
$$788.4 < 810 KN$$
$$r_{no} = 788.4 KN$$

De donde,

$$V_u < \emptyset R_n = 2\emptyset r_{ni} + 2\emptyset r_{no}$$

433.5 < 2 * 0.75 * 810 + 2 * 0.75 * 788.4
433.5 < 3196.8 *KN*
 $\therefore OK$

Diseño placa extremo – columna.

Chequear el ala de la columna por flexión.

Se procede a calcular las distancias observadas en la imagen:

$$s = \frac{1}{2}\sqrt{b_{fc} g}$$
$$s = \frac{1}{2}\sqrt{214 * 145}$$
$$s = 88.1 mm$$

$$c = p_{fi} + t_{fb} + p_{fo}$$

 $c = 50 + 13.6 + 50$
 $c = 113.6 mm$

$$Y_{c} = \frac{b_{fc}}{2} \left(h_{1} \frac{1}{s} + h_{o} \frac{1}{s} \right) + \frac{2}{g} \left[h_{1} \left(s + \frac{3c}{4} \right) + h_{o} \left(s + \frac{c}{4} \right) + \frac{c^{2}}{2} \right] + \frac{g}{2}$$
$$= \frac{214}{2} \left(458 * \frac{1}{88.1} + 571.2 * \frac{1}{88.1} \right)$$
$$+ \frac{2}{145} \left[458 * \left(88.1 + \frac{3 * 113.6}{4} \right) + 571.2 * \left(88.1 + \frac{113.6}{4} \right) + \frac{113.6^{2}}{2} \right] + \frac{145}{2}$$
$$Y_{c} = 3333.7 \ mm$$

Una vez obtenidas estas dimensiones, se procede a calcular el espesor de placa requerido de la siguiente manera:

$$t_{cf \ req} = \sqrt{\frac{1.11 \ \emptyset M_f}{\emptyset_d F_{yc} Y_c}} \le t_{fc}$$
$$\sqrt{\frac{1.11 * 901.5}{0.9 * 345 * 3333.7}} \le t_{fc}$$
$$31 > 23.6 \ mm$$

Se observa que no se satisface la desigualdad, por lo que, se deben colocar

rigidizadores. Por lo que, se asumen un espesor de rigidizador de 35 mm, de donde:

$$t_{p \, req} = \sqrt{\frac{1.11 \, \emptyset M_f}{\emptyset_d F_{yc} Y_c}} \le t_{fc}$$
$$\sqrt{\frac{1.11 * 901.5}{0.9 * 345 * 5858.4}} \le t_{fc}$$
$$23.45 \le 23.6 \, mm$$

∴ **0**K

Flexión en la aleta de la columna.

Se procede a verificar la flexión en la aleta de la columna, de la siguiente manera:

$$M_{cf} = F_{yc} Y_c t_{cf}^2$$

$$M_{cf} = 345 * 3333.7 * 23.6^2$$

 $M_{cf} = 640.6 KN m$

De donde,

$$\phi_{d}R_{n} = \frac{\phi_{d}M_{cf}}{(d - t_{bf})}$$
$$\phi_{d}R_{n} = \frac{0.9 * 640.6}{(528 - 13.6)}$$
$$\phi_{d}R_{n} = 1120.8 \text{ KN}$$

Una vez que hemos obtenido la capacidad de la sección se procede a verificar que la misma sea mayor a las solicitaciones, de donde:

$$\phi_d R_n > F_{fu}$$

1120.8 > 1752

\therefore Se necesitan placas de continuidad

Fluencia local del alma de la columna.

Se procede a verificar la fluencia local en el alma de la columna, de la siguiente manera:

$$F_{fu} \leq \emptyset_d R_n$$

$$\emptyset_d R_n = \emptyset_d C_t (6k_c + t_{bf} + 2t_p) F_{yc} t_{cw}$$

$$\emptyset_d R_n = 1 * 1 * (6 * 36.3 + 13.6 + 2 * 55) * 345 * 14.7$$

$$\emptyset_d R_n = 1731.4 \ KN$$

Una vez que hemos obtenido la capacidad de la sección se procede a verificar que la misma sea mayor a las solicitaciones, de donde:

$$\phi_d R_n > F_{fu}$$

$$1731.4 > 1752$$

: Se necesitan placas de continuidad

Pandeo en el alma de la columna.

Se procede a verificar el pandeo en el alma de la columna, de la siguiente manera:

$$F_{fu} \le \emptyset R_n$$
$$\emptyset R_n = \frac{\emptyset 24 t_{wc}^3 \sqrt{E F_{yc}}}{h}$$
$$\emptyset R_n = 1001.2 KN$$

Una vez que hemos obtenido la capacidad de la sección se procede a verificar que la misma sea mayor a las solicitaciones, de donde:

$$\emptyset R_n > F_{fu}$$
$$1001.2 > 1752$$

: Se necesitan placas de continuidad

Arrugamiento en el alma de la columna.

Se procede a verificar el arrugamiento en el alma de la columna, de la siguiente manera:

$$F_{fu} \leq \emptyset R_n$$

Esto se aplica cuando F_{fu} es aplicado a una distancia mayor o igual que $\frac{d_c}{2}$ desde el final de la columna.

$$\begin{split} \emptyset R_n &= \emptyset \ 0.80 \ t_{wc}^2 \left(1 + 3 \left(\frac{N}{d_c} \right) \left(\frac{t_{wc}}{t_{fc}} \right)^{1.5} \right) \sqrt{\frac{E \ F_{yc} t_{fc}}{t_{wc}}} \\ \emptyset R_n &= 0.75 * 0.80 * 14.7^2 \left(1 + 3 \left(\frac{324}{549} \right) \left(\frac{14.7}{23.6} \right)^{1.5} \right) \sqrt{\frac{210000 * 350 * 23.6}{14.7}} \\ \emptyset R_n &= 2573 \ KN \end{split}$$

Una vez que hemos obtenido la capacidad de la sección se procede a verificar que la misma sea mayor a las solicitaciones, de donde:

$$\phi R_n > F_{fu}$$

$$2573 > 1752$$

∴ **0**K

Por lo tanto, no se requieren rigidizadores ni placa de enchape.

Requerimiento de platinas de continuidad por resistencia.

Esta se obtiene del mínimo valor de resistencia a flexión en la aleta de la columna, resistencia a fluencia local del alma de la columna, resistencia a pandeo local del alma de la columna y resistencia al arrugamiento del alma de la columna.

$$\min \phi R_n = 1001.2 \ KN$$

De donde, la resistencia de la placa de continuidad F_{su} :

$$F_{su} = F_{fu} - \min \emptyset R_n$$
$$F_{su} = 1752 - 1001.2$$
$$F_{su} = 751.35 \ KN$$

Espesor y ancho mínimo de la placa de continuidad.

Para conexiones interiores (por los dos lados de la columna) el espesor de la placa de continuidad debe ser igual al espesor más grueso de las aletas a ambos lados de la columna.

Por lo que, es espesor de la aleta del perfil de la viga es de 13,6 mm. Entonces, se puede usar una placa de espesor de 13/16'' o 20,64 mm ASTM A572 Gr.50

En cuanto al ancho mínimo de las placas de continuidad, la AISC Specification Section J10.8 menciona lo siguiente:

$$b_{cp} > \frac{b_{bf}}{3} - \frac{t_{cw}}{2}$$

En la práctica, se acostumbra a colocar el ancho de la placa de continuidad hasta el borde de la aleta de la viga o columna.

$$b_{cp} > 64 \, mm$$

Por lo que, la norma especifica que en el diseño de las placas de continuidad y atiesadores localizados en el alma de perfiles laminados deben considerar las longitudes de contacto reducidas de las aletas y el alma del miembro basadas en las dimensiones del filete de esquina.

Las esquinas de placas de continuidad y los atiesadores colocados en el alma de perfiles laminados deben detallarse de acuerdo con AWS D1.8 numeral 4.1.

La AWS D1.8 especifica que el corte en la esquina no debe ser mayor al valor de $k_1 + 0.5''$. Es decir, la longitud de contacto de la placa de continuidad y la aleta de columna es:

$$I_{cf} = b_{cf} - \left[(k_1 + 12.7) - \frac{t_{cw}}{2} \right]$$
$$I_{cf} = 70 - \left[(36.3 + 12.7) - \frac{14.9}{2} \right]$$
$$I_{cf} = 28.35 \ mm$$

La AWS D.1.8 especifica que el corte en la esquina por el lado del alma de la columna no debe ser mayor al valor de $k_{det} + 1,5''$. Es decir, la longitud de contacto de la placa de continuidad y el alma de columna es:

$$I_{cw} = d_c - 2 (k_{det} + 38.1)$$
$$I_{cw} = 549 - 2(36.3 + 38.1)$$
$$I_{cw} = 400.2 mm$$

Soldaduras de placas de continuidad.

Las placas de continuidad deben soldarse a las aletas de la columna utilizando soldaduras acanaladas o de filete.

 a) La suma de las resistencias de diseño a tensión de las áreas de contacto de las placas de continuidad con las aletas de la columna que tienen conectadas aletas de vigas:

 b) La resistencia de diseño a cortante del área de contacto de la placa con el alma de la columna:

$$\emptyset V_n = \frac{1 * 0.60 * 350 * 400 * 20,64}{1000}$$
$$\emptyset V_n = 1708.8 \ KN$$

c) La resistencia de diseño a cortante de la zona de panel de la columna

asumiendo que $P_u \leq 0.75P_y$, la resistencia de diseño de la zona panel es:

$$\emptyset R_n = \emptyset 0.60 * F_y d_c t_{cw} \left(1 + \frac{3 b_{cf} t_{cf}^2}{d_b d_c t_{cw}} \right)$$
$$\emptyset R_n = 1 * 0.60 * 350 * 549 * 14.7 \left(1 + \frac{3 * 214 * 23.6^2}{528 * 549 * 14.7} \right)$$

$$\phi R_n = 1810.7 \ KN$$

Ya que este requisito se aplica a toda la zona de panel, se divide por 2, para compararlos con lo realizado en los pasos a y b.

$$\frac{\phi R_n}{2} = \frac{1810.7}{2}$$
$$\frac{\phi R_n}{2} = 905.4 \text{ KN}$$

 d) La suma de las resistencias a la fluencia esperadas de las aletas de la viga que transmiten la fuerza a las placas de continuidad. Debido a que este requisito se aplica a toda la zona de panel, se divide por 2, para compararlos con lo realizado en los pasos a y b.

$$\frac{\phi T_n}{2} = \frac{1713.5}{2}$$
$$\frac{\phi R_n}{2} = 856.8 \text{ KN}$$

Por lo que, la resistencia de diseño es 856.8 *KN*. Ahora, se calcula el tamaño de la soldadura de filete recordando que son dos cordones y que utilizará electrodos E70XX.

$$w = \frac{856.8}{2 * (0,707 * 400 * 0.75 * 0.60 * 490)}$$
$$w = 3.08 \ mm$$

Por lo que, se utilizará un tamaño de soldadura de 4 mm.

Chequeo de la zona de panel.

Para que el sistema esté en equilibro, se debe considerar lo siguiente:

$$V_{c}\left(\frac{h_{t}}{2} + \frac{h_{b}}{2}\right) = M_{f} + M'_{f}$$
$$V_{c} = \frac{M_{f} + M'_{f}}{\left(\frac{h_{t}}{2} + \frac{h_{b}}{2}\right)}$$
$$V_{c} = \frac{901.5 + 684.1}{\left(\frac{4.9}{2} + \frac{4.9}{2}\right)}$$
$$V_{c} = 323.6 \ KN$$

Después, se obtiene la resistencia requerida en la zona de panel:

$$R_u = \frac{M_f + M'_f}{(d_b - t_{bf})} - V_c$$
$$R_u = \frac{901.5 + 684.1}{(528 - 13.6)} - 323.6$$

 $R_u = 2759 \ KN$ En el análisis se considera el efecto de la deformación plástica de la zona de

panel sobre la estabilidad del marco, de donde:

Entonces,

 $P_y = F_y A$ $P_y = 345 * 17600$ $P_y = 6072 KN$ $P_u \le 0.75 P_y$

 $P_u \leq 0.75 * 6072$ La resistencia de diseño de la zona de panel cuando se considera el efecto de deformación plástica de la zona de panel sobre la estabilidad del marco y se cumple que $P_u \leq 0.75 P_y$ es:

$$R_{n} = \emptyset 0.60 * F_{y}d_{c}t_{cw} \left(1 + \frac{3 b_{cf} t_{cf}^{2}}{d_{b} d_{c} t_{cw}}\right)$$
$$\emptyset R_{n} = 1810.7 \ KN$$

Se procede a verificar si la resistencia es mayor a las solicitaciones:

$$R_u < \emptyset R_n$$
2758.8 > 1810.7 KN

: Placas de enchape

Tamaño de las placas de enchape.

Se considera el espesor del alma de la columna, la altura de la zona de panel entre placas de continuidad y el ancho de la zona de panel entre aletas de la columna:

$$d_z = d_b - 2t_{cp}$$
$$d_z = 511.31 mm$$
$$w_z = d_c - 2t_{cf}$$
$$w_z = 501.8 mm$$

De donde, el espesor de la placa de enchape es:

$$t \ge \frac{d_z + w_z}{90}$$
$$t = \frac{511.3 + 501.8}{90}$$
$$t = 11.3 mm$$

De donde, el alma de la columna es mayor a *t*.

∴ **OK**

Debido a que la placa de enchape satisface este mínimo espesor, entonces es permitido colocarla directamente al alma de la columna. Para hacer esta comprobación se toma nuevamente la siguiente ecuación:

$$t_{p} = \left[R_{u} - \frac{0,60 F_{y} \left(3 b_{cf} t_{cf}^{2}\right)}{d_{b}}\right] \left[\frac{1}{0,60 F_{y} d_{c}}\right] - t_{wc}$$
$$t_{p} = 8.34 mm$$

Por lo que, se pueden utilizar dos platinas de 10 mm.

Placa Base a Momento

La conexión entre la parte inferior de las columnas y las fundaciones de hormigón armado representan un componente importante de la estructura. Según el detalle adoptado, se emplean placas de base, barras de anclaje, rigidizadores u otros elementos auxiliares. Su diseño y detallado debe realizarse cuidadosamente, dado que estas conexiones, usualmente, debe resistir solicitaciones elevadas, como en el caso de pórticos no arriostrados o a momento donde se puede tener la combinación de flexión, corte y carga axial. En pórticos con riostras diagonales, las solicitaciones predominantes son la carga axial y corte.

Figura 41. Solicitaciones típicas en conexiones de base de columna

Pórticos resistentes a momento.

Solicitaciones.

Como se observó anteriormente, las solicitaciones para el diseño de la placa base son:

$$P_u = 200 \ ton$$

 $M_u = 23 \ ton \ m$

Diseño de la placa base.

Se procede a realizar un predimensionamiento de la placa de la siguiente

manera:

Figura 42. Placa base

N > d + 2(3 in) $B > b_f + 2(3 in)$

De donde,

N = d + 2(3 in)N = 549 + 2 * 76.2 mmN = 701 mm

Por lo que, se escoge una dimensión de N = 650 mm. De la misma manera,

$$B = b_f + 2(3 in)$$

 $B = 214 + 2 * 76.2 mm$
 $B = 366 mm$

Por lo que, se escoge una dimensión de B = 340 mm.

Después, se procede a determinar el esfuerzo máximo de compresión del hormigón considerando el enfoque más conservador en donde el A1 es igual al A1; es decir, esto generalmente da como resultado las mayores dimensiones del plano de la placa base.

$$f_{p max} = \phi_c (0.85 f_c') \sqrt{\frac{A_2}{A_1}}$$
$$f_{p max} = 0.65 * (0.85 * 240)$$
$$f_{p max} = 13.3 MPa$$

Además,

$$q_{max} = f_{p max} * B$$
$$q_{max} = 13.3 * 340$$
$$q_{max} = 4508.4 \frac{N}{mm}$$

Después, se procede a calcular la excentricidad critica de la siguiente manera:

$$e_{crit} = \frac{N}{2} - \frac{P_u}{2q_{max}}$$
$$e_{crit} = \frac{650}{2} - \frac{200}{2 * 4508.4}$$
$$e_{crit} = 107.5 mm$$

Cuando se analiza varias configuraciones de cargas y placas, cuando la excentricidad e es menor a e_{crit} no existirá tendencia a volcarse y no se necesitarán pernos de anclaje. Sin embargo, en caso contrario, serán necesarios pernos de anclaje. Tal como se ve a continuación:

$$e = \frac{M_u}{P_u}$$

 $e = \frac{221176.5}{1961330}$
 $e = 112.8 mm$

De donde,

$$e \le e_{crit}$$

112.8 \le 107.5
 \therefore anchor rods

Considerando una distancia de 40 mm desde la base de la placa hasta los pernos:

$$f = \frac{N}{2} - 40$$

$$f = \frac{650}{2} - 40$$
$$f = 285 mm$$

Con este valor, se procede a verificar si el área de la placa es adecuada o si es necesario aumentar las dimensiones:

$$\left(f + \frac{N}{2}\right)^2 \ge \frac{2 P_u(e+f)}{q_{max}}$$
$$372100 \ge 346089.8$$
$$\therefore OK$$

Por lo que, se puede observar que no es necesario aumentar el área de la placa base y, por tanto, se mantiene como 630 x 340 mm.

Después, se procede a determinar la longitud y tensión de los pernos de anclaje de la siguiente manera:

$$Y = \left(f + \frac{N}{2}\right) + \sqrt{\left(f + \frac{N}{2}\right)^2 - \frac{2P_u(e+f)}{q_{max}}}$$
$$Y = \left(285 + \frac{650}{2}\right) + \sqrt{\left(285 + \frac{650}{2}\right)^2 - \frac{2*1961.3*(112.8+285)}{4508.4}}$$
$$Y = 448.7 mm$$
Y,
$$T_u = qY_u - P_u$$

$$T_u = 4508.4 * 448.7 - 1961.3$$

$$T_u = 61.7 \ KN$$

Después, se procede a determinar el grosor de la placa base:

Si
$$Y \ge m$$
:
 $t_{p \ req} = 1.5 \ m \sqrt{\frac{f_{p \ max}}{F_y}}$

Si
$$Y < m$$
:

$$t_{p \, req} = 2.11 \sqrt{\frac{f_{p \, max} \, Y\left(m - \frac{Y}{2}\right)}{F_{y}}}$$

Y,

$$m = \frac{N - 0.95 d}{2}$$
$$m = \frac{650 - 0.95 * 549}{2}$$
$$m = 64.2 mm$$
$$n = \frac{B - 0.8b_f}{2}$$
$$n = \frac{340 - 0.8 * 214}{2}$$
$$n = 84.4$$

Entonces,

$$Y \ge \max(m; n)$$

448.7 ≥ 84.4

Por lo que,

$$t_{p \; req} = 1.5 * 84.8 \sqrt{\frac{13.3}{450}}$$

$$t_{p \, req} = 21.7 \, mm$$

Por lo que, se escoge un grosor de placa base de $t_p = 25 mm$.

Finalmente, se procede a escoger unos pernos de diámetro de 5/8" y de acero de Grado 36, por lo que, la resistencia de los pernos escogidos es:

$$\phi R_n = 44.5 \ KN$$

Considerando 4 pernos de 5/8", se verifica si son suficientes o si es necesario aumentar más pernos:

$$n * \phi R_n = 88.96 KN$$

De donde, se verifica la resistencia es mayor a la demanda:

 $T_u > \emptyset R_n$ 61.7 > 88.96 KN $\therefore OK$

Pórticos arriostrados concéntricos.

Solicitaciones.

Como se observó anteriormente, las solicitaciones para el diseño de la placa base son:

$$P_{u \ col} = 220 \ ton$$

$$P_{u \ riostra} = 50 \ ton$$

$$P_{u \ total} = 220 + 50 \sin 50.10^{\circ}$$

$$P_{u \ total} = 258.4 \ ton$$

$$M_u = 9 \ ton \ m$$

Diseño de la placa base.

Se procede a realizar un predimensionamiento de la placa de la siguiente

manera:

Figura 43. Placa base

$$N > d + 2(3 in)$$

 $B > b_f + 2(3 in)$

De donde,

$$N = d + 2(3 in)$$

 $N = 363 + 2 * 76.2 mm$
 $N = 515 mm$

Por lo que, se escoge una dimensión de N = 550 mm. De la misma manera,

$$B = b_f + 2(3 in)$$

 $B = 257 + 2 * 76.2 mm$
 $B = 409 mm$

Por lo que, se escoge una dimensión de B = 420 mm.

