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RESUMEN

En esta disertación se estudia a detalle el movimiento de partículas empleando la métrica de

Kerr, es decir, donde la geometría del espacio tiempo está dada por la influencia de una fuente

de gravitación que tiene un momentum angular. Específicamente, nos concentramos en buscar

una aproximación al ángulo de desviación de la luz alrededor de agujeros negros rotantes por

medio del método perturbativo de Lindstedt-Poincaré y la aproximación de Padé para funciones

reales.

Palabras clave: Padé, Lindstedt-Poincaré, Kerr, agujero negro, desviación de la luz.
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Abstract

In this dissertation the motion of particles is studied using the Kerr metric, where the geometry

of space-time is given by the presence of a source of gravity which carries a net angular mo-

mentum. Specifically we work on developing a method to approximate the angle of deviation of

light around rotating black holes. The Lindstedt-Poincaré perturbative expansion and the Padé

approximation for real functions were employed to perform this task.

Key words: Padé, Lindstedt-Poincaré, Kerr, black hole, light deviation.
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Chapter I

Introduction

Albert Einstein published the General Theory of Relativity (GTR) in 1915, thereby generalizing

Newton’s gravitational theory to a relativistic scope [1]. This is a powerful and elegant formu-

lation that describes a gravitational field and its equations. Among its most notable predictions,

we have the gravitational redshift, apsidal precession, gravitational time dilation, deviation of

light and gravitational lenses. Fundamentally, GTR states that there is an equivalence between

the gravitational mass and inertial mass is also considered, which is called the principle of equiv-

alence, it explains why a free falling body is not able to differentiate between acceleration and

gravity. For example, someone falling in vacuum cannot know if it is at rest in a gravitational

field or being accelerated by an external force.

the principle of covariance, which dictates that all observers, inertial or not, experience

the laws of physics in the same way. This theory also generalizes the laws of physics to a

curved space-time, which work for a flat space-time as well, this is the principle of minimum

gravitational coupling. In 1885, Loránd Eötvös demonstrated this principle with great precision,

using a torsion scale; initially he obtained results with an error of order 10−9, future experiments
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have shown further increase in precision [2].

The General Theory of Relativity is described by fourteen equations, ten of which are Ein-

stein’s field equations, and the remaining four are the geodesics. These equations describe

the curvature of space-time, its geometrical properties and the interaction between matter and

energy. Einstein’s field equations can be solved to find the metric of space-time for some distri-

bution of matter and energy. They are written in tensor form as follows [3, 4]:

Rµν −
1
2

Rgµν =
8πG
c4 Tµν +λgµν . (1.1)

Here Rµν is the Ricci tensor, R is the Ricci scalar: R= gµνRµν , gµν is the metric tensor; λ is

the cosmological constant, a factor related to the expansion of the universe and the contribution

of dark energy, and Tµν is the energy-momentum tensor. Moreover, the form of equation (1.1) is

given by the metric sign convention (+−−−). Next, the equations of the geodesics are shown,

they describe the motion of a particle that is immersed in a gravitational field:

d2xµ

dτ2 +Γ
µ

νρ

(
dxν

dτ

)(
dxρ

dτ

)
= 0, (1.2)

where Γ are the Christoffel symbols, and they are given by [3, 4]:

Γ
µ

ρσ =
1
2

gµα
{

∂σ gρα +∂ρgσα −∂αgρσ

}
. (1.3)

In these last two equations, τ is the proper time (time measured by an observer following

a world line in spacetime), and xµ is the four-vector that describes the position. The simplest

solution to Einstein’s equations was given by Karl Schwarzschild in 1916 [5], which is able to

describe a static and neutral black hole with spherical symmetry. The solution has the following

form [3]:
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(ds)2 = c2(dτ)2 = γc2(dt)2 − 1
γ
(dr)2 − r2(dθ)2 − r2 sin2

θ(dφ)2, (1.4)

where r,θ ,φ are the coordinates of some point in space, t is the coordinate time (time measured

by a distant observer) and γ = 1− 2GM
rc2 . The Schwarzschild solution is a powerful tool to un-

derstand the existence and formation of black holes. Nonetheless, it is common to find rotating

distributions of matter in the universe, which is a fundamental characteristic that manifests from

the subatomic to the astronomical scale. Therefore it is necessary to study a geometry that takes

into account the rotation of mass in a curved space-time. The Kerr metric is an exact solution

to Einstein’s field equations, which allows the study of rotating black holes and the phenomena

that can occur in this geometry of space-time. The expression for the arc length that gives the

Kerr solution is as follows [6][3][7]:

ds2 =

(
1− 2µr

ρ2

)
(cdt)2 +

4µar sin2
θ

ρ2 c( dt dφ)

− ρ2

∆
(dr)2 −ρ

2( dθ)2 −
(

r2 +a2 +
2µra2 sin2

θ

ρ2

)
sin2

θ(dφ)2,

(1.5)

where µ = GM
c2 , a = Sz

Mc is the spin angular momentum per unit mass, ∆(r) = r2 −2µr+a2 and

ρ2(r,θ) = r2 +a2 cos2 θ .

The deviation of light is one of the observational tools that serve to quantitatively study the

geometry around a gravitational source, such as a black hole. The study of the gravitational

effect on light rays is observed for instance in gravitational lenses [4], when a photon passes

through a gravitational field, it acquires a deviation angle [8]. This phenomenon has been

observed with the Sun’s gravitational field, and several galaxies [9]. To study the deviation

of light, it is possible to use approximation methods such as a series expansion to solve the

equations of motion [10]. In 2020, Marín and Poveda published a similar study for a charged
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black hole [11]. In this work, the same method will be employed to study the deviation of light

around a rotating black hole. Using the Lindstedt-Poincaré method to calculate the angle of

deviation of light to fifth order. The results will be compared to those obtained from the Padé

method of approximation by rational functions, which, for instance, has been used in cosmology

to parametrize the luminosity distance, with very promising results [12] [13].
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Chapter II

Motion around the Kerr geometry

In 1963 Roy Kerr found a solution to Einstein’s equations, which describe a rotating gravita-

tional source, devoid of charge. A massive object, described by Kerr’s metric has two character-

istic parameters, mass and spin angular momentum [3]. From equation (1.5), (Kerr’s solution

in Boyer-Lindquist coordinates), we can extract the metric tensor:

gµν =



1− 2µr
ρ2 0 0 2aµr sin2

θ

ρ2

0 −ρ2

∆
0 0

0 0 −ρ2 0

2aµr sin2
θ

ρ2 0 0 − sin2
θ

ρ2 Σ2


, (2.1)

where µ = GM
c2 , Σ2 =

(
r2 +a2)2−a2∆sin2

θ and a = Sz
Mc , Sz being the spin angular momentum.

Note that g33 < 0 and g03 = g30 > 0. In addition, the contravariant form of the metric tensor

can be calculated by inverting gµν . In the next section we will study the equations of motion in

the equatorial plane, thus we are going to assume θ = π

2 for the remainder of this work.
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2.1 Equations of motion

The rotation of a very massive object, say a Kerr black hole, causes a very complex geometry

of the spacetime around it. Any particle outside the equatorial plane would be forced to move

between planes, this is because the Kerr spacetime is not spherically symmetric. For simplicity,

we are going to consider motion in the equatorial plane, namely θ = π

2 , θ̇ = 0. In this section,

the equations of motion of test particles are derived using the Lagrangian formalism.

The Lagrangian is defined as:

L =
1
2

gµν ẋµ ẋν , (2.2)

where dxµ

dλ
= ẋµ and λ is an affine parameter that satisfies the equation of the geodesic. Replac-

ing the components from the metric tensor we get the following expression:

L =
1
2

[(
1− 2µ

r

)
c2ṫ2 +

4aµ

r
φ̇cṫ − r2

a2 −2µr+ r2 ṙ2 −
(

a2 +
2a2µ

r
+ r2

)
φ̇

2
]
. (2.3)

Note that the langrangian is independent of t and φ , therefore

pt =
1
c

∂L
∂ ṫ

=

(
1− 2µ

r

)
cṫ +

2aµ

r
φ̇ =

1
c

E, (2.4)

and

pφ =
∂L
∂ φ̇

=
2aµ

r
cṫ −

(
a2 +

2a2µ

r
+ r2

)
φ̇ =−h, (2.5)

are conserved quantities where E and h have units of energy per unit mass and angular momen-

tum per unit mass, respectively.
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Using (2.4) and (2.5), we get the equations of motion along the t and φ geodesics:

cṫ = c
dt
dλ

=
1
∆

[(
a2 +

2a2µ

r
+ r2

)
E
c
− 2aµ

r
h
]
, (2.6)

φ̇ =
1
∆

[(
2aµ

r

)
E
c
+

(
1− 2µ

r

)
h
]
. (2.7)

Lastly, the expression for ṙ is easily obtained from an alternative form of the Lagrangian

[14, 6]:

gµν pµ pν = η
2, (2.8)

where pµ =
dxµ

dλ
is the covariant momentum, and η = mc for massive particles or η = 0 for

photons.

