

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Low-code technologies: Comparative analysis of the OutSystems

and Mendix platforms

.

Bernardo José Manosalvas Trávez

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniero en Ciencias de la Computación

Quito, 24 de febrero de 2023

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

Low-code technologies: Comparative analysis of the OutSystems and

Mendix platforms
.

Bernardo José Manosalvas Trávez

Nombre del profesor, Título académico Daniel Riofrio, PhD

Quito, 24 de febrero de 2023

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: Bernardo José Manosalvas Trávez

Código: 00206757

Cédula de identidad: 1718757519

Lugar y fecha: Quito, 24 de febrero de 2023

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

El objetivo de este trabajo es comparar dos plataformas OutSystems y Mendix, que son

basadas en low-code, una tecnología que está en auge y se espera que abarque gran parte del

mercado de aplicaciones en el futuro cercano. Esta comparación se consigue planteando una

metodología de evaluación para la comparación, que incluye un análisis cuantitativo y

cualitativo. En cuanto a lo cuantitativo, se desarrolló una aplicación que implementa los

métodos clásicos para manipulación de una base de datos, comparando los tiempos de

respuesta de la implementación de cada plataforma en milisegundos. Para lo cualitativo, se

utilizó el marco de evaluación de experiencia del desarrollador realizado por Fagerholm y

Münch en 2012. Así como se realizó una rúbrica de evaluación con 5 criterios con una escala

del uno al cinco para evaluar la parte cognitiva de la experiencia. Y otra rúbrica con 3

criterios con una escala igual para evaluar la parte de afecto y conación. Con el objetivo de

puntuar, en base a la experiencia del desarrollador, una implementación de aplicación

equivalente en ambas plataformas. Dando como resultado que OutSystems tiene una mejor

implementación detrás de las escenas para los tiempos de respuesta de los métodos CRUD.

Así como, de igual manera, OutSystems consigue una mejor experiencia de desarrollador en

base a las rúbricas de evaluación cualitativa.

Palabras clave: low-code, OutSystems, Mendix, evaluación cuantitativa, evaluación

cualitativa, tiempo de respuesta, experiencia del desarrollador

6

ABSTRACT

The purpose of this work is to compare two platforms, OutSystems and Mendix, that are based

on low-code, a technology that is on the rise and is anticipated to dominate a significant portion

of the application market in the near future. This comparison is accomplished by proposing a

comparative evaluation methodology that combines quantitative and qualitative analysis.

Concerning the quantitative, an application was developed that implements the traditional

methods for database manipulation, comparing the response times of each platform's

implementation in milliseconds. Fagerholm and Münch's (2012) developer experience

evaluation framework was used for the qualitative evaluation. In addition to a rubric with five

criteria and a scale from one to five for evaluating the cognitive portion of the experience. And

another rubric with three criteria and an equal scale for evaluating the affective and conative

components. The objective is to score, based on the developer's experience, an application

implementation that is equivalent on both platforms. OutSystems had a more efficient

implementation for CRUD method response times. Using the provided qualitative evaluation

rubrics, OutSystems achieves a higher developer experience-based score based on the

developer's rating.

Key words: low-code, OutSystems, Mendix, quantitative evaluation, qualitative evaluation,

response time, developer experience

7

TABLE OF CONTENTS

Introduction .. 10

State of the art .. 11

OutSystems .. 12

Mendix ... 14

Fagerholm and Münch’s Framework for Developer Experience……………………...………….16

Proposed Methodology for Comparison .. 18

Evaluation Methodology .. 18

Quantitative evaluation .. 18

Qualitative evaluation .. 19

Module to implement ... 26

Implementation .. 26

Results and Discussion .. 31

Quantitative .. 32

Qualitative .. 32

Conclusions and Future Work ... 36

References .. 38

Appendix A: Qualitative evaulation rubric (Cognition) .. 42

Appendix B: Qualitative evaulation rubric (Affect & Conation) .. 44

8

LIST OF TABLES

Table 1. Main research questions……………………...………………………………..……20

Table 2. Database methods response time for each platform………………….……….…… 32

9

LIST OF FIGURES

Figure 1. OutSystems Architecture Diagram……………………………....………....…… .13

Figure 2. Mendix Architecture Diagram …………………………………..………....…… .14

Figure 3. Mendix Server Architecture Diagram ………….………………..………....…… .15

Figure 4. Developer experience framework……….……………………….………...…….. 17

Figure 5. App Quantitative Evaluation OutSystems……………………….………...…….. 28

Figure 6. App Quantitative Evaluation Mendix……………………………………...…..… 28

Figure 7. App Qualitative Evaluation OutSystems ……………..…………………....….… 30

Figure 8. App Qualitative Evaluation Mendix ……………………………...…………...… 30

10

INTRODUCTION

The low-code platform market is growing and according to Gartner it is expected that

by 2024 it will represent 65% of all application development (Smithson, 2022).

Software development has been in a state of constant evolution over the past few

decades, with the demand for distributed applications and web pages increasing. It is

difficult to meet this demand due to the complexity of establishing a traditional

development environment based on a stack of technologies. Low-code technologies

provide development agility and are expanding for this reason. It is advantageous since it

reduces response times to meet demand and simplifies rapidly integrating diverse

technologies to achieve high productivity (Smithson, 2022).