Después, se procede a determinar el esfuerzo máximo de compresión del hormigón considerando el enfoque más conservador en donde el A1 es igual al A1; es decir, esto generalmente da como resultado las mayores dimensiones del plano de la placa base.

$$f_{p max} = \phi_c (0.85 f_c') \sqrt{\frac{A_2}{A_1}}$$
$$f_{p max} = 0.65 * (0.85 * 240)$$
$$f_{p max} = 13.3 MPa$$

Además,

$$q_{max} = f_{p max} * B$$
$$q_{max} = 13.3 * 420$$
$$q_{max} = 5569.2 \frac{N}{mm}$$

Después, se procede a calcular la excentricidad critica de la siguiente manera:

$$e_{crit} = \frac{N}{2} - \frac{P_u}{2q_{max}}$$
$$e_{crit} = \frac{550}{2} - \frac{220}{2 * 5569.2}$$
$$e_{crit} = 47.5 \ mm$$

Cuando se analiza varias configuraciones de cargas y placas, cuando la excentricidad e es menor a e_{crit} no existirá tendencia a volcarse y no se necesitarán

pernos de anclaje. Sin embargo, en caso contrario, serán necesarios pernos de anclaje.

Tal como se ve a continuación:

$$e = \frac{M_u}{P_u}$$
$$e = \frac{9}{258.4}$$
$$e = 38.7 mm$$

De donde,

$$e \le e_{crit}$$

38.7 \le 47.5

$\div \textit{ no anchor rods}$

Considerando una distancia de 40 mm desde la base de la placa hasta los pernos:

$$f = \frac{N}{2} - 40$$
$$f = \frac{550}{2} - 40$$
$$f = 235 mm$$

Con este valor, se procede a verificar si el área de la placa es adecuada o si es necesario aumentar las dimensiones:

$$\left(f + \frac{N}{2}\right)^2 \ge \frac{2 P_u(e+f)}{q_{max}}$$

$$260100 \ge 249037$$

∴ **OK**

Por lo que, se puede observar que no es necesario aumentar el área de la placa base y, por tanto, se mantiene como 550 x 420 mm.

Después, se procede a determinar la longitud y tensión de los pernos de anclaje de la siguiente manera:

$$Y = \left(f + \frac{N}{2}\right) + \sqrt{\left(f + \frac{N}{2}\right)^2 - \frac{2P_u(e+f)}{q_{max}}}$$
$$Y = \left(235 + \frac{550}{2}\right) + \sqrt{\left(235 + \frac{550}{2}\right)^2 - \frac{2 * 258.4 * (38.7 + 235)}{5569.2}}$$

 $Y = 404.8 \ mm$

Después, se procede a determinar el grosor de la placa base:

Si
$$Y \ge m$$
:
 $t_{p \ req} = 1.5 \ m \sqrt{\frac{f_{p \ max}}{F_y}}$

Si
$$Y < m$$
:
 $t_{p \ req} = 2.11 \sqrt{\frac{f_{p \ max} Y\left(m - \frac{Y}{2}\right)}{F_{y}}}$

Y,

$$m = \frac{N - 0.95 d}{2}$$
$$m = \frac{550 - 0.95 * 363}{2}$$
$$m = 102.6 mm$$
$$n = \frac{B - 0.8b_f}{2}$$
$$n = \frac{420 - 0.8 * 257}{2}$$
$$n = 107.2$$

Entonces,

$$Y \ge \max(m; n)$$
$$404.8 \ge 107.2$$

Por lo que,

$$t_{p \ req} = 1.5 * 107.2 \sqrt{\frac{13.3}{450}}$$

$$t_{p\,req} = 27.6\,mm$$

Por lo que, se escoge un grosor de placa base de $t_p = 30 mm$.

ANÁLISIS LINEAL EN HORMIGÓN ARMADO

Estructuración del edificio

A continuación, se presenta la vista en 3D del edificio a diseñar:

Figura 44. Vista en 3D de la estructura

La estructura, caso de estudio, es un edificio de hormigón armado de 7 pisos. Su sistema estructural está basado en muros de hormigón armado, los cuales resistirán la solicitación sísmica, mientras que las columnas cumplirán la función de resistir cargas gravitacionales. Es importante mencionar que, los elementos estructurales de hormigón armado deben cumplir con las especificaciones más recientes del Código ACI-318. Además, el diseño sísmico, se hará de acuerdo con la norma NEC-SE-DS, salvo indicando el capítulo 21 del Código ACI-318 (Estructuras Sismo Resistentes).

En lo que respecta su configuración estructural, se muestra a continuación la tabla 2: Clasificación de edificios de hormigón armado de la Norma Ecuatoriana de la Construcción (NEC -15), en donde se presenta una clasificación estructuras de hormigón armado en función del mecanismo dúctil esperado.

Tabla 26. Sistemas estructurales de hormigón armado

2.4. Sistemas estructurales de hormigon ai	rmado
--	-------

La Tabla 2 presenta una clasificación de estructuras de hormigón armado en función del mecanismo dúctil esperado.

Sistema estructural	Elementos que resisten sismo	Ubicación de rótulas plásticas	Objetivo del detallamiento		
Pórtico especial	Columnas y vigas descolgadas	Extremo de vigas y base de columnas 1er piso.	Columna fuerte, nudo fuerte, viga fuerte a corte pero débil en flexión.		
Pórticos con vigas banda	Columnas y vigas banda	Extremo de vigas y base de columnas 1er piso.	Columna fuerte, nudo fuerte, viga fuerte a corte y punzonamiento pero débil en flexión.		
Muros estructurales	Columnas y muros estructurales	En la base de los muros y columnas 1er piso (a nivel de la calle).	Muro fuerte en corte, débil en flexión. Columna no falla por corte.		
Muros Columnas, estructurales muros acoplados estructurales y vigas de acople		En la base de los muros y columnas 1er piso (a nivel de la calle). Extremos vigas de acople.	Muro fuerte en corte, débil en flexión. Columna no falla por corte. Viga de acople fuerte en corte, débil en flexión.		

Tabla 2: Clasificación de edificios de hormigón armado

De donde, el edificio a analizar cuenta con un sistema estructural de muros estructurales. Sin embargo, las columnas en nuestro caso solo resisten carga gravitacional.

Por otro lado, la configuración y diseño de una edificación está relacionada con la forma, el tipo, la disposición, la resistencia, la geometría, entre otros aspectos que puedan presentar los diferentes elementos estructurales o la edificación completa (ZIGURAT GLOBAL INSTITUTE OF TECHNOLOGY, 2019).

La NEC – 15 menciona que la configuración de la estructura debe ser simple y regular para lograr un adecuado desempeño sísmico. Por lo que, a continuación, se muestra la categorización de la configuración en planta y elevación de la estructura:

Figura 45. Vista en planta de la estructura

Configuración en elevación.

A continuación, se detalla la configuración estructural en elevación de la estructura. Acorde a la imagen que corresponde a la Tabla 11: Configuraciones estructurales recomendadas de la NEC – 15, se observa que la estructura posee alturas de entrepiso constante en todos los niveles y que, además, la dimensión del muro también permanece constante a lo largo de su altura.

Es importante mencionar que, acorde a la imagen que corresponde a la Tabla 12: Configuraciones estructurales no recomendadas de la NEC – 15, se observa que la estructura no posee ninguna irregularidad, tales como: ejes verticales discontinuos o muros soportados por columnas, piso débil ni columna corta.

Configuración en planta.

Acorde a la imagen que corresponde a la Tabla 11: Configuraciones estructurales recomendadas de la NEC – 15, y con la ayuda de ETABS, se observa que la estructura posee los mismos centros de masa y rigidez.

Irregularidades y coeficientes de configuración estructural.

Se procede a verificar si la estructura presenta irregularidades tanto en planta como en elevación, para determinar si se usarán los coeficientes de configuración estructural, que penalicen al diseño con fines de tomar en cuenta dichas irregularidades, responsables de un comportamiento estructural deficiente ante la ocurrencia de un sismo.

Dichos coeficientes de configuración estructural incrementan el valor del cortante de diseño, con la intención de proveer de mayor resistencia a la estructura, pero no evita el posible comportamiento sísmico deficiente de la edificación (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Por simple inspección, se observa que la estructura no posee irregularidades del tipo 2, 3 y 4. Para corroborar la irregularidad tipo 1 se procede a usar ETABS y determinar así el valor Δ .

Centro de masa y rigidez					
Story	Diaphragm	XCCM	YCCM	XCR	YCR
		m	m	m	m
Sexto Piso	D1	7,828	12,892	7,804	12,380
Quinto Piso	D1	7,830	12,727	7,807	12,387
Cuarto Piso	D1	7,830	12,685	7,813	12,398
Tercer Piso	D1	7,830	12,665	7,823	12,413
Segundo	D1	7,839	12,620	7,842	12,432
Piso					
Primer Piso	D1	7,838	12,614	7,877	12,461
Planta Baja	D1	7,835	12,545	7,946	12,501

Tabla 27. Centros de masa y rigidez

En donde se puede observar que, los centros de masa y de rigidez de la

estructura son muy parecidos entre sí, lo que significa que la irregularidad torsional será baja. Sin embargo, se comprueba esto con la siguiente tabla:

Story Max/Avg Displacements					
Story	Load	Direction	Maximum	Average	Ratio
	Case/Combo				
			m	m	
Sexto Piso	SX Max	Х	0,04	0,03	1,12
Quinto Piso	SX Max	Х	0,03	0,03	1,12
Cuarto Piso	SX Max	Х	0,02	0,02	1,12
Tercer Piso	SX Max	Х	0,02	0,02	1,12
Segundo	SX Max	Х	0,01	0,01	1,12
Piso					
Primer Piso	SX Max	Х	0,01	0,01	1,12
Planta Baja	SX Max	Х	0,00	0,00	1,11
Sexto Piso	SY Max	Y	0,09	0,09	1,00
Quinto Piso	SY Max	Y	0,07	0,07	1,00
Cuarto Piso	SY Max	Y	0,05	0,05	1,00
Tercer Piso	SY Max	Y	0,04	0,04	1,00
Segundo	SY Max	Y	0,02	0,02	1,00
Piso					
Planta Baja	SY Max	Y	0,00	0,00	1,00
Primer Piso	SY Max	Y	0,01	0,01	1,00

Tabla 28. Irregularidad torsional de la estructura

De donde se observa que, el máximo radio, correspondiente a Δ es igual a 1.141, por lo que, no es necesario aplicar ningún coeficiente de reducción de configuración estructural.

Φ_{P}	1
$\Phi_{\rm E}$	1

Cortante basal de diseño según la norma NEC – SE – DS y justificación de los valores obtenidos.

En este apartado, se hará referencia al método de diseño basado en fuerzas (DBF). En donde, las estructuras deben diseñarse para resistir fuerzas sísmicas provenientes de las combinaciones de las fuerzas horizontales actuantes.

Acorde a la NEC – 15, el DBF puede realizarse a través de tres métodos de análisis; estático, análisis dinámico espectral y análisis dinámico paso a paso en el tiempo.

Por lo que, para la determinación de las fuerzas sísmicas laterales de la estructura, se utilizará análisis estático y análisis dinámico espectral.

Cortante basal de diseño.

El cortante basal total de diseño V, a nivel de cargas últimas, aplicado a una estructura en una dirección especificada.

Espectro elástico de diseño (componente horizontal)

El espectro de respuesta elástico de aceleraciones Sa, expresado como fracción de la aceleración de la gravedad, para el nivel del sismo de diseño, consistente con:

- El factor de zona sísmica Z,
- El tipo de suelo del sitio de emplazamiento de la estructura
- La consideración de los valores de los coeficientes de amplificación de suelo Fa, Fd, Fs.

Factor de zona.

Para los edificios de uso normal, se usa el valor de Z, que representa la aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad.

El sitio donde se construirá la estructura determinará una de las seis zonas sísmicas del Ecuador, caracterizada por el valor del factor de zona Z, de la siguiente figura:

El mapa de zonificación sísmica para diseño proviene del resultado del estudio de peligro sísmico para un 10% de excedencia en 50 años (periodo de retorno 475 años), que incluye una saturación a 0.50 g de los valores de aceleración sísmica en roca en el litoral ecuatoriano que caracteriza la zona VI.

Coeficientes de perfil de suelo Fa, Fd y Fs.

El suelo en el que se emplazará la estructura es tipo D.

Razón entre la aceleración espectral Sa (T=0.1s) y el PGA para el período de retorno seleccionado.

Estos factores varían dependiendo de la región del Ecuador, por lo que, toma el

valor de 1.80.

Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto.

Tomando valor de 1.

A continuación, se presenta el espectro elástico de diseño que se utilizará en el

presente diseño:

Espectro Elástico de Diseño en Aceleraciones

Figura 46. Espectro elástico de diseño

Coeficiente de Importancia I

El propósito del factor I es incrementar la demanda sísmica de diseño para estructuras, que por sus características de utilización o de importancia deben permanecer operativas o sufrir menores daños durante y después de la ocurrencia del sismo de diseño.

Factor de reducción de resistencia sísmico R

El factor R permite una reducción de las fuerzas sísmicas de diseño, lo cual es permitido siempre que las estructuras y sus conexiones se diseñen para desarrollar un mecanismo de falla previsible y con adecuada ductilidad, donde el daño se concentre en secciones especialmente detalladas para funcionar como rótulas plásticas.

Además, los factores de reducción de resistencia R dependen realmente de algunas variables, tales como:

- Tipo de estructura
- Tipo de suelo
- Periodo de vibración considerado
- Factores de ductilidad, sobre resistencia, redundancia y amortiguamiento de una estructura en condiciones límite

Coeficientes de configuración estructural.

Como se discutió en la sección anterior, la estructura no muestra irregularidad en planta y elevación, por lo que los coeficientes Φ_E y Φ_P son igual a 1.

Periodo fundamental de vibración.

El período de vibración aproximativo de la estructura T, para cada dirección principal, será estimado a partir de uno de los 2 métodos descritos a continuación. El valor de T obtenido al utilizar estos métodos es una estimación inicial razonable del período estructural que permite el cálculo de las fuerzas sísmicas a aplicar sobre la

estructura y realizar su dimensionamiento.

Empezando con el Método 1 establecido en la NEC – 15:

De donde,

$$T = Ct \cdot hn^{\alpha}$$
$$T = 0.055 \cdot 22.40^{0.75}$$
$$T = 0.57 \ seg$$

Continuando con el Método 2 establecido en la NEC - 15. De donde, con la

ayuda de ETABS, se obtuvo que:

Figura 47. Periodo fundamental de vibración

$$T = 1.073 \, seg$$

Sin embargo, el valor de Ta calculado según el Método 2 no debe ser mayor en

un 30% al valor de Ta calculado con el Método 1. Por lo que,

$$T = 0.57 \cdot 1.3$$
$$T = 0.74 seg$$

Con toda la información mostrada anteriormente, se procede a calcular el

cortante basal:

Tabla 29. Cortante basal

Cortante Basal			
T _a	0.740	S	
Sa	1.12	g	
Ι	1.0	-	
R	5.0	-	
φP	1.00	-	
φE	1.00	-	
V	22.46%	W	

De donde se obtuvo los cortantes estáticos:
Sx estático	278.7816	ton
Sy estático	278.7816	ton

Con referencia al cortante dinámico, se debe realizar el ajuste del cortante basal de los resultados obtenidos por el análisis estático de la siguiente manera:

 $Cortante_{min} = 0.8 \cdot 278.78$

 $Cortante_{min} = 223.02 ton$

De ETABS se obtuvieron los siguientes valores de cortante dinámico:

Sx dinámico	239.92	ton
Sy dinámico	170.84	ton

Por lo que, se observa que únicamente en el sentido Y se debe realizar una corrección para que el cortante dinámico sea igual al cortante mínimo estático.

Con esta corrección, se observa que los valores de cortante dinámico satisfacen los requerimientos establecidos en la NEC – 15.

Comportamiento global del edificio

El diseño estructural se realiza para el sismo de diseño, es decir, un evento sísmico que tiene una probabilidad del 10% de ser excedido en 50 años, equivalente a un período de retorno de 475 años.

Acorde a la NEC – 15, se considera que; para estructuras de ocupación normal el objetivo del diseño es:

 Prevenir daños en elementos no estructurales y estructurales, ante terremotos pequeños y frecuentes, que pueden ocurrir durante la vida útil de la estructura.

- Prevenir daños estructurales graves y controlar daños no estructurales, ante terremotos moderados y poco frecuentes, que pueden ocurrir durante la vida útil de la estructura.
- Evitar el colapso ante terremotos severos que pueden ocurrir rara vez durante la vida útil de la estructura, procurando salvaguardar la vida de sus ocupantes.

Esta filosofía de diseño se consigue diseñando la estructura de tal manera que tenga la capacidad para resistir las fuerzas especificadas por esta norma, que presente las derivas de piso inferiores a las admisibles y que pueda disipar energía de deformación inelástica, haciendo uso de las técnicas de diseño por capacidad.

Verificación de derivas de entrepiso según NEC-SE-DS.

Los controles de las derivas de piso son fundamentales en el diseño de una estructura, a tal punto que en la mayoría de los casos las secciones son diseñadas en base a este criterio; se hace este control con el fin de evitar daños estructurales excesivos en la edificación y los daños en los elementos no estructurales podrían ser considerables.

Teniendo en cuenta que las derivas de piso son desplazamientos horizontales relativos de un piso respecto a su piso consecutivo, obtenidos bajo cargas horizontales en cada dirección de la estructura.

El control de la deriva de piso se lleva a cabo mediante el cálculo de derivas inelásticas máximas de piso (Δ_M) causadas por el sismo de diseño. En donde, los valores máximos se han establecido considerando secciones agrietadas (Ig).

La deriva máxima para cualquier piso no excederá los límites de deriva inelástica establecidos en la tabla siguiente, en la cual la deriva máxima se expresa como un porcentaje de la altura de piso:

Estructuras de:	∆ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

Tabla 7 : Valores de Am máximos, expresados como fracción de la altura de piso

$$\Delta_{M\ m\acute{a}ximo} = 0.02$$

Donde,

 $\Delta_{\rm M}$: Deriva máxima inelástica.

 Δ_E : Deriva elástica.

R: Factor de reducción de resistencia.

$$\Delta_M < \Delta_{M \ maximo}$$

$$\Delta_{M \ maximo} = 0.75 \cdot R \cdot \Delta_E$$

$$R = 5$$

$$\Delta_E = \frac{0.02}{0.75 \cdot 5}$$

$$\Delta_E = 0.0053 = 0.53\%$$

Las derivas de piso se calcularon en base al sismo de diseño con una

excentricidad positiva y negativa del 5% en cada dirección de la estructura.

Sección de muro inicial.

A continuación, se muestran las secciones de muro que fueron utilizadas para verificar las derivas.