=⇒ gtt pt
2 +2gtφ pt pφ +grr pr

2 +gθθ pθ
2 +gφφ pφ

2 = η
2. (2.9)

Considering that

pr =
∂L
∂ ṙ

=−r2

∆
ṙ, (2.10)

and pθ = 0, the corresponding values of the momentum can be replaced in equation 2.9 to get

an expression for the r coordinate:

ṙ2 =

(
dr
dλ

)2

=

(
E ′

c

)2

−η
2 +

1
r

(
2µη

2)
+

1
r2

((
a

E ′

c

)2

− (h′)2 −a2
η

2

)
+

1
r3 2µ

(
h′−a

E ′

c

)2 (2.11)
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With equations (2.11),(2.7) and (2.6) the motion of massive and massless particles in the

equatorial plane is fully described.

2.2 Equatorial trajectories of photons

In this section we start the study of massless particles. First, we set η = 0 in equation (2.8),

which results in the radial differential equation. (2.11) takes the following form:

(
dr
dλ

)2

=

(
E
c

)2

+
1
r2

((
a

E
c

)2

−h2

)
+

1
r3 2µ

(
h−a

E
c

)2

. (2.12)

Here E already has units of energy per unit mass, and h angular momentum per unit mass;

λ is an affine parameter that satisfies the equation for null geodesics. The angular and temporal

equations (2.7) and (2.6) are:

cṫ = c
dt
dλ

=
1
∆

[(
a2 +

2a2µ

r
+ r2

)
E
c
− 2aµ

r
h
]
, (2.13)

φ̇ =
dφ

dλ
=

1
∆

[(
2aµ

r

)
E
c
+

(
1− 2µ

r

)
h
]
. (2.14)

To simplify these equations we define a parameter b ≡ hc
E , so the equations of motion can

be rewritten as follows:

1
h2

(
dr
dλ

)2

=
1
b2 +

1
r2

((a
b

)2
−1
)
+

2µ

r3

(
1− a

b

)2
(2.15)

dφ

dλ
=

h
∆

[(
2µ

r

)
a
b
+

(
1− 2µ

r

)]
(2.16)
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Considering that
( dr

dλ

)2
=
(

dr
dφ

)2( dφ

dλ

)2
, we find the equation of motion for a photon in the

equatorial plane:

=⇒ dφ

dr
=

[(
2µ

r

)
a
b +
(

1− 2µ

r

)]
r2
(

1− 2µ

r +
(a

r

)2
)√

1
b2 +

1
r2

((a
b

)2 −1
)
+ 2µ

r3

(
1− a

b

)2
(2.17)

Now, let us consider the case where a photon approaches a Kerr black hole from infinity,

deviates because of the gravitational field and returns to infinity. Taking the limit r → ∞ for

equation 2.17, we obtain:

r2 dφ

dr
=−b. (2.18)

Figure 2.1: Impact parameter. (the distance of maximum approach is approximately b)

Figure 2.1 shows an example of the trajectory of a deflected photon by a black hole from

infinity to infinity, where sinφ = b
r . By taking the derivative with respect to φ , we obtain
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dφ cosφ =− b
r2 dr, from where an approximation of small angle φ (cosφ ≈ 1), equation (2.18)

reveals that r2 dφ

dr = −b. Thus proving that our defined parameter b = hc
E is in fact, the impact

parameter, or approximately the distance of maximum approach to the black hole.
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Chapter III

Solving the equation of the orbit

3.1 Equation of the orbit

The equations for equatorial orbits in the Kerr metric (2.15) and (2.16) can be further simplified

by applying a very well known transformation: u(φ) = 1
r(φ) . Given that

( dr
dλ

)
=
(

dr
dφ

)(
dφ

dλ

)
,

we obtain the equation of the orbit:

1
u4

(
du
dφ

)2 [
(2µu)

a
b
+1−2µu

]2
=

∆2

b2 −∆
2u2
(

1− a2

b2 −2µu
(

1− a
b

)2
)
. (3.1)

Now, we will approximate equation (3.1) to first order in a = µs, in an attempt to get a

solvable differential equation:

(
du
dφ

)2

σ(u) = (1−2µu)
[

1
b2 −u2

σ(u)
]
, (3.2)

where σ(u)≡ 1−2µu+4µua
b . Deriving equation (3.2) with respect to φ :
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d2u
dφ 2+

µ(1−2µu)
σ2

[
1
b2 −u2

σ

](
2a
b
−1
)
=−µ

(
1

b2σ
−u2

)
− (1−2µu)u

[
1+

µu
σ

(
2a
b
−1
)] (3.3)

Considering µu small and the first order in spin:

σ−1(u) ≈ 1+2µu
(
1−2a

b

)
+4µ2u2 (1−4a

b

)
σ−2(u) ≈ 1+4µu

(
1−2a

b

)
−4µ2u2 (1−4a

b

)
.

Finally, after replacing the relations above in equation (3.3) we arrive to a general expression

for the orbit which can be solved by taking advantage of its polynomial nature:

d2u
dφ 2 +u =− 2µ2s

b3 − 8µ3s
b3 u+3µu2 −8

µ3

b2 u2
(

2−9
µs
b

)
+8

µ4

b2 u3
(

1−6
µs
b

)
+24µ

3u4
(

1−6
µs
b

)
−16µ

4u5
(

4−25
µs
b

)
+16µ

5u6
(

1−8
µs
b

)
.

(3.4)

To solve equation (3.4) we will take a perturbative approach, for this, a small parameter

must be defined. The critical radius of the orbit is of aid in this matter, and it can be easily

studied by analyzing the specific case of circular trajectories on equation (3.4), taking only the

first four terms of the right hand side of said equation:

d2u
dφ 2 +u = 3µu2

(
1− 16

3

(
µ

b

)2
)
− 2µ2s

b3 (1+4µu) . (3.5)

Defining δ ≡
(

1− 16
3

(
µ

b

)2
)

and considering that d2u
dφ 2 = 0 for circular orbits, we end up with

a quadratic equation which can be easily solved:
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uc =

(
1+ 8µ3s

b3

)
+

[(
1+ 8µ3s

b3

)2
+ 24µ3s

b3 δ

]1/2

6µδ
, (3.6)

considering that µ

b is small:

uc ≈
1

3µδ
. (3.7)

The critical radius is will be approximately rc = 3µδ < 3µ , given that δ < 1 and the differ-

ence between 3µ and 3µδ is negligible, therefore, we can define a small parameter ε ≡ rc
b = 3µ

b

(a non-dimensional small number) with which, equation (3.4) can be rewritten. This will be

done on the next section.

3.2 Perturbation theory

The equation for a photon orbiting a black hole in the Kerr metric is given by (3.4), which has

a polynomial nature. In a first attempt to solve this equation to find the angle of deviation for

a photon that approaches from infinity, we are going to try a perturbative treatment by Taylor

series expansion. This can be done by expressing the equation of the orbit in terms of some

small ε , and a function that converges when the photon effectively escapes (returns to infinity,

see figure 3.1).

Let us define a converging power series :

V (φ) =V0(φ)+ εV1(φ)+ ε
2V2(φ)+ ε

3V3(φ)+ ε
4V4(φ)+ . . . , (3.8)

which satisfies the following conditions:
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V (φ = 0) = 1
dV (φ=0)

dφ
= 0

|V (φ)| ≤ 1,

where V (φ) ≡ b
r(φ) = bu(φ). Along with the small parameter ε ≡ rc

b = 3µ

b , the equation of the

orbit (3.4) can be rewritten as follows (up to third order in ε):

d2V
dφ 2 +V = εV 2 − 2

9
ε

2s− 8
27

ε
3sV − 16

27
ε

3V 2 +
8
9

ε
3V 4 (3.9)

Figure 3.1: Angle of deviation 2α , where b is the impact parameter.

The trajectory of a photon that deviates due to the gravitational field of a Kerr black hole

is depicted in figure (3.1), and it can be described using equation (3.9). Note that the spin
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parameter s appears in equation (3.9) in the second order term (ε2), thus, at least third order

series expansion would be necessary to accurately approximate the angle of deviation once we

solve this equation. As a first attempt to find a solution, we will expand (3.9) as shown in

equation (3.8):

(
d2V0(φ)

dφ 2 + ε
d2V1(φ)

dφ 2 + ε
2 d2V2(φ)

dφ 2 + ε
3 d2V3(φ)

dφ 2 + . . .

)
+

+
(
V0(φ)+ εV1(φ)+ ε

2V2(φ)+ ε
3V3(φ)+ . . .

)
=

ε
(
V0(φ)+ εV1(φ)+ ε

2V2(φ)+ ε
3V3(φ)+ . . .

)2 − 2
9

ε
2s

− 8
27

ε
3s
(
V0(φ)+ εV1(φ)+ ε

2V2(φ)+ ε
3V3(φ)+ . . .

)
− 16

27
ε

3 (V0(φ)+ εV1(φ)+ ε
2V2(φ)+ ε

3V3(φ)+ . . .
)2

+
8
9

ε
3 (V0(φ)+ εV1(φ)+ ε

2V2(φ)+ ε
3V3(φ)+ . . .

