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RESUMEN 

El ictus cerebral es la segunda causa de muerte en todo el mundo después de las 

cardiopatías, y uno de los tipos más preocupantes son las hemorragias intracraneales. Este tipo de 

hemorragia, causada por la rotura de vasos sanguíneos dentro del cerebro, afecta a éste, impide la 

oxigenación celular y causa daños en los nervios. Aunque los recientes avances en medicina han 

sido la salvación para muchos pacientes, los médicos siguen estando sujetos a errores humanos a 

la hora de detectar y segmentar las hemorragias intracraneales debido a las largas jornadas de 

trabajo. Por este motivo, se han introducido modelos de aprendizaje profundo para ayudar a reducir 

los errores en este campo médico. En este sentido, propusimos un nuevo método de aprendizaje 

profundo llamado D-Unet basado en la arquitectura estándar U-net para detectar y segmentar con 

éxito lesiones de hemorragia intracraneal en un conjunto de datos de imágenes de tomografía 

computarizada pertenecientes a 82 pacientes. Tanto la D-Unet como la U-net se entrenaron en las 

mismas condiciones experimentales utilizando un esquema de validación cruzada estratificada de 

diez pliegues, y las medias obtenidas de las puntuaciones del coeficiente IoU y DICE de 0,72 (0,05 

de desviación estándar) y 0,84 (0,03 de desviación estándar) para la D-Unet, y 0,65 (0,04 de 

desviación estándar) y 0,79 (0,03 de desviación estándar) para la U-net, demostraron que la D-

Unet tiende a funcionar mejor que su método de referencia. Además, el modelo mejor D-Unet 

seleccionado en la fase de entrenamiento se validó en un conjunto de pruebas externo, alcanzando 

puntuaciones de 0,86 para IoU y 0,89 para DICE. Esta evaluación del rendimiento en el conjunto 

de datos de prueba confirmó la calidad y la capacidad de generalización del modelo, lo que le 

permitió detectar y segmentar con éxito HIC de diferentes tipos, formas, tamaños y localizaciones. 

Palabras clave: Unet, validación cruzada k-fold, Deep-learning, Hemorragias 

Intracraneales, Tomografía Computerizada, segmentación.  
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ABSTRACT 

Brain stroke is the second-leading cause of death worldwide after heart disease, and one of 

the most concerning types are the intracranial hemorrhages. This type of bleeding, caused by 

ruptures of blood vessels within the brain, affects the brain, prevents cell oxygenation, and causes 

damage to the nerves. Although recent advances in medicine have been the salvation for many 

patients, doctors are still subject to human errors when detecting and segmenting intracranial 

hemorrhages due to long working hours. For this reason, deep-learning models have been 

introduced to help reduce errors in these medical field. In this regard, we proposed a new deep-

learning method called D-Unet based on the standard U-net architecture to successfully detect and 

segment intracranial hemorrhage lesions on a data set of computerized tomography scan images 

belonging to 82 patients. Both the D-Unet and U-net were trained under the same experimental 

conditions using a stratified ten-fold cross-validation schema, and the obtained means of IoU and 

DICE coefficient scores of 0.72 (0.05 of standard deviation) and 0.84 (0.03 of standard deviation) 

for the D-Unet, and 0.65 (0.04 of standard deviation) and 0.79 (0.03 of standard deviation) for the 

U-net, demonstrated that D-Unet tends to perform better than its baseline method. Also, the best-

selected D-Unet model in the training stage was validated in an external test set, reaching scores 

of 0.86 for IoU and 0.89 for DICE. This performance evaluation on the test data set confirmed the 

model’s quality and generalization capacity, making it successful in detecting and segmenting ICH 

of different types, shapes, sizes, and locations. 

Key words: Unet, k-fold cross validation, Deep-learning, Intracranial Hemorrhages, 

Computerized Tomography, segmentation  
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INTRODUCTION 

 

An intracranial hemorrhage (ICH) is a type of bleeding or stroke that affects the brain, 

causing damage to the nerves, being, in most cases, fatal for the patient. Hemorrhages can result 

from various medical conditions such as hypertension, ruptured cerebral aneurysm, arteriovenous 

malformations, hemorrhagic conversion of ischemic infarction, and different types of traumas. 