For businesses to be able to compare and thus improve the platforms with which they

have an agreement, it is essential to benchmark the market's leading competitors. In this

instance, two platforms will be compared: OutSystems and Mendix. These are among the

top three low-code development platforms (Brewster, 2022). Consequently, comparing the

best platforms enables businesses to make better decisions based on costs and productivity.

Since the experience of developers working in these development environments have

received scant consideration and, although research has proven positive developer

experience on low-code platform (Dahlberg, 2020). As far as my knowledge goes, not

much study has appeared to have conducted a comparison of the developer experience on

two low-code platforms. For this study, an evaluation methodology will be defined based

on the framework developed by Fagerholm and Münch in 2012. This is crucial as providing

undesired experiences would lessen the advantages of low-code platforms.

In this report, we compare OutSystems and Mendix, two leading low-code platforms.

We reviewed documentation and analyzed publicly available data regarding the capabilities

11

of each platform. We analyzed the advantages and disadvantages of each platform. Then,

we evaluated the platform's capabilities in specific scenarios to determine their overall

utility.

Additionally, developers value performance because it has a direct impact on their

experience with the application. If an application is slow, developers are likely to become

frustrated and may opt for other alternative platforms.

STATE OF THE ART

Developer experience (DEx) may be characterized as a way to describe how developers

feel and think about their job inside their working environments, with the underlying

premise that enhancing the developer experience has favorable effects on traits like

sustained team and project success (Fagerholm & Münch, 2012). A deeper and more

thorough understanding of developers' emotions, perceptions, motivations, and

identification with their tasks in their respective project environments will be necessary for

new ways of working, in this case low-code technologies (Fagerholm & Münch, 2012).

Low-code platforms (LCP) enable programmers to create software with an intuitive

interface and can accelerate the delivery of business applications by decreasing the typical

time needed. LCPs can produce fully functional applications without the need to write code,

but they may require additional coding for more complex projects. Additionally, certain

low-code platforms eliminate the need for specialized skills in areas like security, data

management, and infrastructure by bridging and simplifying the gap between them

(Sanchis et al, 2019). Furthermore, LCPs can reduce costs associated with installation,

training, deployment, and maintenance (Sanchis et al, 2019). A common advantage is the

12

ability for a wider range of individuals to contribute to app development, not just those with

coding skills but also those who require excellent governance in order to adhere to

standards and regulations.

Low-code platforms like OutSystems and Mendix provide a variety of tools and

features that make it easier for developers to build applications in accordance with industry

standards. LCPs have a library of pre-built components that follow design patterns and best

practices as well as templates with pre-configured components. Often LCPs come with

built-in support for compliance requirements to support features like data encryption,

access controls, and audit trails that help developer while building industry standard

applications.

 OutSystems

Founded in 2001, OutSystems is a low-code enterprise application development

platform that provides companies with access to resources to create, deploy, and maintain

enterprise applications (OutSystems, 2022). OutSystems Achieves ISO 27017 and 27018

Certifications for Cloud Security Compliance which lists controls for a company's

information security management system (OutSystems, 2019).

Architecture

The architecture of OutSystems is a layered ecosystem that enables developers to

build applications quickly, correctly, and for the future. It includes tools, a repository,

builders, processes, and components that simplify difficult integration aspects. The

runtime layer offers the option of deployment either in the OutSystems Cloud or on

13

your systems, with the enterprise licensed version (OutSystems 2023). This can be seen

in the Figure 1.

Figure 1. OutSystems Architecture Diagram

Application Server: There are multiple applications running on dedicated

application servers in each environment. Microsoft IIS and Windows Server are used

for app deployment (OutSystems, 2023).

Database: You can choose to deploy your environment databases on Microsoft

SQL Server, Azure SQL Database, or Oracle (OutSystems, 2023).

Platform server: The Platform Server in each environment orchestrates the

compilation, deployment, and management of all applications. All application servers

that make up an environment have Platform Server installed. (OutSystems, 2023).

14

 Mendix

Founded in the 2000s Mendix is a low-code platform to help software development

organizations accelerate the process of creating, managing, and deploying software

(Mendix, 2021). According to the ISO 27001 standard, Mendix has implemented an

information security management system. (Mendix, 2023).

Architecture

The runtime architecture of Mendix consists of two main components: Clients,

and Runtime server as seen in Figure 2.

Figure 2. Mendix Architecture Diagram

Server architecture: The Mendix Server architecture consists of multiple

components to execute logic, manage data, communicate with the client, and

implement security (Mendix, 2023). As seen in Figure 3.

15

Client architecture: The Mendix Client is responsible for the user interaction

and consists of a UI widget layer, a logic layer to execute offline logic, and a data

layer for offline storage (Mendix, 2023).

Figure 3. Mendix Server Architecture Diagram

This server uses Cloud Foundry that is based on Amazon Web Services

(Mendix, 2023).