General Data		Property/Stiffness Modifiers for Analys	is
Property Name Property Type Wall Material Notional Size Data Modeling Type Modifiers (Currently User Specified) Display Color Property Notes	M40 Specified fc' = 280 kg/cm2 Modify/Show Notional Size Shell-Thin Modify/Show Change Modify/Show	Membrane f11 Direction Membrane f12 Direction Membrane f12 Direction Bending m11 Direction Bending m22 Direction Bending m12 Direction Shear v13 Direction Shear v23 Direction	1 1 1 0.25 0.25 0.25 1 1 1
Property Data Thickness	0.4 m	Mass Weight	1
ÖK	Cancel	OK	Cancel

Figura 48. Sección de muro inicial

Vall Property Data		Property/Stiffness Modification Fact	tors
General Data Property Name Property Type Wall Material Notional Size Data Modeling Type Modifiers (Currently User Specified)	M40FIS Specified fo' = 280 kg/cm2 Modify/Show Notional Size Shell-Thin Modify/Show	Property/Stiffness Modification Fact Property/Stiffness Modifiers for Analys Membrane f11 Direction Membrane f12 Direction Bending m11 Direction Bending m22 Direction	0.6 0.6 0.6 0.25 0.25
Display Color Property Notes	Change Modify/Show	Bending m12 Direction Shear v13 Direction Shear v23 Direction Mass	0.25 1 1 1
Thickness	0.4 m	Weight	1
OK	Cancel	OK	Cancel

Figura 49. Sección de muro inicial fisurado

General Data	MAC	Property/Stiffness Modifiers for Analysis	3
	(MAC)	Membrane f11 Direction	1
Property Type	Specified V.	Membrane f22 Direction	1
Wall Material	fc' = 280 kg/cm2 ~~	Membrane f12 Direction	1
Notional Size Data	Modify/Show Notional Size	Bending m11 Direction	0.25
Modeling Type	Shell-Thin 🗸	Bending m22 Direction	0.25
Modifiers (Currently User Specified)	Modify/Show	Bending m12 Direction	0.25
Display Color	Change	Shear v13 Direction	1
Property Notes	Modify/Show	Sheer v13 Direction	,
		Shear V23 Direction	1
Property Data		Mass	1
Thickness	0.45 m	Weight	1
OK	Cancel	OK	Cancel

all Property Data		Property/Stiffness Modification Factors	
General Data Property Name Property Type Wall Material Notional Size Data Modeling Type Modifiers (Currently User Specifier)	M45FIS Specified fo' = 280 kg/cm2 Modify/Show Notional Size Shell-Thin Modify/Show	Property/Stiffness Modification Factors Property/Stiffness Modifiers for Analysis Membrane f11 Direction Membrane f12 Direction Bending m11 Direction Bending m22 Direction	0.6 0.6 0.25 0.25
Modiners (Currently Oser Specified) Display Color Property Notes	Modify/Show Modify/Show	Bending m12 Direction Shear v13 Direction Shear v23 Direction	0.25
Property Data Thickness	0.45 m	Weight	1
ÖK	Cancel	OK C	ancel

Figura 51. Sección de muro inicial fisurado

A continuación, se presenta los gráficos de las derivas máximas obtenidas en

cada dirección de la estructura:

Sismo en dirección X.

Figura 52. Derivas en dirección X

$$\Delta_M = 0.002232$$

 $\Delta_E = 0.0053$
 $0.0022 < 0.0053$

Figura 53. Derivas en dirección Y

$$\Delta_M = 0.004981$$
$$\Delta_E = 0.0050$$

0.0050 < 0.0053

Deriva global de techo Du/H, comparada contra mínimo de ACI318-19.

Según la publicación "Seismic Performance of High – rise Concrete Buildings in

Chile" de Lagos et al, la deriva global de techo está definida como la relación entre la

deriva máxima del piso y la deriva máxima de techo que depende del sistema de cargas laterales utilizado. Estudios basados en modelos inelásticos de registros de sismos chilenos han mostrado radios de deriva máxima de piso y la deriva máxima de techo $(\delta_i/h_i)/(\delta_u/H_0)$ deben estar entre 1.2 y 2.0, en donde los valores mínimo y máximo responden a muros de corte y edificios aporticados, respectivamente.

Figura 54. Indice de desempeño

Desplazamiento y deriva de techo en dirección X.

Considerando que la altura de piso es de 3.2m, por lo que, la altura total del edificio es de 22.40 m. Además, se debe tomar en cuenta que para obtener los desplazamientos de techo se está haciendo uso de la combinación de carga de sismo de diseño, por lo que, para obtener la deriva se debe multiplicar por 0.75 y R.

$$\delta_u = 0.03291 m$$

$$\frac{\delta_u \cdot 0.75 \cdot R}{H_0} = \frac{0.03291 * 0.75 \cdot 5}{22.40}$$

$$\frac{\delta_u \cdot 0.75 \cdot R}{H_0} = 0.0055$$

Desplazamiento y deriva de techo en dirección Y.

$$\delta_{u} = 0.0863 \, m$$

$$\frac{\delta_u \cdot 0.75 \cdot R}{H_0} = \frac{0.0863 \cdot 0.75 \cdot 5}{22.40}$$
$$\frac{\delta_u \cdot 0.75 \cdot R}{H_0} = 0.0144$$

Derivas inelásticas de piso X & Y.

A continuación, se presentan las derivas inelásticas obtenidas con ayuda del

ETABS:

	TABLE: Joint Drifts						
Story	Label	Load Case/Combo	Displacement X	Displacement Y	Drift X	Drift Y	
			m	m			
Sexto Piso	9	DX Max	0,124	0,001	0,007	0,000	
Sexto Piso	9	DX Min	-0,124	-0,001	0,007	0,000	
Quinto Piso	9	DX Max	0,101	0,001	0,007	0,000	
Quinto Piso	9	DX Min	-0,101	-0,001	0,007	0,000	
Cuarto Piso	9	DX Max	0,079	0,001	0,007	0,000	
Cuarto Piso	9	DX Min	-0,079	-0,001	0,007	0,000	
Tercer Piso	9	DX Max	0,057	0,000	0,006	0,000	
Tercer Piso	9	DX Min	-0,057	0,000	0,006	0,000	
Segundo Piso	9	DX Max	0,037	0,000	0,006	0,000	
Segundo Piso	9	DX Min	-0,037	0,000	0,006	0,000	
Primer Piso	9	DX Max	0,019	0,000	0,004	0,000	
Primer Piso	9	DX Min	-0,019	0,000	0,004	0,000	
Planta Baja	9	DX Max	0,006	0,000	0,002	0,000	
Planta Baja	9	DX Min	-0,006	0,000	0,002	0,000	
Quinto Piso	9	DY Max	0,001	0,262	0,000	0,018	
Quinto Piso	9	DY Min	-0,001	-0,262	0,000	0,018	
Sexto Piso	9	DY Max	0,001	0,322	0,000	0,019	
Sexto Piso	9	DY Min	-0,001	-0,322	0,000	0,019	
Cuarto Piso	9	DY Max	0,000	0,204	0,000	0,018	
Cuarto Piso	9	DY Min	0,000	-0,204	0,000	0,018	
Tercer Piso	9	DY Max	0,000	0,147	0,000	0,017	
Tercer Piso	9	DY Min	0,000	-0,147	0,000	0,017	
Segundo Piso	9	DY Max	0,000	0,093	0,000	0,015	
Segundo Piso	9	DY Min	0,000	-0,093	0,000	0,015	
Primer Piso	9	DY Max	0,000	0,047	0,000	0,011	
Primer Piso	9	DY Min	0,000	-0,047	0,000	0,011	
Planta Baja	9	DY Max	0,000	0,013	0,000	0,004	
Planta Baja	9	DY Min	0,000	-0,013	0,000	0,004	

Tabla 31. Derivas inelásticas de piso en dirección X y Y

Deriva global X & Y.

La relación existente entre la máxima deriva de entrepiso y la máxima deriva de techo en el sentido X, y en el sentido Y, se encuentran dentro de los límites recomendados. A continuación, se procede a verificar estos límites para ambas direcciones:

Sentido X

$$\frac{\frac{\delta i}{hi}}{\frac{\delta u}{Ho}} = \frac{0.007042}{0.0055} = 1.28$$
$$1.2 < 1.28 < 2.0$$
$$\therefore OK$$

Sentido Y

$$\frac{\frac{\delta i}{hi}}{\frac{\delta u}{Ho}} = \frac{0.018675}{0.0144} = 1.29$$
$$1.2 < 1.29 < 2.0$$
$$\therefore OK$$

Coeficiente de estabilidad para deformaciones y cargas obtenidas para el sismo de diseño

En lo que se refiere a la inestabilidad y efectos de segundo orden, puede decirse brevemente que éstos conducen al aumento de las derivas de piso cuando el valor de dichos efectos es bajo, al incremento notorio de los esfuerzos en los elementos estructurales en los niveles intermedios y al colapso del piso (y, en consecuencia, del edificio en su conjunto posiblemente) en sus niveles altos. Una manera sencilla de evaluar el grado de estabilidad de cada piso de una construcción es por medio del índice de efectos globales de inestabilidad.

Acorde a la NEC -15, el índice de estabilidad se puede calcular con la siguiente ecuación:

$$Q_i = \frac{P_i \cdot \Delta_i}{V_i \cdot h_i}$$

Donde:

Q_i: índice de estabilidad del piso i.

P_i: Suma de la carga vertical total sin mayorar

 Δ_i : Deriva del piso i calculada en el centro de masas del piso.

V_i: Cortante sísmico del piso i.

h_i: Altura del piso i considerado.

Según el ACI 318-19, existen investigaciones experimentales respecto a estructuras de hormigón armado que muestran que la probabilidad de una falla por estabilidad se incremente rápidamente cuando el índice de estabilidad Qi excede el 0.2, mientras que para otras normativas como el ASCE/SEI7 el máximo valor es de 0.25 y para nuestra normativa NEC – 15 es 0.30. Es importante mencionar que, la estructura presenta Qi mayores a los permitidos en las normativas se trata de una estructura potencialmente inestable y debe rigidizarse, a menos que se demuestre, mediante procedimientos más estrictos, que la estructura permanece estable y que cumple con todos los requisitos de diseño sismo resistente establecidos en las normativas de diseño.

Además, los efectos P- Δ , que corresponden a los efectos adicionales, en las direcciones principales de la estructura, causados por efectos de segundo orden que producen un incremento en las fuerzas internas, momentos y derivas de la estructura; no deben ser considerados cuando el índice de estabilidad es menor a 0.1.

En caso de que los efectos P- Δ deban ser considerados, estos efectos

eventualmente introducirían singularidades en la solución de las ecuaciones de

equilibrio, indicando inestabilidad estructural.

A continuación, se muestran el cálculo correspondiente del índice de estabilidad,

Qi de la estructura:

Cargas verticales por piso, combinación D+L.

A continuación, se presentan las cargas verticales por piso obtenidas del

ETABS:

TABLE: Story Forces								
Story	Load Case/Combo	Location	Р	VX	VY	Т	MX	MY
			tonf	tonf	tonf	tonf-m	tonf-m	tonf-m
Story10	D+L	Тор	337.5	0.0	0.0	0.0	2531.25	-5062.50
Story9	D+L	Тор	922.68	0.0	0.0	0.0	6920.10	-13840.20
Story8	D+L	Тор	1507.86	0.0	0.0	0.0	11308.95	-22617.90
Story7	D+L	Тор	2093.04	0.0	0.0	0.0	15697.80	-31395.60
Story6	D+L	Тор	2678.22	0.0	0.0	0.0	20086.65	-40173.30
Story5	D+L	Тор	3263.4	0.0	0.0	0.0	24475.50	-48951.00
Story4	D+L	Тор	3848.58	0.0	0.0	0.0	28864.35	-57728.70
Story3	D+L	Тор	4433.76	0.0	0.0	0.0	33253.20	-66506.40
Story2	D+L	Тор	5018.94	0.0	0.0	0.0	37642.05	-75284.10
Story1	D+L	Тор	5604.12	0.0	0.0	0.0	42030.90	-84061.80

Tabla 32. Fuerzas por piso de la combinación D+L

Cortantes sísmico por piso.

A continuación, se presentan los cortantes sísmicos por piso obtenidas del

ETABS:

Story	Load	Location	VX	VY
	Case/Combo			
			tonf	tonf
Sexto Piso	SX Max	Тор	56.3527	0.0915
Sexto Piso	SY Max	Тор	0.1274	57.9043
Quinto Piso	SX Max	Тор	116.3743	0.1948
Quinto Piso	SY Max	Тор	0.2689	109.6852
Cuarto Piso	SX Max	Тор	160.5609	0.2754

Tabla 33. Cortante sísmico por piso

Cuarto Piso	SY Max	Тор	0.377	143.9512
Tercer Piso	SX Max	Тор	193.4997	0.3381
Tercer Piso	SY Max	Тор	0.456	171.3681
Segundo Piso	SX Max	Тор	217.5177	0.3834
Segundo Piso	SY Max	Тор	0.5092	195.7771
Primer Piso	SX Max	Тор	232.8837	0.4097
Primer Piso	SY Max	Тор	0.5387	214.4578
Planta Baja	SX Max	Тор	239.9233	0.4186
Planta Baja	SY Max	Тор	0.5484	223.8013

Tabla 34. Fuerza axial por piso

TABLE: Story Fo	TABLE: Story Forces						
Story	Load Case/Combo	Location	Р				
			tonf				
Sexto Piso	D+L	Тор	119.8725				
			119.8725				
Quinto Piso	D+L	Тор	379.3335				
			379.3335				
Cuarto Piso	D+L	Тор	638.7946				
			638.7946				
Tercer Piso	D+L	Тор	898.2556				
			898.2556				
Segundo Piso	D+L	Тор	1157.7167				
			1157.7167				
Primer Piso	D+L	Тор	1417.1777				
			1417.1777				
Planta Baja	D+L	Тор	1714.5352				
			1714.5352				

Derivas por piso calculada en el centro de masa.

A continuación, se presentan las derivas por piso obtenidas del ETABS:

Tabla 35. Derivas de piso calculadas en el centro de masa

TABLE: Joint Drifts					
Story	Label	Unique	Load	Drift X	Drift Y
		Name	Case/Combo		
Sexto Piso	9	374	SX Max	0.00188	0.00001
Sexto Piso	9	374	SY Max	0.00001	0.00498
Quinto Piso	9	52	SX Max	0.00187	0.00001
Quinto Piso	9	52	SY Max	0.00001	0.00494
Cuarto Piso	9	51	SX Max	0.00181	0.00001
Cuarto Piso	9	51	SY Max	0.00001	0.00479
Tercer Piso	9	53	SX Max	0.00169	0.00001
Tercer Piso	9	53	SY Max	0.00001	0.00446
Segundo Piso	9	54	SX Max	0.00149	0.00001

Segundo Piso	9	54	SY Max	0.00001	0.00392
Primer Piso	9	50	SX Max	0.00111	0.00001
Primer Piso	9	50	SY Max	0.00001	0.00284
Planta Baja	9	49	SX Max	0.00045	0.00000
Planta Baja	9	49	SY Max	0.00000	0.00107

Cálculo del índice de estabilidad, Qi.

A continuación, se procede a detallar el cálculo del índice de estabilidad parar

cada piso.

Tabla 36. Índice de estabilidad

Story	Qi
Sexto Piso	0.003995
Sexto Piso	0.01031
Quinto Piso	0.006092
Quinto Piso	0.017091
Cuarto Piso	0.007213
Cuarto Piso	0.021247
Tercer Piso	0.00785
Tercer Piso	0.023383
Segundo Piso	0.00792
Segundo Piso	0.023157
Primer Piso	0.00673
Primer Piso	0.018747
Planta Baja	0.003187
Planta Baja	0.008182
Q	0.023383

Como se puede observar, el máximo valor de Qi es de 0.023 que corresponde al piso 3, ya que el factor de estabilidad es menor a 0.10 no se requiere considerar los efectos $P-\Delta$.

Diseño a corte de la sección crítica de uno de los muros T.

En el diseño de hormigón estructural, los elementos deben diseñarse para que tengan una resistencia adecuada, de acuerdo con las disposiciones de la NEC-15, utilizando los factores de carga y los factores de reducción de resistencia Ø que se muestran a continuación:

Debido a que se está realizando el diseño a corte, el factor de reducción de resistencia Ø tiene un valor de 0.75.

El muro elegido para realizar el diseño al corte de la sección crítica es el muro que corresponde al label P1 y P2, tal como se muestra en la siguiente imagen.

Figura 55. Vista en planta de la estructura

Para obtener la resistencia al corte Vn, se considera que esta se compone por la resistencia del hormigón y la resistencia del acero, de donde:

$$V_n = A_{cv} \left(\alpha_c \sqrt{f_c'} + \rho_n f_y \right)$$

Donde,

 α_c es el coeficiente que define la contribución relativa de la resistencia del hormigón a la resistencia nominal a cortante del muro.

h_w es la altura del muro o del segmento de muro considerado (mm).

l_w es la longitud del muro o del segmento de muro considerado en la dirección de la fuerza cortante (mm).

 A_{cv} es el área neta de la sección de hormigón que resiste cortante, producto del espesor del alma multiplicado por la longitud, l_w, de la sección.

 ρ_n es la razón del área de refuerzo distribuido paralelo al piano de A_{cv} , respecto al área bruta de Hormigón perpendicular a dicho refuerzo.

 f_c 'es la resistencia en compresión del hormigón (MPa).

 f_y es el esfuerzo de fluencia del acero perpendicular al área A_{cv} (MPa).

Además, se debe realizar una revisión del cortante máximo, debido a que la capacidad en cortante de muros estructurales no puede exceder y la resistencia nominal en cortante de segmentos verticales de muros que comparten una fuerza lateral común debe estar tal como:

$$V_{n\,max} = \frac{2}{3} A_{cv} \sqrt{f_c}$$

Donde,

 A_{cv} es el área neta de la sección de hormigón que resiste cortante, producto del espesor del alma multiplicado por la longitud, l_w, de la sección.

Debido a la gran cantidad de datos que se generan por las múltiples combinaciones resultantes, de todos los pisos y muros, a continuación, se presenta únicamente el cálculo del corte máximo del muro escogido.

El material utilizado en los dos muros tiene una resistencia a la compresión de

28	MPa.

General Data				• 🗊 • 🗖	м Ш М	
Material Name	fo' = 280 kg/om	2	シン ◎出日	000	+ DI	
Material Type	Concrete					
Directional Symmetry Type	Isotropic				- ×	
Material Display Color			Material Property Design Data			×
Material Notes	Modify/	Show Notes				
			Material Name and Type	-	in the second	
(a) Specify Weight and Mass	O Second	h Mass Daneih	Material Name	fc' = 21	80 kg/cm2	
Openny Weight Denaty	O speci	a access t	Material Type	Concre	ete, Isotropic	
weight per Unit Volume		0.000024	Design Properties for Concrete Materials	5		
Mass per Unit Volume		0	Specified Concrete Compressive Stre	ength, f'c	28 MPa	
Mechanical Property Data			Lightweight Concrete			
Modulus of Elasticity, E		24870.06	Shear Strength Reduction Factor	or		
Poisson's Ratio, U		0.2]			
Coefficient of Thermal Expansion,	Ą	0.0000099	1			
Shear Modulus, G		10362.53	-,			
Design Property Data						
Modify/Show	Material Property D	esign Data	OK		Cancel	
Advanced Meterial Presents, Data						
Novanced Material Property Data		A total Designation Designation			21/2020 10:24 PM	Micro
Noniinear Material Data		natenal Damping Prop	erties		3/2021 4:27 PM	Micro
Time I	Jependent Proper	lies	Planta Baja		1/2021 5:57 PM	Micro
					//2021 11:50 AM	Micro
OK	Ca	incel			5/2021 9:47 PM	Micro

Figura 56. Propiedades del hormigón

Pier en la dirección X.

 $A_{cv} = l_w * e$ $A_{cv} = 3 * 0.4$ $A_{cv} = 1.2 m^2$

De donde,

$$V_{n\,max} = \frac{2}{3} * 1.2 * \sqrt{28} * 100$$

$$V_{n max} = 423.32 ton$$

Y,

$$\emptyset V_{n max} = 0.75 * 423.32$$

 $\emptyset V_{n max} = 317.49 ton$

$$A_{cv} = l_w * e$$
$$A_{cv} = 2.6 * 0.45$$
$$A_{cv} = 1.17 m^2$$

De donde,

$$V_{n max} = \frac{2}{3} * 1.17 * \sqrt{28} * 100$$
$$V_{n max} = 412.74 ton$$

Y,

$$\emptyset V_{n max} = 0.75 * 412.74$$

 $\emptyset V_{n max} = 309.55 ton$

Es importante mencionar que, el área neta de la sección de hormigón que resiste cortante, producto del espesor del alma multiplicado por la longitud, l_w, de la sección, permanece constante en todos los pisos y en ambas direcciones.

Es debido a esto que, el cortante máximo es el mismo para todos los muros y, por ende, no se muestran los mismos. Sin embargo, esta información se encuentra adjunta en las hojas de cálculo.

Cuantía de acero requerida.

La cuantía mínima establecida en la NEC-15, tal como se muestra a continuación:

La cuantía de refuerzo para muros estructurales de hormigón es tal que, tanto en el eje longitudinal ρ_v , como en el eje transversal ρ_n :

$\rho_v \ge 0.0025$	
$\rho_n \geq 0.0025$	

Figura 57. Cuantía de refuerzo mínima

Es importante considerar los límites máximos y mínimos de espaciamiento, tal como se menciona en el ACI 318-19:

$$s_{max} = \min \begin{cases} l_w/5\\ 3 h\\ 45 cm \end{cases}$$

Sin embargo, independiente de lo anterior, en la práctica usualmente no se

utilizan espaciamientos mayores a 25 cm ni menores a 10 cm.