Furthermore, intracranial hemorrhages are usually caused by ruptures of blood vessels within the 

brain, preventing cell oxygenation, increasing the brain pressure, and thus, ending with several 

brain cells and their functionalities [1]. Thanks to the studies carried out in this area, the symptoms, 

and effects of ICHs, such as tingling, facial paralysis, headaches, motor difficulties (swallowing 

or seeing), and even loss of balance and coordination, have become more evident, increasing the 

efficiency in the detection process [1].  

Some conventional ICH detection methods include physical exams, CT scans, and MRIs 

[1]. Other tests such as blood glucose levels, electrocardiograms, urine analysis, vascular studies, 

and spinal fluid examinations are usually recommended. In recent years, efforts have been made 

to improve the quantity and quality of information that a single image can provide, such as adding 

structural information to the functional data of CT scans [2]. However, the analysis of these images 

is subject to errors, and many come from the human perception of the image [3]. Thus, the interest 

in new and more accurate techniques has grown to the point of being the subject of long 

investigations and collaborations.  

Several ICH detection and classification solutions have been proposed based on machine 

learning and data mining. These have contributed to new possibilities for analyzing MRIs and CT 

scans, among others, quickly and effectively to provide a second opinion to medical specialists. 
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Several deep learning models have proven to be effective for various uses, such as SAE (Stacked 

Auto-Encoders) in [4], DBN (Deep belief Networks) in [5], DBM (Deep Boltzman Machine) in 

[6], RNN (recurrent neural networks) in [7], among others. Models based on a CNN (convolutional 

neural networks) architecture are considered structurally more practical to use in image analysis 

problems since they directly use the images (2D or 3D) as inputs to find relevant features, 

facilitating the pattern learning [8]. For example, in [9], an advanced CNN architecture was 

developed integrating 2D and 3D CNN networks, obtaining accuracy results of 85.3%, 80%, and 

95.3% in the classification of Alzheimer’s, lesions, and healthy brains. Likewise, in [10], an 

automated data channel and 2D and 3D deep neural networks were used to effectively estimate the 

volumes of intracranial hemorrhages. They reached a mean Dice coefficient of 0.914 and a volume 

correlation of 0.979, with a mean volume difference of 1.7ml concerning the ground truth. Also, 

in [11], CNN-based methods were proposed to classify CT images of brains into normal, ischemic, 

and hemorrhagic, obtaining 93.33% of accuracy.  

Other deep learning models have been developed from the CNN architecture, such as the 

U-Net presented in [12]. The O-Net presented in [13] obtained an average Dice coefficient of 

97.26% and 98.29% for brain segmentation in magnetic resonance images on two public data sets. 

In addition, the Ψ-Net is designed to suppress unwanted information and segment the areas of 

hemorrhage more precisely. It was validated on two data sets (spontaneous ICH and traumatic 

ICH), with a total of 4989 slices (1309 of which showed ICH), obtaining dice coefficient scores 

of 95% and 89.47%, respectively [14]. Another variant of the U-Net architecture was presented in 

[15]. It was validated on a data set of 134 CT images (60 for training, 5 for validation, and 69 for 

testing), achieving sensitivity and specificity scores of 81% and 98% per lesion, respectively.  
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Despite the developments in deep learning regarding the models, architectures, and training 

techniques, several factors still threaten overall successful performance, and further research in 

this field is required. In this context, we propose a new deep learning model derived from the U-

Net architecture for the identification and segmentation of intracranial hemorrhages in computed 

tomography scans. The main contributions behind the objective are related to modifications in the 

number of filters in each layer and inclusions of dropout layers to seek a high-performance ICH 

detector. These modifications followed a heuristic search, looking for competitive results based on 

judgement and knowledge, applying the ISO/IEC TR 24372:2021 standard [16] and the 

development of this research considered the principles of design engineering [17]. 
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MATERIALS AND METHODS 

A. Database  

We employed a brain CT images database from Physionet, which was revised and 

approved by the ethics committee of the Iraqi Ministry of Health. This database includes 82 patient 

studies in which 32 of them were diagnosed with ICH of different types (Subarachnoid, 

Intraparenchymal, Intraventricular, Subdural, and Epidural). Each study contains around 30 slices 

(5 mm slice thickness). For the case of patients with ICH diagnosed, it conserves the original CT 

scan image and the lesion’s mask (ground truth) segmented by two radiologists. Moreover, all the 

images are compressed in NIfTI (Neuroimaging Informatics Technology Initiative) file format 

[18]. 