ISO 27017 and ISO 27018

ISO 27017 and ISO 27018 are based on ISO 27001 standard, ISO 27017 protects cloud

data, it extends to cloud computing providers controls in earlier compliance standards that

governed information management and sharing by IT vendors. ISO 27018 specifies cloud

data privacy and security. It sets standards for protecting personally identifiable

16

information (PII) in the cloud (International Organization for Standardization, 2022). This

relates on how developers could perceive security on the low-code platforms.

Fagerholm and Münch’s Framework for Developer Experience

As research has shown negative experiences may cause mental health issues to

developers, hence, it’s important to focus on the activities and experience of the developers,

so they don’t take shortcuts or make software of bad quality because of these issues

(Graziotin et al., 2017a; Graziotin et al., 2017b).

As the developer's ultimate objective is to produce software, it is crucial to understand

how thinking and emotion are translated into deliberate action, and how group work should

be methodically arranged to facilitate this. Since low-code platforms break down essential

functionality into easy-to-use modules and components that can be reshaped (Dahlberg,

2020). It is important to understand the interactions the developer has, since they are

fundamental to understand how they correlate with the experience perceived and how it

could be improved (Beecham et al., 2008; Kuusinen et al., 2016).

The framework used for the methodology of this work is based than in psychology, the

idea of mind is generally subdivided into cognition (attention, memory, creating and

comprehending language, problem-solving, and decision-making), affect (feeling,

emotion), and conation (impulse, desire, volition, striving) (Fagerholm & Munch, 2012).

The cognitive dimension includes of aspects that influence the developers' intellectual

perception of their development infrastructure. This covers interactions with development

tools and software process execution (Fagerholm & Munch, 2012).

17

The affective dimension is comprised of variables that affect how developers feel about

their job. Respect and belonging are social variables that contribute to the development of

a sense of safety. This dimension also includes attachment to even work routines

(Fagerholm & Munch, 2012).

The conative dimension comprises of aspects that influence how contributors perceive

their contribution's worth. Deliberate, planned activity with personal objectives that are

appropriately connected with the goals of others is likely to boost a person's feeling of

purpose, drive, and commitment, hence favorably affecting DEx (Fagerholm & Munch,

2012).

As the success of software projects depends on humans, it is essential that the platforms'

experience be accurate, as the tools and methods can only increase the productivity of

trained development teams (DeMarco and Lister, 1999). Because our ability to

comprehend data as humans is limited, we maintain an individual mental state of reality

with which we interpret new data (Fagerholm and Münch, 2012). Therefore, experience is

necessarily subjective. The framework is shown in Figure 4.

Figure 4. Developer Experience framework

18

PROPOSED METHODOLOGY FOR COMPARISON

To evaluate OutSystems and Mendix a methodology for comparison is proposed.

Which includes a quantitative and a qualitative evaluation. The qualitative evaluation is

based on 2012’s developer experience framework by Fagerholm and Münch. And

contemplates the development of an app that makes the developer submerge in each

platform to have a more in-depth experience of development to give they experience based

on the proposed qualitative evaluation rubric for each category, to guide the developer. For

the quantitative evaluation, an app that implements the core methods of a database will be

developed, measuring the response time for each method in both LCPs.

EVALUATION METHODOLOGY

A quantitative evaluation will be conducted obtaining response times as results. To

complement the qualitative evaluation. Searching with multiple queries I found no studies

that have obtained CRUD response times for neither OutSystems nor Mendix. And a

quantitative evaluation based on the framework to answer three research questions with

provided evaluation rubrics for each general category.

 Quantitative evaluation

With the help of a web crawler, the response times for each method for the two

applications will be obtained in milliseconds. An isolated comparison of each platform

will be made for each proposed method, thus obtaining quantitative results on whether

OutSystems or Mendix better implement the methods based on their respective

19

architecture. The execution time of each isolated database method will be measured 100

times. Next, the arithmetic mean, and standard deviation of the resulting execution times

will be determined for each database method. Comparing the execution time of one

method against another is an effective way of evaluating the efficiency and effectiveness

of a particular method. Having access to reliable data can play a significant role in

helping businesses make decisions and improve the way they operate.

 Qualitative evaluation

The qualitative evaluation is based on 2012’s developer experience framework by

Fagerholm and Münch. Given the dimensions of this framework, a research question is

posed for each general category and each platform. And a rubric will be provided for each

category for developers to better evaluate their experience. A study done by Dahlberg

(2020) on low-code platforms and traditional development, with the use of this

framework, proved the utility of a binary rubric, (positive experience, or negative

experience). In this work my aim is to provide the user with a spectrum of how he feels

about the development experience in any given platform. With the obtained results, the

questions will be answered by giving the developer experience for both Mendix and

OutSystems. This project aims to analyze each platform from the point of view of a

developer. In this case, the experience I had developing on each platform.

20

Category Research question

Cognition

How do software developers feel about their work on Mendix and

OutSystems?

Affect

How do developers perceive their contribution's worth in Mendix

and OutSystems?

Conation

How do developers consider the infrastructure for development in

Mendix and OutSystems?