Por lo tanto, el espaciamiento escogido es 10 cm. De donde, la cantidad de acero requerida es:

$$A_{v-x} = 0.0025 * 40 * 100$$
$$A_{v-x} = 10 \frac{cm^2}{m}$$

$$A_{\nu-y} = 0.0025 * 45 * 100$$
$$A_{\nu-y} = 11.25 \frac{cm^2}{m}$$

Considerando dos mallas de acero longitudinal espaciado cada 10 cm, se pueden utilizar varillas Ø12 mm cada 10 cm en cada rama.

Por otro lado, se consideran dos elementos de borde; el primero, con un armado de 16 varillas Ø20 mm; el segundo, con un armado de 12 varillas Ø18 mm; y, el tercero, con un armado de 12 varillas Ø16 mm.

Diseño a flexocompresión

El diseño a flexocompresión de un muro se realiza mediante el uso de los diagramas de interacción para flexión y carga axial. Estos diagramas son una representación gráfica de todas las combinaciones de carga axial y momento flexionante en una dirección principal que causan la falla de una sección.

Para realizar este análisis, se procedió a definir un Label de tipo Pier en ETABS:

Figura 58. Definición de pier labels en ETABS

Con la cuantía de acero antes calculada, se procede a definir la sección final en

la herramienta de Section Designer:

Figura 59. Asignación de acero longitudinal en el muro

Una vez que se definieron el muro compuesto en ETABS, se procedió a obtener

las solicitaciones sobre dicho muro, de donde:

TABLE: Pi	er Desig	gn Forces							
Story	Pier	Load	Location	Р	V2	V3	Т	M2	M3
		Combo							
				tonf	tonf	tonf	tonf-	tonf-m	tonf-m
							m		
Planta	C1	C1-1	Тор	-	1.56	-2.41	1.37	-16.84	1.25
Baja				290.34					
Planta	C1	C1-1	Bottom	-	1.56	-2.41	1.37	-24.56	6.25
Baja				315.85					
Planta	C1	C2-1	Тор	-	1.89	-2.92	1.66	-20.92	0.90
Baja				292.67					
Planta	C1	C2-1	Bottom	-	1.89	-2.92	1.66	-30.25	6.94
Baja				314.54					
Planta	C1	C3-1	Тор	-	66.63	3.74	7.03	18.53	768.28
Baja			_	264.31					
Planta	C1	C3-1	Bottom	-	66.63	3.74	7.03	30.31	975.95
Baja				286.18					
Planta	C1	C3-2	Тор	-	-	3.74	7.03	-55.51	768.28
Baja				264.31	63.27				

Tabla 37. Fuerzas de diseño de los piers

$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta Baja	C1	C3-2	Bottom	- 286.18	- 63.27	3.74	7.03	-83.91	975.95
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Planta	C1	C3-3	Тор	-	66.63	-8.93	7.03	18.53	-
Planta Baja C1 C3-3 Bottom - 66.63 -8.93 7.03 30.31 - 963.25 Planta Baja C1 C3-4 Top - - -8.93 7.03 -55.51 - 66.32 963.25 Planta Baja C1 C3-4 Bottom - - -8.93 7.03 -8.73 -8.93 -7.03 -8.93 -7.03 -8.93 -9.63.25 Planta C1 C3-5 Bottom - - -66.63 3.74 -4.07 18.53 768.28 Baja - - - 66.63 3.74 -4.07 -5.5.51 768.28 Baja C1 C3-6 Bottom - - 3.74 -4.07 -8.91 975.95 Baja C1 C3-7 Top - 66.63 -8.93 -4.07 83.91 -7 66.32 -8.93 -4.07 83.91 -7 66.32 Planta - 96	Baja			-	264.31					766.35
Baja C1 C3-4 Top - - - 8-93 7.03 -55.51 - Baja C1 C3-4 Bottom - - 8-93 7.03 -83.91 963.25 Planta C1 C3-5 Top - 66.63 3.74 -4.07 18.53 766.28 Baja - - 66.63 3.74 -4.07 -55.51 766.28 Baja - - 3.74 -4.07 -55.51 766.38 Planta C1 C3-6 Top - - 3.74 -4.07 -55.51 766.35 Planta C1 C3-7 Top - - 3.74 -4.07 -83.91 975.95 Baja - C1 C3-7 Bottom - - - -8.93 -4.07 30.31 - Planta C1 C3-8 Top - - -8.93 -4.07 -5.51	Planta	C1	C3-3	Bottom	-	66.63	-8.93	7.03	30.31	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja	C1	C2 /	Ton	286.18		8.02	7.02	55 51	963.25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baia	CI	C3-4	тор	- 264 31	63.27	-8.95	7.05	-33.31	- 766 35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta	C1	C3-4	Bottom	-	-	-8.93	7.03	-83.91	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja				286.18	63.27				963.25
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Planta	C1	C3-5	Тор	-	66.63	3.74	-4.07	18.53	768.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja				288.18					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta	C1	C3-5	Bottom	-	66.63	3.74	-4.07	30.31	975.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja	C1	C3.6	Top	310.05		3.74	4.07	55 51	768.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja	CI	C3-0	Top	288.18	63.27	5.74	-4.07	-55.51	708.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta	C1	C3-6	Bottom	-	-	3.74	-4.07	-83.91	975.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja				310.05	63.27				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta	C1	C3-7	Тор	-	66.63	-8.93	-4.07	18.53	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja				288.18					766.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta	C1	C3-7	Bottom	-	66.63	-8.93	-4.07	30.31	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Baja	C1	C2 8	Ton	310.05		8.02	4.07	55 51	963.25
Planta BajaC1C3-8Bottom8.93-4.0783.91-BajaC1C4-1Top-2.9656.2049.17546.712.97BajaC1C4-1Bottom-2.9656.2049.17715.6112.03PlantaC1C4-1Bottom-2.9656.2049.17715.6112.03PlantaC1C4-2Top-0.4156.2049.17-2.97Baja0.4156.2049.17-2.97Baja0.4156.2049.17-12.03PlantaC1C4-2Bottom-0.4156.2049.17-12.03PlantaC1C4-3Top-2.96-49.17715.610.67Baja0.4156.2049.17715.610.6761.40-PlantaC1C4-3Top-2.96-49.17715.610.67Baja0.41-49.17715.610.6783.94PlantaC1C4-4Top-0.41-49.171.04Baja0.41-49.171.04Baja0.41-49.171.04PlantaC1C4-5Top <t< td=""><td>Baja</td><td>CI</td><td>C3-0</td><td>Top</td><td>288 18</td><td>63 27</td><td>-0.95</td><td>-4.07</td><td>-55.51</td><td>- 766 35</td></t<>	Baja	CI	C3-0	Top	288 18	63 27	-0.95	-4.07	-55.51	- 766 35
Baja Interfactor 310.05 63.27 Interfactor 963.25 Planta C1 C4-1 Top 2.96 56.20 49.17 546.71 2.97 Baja C1 C4-1 Bottom - 2.96 56.20 49.17 715.61 12.03 Baja C1 C4-2 Top - 0.41 56.20 49.17 - 2.97 Baja C1 C4-2 Top - 0.41 56.20 49.17 - 2.97 Baja C1 C4-2 Bottom - 0.41 56.20 49.17 - 12.03 Baja C1 C4-3 Bottom - 0.41 56.20 49.17 715.61 0.67 Baja C1 C4-3 Bottom - 2.96 - 49.17 715.61 0.67 Baja C1 C4-4 Bottom - 0.41 - 49.17 - 0.67	Planta	C1	C3-8	Bottom	-	-	-8.93	-4.07	-83.91	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja	_			310.05	63.27				963.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Planta	C1	C4-1	Тор	-	2.96	56.20	49.17	546.71	2.97
Planta Baja C1 C4-1 Bottom - 2.96 56.20 49.17 715.61 12.03 Planta Baja C1 C4-2 Top - 0.41 56.20 49.17 - 2.97 Baja C1 C4-2 Bottom - 0.41 56.20 49.17 - 2.97 Baja C1 C4-2 Bottom - 0.41 56.20 49.17 - 12.03 Baja C1 C4-2 Bottom - 0.41 56.20 49.17 - 12.03 Planta C1 C4-3 Top - 2.96 - 49.17 715.61 0.67 Baja C1 C4-3 Bottom - 2.96 - 49.17 715.61 0.67 Baja C1 C4-4 Bottom - 0.41 - 49.17 - - 1.04 Baja C1 C4-4 Bottom - 2	Baja				269.14					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Planta	C1	C4-1	Bottom	-	2.96	56.20	49.17	715.61	12.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja	C1	C4 2	Top	291.01	0.41	56.20	40.17		2.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja	CI	C4-2	Top	269.14	0.41	50.20	49.17	583.69	2.91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Planta	C1	C4-2	Bottom	-	0.41	56.20	49.17	-	12.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Baja				291.01				769.21	
BajaC1C4-3Bottom $ 2.96$ $ 49.17$ 715.61 0.67 BajaC1C4-3Bottom $ 291.01$ $ 49.17$ 715.61 0.67 BajaC1C4-4Top $ 0.41$ $ 49.17$ $ -1.04$ BajaC1C4-4Bottom $ 0.41$ $ 49.17$ $ -1.04$ BajaC1C4-4Bottom $ 0.41$ $ 49.17$ $ 0.67$ BajaC1C4-4Bottom $ 0.41$ $ 49.17$ $ 0.67$ BajaC1C4-5Top $ 0.41$ $ 49.17$ $ 0.67$ BajaC1C4-5Top $ 2.96$ 56.20 $ 546.71$ 2.97 BajaC1C4-5Bottom $ 2.96$ 56.20 $ 715.61$ 12.03 BajaC1C4-6Top $ 2.96$ 56.20 $ 2.97$ BajaC1C4-6Top $ 2.96$ 56.20 $ 2.97$ BajaC1C4-6Top $ 0.41$ 56.20 $ 2.97$ BajaC1C4-6Bottom $ 0.41$ 56.20 $ 2.97$ BajaC1C4-6Bottom $ 0.41$ 56.20 $ 12.03$ BajaC1 <td>Planta</td> <td>C1</td> <td>C4-3</td> <td>Тор</td> <td>-</td> <td>2.96</td> <td>-</td> <td>49.17</td> <td>546.71</td> <td>-1.04</td>	Planta	C1	C4-3	Тор	-	2.96	-	49.17	546.71	-1.04
Planta BajaC1C4-3Bottom- 291.012.96- 61.4049.17715.610.67BajaC1C4-4Top- 269.140.41- 61.4049.17- - 583.69- - 1.04BajaC1C4-4Bottom- 291.010.41- 61.4049.17- - - -0.67BajaC1C4-4Bottom- 291.010.41- 	Baja	C 1	<u> </u>		269.14	2.0.6	61.40	10.15		0.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Planta	CI	C4-3	Bottom	-	2.96	-	49.17	715.61	0.67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Baja Planta	C1	$CA_{-}A$	Ton	291.01	0.41	61.40	49.17	_	-1.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Baja	CI	C+-+	Top	269.14	0.41	61.40	47.17	583.69	-1.04
Baja $ 291.01$ 61.40 769.21 PlantaC1C4-5Top $ 2.96$ 56.20 $ 546.71$ 2.97 Baja $ 283.35$ $ 46.21$ $ -$	Planta	C1	C4-4	Bottom	-	0.41	-	49.17	-	0.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Baja				291.01		61.40		769.21	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Planta	C1	C4-5	Тор	-	2.96	56.20	-	546.71	2.97
Planta BajaC1C4-5Bottom- - 305.212.9656.20- 	Baja	01	04.5	D //	283.35	2.06	56.00	46.21	715 (1	12.02
Daja C1 C4-6 Top - 0.41 56.20 - - 2.97 Baja C1 C4-6 Top - 0.41 56.20 - - 2.97 Baja C1 C4-6 Bottom - 0.41 56.20 - - 2.97 Baja C1 C4-6 Bottom - 0.41 56.20 - - 12.03 Planta C1 C4-7 Top - 2.96 - - 546.71 -1.04 Baja 283.35 61.40 46.21 769.21 - - 546.71 -1.04 Baja 283.35 61.40 46.21 - <t< td=""><td>Planta Baia</td><td>CI</td><td>C4-5</td><td>Bottom</td><td>- 305 21</td><td>2.96</td><td>56.20</td><td>-</td><td>/15.61</td><td>12.03</td></t<>	Planta Baia	CI	C4-5	Bottom	- 305 21	2.96	56.20	-	/15.61	12.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Daja Planta	C1	C4-6	Ton		0.41	56.20	40.21	_	2 97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Baja	CI	C+-0	Top	283.35	0.41	50.20	46.21	583.69	2.97
Baja - 305.21 46.21 769.21 Planta C1 C4-7 Top - 2.96 - - 546.71 -1.04 Baja - 283.35 61.40 46.21 - - 546.71 -1.04 Planta C1 C4-7 Bottom - 2.96 - - 715.61 0.67 Baja - 305.21 61.40 46.21 - - 715.61 0.67 Baja - - 0.41 - - - -1.04 Baja - 283.35 61.40 46.21 - - Planta C1 C4-8 Top - 0.41 -	Planta	C1	C4-6	Bottom	-	0.41	56.20	-	-	12.03
Planta Baja C1 C4-7 Top - 2.96 - - 546.71 -1.04 Baja 283.35 61.40 46.21 - - 715.61 0.67 Planta C1 C4-7 Bottom - 2.96 - - 715.61 0.67 Baja 305.21 61.40 46.21 -	Baja				305.21			46.21	769.21	
Baja 283.35 61.40 46.21 Planta C1 C4-7 Bottom - 2.96 - - 715.61 0.67 Baja 305.21 61.40 46.21 - - 715.61 0.67 Planta C1 C4-8 Top - 0.41 - - - -1.04 Baja 283.35 61.40 46.21 583.69 - - - -	Planta	C1	C4-7	Тор	-	2.96	-	-	546.71	-1.04
PlantaC1C4-7Bottom-2.96715.61 0.67 Baja305.21 305.21 61.40 46.21 PlantaC1C4-8Top- 0.41 Baja283.35 61.40 46.21 583.69	Baja		04.7	D	283.35	2.01	61.40	46.21	715 -1	0.77
Daja 503.21 01.40 40.21 Planta C1 C4-8 Top - 0.41 - - - -1.04 Baja 283.35 61.40 46.21 583.69 -	Planta Baio	CI	C4-7	Bottom	- 305 21	2.96	-	-	/15.61	0.67
Baja Of O	Daja Planta	C1	C4-8	Ton	-	0.41	-	- 40.21	_	-1.04
	Baja		010	1.2k	283.35	0.11	61.40	46.21	583.69	1.04

Planta Poio	C1	C4-8	Bottom	-	0.41	-	-	-	0.67
Daja Planta	C1	C5-1	Top	-	65 95	4 78	643	26.19	768 12
Baja	01	00 1	rop	174.71	00.70		0.15	20.17	/00.12
Planta	C1	C5-1	Bottom	-	65.95	4.78	6.43	41.32	973.62
Baja				191.11					
Planta	C1	C5-2	Тор	-	-	4.78	6.43	-47.84	768.12
Baja	<u></u>			174.71	63.95	1 70	6.40	72.00	072.62
Planta	CI	C5-2	Bottom	-	-	4.78	6.43	-72.89	973.62
Daja Planta	C1	C5-3	Ton	191.11	65.95	-7.88	6.43	26.19	_
Baja	CI	05 5	тор	174.71	05.75	7.00	0.45	20.17	766.51
Planta	C1	C5-3	Bottom	-	65.95	-7.88	6.43	41.32	-
Baja				191.11					965.58
Planta	C1	C5-4	Тор	-	-	-7.88	6.43	-47.84	-
Baja				174.71	63.95				766.51
Planta	C1	C5-4	Bottom	-	-	-7.88	6.43	-72.89	-
Baja	C1	05.5	T	191.11	63.95	4 79	1.67	26.10	965.58
Planta Baia	CI	C5-5	Top	- 108 50	65.95	4.78	-4.67	26.19	/68.12
Daja Planta	C1	C5-5	Bottom	190.39	65.95	4 78	-4 67	41.32	973 62
Baja	CI	05-5	Dottom	214.99	05.75	7.70	-4.07	41.52	775.02
Planta	C1	C5-6	Тор	-	-	4.78	-4.67	-47.84	768.12
Baja			1	198.59	63.95				
Planta	C1	C5-6	Bottom	-	-	4.78	-4.67	-72.89	973.62
Baja				214.99	63.95				
Planta	C1	C5-7	Тор	-	65.95	-7.88	-4.67	26.19	-
Baja	<u>C1</u>	05.7	D. //	198.59	65.05	7.00	4.67	41.20	766.51
Planta Poio	CI	C5-7	Bottom	- 214.00	65.95	-7.88	-4.6/	41.32	- 065 58
Daja Planta	C1	C5-8	Ton		_	-7.88	-4 67	-47.84	905.58
Baja	CI	05-0	төр	198.59	63.95	-7.00	-4.07	-47.04	766.51
Planta	C1	C5-8	Bottom	-	-	-7.88	-4.67	-72.89	-
Baja				214.99	63.95				965.58
Planta	C1	C6-1	Тор	-	2.28	57.25	48.57	554.38	2.81
Baja				179.55					
Planta	C1	C6-1	Bottom	-	2.28	57.25	48.57	726.62	9.70
Baja	C1	C6 2	Tom	195.95	0.27	57.05	10 57		2.01
Planta Baja	CI	C0-2	тор	- 179 55	-0.27	57.25	48.37	- 576.03	2.81
Planta	C1	C6-2	Bottom	-	-0.27	57.25	48 57	-	9 70
Baja	01	002	Douom	195.95	0.27	07.20	10.07	758.19	2.70
Planta	C1	C6-3	Тор	-	2.28	-	48.57	554.38	-1.20
Baja			-	179.55		60.35			
Planta	C1	C6-3	Bottom	-	2.28	-	48.57	726.62	-1.66
Baja				195.95		60.35			
Planta	C1	C6-4	Тор	-	-0.27	-	48.57	-	-1.20
Baja	C1	C6 A	Pottom	179.55	0.27	60.35	10 57	576.03	1 66
Baia		C0-4	DOUOIII	195 95	-0.27	60 35	40.37	758 19	-1.00
Planta	C1	C6-5	Top	-	2.28	57.25	_	554.38	2.81
Baja		200	- ° F	193.75	0	020	46.81	22 1120	
Planta	C1	C6-5	Bottom	-	2.28	57.25	-	726.62	9.70
Baja				210.15			46.81		
Planta	C1	C6-6	Тор	-	-0.27	57.25	-	-	2.81
Baja				193.75			46.81	576.03	

Planta	C1	C6-6	Bottom	-	-0.27	57.25	-	-	9.70
Baja				210.15			46.81	758.19	
Planta	C1	C6-7	Тор	-	2.28	-	-	554.38	-1.20
Baja				193.75		60.35	46.81		
Planta	C1	C6-7	Bottom	-	2.28	-	-	726.62	-1.66
Baja				210.15		60.35	46.81		
Planta	C1	C6-8	Тор	-	-0.27	-	-	-	-1.20
Baja				193.75		60.35	46.81	576.03	
Planta	C1	C6-8	Bottom	-	-0.27	-	-	-	-1.66
Baja				210.15		60.35	46.81	758.19	

Es importante mencionar que, únicamente se muestran las solicitaciones obtenidas para el primer piso consecuencia de todas las combinaciones de carga. Esto debido a que en este piso se observar las máximas solicitaciones; sin embargo, todas las solicitaciones de los demás pisos se encuentran en las hojas de cálculo.

Dirección X.

Figura 60. Diagrama de interacción en X

splay Options				3D Interaction Surfa	ce		Current Interaction Curve
 Show De Ind Exc Exc 	sign Code Data ude Phi lude Phi lude Phi and Increase	O Show F	iber Model Data	A	×		E+3 8.40 - 7.20 - 6.00 -
rve Data					XXX	AL	£ 3.60
Point	P tonf	M2 tonf-m	M3 tonf-m	-M3	11.9 1	7 H 2	£ 2.40 -
1	3411.6613	-0.8146	-27.3552		LAKIN	17.NB	1.20 -
2	3411.6613	-348.7892	161.6472				0.00 -
3	3411.6613	-540.567	305.2431				-1.20 -
4	3365.3268	-693.9167	451.7431	-M2		E P	-2.40
5	3076.0381	-809.5893	599.054		P		-0.800.00 0.80 1.60 2.40 3.20 4.00 E+3
6	1799.0092	-979.8922	-34,9196		-P	M3	M (tonf-m)
7	782.5012	-1045.5839	-680.5183				
8	384.6536	-1135.0685	-761.3909	Plan	315	· dea	Superimore Dashed Elser Curre
9	-106.7451	-913.155	-646.4822		Leve		Superimpose Dassied riber curve
10	-483.6384	-571.4525	-350.6085	Bevation	35	· deg	Note: Compression is positive in this form.
11	-981,4619	1.1971	40.1993				
		I Curve #	#19 270 deg 🕨 🕨	3D	ММ РМЗ	PM2	Done

Figura 61. Diagrama de interacción en X

Figura 62. Diagrama de interacción en X

Dirección Y.