)4

(3.10)

Now that we have expanded the equation (3.9) in a power series, it is possible to solve

equation (3.10) by separating it to each order of ε . This will lead to a system of equations that

allows us to iteratively construct a solution for the function V (φ) of any desired order. Up to

second order we have the following equations:

For ε0 : d2V0
dφ 2 +V0 = 0

For ε1 : d2V1
dφ 2 +V1 =V0

2

For ε2 : d2V2
dφ 2 +V2 =−2

9s+2V0V1

The initial conditions were given when the function V (φ) was defined:
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for V0 : V0(φ = 0) = 1, dV0(φ=0)
dφ

= 0,

for Vi : Vi(φ = 0) = 0, dVi(φ=0)
dφ

= 0,

where i ∈ N≥ 1.

Note that the condition changes for higher order terms of V (φ), as a consequence of the

initial conditions of V0(φ). The solutions are the following:

V0(φ) = cos(φ) (3.11)

V1(φ) =
1
6
(3−2cos(φ)− cos(2φ)) (3.12)

V2(φ) =−1
3
− 2

9
s+
(

29
144

+
2
9

s
)

cos(φ)+
1
9

cos(2φ)+
1

48
cos(3φ)+

5
12

φ sin(φ). (3.13)

Before attempting to find the angle of deviation, let’s look at V2(φ). The second order

equation contains a term which misbehaves in a series such as this one ( 5
12φ sin(φ)), it grows

indefinitely with φ . This happens because the homogeneous solution to the second order equa-

tion (ε2) acos(φ)+ bsin(φ) contains terms proportional the right hand side of said equation.

Terms such as φ sin(φ) are called secular terms, if we naively include these terms in the solution

V (φ), it will no longer be bounded. This is of course a problem, because the initial conditions

with which the V (φ) was defined would not be met. One method to eliminate this secular terms

and obtain a well behaved solution is the Lindstedt-Poincaré method, as we will see in the next

section. Nonetheless, we shall calculate the angle of deviation to second order anyway. The

function V (φ) =V0(φ)+ εV1(φ)+ ε2V2(φ) can be put together as such:
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V (φ) =cosφ + ε

(
1
6
(3−2cos(φ)− cos(2φ))

)
+ ε

2
(
−1

3
− 2

9
s+
(

29
144

+
2
9

s
)

cos(φ)+
1
9

cos(2φ)+
1

48
cos(3φ)+

5
12

φ sin(φ)
)
,

(3.14)

remember that V (φ) = b
r , the following condition must be satisfied:

as r → ∞ ⇒V → 0.

Therefore, when a photon is deviated, there must be an angle α that satisfies V
(

π

2 +α
)
= 0.

Replacing φ with π

2 +α in equation 3.14 and solving for α gives the expression for the angle

of deflection of light, once we eliminate all the higher order terms:

α =
2
3

ε +
ε2

9

(
15π

8
−2(s+1)

)
(3.15)

The total angle of deviation is Ω = 2α:

Ω =
4
3

ε +
ε2

9

(
15π

4
−4(s+1)

)
, (3.16)

given that ε = 3µ

b = 3GM
bc2 :

=⇒ Ω =
4GM
bc2 +

(
GM
bc2

)2(15π

4
−4(s+1)

)
. (3.17)

Setting s = 0, this result agrees with previous studies [15][16][17][18].
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3.3 Lindstedt-Poincaré

We have successfully obtained the angle of deviation for a photon in the Kerr metric, to second

order. This result is consistent with previous studies of second order corrections to the deflection

angle [19][11]. The secular term that was mentioned previously does not affect the second

order terms, it appears in third and higher orders. Therefore, to be able to calculate a third order

solution we need to get rid of all secular terms that appear in the differential equations, to do this

we employ the Lindstedt-Poincaré method. To eliminate the divergent terms from the higher

order differential equations, an angle φ̃ is defined as a power series in ε:

φ̃ = φ
(
1+ω1ε +ω2ε

2 +ω3ε
3 + . . .

)
, (3.18)

where ωi is a parameter that eliminates the secular term in the corresponding ith order equation.

Rewriting 3.9 in terms of φ̃ , to third order:

(
1+ω1ε +ω2ε

2 +ω3ε
3)2 d2V

(
φ̃
)

dφ̃ 2
+V

(
φ̃
)
=εV 2 (

φ̃
)
− 2

9
ε

2s− 8
27

ε
3s V

(
φ̃
)

− 16
27

ε
3V 2 (

φ̃
)
+

8
9

ε
3V 4 (

φ̃
)
.

(3.19)

Performing the expansion V (φ̃ ,ε) =V0(φ̃)+εV1(φ̃)+ε2V2(φ̃)+ε3V3(φ̃)+ . . . in the equa-

tion above, produces the following system of equations:
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For ε0 : d2V0
dφ 2 +V0 = 0

For ε1 : d2V1
dφ̃ 2 +V1 =V0

2 −2ω1V0”

For ε2 : d2V2
dφ̃ 2 +V2 =−2

9s+2V0V1 −
(
ω1

2 +2ω2
)

V0”−2ω1V1”

For ε3 : d2V3
dφ̃ 2 +V3 =− 8s

27V0 − 16
27V0

2 + 8
9V0

4 +V1
2 +2V0V2 − (2ω1ω2 +2ω3)V ′′

0

−
(
ω2

1 +2ω2
)

V ′′
1 −2ω1V ′′

2

To solve the equations above, the same initial conditions have to be considered:

for V0 : V0(φ = 0) = 1 dV0(φ=0)
dφ

= 0,

for Vi : Vi(φ = 0) = 0 dVi(φ=0)
dφ

= 0,

where i ∈ N≥ 1,

before arriving at the solutions, the values of ωi have to be determined so the secular terms are

eliminated.

ω1 = 0

ω2 =− 5
12

ω3 =
1
54(15+20s)

Introducing these parameters into the solutions to the differential equations, we obtain well

behaved solutions with the divergent terms removed:
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V0
(
φ̃
)

= cos(φ)

V1
(
φ̃
)

= 1
6(3−2cos(φ)− cos(2φ))

V2
(
φ̃
)

= 1
144 (−48−32s+29cos(φ)+32scos(φ)+16cos(2φ)+3cos(3φ))

V3
(
φ̃
)

= 1
6480 (3615+1440s−1657cos(φ)−960scos(φ)−1760cos(2φ)−480scos(2φ)

−135cos(3φ)−63cos(4φ))

The solution is V (φ̃ ,ε) =V0(φ̃)+ εV1(φ̃)+ ε2V2(φ̃)+ ε3V3(φ̃), to third order:

V (φ̃ ,ε) = cos(φ̃)+
ε

6
(3−2cos(φ̃)− cos(2φ̃))+

ε2

144
(
−48−32s+29cos(φ̃)+32scos(φ̃)

+ 16cos(2φ̃)+3cos(3φ̃)
)
+

ε3

6480
(
3615+1440s−1657cos(φ̃)−960scos(φ̃)

−1760cos(2φ̃)−480scos(2φ̃)−135cos(3φ̃)−63cos(4φ̃)
)

(3.20)

In an attempt to simplify the previous equation, we rewrite it in terms of powers of cosine:

V (φ̃ ,ε) = cos φ̃ +
1
3
(
2− cos(φ̃)− cos2(φ̃)

)
ε +

1
36
(
−16−8s+5cos(φ̃)+8scos(φ̃)

+8cos2(φ̃)+3cos3(φ̃)
)

ε
2 +

(
332
405

+
8s
27

− 313
1620

cos(φ̃)− 4s
27

cos(φ̃)

−377
810

cos2(φ̃)− 4s
27

cos2(φ̃)− 1
12

cos3(φ̃)− 7
90

cos4(φ̃)

)
ε

3.

(3.21)

The solution to the equation of motion allows us to find the angle of deviation of a deflected

photon (remember that the condition V (π

2 + α̃) = 0 must be satisfied). As it can be observed in
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equation (3.21), we would need to solve an equation of polynomial nature with a sine function

of increasing degree; evidently, this becomes very troublesome to deal with at higher orders.

Therefore, the sin(α) function can be expressed in terms of a power series with ε as a leading

term (this allows the sine function to behave properly at small angles):

=⇒ sin(α̃) = εχ1 + ε
2
χ2 + ε

3
χ3 + . . . (3.22)

First, replacing φ̃ = π

2 + α̃ , we get the following equation:

0 =−sin α̃ +
ε

3
(
2+ sin α̃ − sin2

α̃
)
+

ε2

36
(−16−8s−5sin α̃ −8ssin α̃

+8sin2
α̃ −3sin3

α̃
)
+ ε

3
(

332
405

+
8s
27

+
313

1620
sin α̃ +

4s
27

sin α̃ − 377
810

sin2
α̃

− 4s
27

sin2
α̃ +

1
12

sin3
α̃ − 7

90
sin4

α̃

) (3.23)

Now, applying the series expansion of the sine function, we can find the χi coefficients,

which construct the angle of deviation.