Table 1. Main research questions

The first question addresses aspects of how the developer feels about their work, such

as a sense of belonging, respect, or attachment to social connections or the work itself

(Fagerholm and Münch, 2012).

The second question addresses the conation category and investigates how developers

perceive the value of their contribution. This includes motivation, goals, alignment,

commitment, plan, and intention (Fagerholm and Münch, 2012).

The third and final question focuses on the cognition category, which describes how

developers perceive the infrastructure of the development process. This category includes

platform, technique, process, skill, and procedure-related factors (Fagerholm and Münch,

2012).

For the cognition category the following rubric is provided

• Documentation

o Negative (1)

There is no documentation. Does not have a community forum.

o Mostly Negative (2)

21

The documentation provided is unclear and difficult to follow. Does not

have a community forum.

o Lightly Positive (3)

The documentation is clear and includes what is necessary. Has a

community forum, questions are answered sometimes with a satisfactory

result.

o Mostly Positive (4)

The documentation is clear, logical, and easy to follow. Has an active

community forum, questions are answered most of the time with a

satisfactory result.

o Positive (5)

The documentation is very clear, logical, easy to follow and provides all

possible use cases and issues. Has an active community forum, questions

are answered always with a satisfactory result.

• Installation and configuration

o Negative (1)

It is complex to install. There are no instructions, or they are unclear.

o Mostly Negative (2)

Installation is somewhat difficult, there are minimal instructions.

o Lightly Positive (3)

Common installation with quite clear instructions.

o Mostly Positive (4)

22

Easy installation, easy to follow instructions.

o Positive (5)

Step-by-step installation, automatic. Step by step instructions.

• Ability to collaborate

o Negative (1)

He has no capacity for teamwork or change control.

o Mostly Negative (2)

It has minimal capacity such as file sharing, use of templates, downloading

of previously implemented modules.

o Lightly Positive (3)

It has the capacity to work simultaneously, warning of potential problems

in change control with push and pull operations.

o Mostly Positive (4)

It has the ability to work simultaneously and handles change control

satisfactorily by presenting a conflict report that handles merge operations.

o Positive (5)

It has the ability to work simultaneously, and handles change control in an

excellent way, presenting a conflict report that manages merge operations

and has version control.

• Entry level

o Negative (1)

Thorough programming knowledge is required to start developing.

o Mostly Negative (2)

23

Essential programming knowledge is required to start developing.

o Lightly Positive (3)

Basic programming knowledge is required to start developing.

o Mostly Positive (4)

Minimum programming knowledge is required to start developing.

o Positive (5)

No prior programming knowledge is required to develop.

• Reusability of components

o Negative (1)

The developed modules and components are not reusable.

o Mostly Negative (2)

The developed modules and components can be visualized.

o Lightly Positive (3)

The modules and components developed can be reused within the same

application.

o Mostly Positive (4)

The developed modules and components can be reused within the local

environment.

o Positive (5)

Developed modules and components can be reused within the cloud

environment.

See appendix A, for the evaluation rubric as a table.

For the Affect and Conation categories the following rubric is provided

• Personal-touch

24

o Negative

No capacity provided to add personal touch, everything is static.

o Mostly Negative

Minimal personalization capabilities.

o Lightly Positive

Basic personalization is provided.

o Mostly Positive

Most ideas can be implemented.

o Positive

There is no limit to personalization, the tools provided allow for full

customization.

• Problem-solving

o Negative

Ease of implementation for templates or modules is hard or they don’t

exist.

o Mostly Negative

Implementation for existing templates or modules requires lots of efforts.

o Lightly Positive

Implementations for templates and modules require some changes to their

structure.

o Mostly Positive

Implementation of modules and templates require minimal changes to their

structure.

o Positive

25

Implementation for templates and modules require only drag and drop and

simple clicks.

• Productivity

o Negative

The workflow feels interrupted by unintuitive user interface and

knowledge requirements.

o Mostly Negative

The user interface doesn’t interrupt the workflow, but it is interrupted by

knowledge requirements.

o Lightly Positive

The user interface helps with productivity, but knowledge requirements

interrupt the workflow.

o Mostly Positive

The user interface its optimal for productivity and knowledge requirements

rarely interrupt the workflow.

o Positive

The user interface its optimal for productivity and there are no

interruptions for knowledge requirements.

See Appendix B, for the evaluation rubric as a table.

26

MODULE TO IMPLEMENT

In order to perform the quantitative evaluation of both platforms, two equivalent

applications will be developed on each platform that implement the following database

methods.

o CREATE

o READ

o UPDATE

o DELETE

For the qualitative evaluation, another two equivalent applications will be developed

These applications will include sing-up, log-in, and log-out functionalities, a world cup

table view with sorting capabilities for each column, and pagination for the table.

IMPLEMENTATION

Quantitative evaluation

The implementation of the applications is similar for both platforms. The model used for

the database is the following.

Client

• Name: str (50)

• Username: str (50)

• Password: str (50)

27

Inside the UI we have five buttons, four text fields and one input. The “Load data” button

loads the Client with the required information to run each method, ensuring both

applications receive the same number of bytes in each method.