 

Figure 1. Samples of images of our dataset from Physionet. The first row contains the original CT images, 
and the second row contains the same CT images with their respective ground truth 

 

B. Deep learning models  

Deep learning is a machine learning technique that consists of several neuronal layers 

which will contribute with higher complexity to the corresponding architectures. The high 

complexity, in addition to an iterative task (epochs), and usually a large quantity of data, results in 

progressive learning [19]. Deep learning has led to many discoveries and improvements in 

different areas such as visual object detection [20], image segmentation [12], speech recognition 
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[21], image classification [22], genomics [23], time series predictions [24], and medical image 

analysis [25]. Regarding lesion analysis, the U-net model arises as one of the most convenient 

methods to use due to its singular architecture, which combines different convolutional operations, 

assembling the U-shape appearance [12]. It consists of down-sampling (contracting path) and up-

sampling (expansive path) operations. The down-sampling path starts when an image is given as 

input and passes through two sequential 3x3 convolutions of 64 feature channels, followed by a 

ReLU (rectified linear unit) activation function. The process is then followed by a max pooling 

operation with a kernel size of 2x2 and stride 2, which will downsample (reduce) the image 

dimensions. The process then repeats itself doubling the number of feature channels in each layer 

until it reaches a feature space of 1024. Consequently, the up-sampling operations are carried up 

using 2x2 upconvolutions, followed by a concatenation of these resulting maps with their 

corresponding parallel’s cropped output from the contracting path. The cropping for each 

concatenation is required because in every performed convolution, the border pixels are lost. After 

a concatenation is made, two 3x3 convolutional layers are applied (each including a ReLU 

activation). This up-sampling process is done repeatedly until the final layer, where a 1x1 kernel 

size convolutional operation is applied to segment into the different output classes. 

 

C. Proposed method  

We have extended the U-net baseline architecture to develop an improved model that can 

overcome the baseline model in terms of ICH segmentation. The main contributions are related to 

the inclusion of dropout layers, batch normalization layers, and the reduction of the number of 

feature channels at each step in the workflow.  
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D-Unet. This proposed architecture describes a U-net-like model in which the contracting 

path starts with the given image, passing through two sequential 3x3 convolutions of 32 feature 

channels, each followed by a batch normalization layer and a ReLU activation function. Then, a 

max pooling operation with kernel size 2x2 and stride 2 is applied for down-sampling the input 

image and reducing its dimensions. Moreover, there is a dropout layer with 0.2 probability to 

introduce random variation in the learning process and avoid overfitting [26]. This process is 

repeated, and the number of feature channels per layer is doubled until reaching a total of 512 

feature channels in the final layer. Then, the expansive path begins with the application of 2x2 

transposed convolutions operations, up-sampling the image, contrary to the contracting path, 

which uses max pooling operations. It then incorporates a concatenation of the resulting maps with 

their corresponding parallel’s cropped output from the contracting path, followed by two 3x3 

convolutions, each including a batch normalization layer and a ReLU activation function 

sequentially. The process is repeated until the final layer is reached, where a 1x1 kennel size 

convolution operation is applied to output the segmented lesion, as shown in Figure 2. 

 

Figure 2. Workflow of the proposed D-Unet 
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D. Experimental setup  

This section describes the experimental methodology employed to train, validate, and test 

the baseline U-net and the proposed D-Unet models.  

1) Data processing and experimental data set creation. All images were transformed 

from NIfTI to PNG (Portable Network Graphic) file format and filtered to remove noise, such as 

bones, resulting in 2814 images. Since the employed database is class imbalanced, we created an 

experimental balanced data set, containing 318 images with and without ICH lesions. Also, each 

image was resized from 650x650 to 256x256 to decrease the processing time in the training task 

while conserving the lesions’ predicting property. We also applied operations such as rotations, 

horizontal flips, width and height shifts, cuts and zoom to the images to augment the training set 

size on the fly. Since these operations were performed such that no more images were saved into 

the data set, our final created experimental data set consisted of a total of 636 CT images (318 with 

ICH and 318 with no ICH).  