Display Options				3D Interaction Surface	Current Interaction Curve
Show De	esign Code Data	 Show 	Fiber Model Data		E+3
Include	ude Phi			P	8.40 -
O Exc	dude Phi			(The second seco	7.20 -
OExc	dude Phi and Increase I	Fy			6.00 -
Curve Data					4.80 -
Point	P tonf	M2 torf-m	M3 tonf-m	-M3	2.40 -
1	3411.6613	-0.8146	-27.3552		0. 1.20 -
2	2542.7124	-0.1306	1379.3059	M2	0.00 -
3	1831.7836	-0.0158	1804.2075		-1.20 -
4	1519.4943	0.1645	1914.2554	M2	-2.40
5	1170.4256	0.406	1980.6591		-0.800.00 0.80 1.60 2.40 3.20 4.0
6	761.1443	0.7462	2017.3833	+	M3 M (tonf-m)
7	531.7295	1.0076	2198.6733		
8	284.1978	1.1971	2253.2044	Plan 315	deg Sumatimose Dashad Eher Curve
9	-74.3069	1.1971	1757.9043		
10	-476.5104	1,1971	1066.1143	Elevation 35	deg Note: Compression is positive in this form.
11	-981.4619	1.1971	40.1993		•
				20 100 000	Done
		K Cun	e #1 0 deg 🕨 🕨	SU MM PMS	PM2

Figura 63. Diagrama de interacción en Y

Figura 64. Diagrama de interacción en Y

×

Figura 65. Diagrama de interacción en Y

Se puede observar que todas las solicitaciones se encuentran dentro del diagrama de interacción, por lo que, el muro tiene la capacidad suficiente para resistir dichas solicitaciones. Y, por ende, el espesor y armado del muro son adecuados.

Diseño de elementos de borde

Los elementos de borde son zonas a lo largo de los extremos de los muros y de los diafragmas estructurales, reforzados con refuerzo longitudinal y transversal. Además, los elementos de borde no requieren necesariamente de un incremento en el espesor del muro o del diafragma.

De la misma manera, los elementos de borde de muros estructurales de hormigón deben ser diseñados para resistir todas las cargas verticales, incluyendo cargas tributarias y peso propio, así como las cargas verticales necesarias para resistir el momento de volteo debido al sismo. Además, el refuerzo transversal de los muros estructurales debe anclarse en el elemento de borde, de tal manera que sea capaz de desarrollar los esfuerzos de fluencia.

Para evaluar la necesidad de reforzar las zonas compresión con el uso de elementos de borde, se debe verificar la siguiente expresión:

$$c \ge \frac{l_w}{600 \left(\frac{\delta_u}{h_w}\right)}$$

De donde,

c es la distancia de la fibra extrema en compresión al eje neutro, calculada para la carga axial factorizada y el momento nominal, consistentes con el desplazamiento de diseño, δu resultando en la mayor profundidad del eje neutro.

 l_w es la longitud del muro o del segmento de muro considerado en la dirección de la fuerza cortante.

 δ_u es el desplazamiento de diseño.

 h_w es la altura del muro o del segmento de muro considerado.

extrema en compresión al eje neutro para los muros en ambas direcciones. Es

importante mencionar que, se debe cumplir la siguiente relación:

$$\frac{\delta_u}{h_w} \ge 0.007$$

Por lo tanto, a continuación, se muestra el cálculo de la distancia de la fibra

Con la ayuda de ETABS, se obtuvieron los desplazamientos en el centro de

masa para el último piso en ambas direcciones.

Tal	ola	38.	Des	plaza	ami	entos	s en	los	cen	tros	de	los	diaf	ragn	nas

TABLE: Diaphragm Center Of Mass Displacements									
Story	Diaphragm	Output	Case Type	Step	UX	UY			
		Case		Туре					
Sexto	D1	DX	Combination	Max	0.119182	0.000626			
Piso									
Sexto	D1	DY	Combination	Max	0.000822	0.321703			
Piso									

Para la dirección X

$$\frac{\delta_u}{h_w} = \frac{0.119182}{22.4} \ge 0.007$$
$$\frac{\delta_u}{h_w} = 0.00532 \ge 0.007$$
$$\frac{\delta_u}{h_w} = 0.007$$
$$c_{\lim x} \ge \frac{3.225}{600 * (0.007)}$$

$$c_{\lim x} \ge 0.77 m$$

Para la dirección Y:

$$\frac{\delta_u}{h_w} = \frac{0.3217}{22.4} \ge 0.007$$
$$\frac{\delta_u}{h_w} = 0.01436 \ge 0.007$$

$$\frac{\delta_u}{h_w} = 0.01436$$

$$c_{\lim y} \ge \frac{2.6}{600 * (0.01436)}$$

$$c_{\lim y} \ge 0.30 m$$

Anteriormente, se obtuvieron los valores de c límite, por lo que, a continuación, se procede a verificar que los valores reales c para los muros en ambas direcciones sean menores a los valores límites encontrados anteriormente. Esto se realizó con la ayuda de la herramienta de section - designer de SAP2000:

-	Section Name	Muro T	
	Section Notes	М	odify/Show Notes
E	Base Material	+ 280	~
Desi	gn Type		
•	No Check/Design		
	General Steel Sec	ction	
0	Concrete Column		
Con	crete Column Checi	k/Design	
	Reinforcement to	be Checked	
	Reinforcement to	be Designed	
Defi	ne/Edit/Show Section	on	
		Section Desi	gner
Sect	ion Properties		Property Modifiers
	Propertie	s	Set Modifiers
	Time Dependent F	Properties	Display Color

Figura 66. Section Designer SAP2000

Como se constata en la siguiente imagen, se definió la misma sección que en

ETABS para obtener así los diagramas de momento – curvatura.

Figura 67. Muro en section designer

Eje neutro para la dirección positiva X

Figura 68. Momento curvatura dirección X positiva

Como se observa en la gráfica anterior, para la obtención del eje neutro se utiliza una carga axial de compresión de 310 toneladas y se analiza la curva de momento curvatura a 90 grados, de donde:

$$\varepsilon_{cu} = 0.003$$

 $\varepsilon_{su} = 0.0143$
 $l_w = 3.225$
 $c_x = \frac{0.003}{0.003 + 0.0143} * 3.225$
 $c_x = 0.56 m$

De donde, se observa que $c_{\lim x} < c_x$, por lo que, no es necesario el uso de elementos de borde.

Eje nuetro para la dirección negativa X

Figura 69. Momento curvatura dirección X negativa

Como se observa en la gráfica anterior, para la obtención del eje neutro se utiliza una carga axial de compresión de 220 toneladas y se analiza la curva de momento curvatura a 270 grados, de donde:

$$\varepsilon_{cu} = 0.003$$

 $\varepsilon_{su} = 0.0754$
 $l_w = 3.225$
 $c_x = \frac{0.003}{0.003 + 0.0754} * 3.225$
 $c_x = 0.36 m$

De donde, se observa que $c_{\lim x} < c_x$, por lo que, no es necesario el uso de elementos de borde.

Eje neutro para la dirección positiva Y

Figura 70. Momento curvatura dirección Y positiva

$$\varepsilon_{cu} = 0.003$$

 $\varepsilon_{su} = 0.0151$
 $l_w = 2.6$
 $c_y = \frac{0.003}{0.003 + 0.0151} * 2.6$
 $c_y = 0.43 m$

De donde, se observa que $c_{\lim y} \ge c_y$, por lo que, es necesario el uso de elementos de borde.

Eje neutro para la dirección negativa Y

Figura 71. Momento curvatura dirección Y negativa

$$\varepsilon_{cu} = 0.003$$

 $\varepsilon_{su} = 0.0181$
 $l_w = 2.6$
 $c_y = \frac{0.003}{0.003 + 0.0181} * 2.6$
 $c_y = 0.37 m$

De donde, se observa que $c_{\lim y} \ge c_y$, por lo que, es necesario el uso de elementos de borde.

Como se observa en los cálculos anteriores, es necesario el uso de elementos de borde. Para esto, es necesario verificar el largo de confinamiento de estos, el cual según el ACI 318-19 es:

$$C_c = \max(c - 0.1l_w; c/2)$$

Debido a que los elementos de borde tienen diferentes dimensiones, se procede a calcular el largo de confinamiento de manera independiente para cada uno de ellos:

Figura 72. Casos de confinamiento en el muro

Elemento de borde - caso 2 y 3.

$$C_c = \max\left(0.43 - 0.1 * 2.6; \frac{043}{2}\right)$$
$$C_c = 0.22 m$$
$$\therefore C_c = 0.30 m$$

Debido a los resultados anteriores, se decide confinar todos los cabezales del

muro.

Tabla 39. Refuerzo transversal para elementos de borde

Transverse reinforcement	Applica		
A./sb. for rectilinear boon	Greater of	$0.3 \left(\frac{A_g}{A_{ab}} - 1\right) \frac{f_e'}{f_{\mu}}$	(a)
	Citale of	$0.09 \frac{f_c'}{f_{\mu}}$	(b)
- An animal an aimplicable and	Greater of	$0.45 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f_c'}{f_{yt}}$	(c)
pr for spiral of circular hoop	Greater of	$0.12 \frac{f_c'}{f_{yt}}$	(d)

Table 18.10.6.4(g)—Transverse reinforcement for
special boundary elements

Figura 73. Detallamiento de refuerzo transversal

Fig. R18.10.6.4b—Development of wall horizontal reinforcement in confined boundary element.

Donde,

 A_g es el área bruta del cabezal. $A_g = l_{be} \cdot b$

 A_{ch} es el área confinada del cabezal. $A_{ch} = b_{c1} \cdot b_{c2}$

Para todos los casos, tenemos las mismas resistencias de los materiales, que son:

CASOS	bc1	bc2	lbe	b	Ag	Ach
1	0.51	0.32	0.55	0.40	0.22	0.16
2, 3	0.41	0.37	0.45	0.45	0.20	0.15
4	0.36	0.37	0.40	0.45	0.18	0.13

Tabla 40. Variables para el detallamiento de refuerzo transversal

Elemento de borde - caso 1.

$$\rho_{Ash} = max \begin{cases} 0.3 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f'c}{fyt} \\ 0.09 \cdot \frac{f'c}{fyt} \end{cases}$$

$$\rho_{Ash} = max \begin{cases} 0.3 \left(\frac{0.22}{0.16} - 1\right) \frac{28}{420} \\ 0.09 \cdot \frac{28}{420} \end{cases}$$

$$\rho_{Ash} = max \begin{cases} 0.00696\\ 0.006 \end{cases}$$
 $\rho_{Ash} = 0.70\%$

I ASI

Elemento de borde - caso 2 y 3.

$$\rho_{Ash} = max \begin{cases} 0.3 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f'c}{fyt} \\ 0.09 \cdot \frac{f'c}{fyt} \end{cases}$$

$$\rho_{Ash} = max \begin{cases} 0.3 \left(\frac{0.20}{0.15} - 1\right) \frac{28}{420} \\ 0.09 \cdot \frac{28}{420} \end{cases}$$

$$\rho_{Ash} = max \begin{cases} 0.0067 \\ 0.006 \end{cases}$$

$$ho_{Ash}=0.67\%$$

Elemento de borde - caso 4.

$$\rho_{Ash} = max \begin{cases} 0.3 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f'c}{fyt} \\ 0.09 \cdot \frac{f'c}{fyt} \end{cases}$$

$$\rho_{Ash} = max \begin{cases} 0.3 \left(\frac{0.18}{0.1332} - 1\right) \frac{28}{420} \\ 0.09 \cdot \frac{28}{420} \end{cases}$$

$$\rho_{Ash} = max \begin{cases} 0.00703 \\ 0.006 \end{cases}$$

$$\rho_{Ash} = 0.7\%$$

A continuación, se detalla el cálculo del área de acero correspondiente:

$$Ash = \rho_{Ash} \cdot l_{be} \cdot 1m$$

Elemento de borde - caso 1.

 $Ash_x = 0.0070 \cdot 55 \cdot 100 = 38.28 \ cm^2/m$

Por lo que, para cumplir el área de acero mínima requerida se usará 1 estribo

 $\phi 12mm$ y 3 vinchas $\phi 10mm$ a cada 12 cm.

$$Ash_y = 0.0070 \cdot 40 \cdot 100 = 27.84 \ cm^2/m$$

Por lo que, para cumplir el área de acero mínima requerida se usará 1 estribo

φ12mm y 1 vincha φ12mm a cada 12 cm.

Elemento de borde - caso 2 y 3.

 $Ash_x = 0.0067 \cdot 45 \cdot 100 = 30.14 \ cm^2/m$

Por lo que, para cumplir el área de acero mínima requerida se usará 1 estribo

φ12mm y 1 estribo φ10mm a cada 12 cm.

$$Ash_y = 0.0067 \cdot 45 \cdot 100 = 30.14 \ cm^2/m$$

Por lo que, para cumplir el área de acero mínima requerida se usará 1 estribo φ 12mm y 1 estribo φ 12mm a cada 12 cm.

Elemento de borde - caso 4.

 $Ash_x = 0.0070 \cdot 40 \cdot 100 = 31.62 \ cm^2/m$

Por lo que, para cumplir el área de acero mínima requerida se usará 1 estribo

φ12mm y 1 estribo φ10mm a cada 12 cm.

$$Ash_y = 0.0070 \cdot 45 \cdot 100 = 28.11 \ cm^2/m$$

Por lo que, para cumplir el área de acero mínima requerida se usará 1 estribo φ 12mm y 1 vincha φ 12mm a cada 12 cm.

Verificación a Corte la sección crítica del muro considerando amplificación dinámica y sobrerresistencia a flexión

Para realizar la verificación al corte de la sección, tomando en cuenta la amplificación dinámica y la sobrerresistencia a flexión, primero se determinará la sobrerresistencia a flexión acorde a las disposiciones del ACI 318 – 19.

Tabla 41. Factor de sobreresistencia

Table 18.10.3.1.2—Overstrength factor Ω_v at critical section

Condition		Ω_{ν}
$h_{wcs}/\ell_w > 1.5$	Greater of	$M_{pp}/M_u^{[1]}$ 1.5 ^[2]
$h_{\rm wcs}/\ell_w \le 1.5$		1.0

^[1] For the load combination producing the largest value of Ω_{ν}

^[2] Unless a more detailed analysis demonstrated a smaller value, but not less than 1.0.

Para nuestro caso aplicaría la primera condición, ya que se trata de un muro esbelto acorde a la relación de aspecto.

Los cortantes de diseño para muros estructurales se obtienen a partir del análisis de carga lateral con los factores de carga congruentes e incrementados para considerar:

- Sobrerresistencia a flexión en la sección crítica donde se espera la fluencia de del refuerzo longitudinal.
- La amplificación dinámica debida a los efectos de los modos de vibración altos.

Ya que $M_n y M_{pr}$ dependen de la fuerza axial, la que es variable acorde a las combinaciones de carga, y la dirección de las cargas para muros con alas o acoplados, se debe usar la condición que genere el mayor Ω_v .

Para determinar el factor de sobrerresistencia, se utilizará la herramienta ETABS y se ubicará de la forma más exacta posible el valor de M_{pr} , para lo que se necesita los nuevos valores del diagrama de interacción con un $\emptyset = 1.00$ y con las propiedades esperadas del acero, es decir, el acero endurecido.

Dirección en X

 Show De Ind Exc Exc 	esign Code Data Jude Phi Jude Phi Jude Phi and Increase I	⊖ Show F	Fiber Model Data	P	E+3 8.40 - 7.20 - 6.00 -
urve Data					
Point	P tonf	M2 tonf-m	M3 torif-m	-M3	2.40 - 0.
1	5466.8123	-1.5857	-53.2514		1.20 -
2	5466.8123	594.6564	204.7932	M2	0.00 -
3	5466.8123	887.5792	428.2427		-1.20 -
4	5226.617	1121.101	656.3727	-M2	-2.40
5	4777.1242	1295.1252	886.4851	P	-0.800.00 0.801.60 2.40 3.20 4.00 E+3
6	2804.8632	1551.6497	-82.8919	M3	M (tonf-m)
7	1012.0156	1472.4917	-881,8892		
8	382.3001	1354.2944	-810.5906	Plan 315	deg Superimone Dathed Elser Outre
9	-309.4045	1100.241	-771.3859		
10	-743.8626	710.7161	-430.322	Bevation 35	deg Note: Compression is positive in this form.
11	-1363.1415	1.6626	55.8323		
					Dura

Figura 75. Diagrama de interacción en dirección X

Figura 76. Diagrama de interacción en dirección X

Figura 77. Diagrama de interacción en dirección X

Dirección en Y

play Options				3D Interaction Surface	Current Interaction Curve
Show Department of the second seco	rsign Code Data	O Show	Fiber Model Data		E+3
() Inc	lude Phi			P	8.40 -
O Ex	dude Phi			Alternative State Stat	7.20 -
Ex	dude Phi and Increase F	Ξy			6.00 -
we Data					4.80 -
Point	P tonf	M2 tonf-m	M3 tonf-m		<u> </u>
1	5466.8123	-1.5857	-53.2514	-M3	0. 1.20 -
2	3965.3889	-0.2009	2223.3117	Charles and the second s	0.00 -
3	2868.7965	-0.0243	2872.6998	C Maria	-1.20 -
4	2384.9037	0.2531	3036.4335		-2.40 -
5	1843.4507	0.6247	3131.0922	-M2	-0.800.00 0.80 1.60 2.40 3.20 4.00 E+3
6	1208.0718	1.148	3177.5842	-P M3	M (tonf-m)
7	558.0398	1.6626	3098.2377		
8	149.3143	1.6626	2689.029	Plan 315	deg Dispersionana Dashad Elver Come
9	-272.7415	1.6626	2114.4714		
10	-740.662	1.6626	1315.9431	Bevation 35	deg Note: Compression is positive in this form.
11	-1363.1415	1.6626	55.8323		
9 10	-272.7415 -740.662 -1363.1415	1.6626 1.6626 1.6626	2114.4714 1315.9431 55.8323	Bevation 35	deg Note: Compression is positive in this form.

Figura 78. Diagrama de interacción en dirección Y

Figura 79. Diagrama de interacción en dirección Y

Figura 80. Diagrama de interacción en dirección Y

Para realizar la revisión del M_{pr} solo ocuparemos las combinaciones donde se ve involucrado el sismo x, puesto que son las combinaciones dominantes, adicionalmente se escogerá solo la sección de abajo (bottom) ya que sería la primera que trataría de fluir.

A continuación, se muestra la tabla con las combinaciones dominantes y además el cálculo de la sobrerresistencia, definida como $\frac{M_{pr}}{M_u}$.