The “CREATE” button calls the create method with the following Entity:

• Name: NuevoCliente

• Username: NuevoUsuario

• Password: NuevaClave

The “READ” button calls the read method of the client with id one.

The “UPDATE” button runs the update client action with the following data:

• Name: ClienteActualizado

• Username: UsuarioActualizado

• Password: ClaveActualizada

Finally, the “DELETE” button requests the client with the id provided in the input to be

deleted. For this case, the one hundred created Entities were deleted in reverse order.

Each button calls an onClick event, in Mendix this is called a flow, in OutSystems an

action. To display the time taken to response to each text field the performance.now()

function was used inside a JavaScript called inside a flow in the case of Mendix, and

inside an action for OutSystems. Both web pages can be seen in Figure 5 and 6.

To collect all the data a web crawler helped to interact with the desired method button

and retrieve the time taken for the text field corresponding to button clicked.

28

Figure 5. App Quantitative Evaluation OutSystems

Figure 6. App Quantitative Evaluation Mendix

Quantitative evaluation

The models used for the database are the following.

Client

• username: str (50)

• email: str (50)

• password: str (175)

• LoggedIn: Boolean

29

Fixture

• MatchNumber: Integer

• RoundNumber: str (50)

• Date: date

• Location: str (50)

• HomeTeam: str (50)

• AwayTeam: str (50)

• Group: str (50)

• Result: str (50)

The figures 7 and 8 are the applications implemented, achieving a considerable similarity

level with the peculiarities that the pagination of the table in OutSystems it is at the

bottom of the table, and in Mendix at the top.

30

Figure 7. App Qualitative Evaluation OutSystems

Figure 8. App Qualitative Evaluation Mendix

31

RESULTS AND DISCUSSION

The results obtained for OutSystems followed the process described previously on the

methodology. For Mendix, the results were attained from the Web Console also in

milliseconds. With the averaged results for each database method summarized in the

Table 2.

Architecture

The following results make sense since OutSystems uses Microsoft’s IIS for their

server. While Mendix uses their own architecture to handle their data and the server is

Cloud Foundry.

Tried implementations

Microflows are strictly a server-side action whereas a JavaScript blocks its executed

in the client side. For this reason, a JS block can't be inside a microflow. And an

implementation similar to OutSystems was ruled out.

Java action would require implementing additional data models to display information on

screen with Mendix, hence negatively affecting the response times by adding them to the

data model and then rendering their values on screen. Making a database request

essentially run two times, for this reason this was discarded.

32

 Quantitative

The results obtained for OutSystems and Mendix are in the Table 2. The smallest

response time values correspond, for every method, to OutSystems.

Method

OutSystems Mendix

Time [ms] Time [ms]

CREATE 107.01 ± 3.49 196.99 ± 5.58

READ 105.98 ± 3.59 197.06 ± 5.52

UPDATE 107.19 ± 3.66 196.95 ± 5.51

DELETE 106.64 ± 3.60 197.36 ± 5.59

Table 2. Database methods response time for each platform.

Qualitative

As a developer who has worked with both OutSystems and Mendix, using the

evaluation criteria derived from the framework, I compared and contrasted the two

platforms based on my personal experience as a developer. To respond to the three

research questions posed, it should be emphasized that I have prior experience with

OutSystem.

Research Question 1 (Cognition)

How do software developers feel about their work on Mendix and OutSystems?

Starting with documentation, both OutSystems and Mendix offer extensive

documentation that covers all the features of their respective platforms. OutSystems has a

comprehensive online documentation portal that includes a wide range of guides,

33

tutorials, and reference materials; with a community forum that answers all of the

questions from developers. Mendix also has a rich set of documentation resources, and its

community forum answers most of questions from developers. The resources include a

developer portal, user guides, and how-to articles. In terms of the quality and

comprehensiveness of the documentation and community forum, I would rate

OutSystems as Positive (5) and Mendix as Mostly Positive (4).

When it comes to installation and configuration, both OutSystems and Mendix have

straightforward and easy-to-follow instructions. OutSystems offers installation packages

for Windows, Mac, and an alternative for Linux users with wine. It provides step-by-step

instructions on how to install and configure the platform. Mendix also provides detailed

instructions on how to set up and configure the platform. However, it is only available for

Windows, to access Mendix’s Studio Pro platform in any other OS should be with the use

of a virtual machine. In terms of the ease of installation and configuration, I would rate

OutSystems as Positive (5) and Mendix as Positive (5).

In terms of collaboration, both OutSystems and Mendix have robust features that

enable teams to work together on development projects with change control. OutSystems

has a built-in collaboration feature that allows team members to share their work, assign

tasks, and collaborate on projects in real time. It manages version control and presents the

user with a user-friendly UI that manages merge operations. Mendix also offers a range of

collaboration tools, including version control, code review, and team management

features with change control. However, in my opinion, Mendix does not have a user-

friendly UI to manage merge conflicts like OutSystem does. I would rate OutSystems as

Positive (5) and Mendix as Mostly Positive (4).