2) Training, validation, and test sets. We selected a random 10% of images of both 

classes (with and without ICH) from the experimental data set to form the test set. The remaining 

90% was considered for feeding a stratified ten-fold cross validation [27] and, thus, to train and 

validate the proposed method. The use of the stratified cross-validation technique contributes to 

validating the models over several splits and avoiding overfitting in the training phase.  

3) Model configuration. The hyperparameter configuration consisted of a static batch size 

of 32 and 1000 epochs for both architectures (normal U-net and D-Unet). Furthermore, we used a 

10^4 learning rate and applied it to an Adam optimizer [28], since it has little memory requisites, 

is computationally efficient, and is optimal for data with large inputs, outputs, or parameters.  
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4) Assessment metrics. We computed the mean and standard deviation of Intersection 

Over Union (IoU) and Dice coefficient metrics over the 10 folds performed on each architecture 

to assess the proposed method. These metrics are largely used in image segmentation problems 

and vary from 0 to 1, with 0 being the lowest punctuation in terms of similarity between the real 

masks (ground truth) and the predicted masks. The IoU metric describes a ratio between the 

intersection of the predicted mask and the ground truth, and the union of these [29]. That means, 

it is obtained by dividing the intersection of the real and predicted masks by their union. On the 

other hand, the Dice coefficient is the result of two times the intersection of the predicted, and real 

masks divided by the total of pixels of the two masks [30]. Furthermore, we used the Dice loss as 

the loss function in the training step as in [31] to enhance our model’s performance.  

5) Selection criterion. We considered checkpoints every 100 epochs for a total of 10 

inspected models per architecture (Unet and D-Unet) during the training stage (guarantees 

avoiding an exhaustive search in the whole learning space) to calculate the mean IoU and Dice 

coefficients over the 10 folds. The model with the maximum punctuation in both previously 

mentioned metrics is selected as the best model. 
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RESULTS AND DISCUSSION 

 

This section presents and discusses the evaluation of two different methods on an 

experimental data set, containing 618 images with and without ICH lesions in conjunction with a 

stratified ten-fold cross-validation schema. The obtained results based on the mean of IoU, Dice, 

and Dice loss metrics can be read in Table I.  

 
Table 1. Performance results of deep learning models 

 

 
 

Conv.- convolutional; f- number of filters per layer; u- units; Train IoU, Train DICE, Validation IoU, validation 
DICE - mean of training and validation metrics DICE and IoU over ten folds; STD - standard deviations the 

respective metric. 
 

A. Performance evaluation in the training set 

 From Table 1, we can appreciate that both the Dice and IoU scores obtained by the 

proposed D-Unet were modest during the first epochs; nonetheless, we can observe these values 

start climbing and begin to reach certain stability between 500 and 600 epochs, which can be 

described as normal behavior since deep learning models require several iterations to appropriately 

adequate their internal parameters. Additionally, we can observe that even though the training 

values for both metrics are higher for the U-net model than the proposed D-Unet model, the 

validation scores do not present the same tendency, and even show better results for most 
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checkpoints for the proposed architecture. In this regarding, the best performances in terms of high 

mean Dice and IoU validation scores and low standard deviations are shown in bold in Table I 

(one for each architecture). The mean scores show us the capacity of the models to properly 

segment ICH in comparison to the ground truth, whilst the standard deviations give us an idea of 

the closeness of all the collected values in each fold to the respective mean scores. The U-net 

architecture showed its best performance with 600 epochs, obtaining values of 0.65 for IoU and 

0.79 for Dice, with 0.04 and 0.03 as their respective standard deviations. In the case of the DUnet 

architecture, the highest performance was obtained with 800 epochs, where the mean scores (0.72 

and 0.84 for IoU and Dice respectively) were maximized with minimal standard deviations (0.05 

for IoU and 0.03 for Dice). 