TABLE:	Pier Desig	gn Forces								
Story	Pier	Load	Location	Р	V2	V3	M2	M3	Mpr	Mpr/Mu
		Combo								
				tonf	tonf	tonf	tonf-m	tonf-m		
Planta	C1	C3-1	Bottom	-286.2	66.6	3.7	30.3	975.9	2114.0	2.2
Baja										
Planta	C1	C3-2	Bottom	-286.2	-63.3	3.7	-83.9	975.9	2114.0	2.2
Baja										
Planta	C1	C3-3	Bottom	-286.2	66.6	-8.9	30.3	-963.3	2150.0	2.2
Baja										
Planta	C1	C3-4	Bottom	-286.2	-63.3	-8.9	-83.9	-963.3	2150.0	2.2
Baja										
Planta	C1	C3-5	Bottom	-310.0	66.6	3.7	30.3	975.9	2170.0	2.2
Baja										
Planta	C1	C3-6	Bottom	-310.0	-63.3	3.7	-83.9	975.9	2170.0	2.2
Baja										
Planta	C1	C3-7	Bottom	-310.0	66.6	-8.9	30.3	-963.3	2170.0	2.3
Baja										
Planta	C1	C3-8	Bottom	-310.0	-63.3	-8.9	-83.9	-963.3	2170.0	2.3
Baja										
Planta	C1	C4-1	Bottom	-291.0	3.0	56.2	715.6	12.0	1100.0	1.5
Baja										
Planta	C1	C4-2	Bottom	-291.0	0.4	56.2	-769.2	12.0	1100.0	1.4
Baja										
Planta	C1	C4-3	Bottom	-291.0	3.0	-61.4	715.6	0.7	1100.0	1.5
Baja										
Planta	C1	C4-4	Bottom	-291.0	0.4	-61.4	-769.2	0.7	1100.0	1.4
Baja										

Tabla 42. Relación de momento probable sobre momento último

Planta	C1	C4-5	Bottom	-305.2	3.0	56.2	715.6	12.0	1300.0	1.8
Baja										
Planta	C1	C4-6	Bottom	-305.2	0.4	56.2	-769.2	12.0	1300.0	1.7
Baja										
Planta	C1	C4-7	Bottom	-305.2	3.0	-61.4	715.6	0.7	1300.0	1.8
Baja										
Planta	C1	C4-8	Bottom	-305.2	0.4	-61.4	-769.2	0.7	1300.0	1.7
Baja										
Planta	C1	C5-1	Bottom	-191.1	66.0	4.8	41.3	973.6	1500.0	1.5
Baja										
Planta	C1	C5-2	Bottom	-191.1	-63.9	4.8	-72.9	973.6	1500.0	1.5
Baja										
Planta	C1	C5-3	Bottom	-191.1	66.0	-7.9	41.3	-965.6	1500.0	1.6
Baja										
Planta	C1	C5-4	Bottom	-191.1	-63.9	-7.9	-72.9	-965.6	1500.0	1.6
Baja										
Planta	C1	C5-5	Bottom	-215.0	66.0	4.8	41.3	973.6	1520.0	1.6
Baja										
Planta	C1	C5-6	Bottom	-215.0	-63.9	4.8	-72.9	973.6	1520.0	1.6
Baja										
Planta	C1	C5-7	Bottom	-215.0	66.0	-7.9	41.3	-965.6	1520.0	1.6
Baja										
Planta	C1	C5-8	Bottom	-215.0	-63.9	-7.9	-72.9	-965.6	1520.0	1.6
Baja										
Planta	C1	C6-1	Bottom	-195.9	2.3	57.2	726.6	9.7	1000.0	1.4
Baja										
Planta	C1	C6-2	Bottom	-195.9	-0.3	57.2	-758.2	9.7	1000.0	1.3
Baja										
Planta	C1	C6-3	Bottom	-195.9	2.3	-60.3	726.6	-1.7	1000.0	1.4
Baja										

Planta	C1	C6-4	Bottom	-195.9	-0.3	-60.3	-758.2	-1.7	1000.0	1.3
Baja										
Planta	C1	C6-5	Bottom	-210.1	2.3	57.2	726.6	9.7	1050.0	1.4
Baja										
Planta	C1	C6-6	Bottom	-210.1	-0.3	57.2	-758.2	9.7	1050.0	1.4
Baja										
Planta	C1	C6-7	Bottom	-210.1	2.3	-60.3	726.6	-1.7	1050.0	1.4
Baja										
Planta	C1	C6-8	Bottom	-210.1	-0.3	-60.3	-758.2	-1.7	1050.0	1.4
Baja										

Como se observa, la mayor sobrerresistencia es de 2.2 para la combinación 3. Para un análisis muy riguroso, se usa la sobrerresistencia que cada combinación presentó respectivamente.

Continuando con la verificación de corte en la sección crítica, se mostrará los valores obtenidos en el apartado 4 del corte $\phi Vn = 357.18 \ ton$; también se debe considerar que la normativa limita la amplificación de la fuerza cortante a 3Vu.

Para lograr definir si la demanda/capacidad es la adecuada, se revisará de forma numérica esta relación para la sección crítica. Se limitará el análisis de datos para las combinaciones más demandantes.

$$\frac{D}{C} = \frac{\Omega \mathbf{v} \cdot V_u}{\phi V n}$$

1 doid +5. 1 doi2d	5 CH 105	pier													
TABLE: Pier	r Force	es													
Story	Pier	Load Case	Location	Р	V2	V3	Т	M2	M3	fc´	lw	e	0.75Vnmax	Ω	D/C
Planta Baja	C1	C3 Max	Тор	-264.31	66.63	3.74	7.03	18.53	768.28	2800	3.00	0.45	357.18	2.20	0.41
Planta Baja	C1	C3 Max	Bottom	-286.18	66.63	3.74	7.03	30.31	975.95	2800	3.00	0.45	357.18	2.20	0.41
Planta Baja	C1	C5 Max	Тор	-174.71	65.95	4.78	6.43	26.19	768.12	2800	3.00	0.45	357.18	1.50	0.28
Planta Baja	C1	C5 Max	Bottom	-191.11	65.95	4.78	6.43	41.32	973.62	2800	3.00	0.45	357.18	1.50	0.28
Planta Baja	C1	SX Max	Тор	11.94	64.95	6.33	5.55	37.02	767.31	2800	3.00	0.45	357.18	2.20	0.40
Planta Baja	C1	SX Max	Bottom	11.94	64.95	6.33	5.55	57.11	969.60	2800	3.00	0.45	357.18	2.20	0.40
Planta Baja	C1	C5 Min	Тор	-198.59	-63.95	-7.88	-4.67	-47.84	-766.51	2800	3.00	0.45	357.18	1.60	0.29
Planta Baja	C1	C5 Min	Bottom	-214.99	-63.95	-7.88	-4.67	-72.89	-965.58	2800	3.00	0.45	357.18	1.60	0.29
Planta Baja	C1	C3 Min	Тор	-288.18	-63.27	-8.93	-4.07	-55.51	-766.35	2800	3.00	0.45	357.18	2.20	0.39
Planta Baja	C1	C3 Min	Bottom	-310.05	-63.27	-8.93	-4.07	-83.91	-963.25	2800	3.00	0.45	357.18	2.20	0.39
Planta Baja	C1	C4 Max	Тор	-269.14	2.96	56.20	49.17	546.71	2.97	2800	3.00	0.45	357.18	1.80	0.01
Planta Baja	C1	C4 Max	Bottom	-291.01	2.96	56.20	49.17	715.61	12.03	2800	3.00	0.45	357.18	1.80	0.01
Planta Baja	C1	C6 Max	Тор	-179.55	2.28	57.25	48.57	554.38	2.81	2800	3.00	0.45	357.18	1.40	0.01
Planta Baja	C1	C6 Max	Bottom	-195.95	2.28	57.25	48.57	726.62	9.70	2800	3.00	0.45	357.18	1.40	0.01
Planta Baja	C1	C2	Тор	-292.67	1.89	-2.92	1.66	-20.92	0.90	2800	3.00	0.45	357.18	2.20	0.01
Planta Baja	C1	C2	Bottom	-314.54	1.89	-2.92	1.66	-30.25	6.94	2800	3.00	0.45	357.18	2.20	0.01
Planta Baja	C1	C1	Тор	-290.34	1.56	-2.41	1.37	-16.84	1.25	2800	3.00	0.45	357.18	2.20	0.01
Planta Baja	C1	C1	Bottom	-315.85	1.56	-2.41	1.37	-24.56	6.25	2800	3.00	0.45	357.18	2.20	0.01
Planta Baja	C1	SY Max	Тор	7.10	1.27	58.80	47.69	565.20	2.00	2800	3.00	0.45	357.18	2.20	0.01
Planta Baja	C1	SY Max	Bottom	7.10	1.27	58.80	47.69	742.41	5.68	2800	3.00	0.45	357.18	2.20	0.01
Planta Baja	C1	C4 Min	Тор	-283.35	0.41	-61.40	-46.21	-583.69	-1.04	2800	3.00	0.45	357.18	1.80	0.00
Planta Baja	C1	C4 Min	Bottom	-305.21	0.41	-61.40	-46.21	-769.21	0.67	2800	3.00	0.45	357.18	1.80	0.00
Planta Baja	C1	C6 Min	Тор	-193.75	-0.27	-60.35	-46.81	-576.03	-1.20	2800	3.00	0.45	357.18	1.80	0.00
Planta Baja	C1	C6 Min	Bottom	-210.15	-0.27	-60.35	-46.81	-758.19	-1.66	2800	3.00	0.45	357.18	1.40	0.00

Tabla 43. Fuerzas en los pier

Como se nota, los radios de demanda/capacidad son menores a la unidad, lo que quiere significa que no se requiere modificar la sección, es decir, no se deberá cambiar los espesores ni tampoco se necesita aumentar la capacidad del material, puesto es suficiente para las solicitaciones generadas por todas las cargas.

ANÁLISIS NO LINEAL EN HORMIGÓN ARMADO

El análisis estático no lineal (pushover) se utiliza para cuantificar la resistencia de la estructura a la deformación lateral y para medir el modo de deformación y la intensidad local de demandas. Se han recomendado varias técnicas, incluyendo el uso de perfiles de fuerza lateral constante y el uso de enfoques adaptativos y multimodales. Las técnicas del pushover proporcionan información útil sobre características generales del sistema estructural y puede ser utilizado para identificar algunos (pero no necesariamente todos) los probables mecanismos de falla, tales como rótulas plásticas en vigas y columnas y a su vez la degradación gradual de la rigidez de la estructura. El análisis lineal solo permite limitar el desplazamiento lateral de la edificación, en función de una deriva inelástica.

Figura 81. Modelos estructurales

Las técnicas de pushover son útiles para estimar el pico de respuesta de desplazamiento junto con el uso de Sistemas de un grado de libertad "equivalentes". Mientras que los modos superiores suelen tener una contribución pequeña o insignificante a desplazamientos, los modos superiores pueden afectar significativamente a las derivas entre pisos, rotaciones de rótulas plásticas, cortantes de pisos y fuerzas de vuelco.

En este apartado, se desarrollará el análisis no lineal estático (pushover), utilizando las herramientas *Multilayered Shell Element* de ETABS.

Figura 82. Esquema de los procedimientos de análisis inelásticos

El análisis no lineal realizado, se basó en caracterizar el comportamiento no lineal de los materiales asignados al sistema de resistencia de carga lateral, es decir, los muros de hormigón armado. La modelación de los muros implica caracterizar dicho comportamiento no lineal de los materiales, descritos a continuación:

 Acero de Refuerzo: Para el acero se utilizó el modelo utilizado por defecto en ETABS, para lo cual, se definió un acero grado 60, con un fy=4200 MPa y un fu=6300 MPa.

Material Name	GRADO 60	
Material Type	Rebar, Uniaxial	
Grade		
Design Properties for Rebar Materials		
Minimum Yield Strength, Fy	42184.18	tonf/m ²
Minimum Tensile Strength, Fu	63276.27	tonf/m ²
Expected Yield Strength, Fye	46402.6	tonf/m ²
Expected Tensile Strength, Fue	69603.89	tonf/m ²

Figura 83. Propiedades del acero

Figura 84. Curva esfuerzo-deformación del acero

 Hormigón confinado y no confinado: Para modelar el comportamiento del hormigón no confinado se trabajó con las ecuaciones de Saatcioglu & Razvi, que incorpora el efecto del confinamiento proporcionado por los estribos.

FIG. 7. Proposed Stress-Strain Relationship

Figura 85. Relación esfuerzo-deformación propuesta para el hormigón

Es importante mencionar que, debido a la propuesta utilizada (Saatcioglu & Razvi), en donde el comportamiento del hormigón confinado y no confinado dependen del acero longitudinal y refuerzo transversal, se ha definido varios tipos de hormigones para caracterizar el comportamiento del material en función del armado de la sección correspondiente. A continuación, se muestran todos los materiales definidos:

erials	Click to:
A992Fy50	Add New Material
A615Gr60	Add Copy of Material
G25 NO CONFINADO C1	Modify/Show Material
G25 CONFINADO C1	Delete Material
G25 NO CONFINADO C4 G25 CONFINADO C4	OK Cancel

Figura 86. Definición de materiales

A continuación, se detalla la definición del hormigón confinado para un solo caso

debido a la similitud en el proceso:

Material Material 1	Name G25							
Material 1	Tuno	CONFINADO C1		Hyste	eresis Type		Takeda	
	Cond	crete, Isotropic						
				Druc	ker-Prager	Paramet	ters	
					Friction Ang	le	0	de
	Calaria Oraina			-	Dilatational	Angle	0	de
cceptance	Tension	Compressi	on				- Martine -	
IO 0.0	01	-0.003	m/m	Stress S	train Curve	Definitio	on Options	
15 00	02	-0.006	m/m	O P	arametric			
CP 0.0	05	0.015				1	Convert to User	Defined
CF U.L	05	-0.015	m/m					
🗹 Ignor	re Tension Acc	eptance Criteria		0 L	lser Define	3		
Jser Stress-	re Tension Acco -Strain Curve Da of Points in Stree	eptance Criteria ata ss-Strain Curve		01	lser Define	8	16	
Jser Stress- Number of Numb	re Tension Acco Strain Curve Da of Points in Stree t	eptance Criteria ata ss-Strain Curve Strain	Stress	tonf/m2)	Point	^	16	
Jeer Stress- Number of Number of Numb	re Tension Acco -Strain Curve Da of Points in Stree of toer	eptance Criteria ata ss-Strain Curve Strain -0.0655	Stress (torf/m2)	Point	^	16	
Jser Stress- Number of Number of Numb 1 2	re Tension Acco -Strain Curve Da of Points in Street nt oer	eptance Criteria ata ss-Strain Curve Strain -0.0655 -0.0625	Stress (-58 -58	torf/m2) 5.9	Point ID	^	16	
V Ignor	re Tension Acci -Strain Curve Da of Points in Street tt per	eptance Criteria sta ss-Strain Curve Strain -0.0655 -0.0625 -0.0047	Stress (-58 -58 -58 -278	torf/m2) 5.9 81.4	Point ID	^		
Vumber of Number of Number	re Tension Acco -Strain Curve Da of Points in Stree t t ser	eptance Citteria sta ss-Strain Curve Strain -0.0655 -0.0625 -0.0047 -0.0041	Stress (-59 -58 -27(-28	tonf/m2) 5.9 51.4 172	Point ID A	^		
✓ Ignor Jser Stress- Number of Point Numb 1 2 3 4 5	re Tension Acco Strain Curve Da of Points in Street ter	eptance Citteria sta ss-Strain Curve Strain -0.0655 -0.0625 -0.0047 -0.0041 -0.0037	Stress (-58 -58 -270 -28 -292	tornf/m2) 5.9 31.4 372 29.6	Point ID		16	
Vignor Jser Stress- Number of Numb 1 2 3 4 5 6	re Tension Acco Strain Curve Da of Points in Street ter	eptance Citteria sta ss-Strain Curve Strain -0.0655 -0.0047 -0.0041 -0.0037 -0.0036	Stress (-58 -58 -277 -28 -291 -291 -291	tonf/m2) 5.9 31.4 772 29.6 88.8	Point ID		16 Add R Delete F	ow 2ows
V Ignor Jser Stress- Number of Number of 2 3 4 5 6 7	re Tension Acco -Strain Curve Da of Points in Street tt 	eptance Citteria sta ess-Strain Curve Strain -0.0625 -0.0047 -0.0047 -0.0041 -0.0037 -0.0036 -0.0031	Stress (-58 -58 -277 -26 -292 -292 -292 -292 -292	tonf/m2) 5.9 51.4 772 29.6 28.8 14.6	Point ID		16 Add R Delete F	Towns
V Ignor Jser Stress- Number of Number of Number 1 2 3 4 5 6 7 7 8	re Tension Account	eptance Criteria sta ss-Strain Curve Strain -0.0655 -0.0047 -0.0041 -0.0037 -0.0041 -0.0036 -0.0031 -0.0026	Stress (-58 -58 -277 -28 -292 -292 -292 -292 -292 -292 -292	tonf/m2) 5.9 5.9 31.4 772 29.6 28.8 14.6 332	Point ID A		16 Add R Delete F	ows

Figura 87. Asignación de las propiedades no lineales del hormigón confinado

Figura 88. Curva esfuerzo-deformación del hormigón confinado

A continuación, se detalla la definición del hormigón no confinado para un solo caso

debido a la similitud en el proceso:

	ame and 1	ype		Miscella	neous Parameters		
Material	Name	G25 NO CONFIN	ADO C1	Hyste	eresis Type	Takeda	~
Material	Туре	Concrete, Isotropi	ic				
				Druc	ker-Prager Parame	eters	
				1	Friction Angle	0	deg
	- Calada	Ohming		- 1	Dilatational Angle	0	deg
Acceptance	e Criteria Tens	ion Comp	ression			5 	
IO 0.	.01	-0.003	m/m	Stress S	train Curve Definit	ion Options	
LS 0	02	-0.006	m/m	O F	arametric		
CP 0	05	0.015					Defined
CF U.	.05	-0.015	m/m				
User Stress Number	s-Strain Cu of Points	irve Data in Stress-Strain Cun	/e			13	
User Stress Number Poir Numl	s-Strain Cu of Points nt iber	urve Data in Stress-Strain Cun Strain	ve Stress (tonf/m2)	Point ^	13	
User Stress Number Poir Numl	s-Strain Cu of Points nt ber	urve Data in Stress-Strain Cun Strain -0.0139	/e Stress (-20	tonf/m2)	Point ^	13	
User Stress Number Poir Numl 1 2	s-Strain Cu of Points nt iber	urve Data in Stress-Strain Cun Strain -0.0139 -0.002	re Stress (-20	tonf/m2) 0.8 0.4	Point 1	13	
User Stress Number Poir Num 1 2 3	s-Strain Cu of Points nt iber	urve Data in Stress-Strain Curv Strain -0.0139 -0.002 -0.0018	re Stress (-20 -251	tonf/m2)).8 (0.4 9.4	Point 10	13	
User Stress Number Poir Numl 2 3 4	s-Strain Cu of Points nt ber	urve Data in Stress-Strain Cun Strain -0.0139 -0.002 -0.0018 -0.0016	ve Stress (-264 -251 -235 -235	tornf/m2)).8 (0.4 9.4 (2.8	Point 1D		
User Stress Number Num 1 2 3 4 5	s-Strain Cu of Points nt iber	urve Data in Stress-Strain Curn Strain -0.0139 -0.002 -0.0018 -0.0016 -0.0014	/e Stress (-264 -251 -235 -235 -225 -225	tonf/m2) 0.8 10.4 9.4 12.8 17.8	Point 1D	13	
User Stress Number Poir Numl 1 2 3 4 5 6	s-Strain Cu of Points nt iber	urve Data in Stress-Strain Curv Strain -0.0139 -0.002 -0.0018 -0.0016 -0.0014 -0.0012	/e Stress (-264 -251 -235 -235 -223 -223 -20	tonf/m2) 0.8 10.4 9.4 12.8 17.8 50	Point ID A	13	lows
User Stress Number Poir Numl 2 3 4 5 6 7	s-Strain Cu of Points nt ber	urve Data in Stress-Strain Curv Strain -0.0139 -0.002 -0.0018 -0.0016 -0.0014 -0.0012 -0.001	/e Stress (-26 -26 -251 -239 -20 -20 -182 -28 -28 -20 -28 -28 -28 -28 -28 -28 -28 -28 -28 -28	torf/m2) 1.8 10.4 9.4 12.8 17.8 50 14.4	Point ID A	13 Add F Delete	low Rows
User Stress Number Poir Numl 1 2 3 4 5 6 7 7 8	s-Strain Cu of Points nt iber	urve Data in Stress-Strain Curv Strain -0.0139 -0.002 -0.0018 -0.0016 -0.0014 -0.0012 -0.001 -0.001 -0.0008	re Stress (-264 -251 -239 -223 -220 -182 -155	tonf/m2) 18 10.4 9.4 12.8 17.8 50 14.4 16.3	Point 10	13 Add F Delete Order F	low Rows

Figura 89. Asignación de las propiedades no lineales del hormigón no confinado

Figura 90. Curva esfuerzo-deformación del hormigón no confinado

A continuación, se detalla el procedimiento seguido para la modelación del análisis no lineal (pushover):

Simplificación del modelo.

Por a la gran demanda computacional, requerida por los análisis no lineales, se procede a realizar una simplificación del modelo 3D utilizada en el análisis lineal. Para esto, se considera eliminar las losas de entrepiso, debido a que la eliminación de estas representa una gran reducción en lo que respecta a los grados de libertad de la estructura.