34

In terms of entry level, both OutSystems and Mendix are relatively easy to learn and

use, making them suitable for developers with a range of skill levels. OutSystems has a

user-friendly interface and a wide range of tutorials and learning resources to help

developers get up to speed with the platform. Mendix also has a straightforward interface

and offers a range of resources to help developers get started, including a comprehensive

developer portal and a range of learning materials. In terms of programming knowledge,

both require minimum programing knowledge such as HTML, CSS, and JS for more

advanced features. I would rate OutSystems as Mostly Positive (4) and Mendix as Mostly

Positive (4).

Finally, both OutSystems and Mendix offer a range of reusable components that can

be easily integrated into applications. OutSystems has a library of pre-built components

that can be easily added to projects, saving developers time and effort, maximizing the

development time. Mendix also offers a range of reusable components, including widgets,

templates, and libraries that can be easily integrated into projects. In terms of the

availability and reusability of components, I would rate OutSystems as Positive (5) and

Mendix as Positive (5).

As a developer, I found working with the OutSystems platform to be more enjoyable.

Since my interactions with the provided resources felt more natural, I did not have to

spend as much time searching for answers when necessary. In other words, I felt more

productive developing in OutSystems.

Research Question 2 (Affect)

How do developers perceive their contribution's worth in Mendix and OutSystems?

Personal-Touch was the most notable distinction between the platforms for me. I

discovered that I could implement almost any concept in OutSystems. In Mendix, I felt

35

less like that, somewhat limited. I would rate OutSystems as Positive (5) and Mendix as

Mostly Positive (4).

In terms of problem-solving, I felt that both OutSystems and Mendix provided

adequate tools. To solve my problems, the built-in modules and templates needed only

minor modifications. I would rate OutSystems as Mostly Positive (4) and Mendix as

Mostly Positive (4).

Finally, both platforms are highly productive, with intuitive user interfaces that

interrupt my workflow infrequently. Mendix was also effective, but I must admit that

OutSystems had a more aesthetically pleasing user interface.. I would rate OutSystems as

Positive (5) and Mendix as Mostly Positive (4).

With OutSystems, I felt that my work was mine, but with Mendix, I had mixed

feelings. I accomplished my goals, though with some constraints. Despite the limitations,

I valued my work contribution in Mendix more.

Research Question 3 (Conation)

How do developers consider the infrastructure for development in Mendix and

OutSystems?

For the Personal-touch, I had difficulty implementing additional functionality to

templates in Mendix, and particularly integrating JavaScript into the flow of logic. In fact,

I was unable to. This was because Mendix’s microflow runs on the server and a

JavaScript Block (in Mendix) on the client side. This is how the architecture of Mendix

works, the server runs the logic and the client is responsible for the user interaction with

an offline logic layer. OutSystems, on the other hand, didn’t pose any complications with

its infrastructure. I would rate OutSystems as Positive (5) and Mendix as Mostly Positive

(4).

36

 For the Problem-solving category, I encountered a similar issue. Some template

functionalities required an entity to be declared in order to use them as variables. In

contrast, OutSystems provides local variables for each new page. I would rate

OutSystems as Positive (5) and Mendix as Mostly Positive (4).

 Finally, in Productivity, for the reasons mentioned above, Mendix did interrupt my

workflow with prior knowledge requirements. While the interruption caused by

OutSystems was rare. I would rate OutSystems as Mostly Positive (4) and Mendix as

Lightly Positive (3).

With their respective architectures, both platforms simplify the process of developing

a functional website. However, I believe OutSystem's infrastructure impacts the

developer's workflow less.

CONCLUSIONS AND FUTURE WORK

In conclusion, based on my experience with both platforms, I am more productive

developing on OutSystems because the user interface is more intuitive and the overall

developer experience is superior. However, it is important to note that I have previously

received training in OutSystems, and this could be a bias to consider. Despite this, it

would be interesting to evaluate if the proposed rubrics helps reduce this bias. This can be

done by evaluating more developers who had not received training for either platform as

well as provide them with the same amount of training in each LCP, ensuring a no bias

approach. Also having two teams of developers with the same amount of experience in

each LCP, could be an option. Based on the proposed methodology and the framework

37

developed by Fagerholm and Munch, we could draw stronger conclusions about whether

OutSystems provides a better developer experience than Mendix. The rubric is an

additional tool that provides a range of how a developer could feel rather than giving a

binary approach. It could also be a useful instrument for companies to evaluate their

developers and determine whether or not their partner platform offers a pleasant DEx.

To better asses the results of the quantitative evaluation it must be mentioned the

problems I had with trying to run the code in the same environment, specifically trying to

extract the generated code for each database method to compare the lines of code versus

the time taken. A more robust quantitative evaluation would probably be to run locally

each application. Mendix does provides a run locally option, but OutSystem does not in

its free version, the enterprise level license would allow for this. Finally, the quantitative

evaluation could be completely rethought, for example: Discarding interactions with the

UI, not displaying the response times on screen. To evaluate just the actions called after

the buttons are pressed for each method (This would solve the issue the Java action had).

Use the Web Console to obtain response times for both platforms. With the help of the

Network Tab. Since it helps to inspect the network requests giving information like

Status, Method, Domain, File, Initiator, transferred (data in bytes), size (of data in bytes),

and time to complete in milliseconds.