Despite Table I shows that the scores of the original U-net grow faster than the proposed 

method, from the 200 epochs onwards, D-Unet starts showing more accurate predictions and its 

curve seems to exceed the one of U-net. This conveys that with more training iterations, D-Unet 

has the tendency to enhance ICH predictions and better the performance of the detector in 

comparison to its baseline model. In this context and comparing the best models of both 

architectures previously mentioned, we established that the best overall performance and the best-

selected model was D-Unet with 800 epochs (underlined in Table I) since it outperforms the best 

model obtained from the normal Unet, with differences of 0.07 and 0.05 for IoU and Dice, 

respectively. This comparison was made based on the validation scores, being the most 

representative since the model needs to be tested on an unseen data set. Furthermore, these 

interesting scores, along with the low standard deviations of the best selected model, indicate us 

high generalization and prediction capacity. 
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Figure 3. Performance of the best-chosen model regarding our Dice 
loss function 

 

In Figure 3, we can see the behavior of the best selected model through a training and 

validation loss graph. This graph indicates us that the training and validation loss values decreased 

in a similar manner and reached a value of less than 0.2. This similarity of the curves shows us 

that overfitting was avoided successfully, meaning that the usage of dropout layers and the 

minimization of the model’s complexity helped in this training process. 

 

B. Performance evaluation in the test set  

We used the D-Unet trained with 800 epochs, which was the best model selected in the 

training step, to test its generalization power on an external test set, containing XXX images with 

and without ICH. The obtained results of 0.86 and 0.89 for the IoU and Dice coefficient highlighted 

the promising performance of the proposed method in segmenting ICH lesions on unseen CT 

scans. An example of successful ICH segmentation cases of the test set is shown in Fig. 4. 
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Figure 4. Images from our test set. The first row contains the original CT images, the second row contains the same 
CT images with their respective ground truth, and the third row contains the images with our predicted masks. 

 

From Figure 4, it is possible to observe that the proposed method approximates the lesion’s 

area close to the ground truth on each sample. Furthermore, it identified and segmented different 

types of ICHs, independently of their shape, size, and location, such as Epidural Hemorrhages (see 

Figure 4, columns 1, 4, and 5), Subdural Hemorrhages (Figure 4, columns 2 and 3), and 

Subarachnoid, Intraparenchymal and Intraventricular hemorrhages (Figure 4, column 6). 

However, small, and dispersed ICHs are still challenging. That could be explained by the initial 

resize of the images in the experimental data set. The loss of image information during this process 

may affect the learning process of the proposed method.  

Overall, the obtained results of the proposed method led us to believe that it is competitive 

in comparison to its baseline model. Despite the limited data set size, the proposed architecture 

was trained with, the yielded results on the test set suggest proper ICH segmentation and strong 

generalization capacity.  
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CONCLUSIONS AND FUTURE WORK 

 

We proposed a new deep-learning method called D-Unet based on the standard U-net 

architecture to successfully detect and segment ICH lesions on a data set of CT scan images 

belonging to 82 patients. Both the D-Unet and U-net were trained under the same experimental 

conditions using a stratified ten-fold cross-validation schema, and the obtained mean and standard 

deviation of IoU and DICE coefficient scores of 0.72 (0.05) and 0.84 (0.03) for the D-Unet, and 

0.65 (0.04) and 0.79 (0.03) for the U-net, demonstrated that D-Unet tends to perform better than 

its baseline method. Also, the best-selected D-Unet model with 800 epochs in the training stage 

was validated in an external test set, reaching scores of 0.86 for IoU and 0.89 for DICE. This 

performance evaluation on the test data set confirmed the model’s quality and generalization 

capacity, making it successful in detecting and segmenting ICH of different types, shapes, sizes, 

and locations.  

In the future, we aim to implement other deep-learning variations of the proposed method, 

improving the architecture and parameter configurations. Additionally, we will explore 

alternatives in which the combination of other deep-learning models, such as recurrent-residual 

convolutional neural networks with U-net could enhance the performance of the proposed method. 

Finally, we want to search for different and larger databases, including not only CT scan images 

but also magnetic resonance images, to repeat the entire process in search of more generalizable 

models.  
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