0 =

(
2
3
−χ1

)
ε +

1
9
(−4−2s+3χ1 −9χ2)ε

2 +
1

1620
(1328+480s−225χ1

−360sχ1 −540χ
2
1 +540χ2 −1620χ3

)
ε

3
(3.24)

=⇒ χ1 → 2
3

χ2 →−2
9(1+ s)

χ3 → 1
810(409+60s)
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=⇒ sin α̃ =
2ε

3
− 2

9
(1+ s)ε2 +

1
810

(409+60s)ε3 + . . . (3.25)

To find α̃ , we need to apply the inverse sine function (this of course has to be expanded in

its Taylor series to the desired order). Since we are working up to third order, the expansion is

as follows:

arcsinx = x+
x3

6
+O[x]5

=⇒ α̃ =
2ε

3
− 2

9
(1+ s)ε2 +

(
449
810

+
2s
27

)
ε

3 (3.26)

Remember that the Lindstedt-Poincaré method expands the angle as a power series, thus, to

find the actual deviation angle we need to revert the transformation.

φ̃ = φ
(
1+ω1ε +ω2ε

2 +ω3ε
3)

=⇒ π

2
+ α̃ =

(
π

2
+α

)(
1− 5

12
ε

2 +
1
54

(15+20s)ε3
)

π

2
+

(
2ε

3
− 2

9
(1+ s)ε2 +

(
449
810

+
2s
27

)
ε

3
)
=
(

π

2
+α

)(
1− 5

12
ε

2 +
1

54
(15+20s)ε3

)

=⇒ α =
2ε

3
+

1
72

(−16+15π −16s)ε2 +
(1348−225π +120s−300πs)ε3

1620
(3.27)
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Finally, we can find the total deviation:

Ω = 2α =
4ε

3
+

ε2

36
(−16+15π −16s)+

ε3

810
(1348−225π +120s−300πs)

Ω =
4ε

3
+

ε2

9

(
15π

4
−4(1+ s)

)
+

ε3

27

(
674
15

− 15π

2
+(4−10π)s

)
(3.28)

Observe that the first two terms in 3.28 are in agreement with the ones given by equation

3.17.

3.4 Results

The figures in this section show the deviation angle and compare it to the numerical values. It

is clear that the perturbative approach conserves the tendency of the function which gives the

angle of deviation as a function of spin and the impact parameter, nonetheless, the approxima-

tion could be more precise. In the next section we are going to explore the method of Padé

approximation, applied to the already calculated angle of deviation in an attempt to increase the

precision of our results. The numerical values come from solving equation (3.3) numerically

for each value of spin and impact parameter.

Figure 3.2 shows the numeric solution to the general equation of the orbit 3.3 for the spin-

less case, compared to the solution found in equation 3.19. This result clearly shows that the

perturbative solution works only for small values of ε . Next, figure 3.3 shows the behavior of

a photon’s deviation angle as it approaches a rotating black hole at different distances from its

center, note that the deviation angle strongly depends on the spin parameter that the black hole

holds. The solutions from the Lindstedt-Poincaré method, represented in figure 3.3, are com-
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pared to the numeric solution to equation 3.3. Note that the error of the perturbative method

increases as the particle approaches the black hole, specially for figures (3.3c) and (3.3d). This

proves that higher orders of the Lindstedt-Poincaré solutions are necessary to accurately de-

scribe the behavior of light’s deviation near a rotating black hole. Finally, on all figures the y

axis represents the deviation angle, and the x axis ε (which tells us how close to the black hole

the particle passes).
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Figure 3.2: Numerical solution compared to the second order Taylor solution in equation (3.17),
for the spinless case.
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s = 0.3

Lindstedt-Poincaré

Numerical points

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

ϵ

Ω

(c)

s = 0.9
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Figure 3.3: Angle of deviation as a function of ε for different spin parameters. The solid line
represents the solution given by equation (3.21), and the points are the solutions to equation
(3.3). These plots show the Lindstedt-Poincaré and numerical solutions for spin parameters: (a)
s =−0.9, (b) s =−0.3, (c) s = 0.3 and (d) s = 0.9.
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3.5 Padé Approximants

The method of Padé [20] will be employed to find a rational approximation of the deviation

angle, which was calculated as a power series. This method has been used to study the light

deviation near Schwarzschild and Reissner-Nordstrom black holes [11][19], and also in Cos-

mology. The Padé approximant is defined as follows:

Given a power series:

f (x) =
∞

∑
k=0

ckxk

The rational function of order [m/n]:

R[m/n](x) =
a0 +a1x+ . . .+amxm

1+b1x+ . . .+bnxn ,

must match the power series f (x) up to its derivative of order m+n:

R(0) = f (0),R′(0) = f ′(0), . . . ,R(m+n)(0) = f (m+n)(0).

To find the coefficients of the polynomials in R[m/n], the following system of equations is

used [20], which satisfies the conditions stated above.
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c0b0 = a0,

c1b0 + c0b1 = a1,

. . .

cmb0 + cm−1b1 + . . .+ cm−nbn = am,

cm+1b0 + cmb1 + . . .+ cm−n+1bn = 0,

. . .

cm+nb0 + cm+n−1b1 + . . .+ cmbn = 0.

(If i < 0 ⇒ ci = 0)

For the deviation angle calculated with the Lindstedt-Poincaré method (3.28), applying the

procedure above, we obtain the following Padé approximants:

Ω[1/1](ε,s)≡ R[1/1](ε,s) = 64ε

48−15πε+16(1+s)ε

Ω[1/2](ε,s)≡ R[1/2](ε,s) = 46080ε

34560+ε(3375π2ε+1200π(−9+2sε)+128(90−307ε+30s(3+ε+sε)))

Ω[2/1](ε,s)≡ R[2/1](ε,s) =
ε(3375π2ε+1200π(9+2sε)+128(−90−307ε+30s(−3+ε+sε)))

900π(9+(6+8s)ε)−96(90+337ε+30s(3+ε))

To compute higher order Padé approximants, it is necessary to calculate the angle of devia-

tion with the Lindstedt-Poincaré method of order n+m. To accurately approximate the angle of

deviation, it was found that at least a fifth order solution is necessary. The higher order solutions

for the angle calculated with the Lindstedt-Poincaré and Padé methods are given in appendices

B and C, respectively.
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3.6 Analysis and Numerical Tests

The Padé approximants calculated numerically can be compared to the numerical solution of the

equation, and to the results from the Lindstedt-Poincaré method. Clearly, the Padé approximants

provide more accurate results, especially as ε increases, compared to the Lindstedt-Poincaré

solution. This means that the rational approximation given by Padé provides means to find a

better fit for the solution to equation (3.3) than equations (3.21) and (B.1). Now, determining

which Padé approximant is best for each case is a manual process that involves calculating the

statistical error between each of the numerical points and the corresponding Padé values, then

taking the mean error. This allows us to choose the Padé approximant that fits the numerical

points best, overall.

Figure 3.4: Angle of deviation as a function of ε for spin parameter: s =−0.9. The solid lines
are given by equations (3.21), (B.1) and Ω[2/1] = R[2/1], compared to the numerical solution to
equation (3.3). The statistical error for the Padé approximation is e = 7.60%.
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From figures (3.4) and (3.5) it can be observed that the error increases for higher spin values,

also, when considering points near ε = 1. This is expected, since the perturbation method works

for small values of ε , and the Padé approximant is derived from the Lindstedt-Poincaré solution,

nonetheless, the Padé approximant for each case gives a reasonable approximation. The mean

statistical error for the Padé approximants with respect to the numerical solutions is between

1.35%−6.48% for different spin parameters and Padé approximants. Therefore, we have found

expressions that correctly describe the behavior of photons deviating their trajectory due to the

gravitational field of a rotating black hole.

Lastly we applied the studied method of approximation to the specific case of the binary

black hole system OJ-287 in figure 3.6, considering that the main (most massive) black hole of

the system has a spin parameter s = 0.381 [21], yielding very good results.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Angle of deviation as a function of ε for different spin parameters. Comparison of
equations (3.21), (B.1), and different orders of Padé approximants with the numerical solution
to equation (3.3). These plots consider the spin parameters and the mean statistical error for the
Padé approximation: (a) s =−0.6, e = 1.83%, (b) s =−0.3, e = 2.02%, (c) s = 0, e = 3.29%,
(d) s = 0.3, e = 3.24%, (e) s = 0.6, e = 5.25%, and (f) s = 0.9, e = 6.48%.
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(a) (b)

Figure 3.6: Angle of deviation as a function of ε for different spin parameters for a photon
passing near the OJ-287 system. Comparison of equations (3.21), (B.1), and different orders of
Padé approximants with the numerical solution to equation (3.3). The retrograde orbit(a) and
the direct orbit (b) are shown.
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CONCLUSIONS

In this dissertation, we present a way to solve the equation of motion for null geodesics in the

equatorial plane of the Kerr metric. Being particularly interested in one of the first and most

exciting predictions of General Relativity, the deviation of light that passes in the vicinity of

a strong gravitational field. We focus on rotating black holes, the total angular momentum

carried by these enormous compact objects curves space-time in a very interesting way. The

frame dragging effect that occurs around a Kerr black hole can indeed make the equations that

describe the motion of particles, very complex; this is why we have simplified the metric to the

equatorial plane. Before studying light deviation, we found two interesting results consequential

to the Kerr metric. First, equations D.29 and D.30 give an analytical expression for the radius

of circular orbits in Kerr space-time, given the parameters such as mass and spin. Secondly, in

section 2.2.2 the calculation of released energy of a particle falling from infinity to the smallest

possible circular orbit around a Kerr black hole. Table 4.2 shows how much of the rest energy

of a particle is lost when falling to a circular orbit.