38

REFERENCES

Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2008). Motivation in Software

Engineering: A systematic literature review. Information and Software Technology,

50(9–10), 860–878. https://doi.org/10.1016/j.infsof.2007.09.004

Brewster, C. (2022). 9 Best Low-Code Platforms to Use in 2022 | Trio Developers. Retrieved

13 September 2022, from https://www.trio.dev/blog/low-code-platforms

Brown University. (2022). Designing Grading Rubrics | Sheridan Center. Retrieved 13

October 2022, from https://www.brown.edu/sheridan/teaching-learning-

resources/teaching-resources/course-design/classroom-assessment/grading-

criteria/designing-rubrics

Bock, A., & Frank, U. (2021). In Search of the Essence of Low-Code: An Exploratory Study

of Seven Development Platforms. Essen: University of Duisburg-Essen.

Dahlberg, D. (2020). Developer Experience of a Low-Code Platform: An exploratory study.

Umeå: Umeå University.

DeMarco and T. Lister, “Programmer performance and the effects of the workplace,” in

Proceedings of the 8th international conference on Software engineering, ser. ICSE

’85. Los Alamitos, CA, USA: IEEE Computer Society Press,1985, pp. 268–272.

Fagerholm, F., & Munch, J. (2012). Developer experience: Concept and definition. 2012

International Conference on Software and System Process (ICSSP), 73–77.

https://doi.org/10.1109/ICSSP.2012.6225984

https://doi.org/10.1016/j.infsof.2007.09.004
https://www.trio.dev/blog/low-code-platforms
https://www.brown.edu/sheridan/teaching-learning-resources/teaching-resources/course-design/classroom-assessment/grading-criteria/designing-rubrics
https://www.brown.edu/sheridan/teaching-learning-resources/teaching-resources/course-design/classroom-assessment/grading-criteria/designing-rubrics
https://www.brown.edu/sheridan/teaching-learning-resources/teaching-resources/course-design/classroom-assessment/grading-criteria/designing-rubrics
https://doi.org/10.1109/ICSSP.2012.6225984

39

Frank, U., Maier, P., & Bock, A. (2021). Low code platforms: Promises, concepts, and

prospects. A comparative study of ten systems. Essen: University Duisburg-Essen,

Institute for Computer Science and Business Information Systems.

Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson, P. (2017a). Consequences of

Unhappiness While Developing Software. 2017 IEEE/ACM 2nd International

Workshop on Emotion Awareness in Software Engineering (SEmotion), 42–47.

https://doi.org/10.1109/SEmotion.2017.5

Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson, P. (2017b). Unhappy Developers:

Bad for Themselves, Bad for Process, and Bad for Software Product. 2017

IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C), 362– 364. https://doi.org/10.1109/ICSE-C.2017.104

International Organization for Standarization. (2022). ISO/IEC 27001:2022 (Standard No.

27017 and 27018). Retrieved from https://www.iso.org/obp/ui/#iso:std:iso-

iec:27001:ed-3:v1:en

Khorram, Faezeh & Mottu, Jean-Marie & Sunyé, Gerson. 2020. “Challenges & opportunities

in low-code testing”. 10.1145/3417990.3420204.

Lichtenthäler, R., Böhm,, S., Manner, J., & Winzinger, S. (2022). A Use Case-based

Investigation of Low-Code Development Platforms. Bamberg: University of

Bamberg.

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021). Characteristics and Challenges

of Low-Code Development: The Practitioners’ Perspective. Wuhan: Wuhan

University.

https://doi.org/10.1109/SEmotion.2017.5
https://doi.org/10.1109/ICSE-C.2017.104
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-3:v1:en

40

Mendix. (2021). Why was Mendix founded? Mendix. Retrieved from

https://www.mendix.com/evaluation-guide/why-founded/#2-how-did-it-all-start

Mendix. (2022). Runtime architecture. Mendix Retrieved from

https://www.mendix.com/evaluation-guide/enterprise-capabilities/runtime-architecture/

Mendix. (2023). Organization & Compliance. Mendix. Retrieved from

https://www.mendix.com/evaluation-guide/enterprise-capabilities/organization-

compliance/

OutSystems. (2019). OutSystems Achieves ISO 27017 and 27018 Certifications for Cloud

Security Compliance. OutSystems. Retrieved from

https://www.outsystems.com/news/cloud-security-certifications/

OutSystems. (2022). It began with a vision. OutSystems. Retrieved from

https://www.outsystems.com/evaluation-guide/it-began-with-a-vision/

OutSystems. (2023). Infrastructure architecture and deployment options. OutSystems.