Figura 91. Vista en planta del modelo simplificado

Debido a que, al eliminar las losas se pierde la masa que estas aportan a la estructura, se asignará en el centro de masas; la masa rotacional y traslacional total de la estructura. Para esto se necesita conocer dicho centro de masas que se encuentra detallado para cada piso en la siguiente tabla:

TABLE: Ma	ass Summary b	y Diaph	ragm			
Story	Diaphragm	Mass	Mass	Mass Moment of	X Mass	Y Mass
		Χ	Y	Inertia	Center	Center
		tonf-	tonf-	tonf-m-s ²	m	m
		s²/m	s²/m			
Sexto Piso	D1	15.31	15.31	619.61	7.83	12.89
Quinto	D1	22.24	22.24	1144.62	7.83	12.61
Piso						
Cuarto	D1	22.24	22.24	1144.62	7.83	12.61
Piso						
Tercer	D1	22.24	22.24	1144.62	7.83	12.61
Piso						
Segundo	D1	22.24	22.24	1144.62	7.83	12.61
Piso						
Primer	D1	22.30	22.30	1151.80	7.83	12.58
Piso						
Planta	D1	25.22	25.22	1433.76	7.82	12.20
Baja						

Tabla 44. Resumen de masas por diafragma

Como se nota, el centro de masas se encuentra en la misma coordenada en todos los pisos, debido a la simetría del edificio. Posteriormente, se asignó las masas rotacionales y traslacionales en el centro de masas para cada piso de la estructura:

Figura 92. Asignación de masas

bject i	D				
	Sto	ny	Label	Unique	Name
Plant	a Baja		5	38	
GUI): b1da	3af2-40dd-4e	68-b9b7-93	0d0648585c	
bject [Data				
Geo	metry	Assignmen	nts Loa	ds	
~	Geome	try			
	Global X	(m)	7.82		
	Global Y	(m)	12.2		
	<mark>Global Y</mark> Global Z	(m) (m)	12.2 3.2		
	Global Y Global Z Special	′(m) ′(m) Joint	12.2 3.2 Yes		
	Global Y Global Z Special Connect	' (m) ! (m) Joint ivity	12.2 3.2 Yes None		
	Global Y Global Z Special Connect Original	′(m) I (m) Joint ivity X (m)	12.2 3.2 Yes None 7.874	17	
	Global Y Global Z Special Connect Original Original	'(m) Joint ivity X (m) Y (m)	12.2 3.2 Yes None 7.874 12.25	.7 .28	

Figura 93. Resumen de asignación de masas

Joint Object Information

	Sto	ry	Label	Unique Name	
Pla	nta Baja	5	5	38	
GU	ID: b1da	3af2-40dd-4e6	8-6967-930)d0648585c	
ject	Data				
Ge	ometry	Assignment	s Load	ds	
~	Assign	nents			
>	Restraint	S	None		
	Springs		None		
	Diaphrag	m	D1		
	Panel Zo	ne	None		
*	Mass		UX; UY	Y; RZ	
	UX,	UY (tonf-s²/m)	25.22		
	UZ	(tonf-s²/m)	0		
	RX	(tonf-m-s ²)	0		
	RY	tonf-m-s ²)	0		
	RZ	tonf-m-s ²)	1433.7	76	
	Include i	n Analysis Mea	sh No		
3	Groups		1 Grou	up qu	

Figura 94. Resumen de asignación de masas

Luego de asignar las masas, se debe colocar un diafragma por cada piso:

×

Figura 95. Asignación de diafragmas

Diaphragm	<u>D1</u>	
Rigidity		
Rigid	O Semi Rigid	

Figura 96. Tipos de diafragmas

Figura 97. Vista en 3D de la estructura

Además, para que el programa solo tome en consideración las masas añadidas, hay que definirlo en la fuente de masa:

		Mass Multipliers for	Load Patterns	
Mass Source Name MsSrc1		Load Patte	rn Multiplier	
lass Source		Dead	~ 1	Add
Element Self Mass		1010800		Modify
Additional Mass				Delete
Specified Load Patterns				
Adjust Diaphragm Lateral Mass to Move Mass Cer	ntroid by:	Mass Options		
This Ratio of Diaphragm Width in X Direction		Include Lateral	Mass	
This Ratio of Diaphragm Width in Y Direction		Include Vertica	I Mass	
	E.	Lump Lateral N	fass at Story Levels	
This Ratio of Diaphragm Width in Y Direction		Lump Lateral N	lass at Story Levels	

Figura 98. Fuente de masas

Otro efecto de la eliminación de las losas es que se pierde la transferencia de fuerzas a los muros, por lo que se añadirán fuerzas puntuales que representen las fuerzas reales a las cuales estarían sometidas si existiera la losa.

Para esto, se consideró el concepto de área tributaria tal como se muestra a

continuación:

Tabla 45. Área tributaria

СМ	0.15	t/m2
Pplosa	0.40	t/m2
CM_{TOTAL}	0.55	t/m2
$A_{tributaria}$	360	m2
m lineales muro	76.40	m
CV TOTAL	0.20	t/m2

Cálculo de cargas.

Carga puntual muerta.

 $CM_{PUNTUAL} = CM_{TOTAL} \cdot A_{tributaria}$ $CM_{PUNTUAL} = 0.55 \cdot 360$ $CM_{PUNTUAL} = 198 \ ton$

Carga puntual viva.

 $CV_{PUNTUAL} = CV_{TOTAL} \cdot A_{tributaria}$ $CV_{PUNTUAL} = 0.20 \cdot 360$ $CV_{PUNTUAL} = 72 \ ton$ Carga distribuida muerta.

 $CM_{DISTRIBUIDA} = CM_{PUNTUAL} / m_{lineales de muro}$ $CM_{DISTRIBUIDA} = 198 / 76.40$ $CM_{DISTRIBUIDA} = 2.59 ton/m$

Carga distribuida viva.

$$CV_{DISTRIBUIDA} = CV_{PUNTUAL} / m_{lineales\ de\ muro}$$

 $CV_{DISTRIBUIDA} = 72 / 76.40$
 $CV_{DISTRIBUIDA} = 0.94\ ton/m$

Para determinar las fuerzas resultantes sobre el muro, se considera la longitud y

número de fuerzas actuantes sobre el muro:

Fuerza resultante muerta.

$$FRx_{CM} = \frac{CM_{DISTRIBUIDA} \cdot L_{muro\ x}}{\# fuerzas\ actuantes}$$
$$FRx_{CM} = \frac{2.59 \cdot 5.55}{2}$$
$$FRx_{CM} = 7.19\ ton$$

$$FRy_{CM} = \frac{CM_{DISTRIBUIDA} \cdot L_{muro y}}{\# fuerzas \ actuantes}$$

$$FRy_{CM} = \frac{2.59 \cdot 2}{2}$$

- -

$FRy_{CM} = 2.59 ton$

Figura 99. Asignación de cargas en el muro

Fuerza resultante viva.

$$FRx_{CV} = \frac{CV_{DISTRIBUIDA} \cdot L_{muro x}}{\# fuerzas actuantes}$$

$$FRx_{CV} = \frac{0.79 \cdot 5.55}{2}$$

$$FRx_{CV} = 2.62 \text{ ton}$$

$$FRy_{CV} = \frac{CV_{DISTRIBUIDA} \cdot L_{muro y}}{\# fuerzas actuantes}$$

$$FRy_{CM} = \frac{0.79 \cdot 2}{2}$$

$$FRy_{CM} = 0.94 \text{ ton}$$

$$\boxed{2.6}$$

$$\boxed{0.9}$$

$$4.5$$

$$\boxed{0.9}$$

$$4.5$$

$$\boxed{0.9}$$

$$\boxed{4.5}$$

$$\boxed{0.9}$$

$$\boxed{0.9}$$

$$\boxed{4.5}$$

$$\boxed{0.9}$$

$$\boxed{0.9$$

Figura 100. Asignación de cargas en el muro

Validación de periodos.

Finalmente, para validar que la simplificación del modelo realizado sea adecuada, se comparará los períodos de ambos modelos:

A

Modelo inicial.

Figura 101. Periodo del modelo inicial

. I chieddos miedd	ales y ficede	neius			
	TAI	BLE: Mod	al Periods and	Frequencies	
Case	Mode	Period	Frequency	Circular	Eigenvalue
				Frequency	U
		sec	cyc/sec	rad/sec	rad ² /sec ²
Modal	1	1.07	0.94	5.89	34.65
Modal	2	0.62	1.62	10.18	103.68
Modal	3	0.58	1.72	10.78	116.20
Modal	4	0.17	6.03	37.89	1436.00
Modal	5	0.10	9.85	61.91	3833.13
Modal	6	0.10	10.20	64.06	4104.23
Modal	7	0.06	15.98	100.42	10083.64

Tabla 46. Periodos modales y frecuencias

					1
Modal	8	0.04	23.89	150.10	22528.83
Modal	9	0.04	24.55	154.24	23789.06
Modal	10	0.03	29.77	187.07	34993.73
Modal	11	0.03	40.10	251.98	63494.70
Modal	12	0.02	41.60	261.37	68315.33

Modelo simplificado.

Tabla 47. Periodo del modelo simplificado

Tabla 48.	Periodos modales y frecuencias
	TABLE: Modal Periods and Frequencies

Case	Mode	Period	Frequency	Circular	Eigenvalue
				Frequency	
		sec	cyc/sec	rad/sec	rad ² /sec ²
Modal	1	0.99	1.01	6.32	39.95
Modal	2	0.60	1.68	10.56	111.47
Modal	3	0.55	1.82	11.41	130.17
Modal	4	0.14	6.97	43.80	1918.24
Modal	5	0.09	10.61	66.66	4443.59
Modal	6	0.09	11.47	72.04	5189.54
Modal	7	0.05	18.79	118.06	13937.69
Modal	8	0.04	26.44	166.14	27604.05
Modal	9	0.04	28.14	176.83	31268.06
Modal	10	0.03	35.44	222.66	49579.18
Modal	11	0.02	45.98	288.92	83473.06
Modal	12	0.02	47.82	300.45	90271.54

La diferencia porcentual entre la diferencia de los periodos de los primeros modos, entre el modelo inicial y el modelo simplificado es menos del 5%, por lo tanto, se valida el modelo.

Definición del comportamiento no lineal de los muros.

Como se mencionó anteriormente, para el comportamiento no lineal de los muros se procede a asignar según la longitud de los cabezales a los materiales confinados y no confinados dentro del muro T.

	pe		Miscellar	neous Paramet	ers		
Material Name	C1 fc' = 280 kg/cm2		Hyste	eresis Type	Tal	keda	\sim
Material Type	Concrete, Isotropic						
			Druck	ker-Prager Para	meters		
			F	Friction Angle		0	de
				Dilatational Ang	le	0	de
Acceptance Criteria S	strains	ion					
IO 0.01	0.003	m/m	Stress St	train Curve Def	inition C	Options	
	0.006	m/m	OP	arametric			
L3 0.02	0.006	m/m			Con	wert to User	Defined
CP 0.05	0.015	m/m	-				
User Stress-Strain Cur Number of Points in	nve Data n Stress-Strain Curve				1	14	
User Stress-Strain Cur Number of Points in Point Number	nve Data n Stress-Strain Curve Strain	Stress (tonf/m2)	Point ^]	14	
User Stress-Strain Cur Number of Points in Point Number 1	rve Data n Stress-Strain Curve Strain -0.0609	Stress (-76	tornf/m2)	Point 1D]	14	
User Stress-Strain Cur Number of Points in Point Number 1 2	rve Data n Stress-Strain Curve Strain -0.0609 -0.0609	Stress (-76 -76	tornf/m2) 8.2 8.2	Point ID		14	
User Stress-Strain Cur Number of Points in Number 1 2 3	ve Data n Stress-Strain Curve Strain -0.0609 -0.0609 -0.0057	Stress (-76 -76 -384	tornf/m2) 8.2 8.2 40.8	Point ID		14	
User Stress-Strain Cur Number of Points in Point Number 1 2 3 4	ve Data n Stress-Strain Curve Strain -0.0609 -0.0057 -0.0057	Stress (-76 -76 -384 -384	tornf/m2) 8.2 8.2 40.8 10.8	Point ID		14	0W
User Stress-Strain Cur Number of Points in Point Number 1 2 3 4 5	ve Data n Stress-Strain Curve Strain -0.0609 -0.0609 -0.0057 -0.0057 -0.0046	Stress (-76 -76 -384 -384 -384 -380	tornf/m2) 8.2 8.2 40.8 40.8 10.8 13.5	Point ID		14	ow
User Stress-Strain Cur Number of Points in Point Number 1 2 3 4 5 6	ve Data n Stress-Strain Curve Strain -0.0609 -0.0057 -0.0057 -0.0057 -0.0046 -0.004	Stress (-76 -76 -384 -384 -384 -380 -374	tornf/m2) 8.2 8.2 40.8 40.8 10.8 13.5 13.8	Point ID		14	ow Rows
User Stress-Strain Cur Number of Points in Point Number 1 2 3 4 5 6 7	rve Data n Stress-Strain Curve Strain -0.0609 -0.0057 -0.0057 -0.0046 -0.004 -0.0034	Stress (-76 -76 -384 -384 -380 -374 -374 -363	tornf/m2) 8.2 10.8 10.8 13.5 13.8 19.7	Point ID		14 Add R Delete F	ow Rows
User Stress-Strain Cur Number of Points in Point Number 1 2 3 4 5 6 7 8	rve Data n Stress-Strain Curve Strain -0.0609 -0.0057 -0.0057 -0.0046 -0.004 -0.004 -0.0034 -0.0028	Stress (-76 -76 -384 -384 -380 -374 -363 -346	torf/m2) 8.2 8.2 40.8 40.8 13.5 13.8 19.7 59.7	Point ID		14 Add R Delete F Order R Show P	ow Rows

Figura 102. Definición de propiedades no lineales

Figura 103. Curva esfuerzo-deformación del hormigón confinado

Figura 104. Curva esfuerzo-deformación del hormigón confinado

Figura 105. Curva esfuerzo-deformación del hormigón confinado

Figura 106. Curva esfuerzo-deformación del acero

Elemento de borde - caso 1: confinado.

Para la definición, se calculará un espesor equivalente de acero, que depende del área

de una varilla del acero longitudinal, de la siguiente manera:

$$As_{long} = 15 \cdot \frac{\pi \cdot 20^2}{4} = 47.124 \ cm^2$$

Debido a que se considera únicamente dos capas:

$$As_{long/capa} = \frac{47.124}{2} = 23.56 \ cm^2$$

Considerando la longitud del cabezal, se tiene:

$$e_{equivalente} = \frac{23.56}{55} = 0.00428 \, m$$

Además, para calcular el espesor equivalente a fisurar en un 25% para determinar su comportamiento fuera del plano: $0.633 \cdot 0.4 = 0.252 m$

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	Add
ConcM	0	0.4	Membrane	1	C1 fc' = 280 kg/cm2	0	Directional	Linear	Nonlinear	Linear	Add Cor
Pos3Bar2M	0.15	0.00428	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
Neg3Bar2M	-0.15	0.00428	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
ConcP	0	0.252	Plate	2	C1 fc' = 280 kg/cm2	0	Directional	Linear	Linear	Linear	
Calculated Laver Inform	ation			Cross S	Section Hig	hlight Selected I	Layer		Order Lavers		
Number of Layer	c 4								C	rder Ascending b	y Distance
Total Continue The	ckness: 0.4 m					Transp	parency		Or	der Descending t	y Distance
Total Section Th	-dame: 0.26057.m					Vertica	al Scale		Quick Start		
Sum of Layer Ov	silapa, 0.20007 ili										

Figura 107. Asignación de las propiedades no lineales del refuerzo longitudinal

Elemento de borde - caso 2: confinado.

Para la definición, se calculará un espesor equivalente de acero, que depende del área

de una varilla del acero longitudinal, de la siguiente manera:

$$As_{long} = 16 \cdot \frac{\pi \cdot 20^2}{4} = 50.27 \ cm^2$$

Debido a que se considera únicamente dos capas:

$$As_{long/capa} = \frac{50.27}{2} = 25.13 \ cm^2$$

Considerando la longitud del cabezal, se tiene:

$$e_{equivalente} = \frac{25.13}{45} = 0.00559 m$$

Además, para calcular el espesor equivalente a fisurar en un 25% para determinar su comportamiento fuera del plano: $0.633 \cdot 0.45 = 0.28485 m$

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	Add
ConcM	0	0.45	Membrane	1	C2 fc' = 280 kg/cm2	0	Directional	Linear	Nonlinear	Linear	Add Copy
Pos3Bar2M	0.15	0.00559	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
Neg3Bar2M	-0.15	0.00559	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Contro
		a second second			CO.L. 2001-1-2	0		Disease	timer	Linner	
ConcP	0	0.28485	Plate	2	C21C = 280 kg/cm2	U	Directional	Unear	Linear	Unear	
ConcP Calculated Layer Inform	0 ation	0.28485	riate	Z Cross S	Section His	u hlight Selected I	Directional	Linear	Order Lavers	Unear	
ConcP Calculated Layer Inform Number of Layer	0 ation s: 4	0.28485	Plate	Cross S	Section His	u hlight Selected I	Layer	Linear	Order Layers	Intear	y Distance
ConcP Calculated Layer Inform Number of Layer Total Section Th	0 ation s: 4 ickness: 0.45 m	0.28485	Plate	Cross S	Section	hlight Selected I	Layer	Linear	Order Lavers	Intear	ay Distance by Distance
ConcP Calculated Laver Inform Number of Layer Total Section Th Sum of Layer OV	0 ation s: 4 ickness: 0.45 m ertaps: 0.29603 m	0.28485	Plate	Cross S	Section	hlight Selected I	Layer parency al Scale	Unear	Order Lavers Order Lavers Or Quick Start	Innear Inder Ascending b	by Distance

Figura 108. Asignación de las propiedades no lineales del refuerzo longitudinal

Elemento de borde - caso 3: confinado.

Para la definición, se calculará un espesor equivalente de acero, que depende del área

de una varilla del acero longitudinal, de la siguiente manera:

$$As_{long} = 12 \cdot \frac{\pi \cdot 18^2}{4} = 30.54 \ cm^2$$

Debido a que se considera únicamente dos capas:

$$As_{long/capa} = \frac{30.54}{2} = 15.27 \ cm^2$$

Considerando la longitud del cabezal, se tiene:

$$e_{equivalente} = \frac{15.27}{40} = 0.00382 \, m$$

Además, para calcular el espesor equivalente a fisurar en un 25% para determinar su comportamiento fuera del plano: $0.633 \cdot 0.45 = 0.28485 m$

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	Add
ConcM	0	0.45	Membrane	1	C4 fc' = 280 kg/cm2	0	Directional	Linear	Nonlinear	Linear	Add Cop
Pos3Bar2M	0.15	0.00382	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
Neg3Bar2M	-0.15	0.00382	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Service
ConcP	0	0.28485	Plate	2	C4 fc' = 280 kg/cm2	0	Directional	Linear	Linear	Linear	
Calculated Laver Inform	ation			Cross S	Section Hig	hlight Selected I	Layer		Order Lavers		
Calculated Laver Infom Number of Layer	ation s: 4			<u>Cross S</u>	Section Hig	hlight Selected I	Layer		Order Lavers	Irder Ascending b	y Distance
Calculated Laver Inform Number of Layer Total Section Th	ation s: 4 ickness: 0.45 m			<u>Cross S</u>	iection His	hlight Selected I	Layer parency		Order Lavers C	inder Ascending b der Descending t	y Distance by Distance
Calculated Laver Inform Number of Layer Total Section Th Sum of Layer Ov	ation s: 4 ickness: 0.45 m enlaps: 0.29248 m		-	<u>Cross S</u>	iection He	hlight Selected I Trans	Layer parency al Scale		Order Lavers C Order Lavers Order Order Outck Start	inder Ascending b Ider Descending b	y Distance by Distance

Figura 109. Asignación de las propiedades no lineales del refuerzo longitudinal

Caso 1-4: no confinado.