As a first attempt to solve the equation of motion, we try a traditional perturbative treatment,

with a small parameter ε = rc
b , but this method yields a problem for solutions of higher order

than two. When trying to solve for third order, we find ourselves dealing with terms that grow

boundlessly, this of course is unwanted behavior in our solution, convergence is necessary.
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These secular terms of the form φ sinφ are oscillating with a growing amplitude, which may

lead to non-uniformity in the solutions; additionally, difficulty in solving equations of order n

arises. To go around this issue, we applied the Lindstedt-Poincaré method, which expands the

variable that appears in the secular terms, this allows for adequate behavior once the coefficients

are chosen correctly such that the secular term is eliminated. As it can be observed from the

plots presented in section 3.1.1, this method preserves the behavior of the numerical solution,

yet it lacks precision. Finally, in an attempt to further increase precision in the approximation

of the deviation angle, Padé approximants were calculated from the result of the Lindstedt-

Poincaré method. From the plots shown of the Padé expressions, we can see that they increase

precision for the angle of deviation. In previous work [19][11], it was shown that the Padé

approximants produce better results than Lindstedt-Poincaré in the Schwarzschild and Reissner-

Nordstrom metrics, this is also the case for the Kerr metric. The plots presented in previous

section show that the Lindstedt-Poincaré method will produce better results for small ε , which

is expected from the perturbative nature of the solution. In order to approximate the angle for

regions closer to the black hole, the Padé method was employed, producing favorable results.

It may be possible to find better approximations with higher order solutions, to calculate the

higher order terms for the Lindstedt-Poincaré method, a similar procedure as the one shown in

section 3.3 can be followed, the same goes for the Padé approximants in section 3.5.

Finally, in Appendix A, equation 3.4 is solved numerically and the results of the orbits are

plotted. Here, we can observe that said equation works very well for any ε , and is able to

reproduce light deviation for extreme parameters such as ε = 1.
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Appendix A

Photon trajectories near the Kerr

black hole

In this appendix we are going to solve equation 3.4 numerically and plot the trajectories of

massless particles which approach a rotating black hole at any distance. Thus, obtaining a

graphical approach to the analysis that was done in this dissertation.

1.1 Retrograde orbits

For photons that approach the black hole in the direction opposite to its rotation.
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Figure 1.1: Massless particle escaping a Kerr black hole. s →−0.9, ε → 1

Figure 1.2: Massless particle escaping a Kerr black hole. s →−0.9, ε → 0.6
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Figure 1.3: Massless particle escaping a Kerr black hole. s →−0.9, ε → 0.3

Figure 1.4: Massless particle escaping a Kerr black hole. s →−0.9, ε → 0.1
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1.2 Direct orbits

For photons that approach the black hole in the same direction as its rotation.

Figure 1.5: Massless particle escaping a Kerr black hole. s → 0.9, ε → 1

Figure 1.6: Massless particle escaping a Kerr black hole. s → 0.9, ε → 0.6
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Figure 1.7: Massless particle escaping a Kerr black hole. s → 0.9, ε → 0.3

Figure 1.8: Massless particle escaping a Kerr black hole. s → 0.9, ε → 0.1
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Appendix B

Higher order Lindstedt-Poincaré

solutions for the angle of deviation

In this appendix we show the analytical solution to the tenth order Lindstedt-Poincaré equation.

Note that to extract lower order solutions one only needs to take the terms up to the desired

order in ε . It is important to mention that calculating solutions of order higher than 10, the

analytical method is not practical, since it takes a lot of resources to continue solving n order

equations analytically. It is recommended to use numerical methods for higher order solutions.

For example, the fifth order solution would be extracted from equation B.2 as such:

Ω5(ε,s) =
4ε

3
+

1
36

(−16+15π −16s)ε2 +
1

810
(1348−225π +120s−300πs)ε3

+

(
−176000+44235π −191616s+14400πs+7680s2)ε4

77760

+

(
1489396−427245π +1564192s−484680πs+161280s2)ε5

408240

(B.1)
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Ω10(ε,s) =
4ε

3
+

1
36

(−16+15π −16s)ε2 +
1

810
(1348−225π +120s−300πs)ε3

+

(
−176000+44235π −191616s+14400πs+7680s2)ε4

77760

+

(
1489396−427245π +1564192s−484680πs+161280s2)ε5

408240

+
ε6

293932800
(−1921390528+443086035π −2596559040s+709480800πs

− 368686080s2 +176198400πs2 −7526400s3)
+

ε7

3086294400
(34127489924−8259932415π +55195454496s

− 13348108620πs+19698470400s2 −4625913600πs2 −440294400s3)
+

ε8

1185137049600
(−24310353374720+5519903716005π −43420385554944s

+ 10621758846720πs−18408529649664s2 +4825116334080πs2

− 1485964247040s3 +312134860800πs3 +8670412800s4)
+

ε9

571405363200
(21235920708674−4791043404171π +44666461143360s

− 10331021594880πs+24564817893888s2 −5990765598720πs2

+ 2450576056320s3 −702709862400πs3 +29340057600s4)
+

ε10

639974006784000
(−44121927235224128+9718950366662355π

− 102625235958870080s+23450778052873920πs−70736680982016000s2

+ 16806020482944000πs2 −12546414990950400s3 +2916090674380800πs3

− 11895806361600s4 +43698880512000πs4 −1439288524800s5
)

(B.2)
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Appendix C

Padé approximants of higher order

In this appendix we present a complete list of the possible Padé approximants that can be cal-

culated with equation B.1.

Ω
[1/1](ε,s) =

4ε

3
(
1+ 1

48(16−15π +16s)ε
) (C.1)

Ω
[1/2](ε,s) =

4ε

3
(

1+ 1
48(16−15π +16s)ε + (−39296+3375π2+3840s+2400πs+3840s2)ε2

34560

) (C.2)
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Ω
[1/3](ε,s) = 4ε

(
3
(

1+
1

48
(16−15π +16s)ε

+

(
−39296+3375π2 +3840s+2400πs+3840s2)ε2

34560

+
ε3

1658880
(
1497088+643920π −54000π

2 −50625π
3 +1746944s

+ 76800πs−126000π
2s−61440s2 +134400πs2 +61440s3)))−1

(C.3)

Ω
[1/4](ε,s) = 4ε

(
3
(

1+
1

48
(16−15π +16s)ε

+

(
−39296+3375π2 +3840s+2400πs+3840s2)ε2

34560

+
ε3

1658880
(
1497088+643920π −54000π

2 −50625π
3 +1746944s

+ 76800πs−126000π
2s−61440s2 +134400πs2 +61440s3)

+
ε4

8360755200
(
−3765628928−2318400000π −1009260000π

2

+ 170100000π
3 +79734375π

4 −8797716480s−3672614400πs

− 30240000π
2s+340200000π

3s+4035870720s2 +645120000πs2

− 262080000π
2s2 −309657600s3 +387072000πs3 +103219200s4)))−1

(C.4)

Ω
[2/1](ε,s) =

4ε

3 +
(−39296+3375π2+3840s+2400πs+3840s2)ε2

540(−16+15π−16s)

1+ 2(−1348+225π−120s+300πs)ε
45(−16+15π−16s)

(C.5)

Ω
[2/2](ε,s) = (C.6)
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Ω
[2/3](ε,s) =

(
4ε

3
+
((
−3765628928−2318400000π −1009260000π

2

+ 170100000π
3 +79734375π

4 −8797716480s−3672614400πs

− 30240000π
2s+340200000π

3s+4035870720s2 +645120000πs2

− 262080000π
2s2 −309657600s3 +387072000πs3 +103219200s4)

ε
2)/(

3780
(
−1497088−643920π +54000π

2 +50625π
3 −1746944s

−76800πs+126000π
2s+61440s2 −134400πs2 −61440s3)))(1+((

−392546048−65142000π +5977125π
2 +10631250π

3 −890480640s

− 133249200πs+24570000π
2s+14175000π

3s+75264000s2

+ 12096000πs2 +10080000π
2s2 −19353600s3 +16128000πs3)

ε
)
/(

315
(
−1497088−643920π +54000π

2 +50625π
3 −1746944s

− 76800πs+126000π
2s+61440s2 −134400πs2 −61440s3))

+
((

21972307968+12282149760π −1974672000π
2 −704851875π

3

+ 14955008000s+923462400πs−2927484000π
2s+567000000π

3s

− 11268096000s2 −7545619200πs2 −584640000π
2s2 +604800000π

3s2

+ 1950842880s3 +1032192000πs3 −645120000π
2s3 −206438400s4)

ε
2)/(

15120
(
−1497088−643920π +54000π

2 +50625π
3 −1746944s

− 76800πs+126000π
2s+61440s2 −134400πs2 −61440s3))