Retrieved from

https://success.outsystems.com/documentation/11/setup_and_maintain_your_outsystem

s_infrastructure/setting_up_outsystems/possible_setups_for_an_outsystems_infrastruct

ure/infrastructure_architecture_and_deployment_options/

Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2019). Low-Code as Enabler of

Digital Transformation in Manufacturing Industry. Applied Sciences, 10(1), 12.

https://doi.org/10.3390/app10010012

https://www.mendix.com/evaluation-guide/why-founded/#2-how-did-it-all-start
https://www.mendix.com/evaluation-guide/enterprise-capabilities/runtime-architecture/
https://www.outsystems.com/evaluation-guide/it-began-with-a-vision/
https://doi.org/10.3390/app10010012

41

Smithson, R. 2022. “As demand for enterprise apps booms, agility can be found in low-code

solutions.” Retrieved 9 September 2022, from https://www.developer-

tech.com/news/2022/may/05/as-demand-enterprise-apps-booms-agility-low-code-

solutions/

Trendowicz and Münch, “Factors influencing software development productivity – state-of-

the-art and industrial experiences,” Advances in computers, vol. 77, pp. 185 241,

2009.

Waszkowski, R. (2019). Low-code platform for automating business processes in

manufacturing. IFAC-PapersOnLine, 52(10), 376–381.

https://doi.org/10.1016/j.ifacol.2019.10.060

Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin, Jing Zhan. 2021. “Characteristics

and Challenges of Low-Code Development: The Practitioners Perspective.” In ACM /

IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM) (ESEM ’21), October 11–15, 2021, Bari, Italy. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3475716.3475782

https://www.developer-tech.com/news/2022/may/05/as-demand-enterprise-apps-booms-agility-low-code-solutions/
https://www.developer-tech.com/news/2022/may/05/as-demand-enterprise-apps-booms-agility-low-code-solutions/
https://www.developer-tech.com/news/2022/may/05/as-demand-enterprise-apps-booms-agility-low-code-solutions/
https://doi.org/10.1145/3475716.3475782

42

APPENDIX A: QUALITATIVE EVAULATION RUBRIC (COGNITION)

Evaluation criteria

Category Negative (1) Mostly Negative (2) Lightly Positive (3) Mostly Positive (4) Positive (5)

Documentation

There is no
documentation. Does
not have a community

forum.

The documentation
provided is unclear and
difficult to follow. Does
not have a community

forum

The documentation is
clear and includes what

is necessary. Has a
community forum,

questions are answered
sometimes with a
satisfactory result.

The documentation is
clear, logical, and easy
to follow. Has an active

community forum,
questions are answered
most of the time with a

satisfactory result.

The documentation is
noticeably clear, logical,

easy to follow and
provides all possible

use cases and issues.
Has an active

community forum,
questions are answered

always with a
satisfactory result.

Installation and
configuration

It is complex to install.
There are no

instructions, or they are
unclear.

Installation is somewhat
difficult, there are

minimal instructions.

Common installation
with quite clear

instructions.

Easy installation, easy
to follow instructions

Step-by-step
installation, automatic.

Step by step
instructions.

Ability to collaborate
He has no capacity for
teamwork or change

control.

It has minimal capacity
such as file sharing,

use of templates,
downloading of

previously implemented
modules.

It has the capacity to
work simultaneously,
warning of potential
problems in change

control with push and
pull operations.

It has the ability to work
simultaneously, and

handles change control
satisfactorily by

presenting a conflict
report that manages

merge operations

It has the ability to work
simultaneously, and

handles change control
in an excellent way,
presenting a conflict
report that handles

merge operations and
has version control

Entry level
Thorough programming
knowledge is required

to start developing.

Essential programming
knowledge is required

to start developing.

Basic programming
knowledge is required

to start developing.

Minimum programming
knowledge is required

to start developing.

No prior programming
knowledge is required

to develop.

43

Evaluation criteria

Category Negative (1) Mostly Negative (2) Lightly Positive (3) Mostly Positive (4) Positive (5)

Reusability of
components

The developed modules
and components are

not reusable.

The developed
modules and

components can be
visualized.

The modules and
components developed

can be reused within
the same application.

The developed
modules and

components can be
reused within the local

environment.

Developed modules
and components can be
reused within the cloud

environment.

44

APPENDIX B: QUALITATIVE EVAULATION RUBRIC (AFFECT & CONATION)

Evaluation criteria

Category Negative (1) Mostly Negative (2) Lightly Positive (3) Mostly Positive (4) Positive (5)

Personal-touch
No capacity provided to

add personal touch,
everything is static.

Minimal personalization
capabilities.

Basic personalization is
provided..

Most ideas can be
implemented.

There is no limit to
personalization, the

tools provided allow for
full customization.

Problem-solving

Ease of implementation
for templates or

modules is hard or they
don’t exist.

Implementation for
existing templates or

modules requires lots of
efforts.

Implementations for
templates and modules
require some changes

to their structure.

Implementation of
modules and templates

require minimal
changes to their

structure.

Implementation for
templates and modules
require only drag and

drop and simple clicks.

Productivity

The workflow feels

interrupted by
unintuitive user
interface and
knowledge

requirements.

The user interface
doesn’t interrupt the

workflow, but it is
interrupted by

knowledge
requirements.

The user interface helps
with productivity, but

knowledge
requirements interrupt

the workflow.

The user interface its
optimal for productivity

and knowledge
requirements rarely

interrupt the workflow.

The user interface its
optimal for productivity

and there are no
interruptions for

knowledge
requirements.