Para la definición, se utilizará la opción de igual tamaño y espaciamiento del refuerzo, como se muestra a continuación:

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	Add
ConcM	0	0.45	Membrane	1	NC fc' = 280 kg/cm2	0	Directional	Linear	Nonlinear	Linear	Add Copy
Pos3Bar2M	0.189	0.00113	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
Neg3Bar1M	-0.189	0.00113	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
ConcP	0	0.28485	Plate	2	NC fc' = 280 kg/cm2	0	Directional	Linear	Linear	Linear	
Number of Laye	s: 4		1	Cross S	iection Hig	hlight Selected I	Layer		Older Lavers	Irder Ascending b	Distance
Total Section Th	ickness: 0.45 m					Transp	barency		0	rlar Dascanding k	n Distance
Sum of Layer O	renlaps: 0.28711 m		-			Vertica	al Scale		Quick Start		,
SUTI VI VICIN DE	ween cayer. Uni				10.0	Max				Parametric Quick	Qad .

Caso 2 – 3: no confinado.

Una vez definidas las secciones de los muros para cada caso, se procede a asignar

acorde a su longitud tal como se muestra:

Layer Name	Distance	Thickness	Modeling Type	Number Integration Points	Material	Material Angle	Material Behavior	Material S11	Material S22	Material S12	Add
ConcM	0	0.4	Membrane	1	NC fc' = 280 kg/cm2	0	Directional	Linear	Nonlinear	Linear	Add Cop
Pos3Bar2M	0.189	0.00113	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
Neg3Bar1M	-0.189	0.00113	Membrane	1	Fy 4200	90	Directional	Nonlinear	Inactive	Inactive	Delete
ConcP	0	0.2532	Plate	2	NC fc' = 280 kg/cm2	0	Directional	Linear	Linear	Linear	
Calculated Laver Inform	ation			Cross S	Section Hig	hlight Selected I	Layer		Order Lavers		
Calculated Laver Inform Number of Layer	iation E 4			Cross S	Section Hig	hlight Selected I	Layer	5	Order Lavers	irder Ascending b	by Distance
<u>Calculated Laver Inform</u> Number of Layer Total Section Th	u <u>ation</u> s: 4 ickness: 0.4 m			Cross S	iection Hig	hlight Selected I	Layer barency		Order Lavers	irder Ascending b	by Distance
Calculated Laver Inform Number of Layer Total Section Th Sum of Layer Ov	istion s: 4 ickness: 0.4 m edaps: 0.25546 m		-	Gross S	Section Hig	hlight Selected Transp Vertica	Layer barency al Scale		Order Lavers	rder Ascending b rder Descending	by Distance

Figura 110. Asignación de las propiedades no lineales del refuerzo longitudinal

.

A continuación, se muestra el resumen de asignación de los muros en ETABS:

all Property	Click to:
M1Confinado M2Confinado	Add New Property
M3Confinado M40	Add Copy of Property
M40FIS M45	Modify/Show Property
M45FIS MNoConfinado1-4	Delete Property
MNoConfinado2-3 Muro 20	OK
	OK
	Cancel

Figura 111. Asignación de las propiedades no lineales de los muros

Figura 112. Asignación de las propiedades no lineales de los muros

Figura 113. Asignación de las propiedades no lineales de los muros

A continuación, se muestra el resumen de asignación de los muros en ETABS:

Figura 114. Vista en 3D de la asignación de las propiedades no lineales de los muros

Análisis Estático No Lineal

Para que el programa ejecute el análisis pushover correctamente, se añade un caso de carga acorde a las recomendaciones de las normativas, tomando en cuenta que se colocará una carga gravitacional actuante de inicio, seguida de la carga lateral.

Load Case Name		Carga Esta	tica		Design
Load Case Type		Nonlinear	Static	~	Notes
Exclude Objects in this G	àroup	Not Applic	able		
Mass Source		Previous		~	
itial Conditions					
O Continue from State Nonlinear Case	at End of Nonlinear Cas	e (Loads at En	d of Case ARE I	ncluded)	
oads Applied					
Load Type	Load	d Name	Sca	le Factor	0
Load Pattern	Dead		1		Add
Load Pattern	Live		1.25	_	Delete
	_		-		
ther Parameters Modal Load Case		Modal		~	
ther Parameters Modal Load Case Geometric Nonlinearity C	Option	Modal None		~	
ther Parameters Modal Load Case Geometric Nonlinearity C Load Application	ption Full Load	Modal None		 ✓ Modify/Show 	
ther Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved	Pption Full Load Final State Only	Modal None		✓ ✓ Modify/Show	

Figura 115. Definición de la carga estática

Es importante considerar que el punto a monitorear es el del centro de masas en el último piso, que acorde al modelo se encuentra como label 27.

ject ID		
Story	Label	Unique Name
Sexto Piso	27	1

Figura 116. Nudo del centro de masa

	ntrol				
Full Load					
O Displacement	Control				
O Quasi-Static (run as time hist	ory)			
Control Displacemen	nt.				
🔘 Use Conjugat	e Displacement				
Use Monitored	d Displacement				
Load to a Monitor	red Displacemer	nt Magnitud	le of		_
				1	
Monitored Displacen	nent				
DOF/Joint	U1	~	Sexto Piso	~ 27	
O Generalized D	Displacement				
	ters				
Quasi-static Parame			Nonlinear E	Direct Integration History	y
Quasi-static Parame Time History Type	8			1	sec
Quasi-static Parame Time History Type Output Time Step	e Size				1/sec
Quasi-static Parame Time History Type Output Time Step Mass Proportions	e) Size al Damping			0	
Quasi-static Parame Time History Type Output Time Step Mass Proportione Hilber-Hughes-Ta	e) Size al Damping aylor Time Integr	ation Parar	meter, Alpha	0	

Figura 117. Control del análisis estático no lineal

Para definir los casos de carga asociados al análisis estático no lineal, se procede a definir los siguientes casos para ambas direcciones:

Dirección X (positiva y negativa)

		Push +X		Design
Load Case Type		Nonlinear Static	:	Notes
Exclude Objects in this G	àroup	Not Applicable		
Mass Source		Previous	1	•
nitial Conditions				
O Zero Initial Conditions	s - Start from Unstres	sed State		
Continue from State :	at End of Nonlinear (Case (Loads at End of (ase ARE Included)	
Nonlinear Case		Carga Estatica		•
				-
oads Applied				
Load Type	Lo	oad Name	Scale Factor	U
Mode	1	1		Add
				Delete
				Delete
				Delete
Ther Parameters		_		Delete
Other Parameters Modal Load Case		Modal		Delete
Other Parameters Modal Load Case Geometric Nonlinearity O	Pption	Modal None		Delete
Other Parameters Modal Load Case Geometric Nonlinearity O Load Application	Pption Displacement Cor	Modal None	Modify/Show	/ Delete
Other Parameters Modal Load Case Geometric Nonlinearity O Load Application Results Saved	Pption Displacement Cor Final State Only	Modal None	Modify/Show	Delete

Figura 118. Definición del caso de carga Push +X

En donde se considera un desplazamiento de monitoreo igual al 1.5% de la altura del

edificio.

~	ntrol			
O Full Load				
Displacement	Control			
O Quasi-Static (run as time hist	ory)		
Control Displacemen	t			
O Use Conjugate	e Displacement			
Use Monitored	Displacement			
Load to a Monitor	ed Displacemen	t Magnitu	de of	0.35
		it magnito		0.00
Monitored Displacen	nent			
DOF/Joint	U1	~	Sexto Piso	~ 27
O Generalized D)isplacement			
Quasi-static Parame	ters			
Time History Type	9		Nonlinear D	lirect Integration History
Output Time Step	Size			1
Mass Proportiona	I Damping			0
	ylor Time Integr	ation Para	meter, Alpha	0
Hilber-Hughes-Ta				

Figura 119. Definición del desplazamiento de control

Dirección Y (positiva y negativa).

Load Case Name		Push +Y		Design
Load Case Type		Nonlinear	Datio	Design
Evaluate Objects in this C		Nonlinear	biauc	V Notes
Exclude Objects in this G	aroup	Not Applica	able	
Mass Source		Previous		~
Initial Conditions				
O Zero Initial Condition	s - Start from Unstresse	ed State		
Continue from State	at End of Nonlinear Ca	se (Loads at End	of Case ARE Included)	
Nonlinear Case		Carga Esta	tica	~
loads Applied				
Load Type	loa	ad Name	Scale Factor	0
Mode	1		1	Add
				Delete
Other Parameters				
Other Parameters Modal Load Case		Modal		~
Other Parameters Modal Load Case Geometric Nonlinearity C	ption	Modal		~
Other Parameters Modal Load Case Geometric Nonlinearity C Load Application	Iption	Modal None	Modify/Sh	~
Other Parameters Modal Load Case Geometric Nonlinearity O Load Application Besults Saved)ption Displacement Contr	Modal None	Modify/Sh	~ ~
Other Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved	Pption Displacement Contr Multiple States	Modal None	Modify/Shi Modify/Shi	~ ~

Figura 120. Definición del caso de carga Push +Y

En donde se considera un desplazamiento de monitoreo igual al 1.5% de la altura del

edificio.

	ntrol				
O Full Load					
Displacement	Control				
O Quasi-Static	run as time histor	y)			
Control Displacemer	nt				
O Use Conjugat	e Displacement				
Use Monitore	d Displacement				
Load to a Monitored Displacement Magnitude of					m
	÷			1	
Monitored Displacen	nent				
OOF/Joint	U2	~ S	exto Piso	~ 27	
O Generalized [Displacement				
Quasi-static Parame	ters				
Time History Type Nonlinear D				Direct Integration History	
Output Time Step Size				1	sec
Mass Proportional Damping				0	1/sec
Hilber-Hughes-Taylor Time Integration Parameter, Alpha				0	
Hilber-Hughes-Ta					

Figura 121. Definición del desplazamiento de control

A continuación, se presentan todos los casos de cargas establecidos en el modelo:

ad Cases			Click to:	
Load Case Name	Load Case Type		Add New Case	
Dead	Linear Static		Add Copy of Case	
Live	Linear Static		Modify/Show Case	
SX	Response Spectrum		Delete Case	
SY	Response Spectrum	*		
Carga Estatica	Nonlinear Static		Show Load Case Tree	
Push +X	Nonlinear Static	*		
Push -X	Nonlinear Static			
Push +Y	Nonlinear Static		OK	
Push -Y	Nonlinear Static			

Validación general del modelo.

Una de las validaciones que se realizó para comprobar que el modelo se está comportando de manera adecuada, es el chequeo de la energía acumulada en el proceso. En donde se muestra que el análisis de pushover no presenta ningún porcentaje de error, tal como se muestra en las gráficas siguientes:

Figura 123. Componentes de la energía acumulada

Validación de los resultados comparando la flexión que toman los muros al fluir con la capacidad obtenida a partir de un análisis seccional.

Primero se verificará la capacidad del muro usando el análisis seccional. En donde se observa, que la carga axial máxima tiene un valor de 380 ton. Este valor será usado en la

Figura 124. Momento curvatura SAP2000

Se compara con la capacidad del muro obtenido con ETABS.

Figura 125. Capacidad del muro

En donde se observa que los valores de capacidad del muro son muy similares entre sí, con lo que, se concluye que el modelo está realizado correctamente.

Curvas de capacidad.

A continuación, se presentan las curvas de capacidad obtenidas del análisis Pushover para ambas direcciones:

Figura 126. Curva de capacidad en X

A continuación, se muestra el modelo bilineal de la curva de capacidad

Figura 128. Modelo bilineal de la curva de capacidad +X

Figura 129. Modelo bilineal de la curva de capacidad -X

Figura 130. Modelo bilineal de la curva de capacidad +Y

Figura 131. Modelo bilineal de la curva de capacidad -Y

Con el modelo bilineal de la curva de capacidad, se puede calcular la rigidez inicial de la estructura, que corresponde a la pendiente de la curva de capacidad resistente en el rango elástico (k_i), la rigidez efectiva de la estructura, que corresponde a la pendiente de la curva de capacidad bilineal en el rango elástico (K_e). Estos valores son calculados automáticamente por el software ETABS.

Con esos datos, se puede calcular el periodo fundamental efectivo de la estructura de la siguiente manera:

$$T_e = T_i \sqrt{\frac{K_i}{K_e}}$$

Donde, T_i representa el periodo fundamental de vibración de la estructura, obtenido a partir del análisis modal espectral, de donde:

$$T_e = 0.995 \sqrt{\frac{1919.77}{1796.49}}$$

$T_e = 1.029 \, seg$

Este resultado coincide con el otorgado automáticamente por ETABS. Luego, se procede a determinar el desplazamiento objetivo de la siguiente manera acorde al FEMA 356, ATC 40:

$$\delta_t = C_o C_1 C_2 S_a \frac{T_e}{4\pi^2} g$$

En donde, C_o representa el factor de modificación que relaciona el desplazamiento espectral de un sistema equivalente de un grado de libertad al desplazamiento de azotea de un sistema con múltiples grados de libertad. Además, existen tres criterios para calcular este factor. A continuación, se muestra el método aproximado a partir de la tabla 7.5 del FEMA 356.

Number of L Stories (1	Shear B	Other Buildings	
	Triangular Load Pattern (1.1, 1.2, 1.3)	Uniform Load Pattern (2.1)	Any Load Pattern
1	1.0	1.0	1.0
2	1.2	1.15	1.2
3	1.2	1.2	1.3
5	1.3	1.2	1.4
10+	1.3	1.2	1.5

Table 7-5. Values for Modification Factor Co

Note: Linear interpolation shall be used to calculate intermediate values. ^a Buildings in which, for all stories, story drift decreases with

increasing height.

En donde, después de realizar una interpolación lineal y, debido a que la estructura de análisis posee 7 pisos, el coeficiente tiene un valor de 1.44. Este valor es muy cercano al otorgado por ETABS.

Por otro lado, C_1 es un factor de modificación que relaciona el desplazamiento inelástico máximo esperado con el desplazamiento calculado para la respuesta elástica lineal, de donde:

$$C_1 = 1 \text{ si } T_e \ge T_c$$

$$T_c = 0.698 \, seg$$

 $1.029 > 0.698$
 $\therefore C_1 = 1$

Por otro lado, C_2 es un factor de modificación que toma en cuenta los efector de degradación de rigidez, pérdida de resistencia y el estrangulamiento de los ciclos histeréticos, en la respuesta del desplazamiento máximo. FEMA recomienda que para procesos no lineales se utilice el valor de 1.

Por otro lado, S_a corresponde a la aceleración espectral elástica para el periodo fundamental efectivo T_e de donde el valor es 0.81 g.

Finalmente, el desplazamiento objetivo es:

$$\delta_t = 1.44 * 1 * 1 * 0.81 * \frac{1.029^2}{4\pi^2} * 981$$
$$\delta_t = 30.69 \ cm$$

El desplazamiento anterior indica que el desplazamiento máximo esperado en la azotea del edificio debe ser 30.69 cm, para el escenario que plantea el espectro de respuesta elástico dado por la NEC, siendo esta una demanda sísmica con un 10% de ocurrencia en 50 años.

ANÁLISIS DE CICLO DE VIDA

Para el correcto análisis del costo de un proyecto es necesario conocer el ciclo de vida completo de la estructura. Además, hay que tomar en consideración diversos factores como el tipo de mantenimiento adecuado, el costo ambiental y el costo social. El costo económico total esperado se puede determinar de la siguiente forma:

LCC = I + Repl - Res + E + W + OMR + X

Donde:

LCC es el costo total del ciclo de vida en valor presente en dólares

I es el costo de inversión

Repl es el costo de reemplazos

Res es el valor residual

E es el costo de energía

W es el costo de agua

OMR es el costo de operación, mantenimiento y reparación

X es cualquier otro costo que incluya, por ejemplo: costo de productividad y salud.

Actualmente, existen varias certificaciones de construcción sostenible que permiten disminuir el costo de ciclo de vida en lo referente a la utilización de energía, agua y materiales, EDGE es una de ellas. Esta certificación tiene como objetivo principal el construir edificaciones más 168 sostenibles. Además, permite que los propietarios, arquitectos e ingenieros de un proyecto evaluar los costos que representaría el incorporar diferentes opciones para ahorro de agua y energía.

La certificación EDGE otorga varias ventajas, entre las cuales se puede nombrar incentivos comerciales, financieros y ambientales. Por ejemplo, con la certificación se logra un impacto positivo en el mercado inmobiliario debido a la utilización de las últimas tendencias de construcción sostenible. Además, permite trasladar beneficios de ahorro de energía, agua y otros recusos materiales al comprador final de la vivienda.

Finalmente, en la actualidad, varias instituciones financieras estimulan el desarrollo de proyectos sostenibles mediante créditos dedicados especialmente a este tipo de proyectos. En general, estos créditos además de brindar plazos más flexibles y meses de gracia asumen el costo de la certificación EDGE.

Los requisitos para que un proyecto acceda a una certificación EDGE comprende la reducción de un 20% menos de energía, 20% menos de agua y 20% menos de energía incorporada en los materiales en comparación con un edificio de referencia.

A continuación, se presenta la aprobación preliminar de la posibilidad de obtener una certificación EDGE para el proyecto, diseñado tanto en acero como en hormigón armado:

Figura 132. Evaluación EDGE - Energía

Figura 134. Evaluación EDGE - Materiales en Hormigón Armado

Figura 135. Evaluación EDGE -Materiales en Acero

CONCLUSIONES

Se logró diseñar la estructura de mediana altura tanto en acero como en hormigón armado respetando el diseño arquitectónico entregado en un inicio. Por lo que, se concluye que es posible adaptar, sin mayores cambios a la arquitectura de una estructura, tanto pórticos arriostrados concéntricos como pórticos resistentes a momento o muros estructurales.

Se concluye que es necesario el uso de normativa internacional complementaria al uso de la normativa ecuatoriana de construcción. Además, en el diseño estructural es necesario hacer referencia a toda la normativa que se está utilizando.

Se logró determinar también el punto de desempeño de la estructura, por lo que, se recomienda implementar en la práctica el uso de análisis estáticos no lineales con los cuales se logre verificar el nivel de desempeño de una estructura ante los sismos definidos en la normativa.

La no linealidad considerada en el presente análisis se enfoca únicamente en las propiedades no lineales del material, tanto del acero como del hormigón. Este tipo de no linealidad se puede definir como la relación no lineal existente entre el esfuerzo y deformación del material analizado. Esta situación ocurre cuando el material no sigue la Ley de Hooke, es decir, los esfuerzos no son directamente lineales a las deformaciones.

Por otro lado, haciendo referencia al costo de ciclo de vida de una estructura es posible disminuir el costo ambiental de un proyecto mediante la implementación de certificaciones que aseguren un tipo de construcción sustentable. Este tipo de certificaciones aseguran un uso más eficiente de recursos y un menor impacto ambiental.

REFERENCIAS

- Los Angeles Tall Buildings Structural Design Council. (2020). An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region. Los Angeles.
- Ministerio de Desarrollo Urbano y Vivienda. (2014, Diciembre). *Norma Ecuatoriana de la Construcción: Peligro Sísmico Diseño Sismo Resistente.* Quito, Pichincha, Ecuador: Dirección de Comunicación Social.
- Mora, M., Villalba, J., & Maldonado, E. (2006). Deficiencias, limitaciones, ventajas y desventajas de las metodologías de análisis sísmico no lineal. . *Revista Ingenierías Universidad de Medellín.*, 59-74.
- Chopra, A. K. (1995). *Dynamics of structures: Theory and applications to earthquake engineering.* Englewood Cliffs, N.J: Prentice Hall.
- Ríos, D., & Music, J. (2015). Análisis del comportamiento no lineal de muros de hormigón armado. *Revista de Ingeniería Innova.* Vol 10. 78-86.
- Ministerio de Desarrollo Urbano y Vivienda. (2014). *Norma Ecuatoriana de la Construcción: Estructuras de Hormigón Armado.* Quito: Dirección de Comunicación Social.
- American Concrete Institute. (2019). *ACI 318-19: Building Code Requirements for Structural Concrete.* Farmington Hills, MI : American Concrete Institute. doi:10.14359/51716937
- Razvi, S., & Saatcioglu, M. (1999). Confinement Model for High-Strength Concrete. *Journal of Structural Engineering*, 125. doi:10.1061/(ASCE)0733-9445(1999)125:3(281)
- Applied Technology Council. (1996). Seismic Evaluation and Retrofit. California.
- Federal Emergency Management Agency. (2000). *Prestandard and Commentary for the Seismic Rehabilitation of Buildings.* Washington.
- Duarte, C., Martínez, M., & Santamaría, J. (2017). Análisis estático no lineal del cuerpo central del edificio de la facultad de medicina de la Universidad de El Salvador. (Tesis de Ingeniería Civil). Universidad de El Salvador, El Salvador.