+
((
−341247875072−434910873600π +1528905375π

2 +34020000000π
3

− 851421941760s−523412121600πs+43337700000π
2s+34955550000π

3s

− 1984223416320s2 −514027584000πs2 +147843360000π
2s2 +27216000000π

3s2

− 11302502400s3 −288175104000πs3 −14515200000π
2s3 +24192000000π

3s3

− 49545216000s4 +15482880000πs4)
ε

3)/(680400(−1497088−643920π

+ 54000π
2 +50625π

3 −1746944s−76800πs+126000π
2s+61440s2

− 134400πs2 −61440s3)))
(C.7)
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Ω
[3/1](ε,s) =

(
4ε

3
+
((
−132864−3405π +6750π

2 −144640s−6000πs+9000π
2s

+ 11520s2 −9600πs2)
ε

2)/(72(−1348+225π −120s+300πs))

+
((
−74054656−11394000π +6712875π

2 +67522560s−1966800πs

− 5400000π
2s+43223040s2 +2880000πs2 −5760000π

2s2

− 1843200s3)
ε

3)/(51840(−1348+225π −120s+300πs))
)

/

(
1+

(
−176000+44235π −191616s+14400πs+7680s2)ε

96(−1348+225π −120s+300πs)

)
(C.8)
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Ω
[3/2](ε,s) =

(
4ε

3
+
((

21972307968+12282149760π −1974672000π
2 −704851875π

3

+ 14955008000s+923462400πs−2927484000π
2s+567000000π

3s−11268096000s2

− 7545619200πs2 −584640000π
2s2 +604800000π

3s2 +1950842880s3

+ 1032192000πs3 −645120000π
2s3 −206438400s4)

ε
2)/(252(74054656

+ 11394000π −6712875π
2 −67522560s+1966800πs+5400000π

2s−43223040s2

− 2880000πs2 +5760000π
2s2 +1843200s3))+((341247875072+434910873600π

− 1528905375π
2 −34020000000π

3 +851421941760s+523412121600πs

− 43337700000π
2s−34955550000π

3s+1984223416320s2 +514027584000πs2

− 147843360000π
2s2 −27216000000π

3s2 +11302502400s3 +288175104000πs3

+ 14515200000π
2s3 −24192000000π

3s3 +49545216000s4 −15482880000πs4)
ε

3)/(
11340

(
74054656+11394000π −6712875π

2 −67522560s+1966800πs+5400000π
2s

− 43223040s2 −2880000πs2 +5760000π
2s2 +1843200s3)))(1+(2(945825920

+ 180704340π −122590125π
2 +490206336s+297179400πs−102532500π

2s

− 739737600s2 −97171200πs2 +30240000π
2s2 −83865600s3 +16128000πs3)

ε
)
/(

21
(
74054656+11394000π −6712875π

2 −67522560s+1966800πs+5400000π
2s

− 43223040s2 −2880000πs2 +5760000π
2s2 +1843200s3))+((−40154343424

+ 7618126080π +1392490575π
2 +179372756992s+38285172480πs

− 21447216000π
2s+186239434752s2 +38280883200πs2 −17160192000π

2s2

− 23079813120s3 +7741440000πs3 +412876800s4)
ε

2)/(1008(74054656

+ 11394000π −6712875π
2 −67522560s+1966800πs+5400000π

2s−43223040s2

− 2880000πs2 +5760000π
2s2 +1843200s3)))−1

(C.9)
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Ω
[4/1](ε,s) =

(
4ε

3
+
((
−75609344+3909360π +4644675π

2 −58935296s+4332720πs

+ 1512000π
2s+10278912s2 −806400πs2 −860160s3)

ε
2)(252(−176000

+ 44235π −191616s+14400πs+7680s2))−1
+((−945825920−180704340π

+ 122590125π
2 −490206336s−297179400πs+102532500π

2s+739737600s2

+ 97171200πs2 −30240000π
2s2 +83865600s3 −16128000πs3)

ε
3)/(5670(

−176000+44235π −191616s+14400πs+7680s2))+((−40154343424

+ 7618126080π +1392490575π
2 +179372756992s+38285172480πs

− 21447216000π
2s+186239434752s2 +38280883200πs2 −17160192000π

2s2

− 23079813120s3 +7741440000πs3 +412876800s4)
ε

4)/(544320(−176000

+ 44235π −191616s+14400πs+7680s2))) ·(
1+

4
(
−1489396+427245π −1564192s+484680πs−161280s2)ε

21(−176000+44235π −191616s+14400πs+7680s2)

)−1

(C.10)
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Appendix D

Motion of massive particles around

a Kerr black hole

Looking back at section 2.1, for massive particles, the following conditions are satisfied:

η = mc

λ = τ

m

dr
dλ

= m dr
dτ

Thus, we rewrite the equations of motion:

=⇒ m2
(

dr
dτ

)2

=

(
E ′

c

)2

−m2c2 +
1
r

(
2µm2c2)

+
1
r2

((
a

E ′

c

)2

− (h′)2 −a2m2c2

)
+

1
r3 2µ

(
h′−a

E ′

c

)2
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(
dr
dτ

)2

=

(
E
c

)2

− c2 +
2µc2

r
+

1
r2

((
a

E
c

)2

− (h)2 −a2c2

)
+

2µ

r3

(
h−a

E
c

)2

(D.1)

From equation D.1, we can easily recognize the effective potential, which can be written as:

Veff(r,h,E) =−µc2

r
+

1
2r2

(
h2 +a2

(
c2 − E2

c2

))
− µ

r3

(
h−a

E
c

)2

, (D.2)

The equation containing the velocity of the particle can be rewritten using the effective

potential. If we derive the following equation (D.3) with respect to the proper time, an equation

for the particle’s acceleration is obtained.

=⇒ 1
2

(
dr
dτ

)2

+Veff(r,h,E) =
1
2

((
E
c

)2

− c2

)
(D.3)

d2r
dτ2 =−dVeff

dr

Now, the equations D.1, 2.6 and 2.7 can be expressed in terms of the proper time and the

coordinate time, using the following relations:

dr
dτ

= dr
dt

dt
dτ

−→ dr
dt =

dr
dτ

dτ

dt

dt
dλ

= m dt
dτ

dφ

dλ
= mdφ

dτ

dφ

dτ
= dφ

dt
dt
dτ

−→ dφ

dt = dφ

dτ

dτ

dt

dt
dτ

=
1

c∆

[(
a2 +

2a2µ

r
+ r2

)
E
c
− 2aµ

r
h
]

(D.4)
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dr
dt

=
−c∆

[(E
c

)2 − c2 + 2µc2

r + 1
r2

((
aE

c

)2 − (h)2 −a2c2
)
+ 2µ

r3

(
h−aE

c

)2
]1/2[(

a2 + 2a2µ

r + r2
)

E
c −

2aµ

r h
] (D.5)

Note that we have chosen by hand the negative sign of the radical expression in D.5, assum-

ing that the particle must approach the gravitational source.

dφ

dτ
=

1
∆

[(
2aµ

r

)
E
c
−
(

1− 2µ

r

)
h
]

dφ

dt
= c
[(

2aµ

r

)
E
c
−
(

1− 2µ

r

)
h
]
×
[(

a2 +
2a2µ

r
+ r2

)
E
c
− 2aµ

r
h
]−1

(D.6)

Now that we have the general equations of motion for a massive particle (remember that E

has dimensions of energy per unit mass and h, angular momentum per unit mass); we will study

a particular case, a particle at rest at infinity (very far away from the gravitational source) with

no angular momentum falls towards the black hole.

h = 0

E = c2 (Energy at rest)

The previous initial conditions lead to the following differential equations of motion:

dr
dt

=
−∆

[
2µc2

r

(
1+ a2

c2

)]1/2(
a2 + 2a2µ

r + r2
) (D.7)
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dφ

dt
=

(
2aµc

r

)
(

a2 + 2a2µ

r + r2
) (D.8)

Figure 4.1: Massive particle falling inside a Kerr black hole.

Finally, for a rigorous analysis of a particles motion around a Kerr black hole, it is necessary

to study the infinite redshift surfaces and the event horizons. First, the infinite redshift surfaces

are given by the relation gtt = 0:

=⇒ 1− 2µr
ρ2 = 0

ρ
2 = r2 +a2 cos2

θ
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r2 +a2 cos2
θ −2µr = 0

r±s =
2µ ±

√
4µ2 −4a2 cos2 θ

2

r±s = µ ±
√

µ2 −a2 cos2 θ (D.9)

For θ = π

2 , we have a single infinite redshift surface:

=⇒ rs = 2µ (D.10)

Now, the condition for event horizons is grr = 0.

=⇒− ∆

ρ2 = 0

∆ = r2 −2µr+a2 = 0

r± =
2µ ±

√
4µ2 −4a2

2

r± = µ ±
√

µ2 −a2 (D.11)

It is important to note that the value of a must not exceed that of µ (µ2 ⩾ a2); for an

"extreme" Kerr black hole µ2 = a2, thus a single event horizon with radius r = µ exists.
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Note that in the case where a = 0, we have a single infinite redshift surface, which is the

same as the event horizon:

r±s = r± = 2µ

This reproduces the results for the Schwarzschild metric!

4.1 Circular orbits in the Kerr metric

4.1.1 Stable circular orbits

In this section we will study particles orbiting a Kerr black hole in the equatorial plane, for

circular orbits the following conditions must be met:

θ =
π

2

pθ = 0

ṙ =
dr
dτ

= 0,
··
r = 0

Let’s remember equations D.1 and D.2, which should fulfill the conditions above. Since

dr
dτ

= 0, then the expression for the effective potential reduces to:

=⇒Veff(r,h,E) =
1
2

((
E
c

)2

− c2

)
,
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[
dVeff

dr

]
r=rc

= 0, (D.12)

where rc is the critical radius, or the radius of the smallest stable circular orbit.

Now, let’s try a very well known change of variable, which will make the rest of the calcu-

lation easier:

u(r) =
1
r

dVeff

dr
=

dVeff

du
du
dr

=− 1
r2

dVeff

du
=−u2 dVeff

du
= 0

=⇒
[

dVeff

du

]
u=uc=

1
rc

= 0

We are going to find a simple equation for the radius of the smallest stable circular orbit

around a Kerr black hole, given its spin. First, we rewrite equation D.2 in terms of u(r) and

taking the derivative, we get the following equations:

Veff(u,h,E) =−µc2u+
1
2

u2
(

h2 +a2
(

c2 − E2

c2

))
−µu3

(
h−a

E
c

)2

=
1
2

((
E
c

)2

− c2

) (D.13)

dVeff

du
=−µc2 +u

(
h2 +a2

(
c2 − E2

c2

))
−3µu2

(
h−a

E
c

)2

Let’s consider the relation x ≡ h−aE
c , which we will replace in the equations for the effec-

tive potential; we need to rewrite them:
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=⇒Veff(u,h,E) =−µc2u+
1
2

u2
(

x2 +
2xaE

c
+a2c2

)
−µu3x2

=
1
2

((
E
c

)2

− c2

)
,

(D.14)

then

dVeff

du
=−µc2 +u

((
h−a

E
c

)(
h+a

E
c

)
+a2c2

)
−3µu2

(
h−a

E
c

)2

,

=⇒
[

dVeff

du

]
u=uc

=

[
−µc2 +u

(
x2 +

2xaE
c

+a2c2
)
−3µu2x2

]
u=uc = 0 (D.15)

From now on, we will assume u = uc for simplicity, since all the equations are intended to

find the critical radius. First step is to multiply equation (D.15)×u:

−µc2u+u2
(

x2 +
2xaE

c
+a2c2

)
−3µu3x2 = 0 (D.16)

Multiply equation (D.14)×2:

−2µc2u+u2
(

x2 +
2xaE

c
+a2c2

)
−2µu3x2 =

(
E
c

)2

− c2 (D.17)

Substract D.16 from D.17 to get an expression for the energy:

−µc2u+µu3x2 =

(
E
c

)2

− c2

(
E
c

)2

= c2(1−µu)+µu3x2 (D.18)
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From equation D.15,

2xaE
c

u = x2u(3µu−1)− c2 (a2u−µ
)

and squaring it:

4x2a2
(

E
c

)2

u2 = x4u2(3µu−1)2 + c4 (a2u−µ
)2 −2x2c2u(3µu−1)

(
a2u−µ

)
(D.19)

Now, we replace D.18 into D.19:

4x2a2 (c2(1−µu)+µu3x2)u2 = x4u2(3µu−1)2+c4 (a2u−µ
)2−2x2c2u(3µu−1)

(
a2u−µ

)
and rearranging to get a quadratic equation which we can easily solve:

(
(3µu−1)2 −4µu3a2)u2x4 −2uc2 [(3µu−1)

(
a2u−µ

)
+2a2u(1−µu)

]
x2

+c4 (a2u−µ
)2

= 0
(D.20)

x2 = {2uc2 [(3µu−1)
(
a2u−µ

)
+2a2u(1−µu)

]
±[4u2c4 ((3µu−1)

(
a2u−µ

)
+2a2u(1−µu)

)2

−4u2c4 ((3µu−1)2 −4µu3a2)(ua2 −µ
)2
]1/2}

×
{

2u2 [(3µu−1)2 −4µu3a2]}−1
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x2 =
c2

u
{
(
µu2a2 +a2u+µ −3µ

2u
)

±
[
−16µ

2u4a4 +8µu3a4 −16u2
µ

2a2 +16µ
3u3a2 +4ua2

µ +4µu5a6
]1/2

}

×
[
(3µu−1)2 −4µu3a2]−1

A little bit of algebra is needed to get the equation above, now in order to simplify our

result we will introduce yet another relation [6]: δ = a2u2 −2µu+1, and squaring it gives an

expression very similar to the one inside the square root:

δ
2 = a4u4 +4µ

2u2 +1−4a2
µu3 −4µu+2a2u2

4a2
µδ

2u =−16µ
2u4a4 +8µu3a4 −16u2

µ
2a2 +16µ

3u3a2 +4ua2
µ +4µu5a6

Then, x2 can be written in a much simpler form:

=⇒ x2 =
c2

u

(
µu2a2 +a2u+µ −3µ2u±2aδ

√
µu
)

(3µu−1)2 −4µu3a2 (D.21)

Now let’s consider the following relation that will help us study both cases (choosing the +

and − signs):

R± ≡ 1−3µu±2a
√

µu3
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R+R− = (3µu−1)2 −4µu3a2

R±δ −R+R− = a2u2 +µu−3µ
2u2 +a2

µu3 ±2au
√

µuδ

R±δ −R+R− = u
(
a2u+µ −3µ

2u+a2
µu2 ±2a

√
µuδ

)

=⇒ x2 =

(
c2

u2

)
R±δ −R+R−

R+R−
(D.22)

With R+ in D.22:

x2 =

(
c2

u2

)
δ −R−

R−

With R− in D.22:

x2 =

(
c2

u2

)
δ −R+

R+

Therefore, we can rewrite D.22 in a much simpler form:

=⇒ x2 =

(
c2

u2

)
(δ −R∓)

R∓
(D.23)

Let’s calculate what δ −R∓ is:

δ −R∓ = a2u2 −2µu+1−
(

1−3µu∓2a
√

µu3
)
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δ −R∓ = u
(
a
√

u±
√

µ
)2

=⇒ x =− c√
u

a
√

u±√
µ(

1−3µu∓2a
√

µu3
)1/2 (D.24)

Note: remember that x = h−aE
c , so we choose the ‘−’ sign in D.24, because otherwise an

unstable orbit would occur, clearly x < 0.

Now, replacing our result of x2 in equation D.18, gives us an expression for the energy,

which entirely depends on u, a and µ:

E =
c2 (1−2µu∓au

√
µu
)(

1−3µu∓2au
√

µu
)1/2 (D.25)

If we choose the ‘+’ sign, D.25 gives the energy per unit mass of the particle orbiting in the

same direction as the gravitational source, otherwise its the energy of the retrograde orbit.

The same can be done for the angular momentum:

h = x+a
E
c

h =
∓c

√
µ
(
1±2au

√
µu+a2u2)

√
u
(
1−3µu∓2au

√
µu
)1/2 (D.26)

Now, we can finally attempt to calculate a critical radius, we know that for a stable orbit,

the second derivative of the potential must be positive, let’s see what condition must be met for

d2Veff
du2 .
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dVeff

dr
=

dVeff

du
du
dr

=− 1
r2

dVeff

du

d2Veff

dr2 =
2
r3

dVeff

du
+

1
r4

d2Veff

du2

[
d2Veff

dr2

]
r=rc

⩾ 0 ⇒
[

d2Veff

du2

]
u=uc

⩾ 0

Knowing that d2Veff
du2 ⩾ 0, we can proceed to calculate its expression using D.25 and D.26.

d2Veff

du2 =

(
x
(

h+a
E
c

)
+a2c2

)
−6µux2

h+a
E
c
=

c
(
∓√

µ −4aµu3/2 ∓2a2u2√µ +a
√

u
)

√
u
(
1−3µu∓2au

√
µu
)1/2

x
(

h+a
E
c

)
=−

c2 (a√u±√
µ
)(

∓√
µ −4aµu3/2 ∓2a2u2√µ +a

√
u
)

u
∣∣1−3µu∓2au

√
µu
∣∣

Note that we previously chose the sign for x, so the denominator has to be positive.

d2Veff

du2 =

a2c2 −
c2 (a√u±√

µ
)(

∓√
µ −4aµu3/2 ∓2a2u2√µ +a

√
u
)

u
∣∣1−3µu∓2au

√
µu
∣∣


−6µc2

(
a
√

u±√
µ
)2∣∣∣1−3µu∓2a
√

µu3
∣∣∣
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[
d2Veff

du2

]
u=uc

=

c2µ

(
1∓8au3/2√µ −6µu−3a2u2

)
u
∣∣1−3µu∓2au

√
µu
∣∣


u=uc

⩾ 0

Since the expression has to be greater or equal to zero, then numerator has to be greater or

equal to zero as well:

=⇒ 1∓8au3/2
c

√
µ −6µuc −3a2u2

c ⩾ 0

Now, we can go back to working with r = rc:

1∓8ar−3/2
c

√
µ −6µr−1

c −3a2r−2
c ⩾ 0,

multiplying by r2
c , and considering a = µs:

r2
c −6µrc −3a2 ∓8a

√
rcµ ⩾ 0

r2
c −6µrc −3µ

2s2 ∓8µs
√

rcµ ⩾ 0

(
rc

µ

)2

−6
(

rc

µ

)
−3s2 ∓8s

√
rc

µ
⩾ 0

r0 =
rc

µ

=⇒ r2
0 −6r0 −3s2 ∓8s

√
r0 ⩾ 0 (D.27)
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Finally, we arrive to an inequality which determines the smallest possible circular orbit of a

particle orbiting a rotating black hole, when equalling to zero as in D.28, we get precisely the

radius of the smallest orbit:

r2
0 −6r0 −3s2 ∓8s

√
r0 = 0 (D.28)

To solve this equation we will use Mathematica, which gives us a not very friendly but

analytic solution. Four roots result from the computation, but only two of them produce real

values, these two are shown below. Here, r+0 refers to the prograde motion and r−0 to the

retrograde motion.
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r+0 = 3+

3+ s2 +
9−10s2 + s4(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

+

(
27−45s2 +17s4 + s6 +8

√
s6 (−1+ s2)

2
)1/3

)1/2

−1
2

72+8
(
−6+ s2)− 4

(
9−10s2 + s4)(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

−4
(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

+
(
64s2)×

3+ s2 +
9−10s2 + s4(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

+

(
27−45s2 +17s4 + s6 +8

√
s6 (−1+ s2)

2
)1/3

)−1/2
1/2

(D.29)
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r−0 = 3+

3+ s2 +
9−10s2 + s4(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

+

(
27−45s2 +17s4 + s6 +8

√
s6 (−1+ s2)

2
)1/3

)1/2

+
1
2

72+8
(
−6+ s2)− 4

(
9−10s2 + s4)(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

−4
(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

+
(
64s2)×

3+ s2 +
9−10s2 + s4(

27−45s2 +17s4 + s6 +8
√

s6 (−1+ s2)
2
)1/3

+

(
27−45s2 +17s4 + s6 +8

√
s6 (−1+ s2)

2
)1/3

)−1/2
1/2

(D.30)

Now, let’s study some particular cases, for an extreme Kerr black hole (a = µ −→ s = 1)

the equation reduces to:

r2
0 −6r0 −3∓8

√
r0 = 0,

which has two possible solutions:

r−0 = 9 −→ r−c = 9µ

r+0 = 1 −→ r+c = µ
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Using equations D.29 and D.30 we can calculate the smallest circular stable orbit given any

spin other than s = 1, since it produces an indeterminate solution, below are listed some of the

results for the critical radius:

s r−0 r+0
0 6µ 6µ

1/4 6.79485µ 5.15554µ

1/3 7.05149µ 4.85883µ

1/2 7.55458µ 4.233µ

3/5 7.85069µ 3.82907µ

4/5 8.43179µ 2.90664µ

1 9µ µ

Table 4.1: Critical radius. r−0 retrograde orbit. r+0 prograde orbit.

Let’s take a look at the case where there is no rotation of the gravitational source (with the

condition a = 0 −→ s = 0), we get a the following solution:

r2
0 −6r0 = 0

r0 = 6 −→ rc = 6µ

µ =
GM
c2 =⇒ rs =

2GM
c2 = 2µ =⇒ rc = 3rs

where rs is the Schwarzschild radius, thus we prove that the theory is consistent. When

there is no rotation in the metric, it reduces to the value for the smallest stable orbit in the

Schwarzschild metric.
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4.1.2 Released energy

In this section we will study the energy of a particle as it approaches its smallest possible stable

circular orbit around a rotating black hole. The expression for the energy was already derived

previously (equation D.25), first we will consider the case of an extreme Kerr black hole for a

direct orbit.

E =

[
c2 (1−2µu∓au

√
µu
)(

1−3µu∓2au
√

µu
)1/2

]
u=uc

a = µ −→ r+c = µ ⇒ uc =
1
µ

E =

[
c2 (1−2µu+µu

√
µu
)(

1−3µu+2µu
√

µu
)1/2

]
u=uc

Evidently, it is not possible to directly calculate the energy, since replacing uc =
1
µ

directly

into the energy’s equation produces an indeterminacy. Thus, we need to apply L’Hôpital’s rule

to get a result, in this case the rule has to be applied twice, so we need to square our expression

for the energy.

E2

c4 = lim
u→ 1

µ

(
1−2µu+µu

√
µu
)2(

1−3µu+2µu
√

µu
)

E2

c4 = lim
u→ 1

µ

{
d

du

(
1−2µu+µu

√
µu
)2

d
du

(
1−3µu+2µu

√
µu
)}

E2

c4 = 2 lim
u→ 1

µ


(
1−2µu+µu

√
µu
)(

−2µ + 3
2 µ3/2√u

)
(
−3µ +3µ3/2√u

)
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E2

c4 = 2 lim
u→ 1

µ


(
−2µ + 3

2 µ3/2√u+4µ2u−5µ5/2u3/2 + 3
2 µ3u2

)
(
−3µ +3µ3/2√u

)


E2

c4 =
2
3

lim
u→ 1

µ


d
du

(
−2µ + 3

2 µ3/2√u+4µ2u−5µ5/2u3/2 + 3
2 µ3u2

)
d
du

(
−µ +µ3/2√u

)


E2

c4 =
2
3

lim
u→ 1

µ

{
3
4 µ3/2u−1/2 +4µ2 − 15

2 µ5/2u1/2 +3µ3u
1
2 µ3/2u−1/2

}

E2

c4 =
2
3

(
3
4 µ2 +4µ2 − 15

2 µ2 +3µ2

1
2 µ2

)
=

2
3

(
3
2
+14−15

)
=

1
3

E =
1√
3

c2

E ′ = mE

Then,

=⇒ E ′ =
1√
3

mc2 (D.31)

Now, an interesting value can be studied, the energy released by the particle when it falls

from infinity (starting at rest with no angular momentum) towards the circular orbit r+c = µ:

∆E = mc2 −E ′ = mc2
(

1− 1√
3

)
This means that the particle loses 42.265% of its rest energy!
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The same can be calculated for the retrograde orbit:

a = µ −→ r−c = 9µ ⇒ uc =
1

9µ

E =

[
c2 (1−2µu−µu

√
µu
)(

1−3µu−2µu
√

µu
)1/2

]
u=uc

E
c2 = lim

u→ 1
9µ


(

1−2µu−µ3/2u3/2
)

(
1−3µu−2µ3/2u3/2

)1/2


E
c2 =

1− 2
9 −

1
27(

1− 3
9 −

2
27

)1/2 =
5
√

3
9

=⇒ E ′ =
5
√

3
9

mc2 (D.32)

∆E = mc2 −E ′ = mc2

(
1− 5

√
3

9

)
In this case the particle loses 3.7745% of its rest energy. In the case of the Schwarzschild

metric, the energy released is 5.72% of the rest energy.

Following the same procedure we compute the energy release for various cases.
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s E+ E−

1/4 6.68927% 5.03230%
1/3 7.11336% 4.84448%
1/2 8.21180% 4.51422%
3/5 9.12133% 4.34010%
4/5 12.21387% 4.03470%
1 42.26500% 3.77500%

Table 4.2: Percentage of energy lost. E+ prograde motion. E− retrograde motion.



83

Appendix E

Stability of circular orbits of

photons around a Kerr black hole

The stability condition is given by the nature of the second derivative of the effective potential,

which we can derive from equation 2.15:

1
h2

(
dr
dλ

)2

+V ′
e f f (r,b) =

1
b2 , (E.1)

where V ′
e f f (r,b) =

1
r2

[
1−
(a

b

)2 − 2µ

r

(
1− a

b

)2
]

is the effective potential for null geodesics.

For circular orbits, we have
( dr

dλ

)
=
(

d2r
dλ 2

)
= 0, then, the equation of the orbit would take

the form V ′
e f f (r,b) =

1
b2 . The second derivative of the effective potential with respect to r is:

d2V ′
e f f (r,b)

dr2 =
6
r4

(
1−
(a

b

)2
)
− 24µ

r5

(
1− a

b

)2
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d2V ′
e f f (r,b)

dr2 =
6
r4

(
1−
(a

b

)2
)(

1− 4µ

r

(
1− a

b

)(
1+ a

b

)) (E.2)

From this last equation, we know that
∣∣a

b

∣∣ < 1, thus 1− a
b > 0 for all possible values of a

and b. Now, to analyze the behavior of 4µ

r , at the critical radius rc = 3µ:

⇒ 4µ

rc
=

4µ

3µ
> 1

Therefore, the second derivative of the effective potential evaluated at rc is negative, this

indicates that no stable circular orbit occurs with rc = 3µ .

d2V ′
e f f (r,b)

dr2

∣∣∣∣∣
r=rc

< 0 (E.3)

Finally, for a circular orbit we consider:

dV ′
e f f (r,b)

dr

∣∣∣∣∣
r=rc

= 0

This leads to the following expression for the critical radius [6]:

rc+−
= 2µ

[
1+ cos

(
2
3

cos−1
(
± a

µ

))]
, (E.4)

where the ‘+’ sign represents retrograde orbits and ‘−’ is for direct orbits.
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