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RESUMEN 

La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo complejo que 

involucra varios neurotransmisores y cuya causa subyacente aún se desconoce. Los 

tratamientos actuales no ofrecen un perfil farmacológico óptimo, lo que impacta en la 

calidad de vida de los pacientes. Además, el proceso para desarrollar medicamentos es 

largo y costoso, lo que dificulta el descubrimiento de nuevas opciones. En este sentido, 

los investigadores han recurrido a enfoques in silico como un camino hacia nuevos 

tratamientos. El presente trabajo propone la creación de una base de datos que se utilizó 

para construir un modelo de predicción robusto sobre la relación estructura-actividad 

cuantitativa (QSAR) mediante la aplicación de diferentes algoritmos de aprendizaje de 

maquina (machine learning). Este modelo se utilizó para el cribado de la base de datos de 

Drug Bank para encontrar la posible aplicación de medicamentos ya existentes como 

alternativas para tratar la EP. El estudio se complementó con cálculos de acoplamiento 

molecular que proporcionan una comprensión más profunda de las interacciones entre la 

enzima y los inhibidores. A partir de la base de datos, la kinasa LRRK2 y los valores de 

pIC50 fueron seleccionados respectivamente como enzima y parámetro de medición de 

actividad y se utilizaron para el estudio QSAR. El modelo propuesto tenía 7 descriptores 

y mostró una fuerte capacidad de predicción con una validación cruzada y externa 

superiores a 0.79. El modelo también aprobó todos los requisitos de la prueba de 

validación de Tropsha. El cribado de la base de datos de Drug Bank llevó a la sugerencia 

de tres medicamentos para estudiarlos como posibles nuevos tratamientos. Los cálculos 

de acoplamiento molecular ayudaron a examinar las interacciones inhibidor-enzima, pero 

se requiere mayor investigación para un análisis más profundo. 

Palabras clave: Enfermedad de Párkinson, LRRK2, pIC50, QSAR, acoplamiento 

molecular, cribado, Drug Bank. 
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ABSTRACT 

Parkinson’s disease (PD) is a complex neurodegenerative disorder that involves several 

neurotransmitters and whose underlying cause is yet unknown. Current treatments do not 

offer an optimal pharmacological profile, which impacts the patients’ quality of life. 

Besides, the process to develop drugs is long and expensive, making it harder to discover 

new options.  In this regard, researchers have turn to in silico approaches as a leading path 

towards novel medicines. The present work proposes the creation of a dataset that is used 

to build a robust prediction model on the quantitative structure-activity relationship 

(QSAR) by applying different machine learning algorithms. This model is used for the 

screening of the Drug Bank database to find the possible application of already existing 

medicines as alternative treatments for PD. Furthermore, the study is complemented with 

molecular docking calculations that provide a deeper understanding of the interactions 

between the enzyme and the inhibitors. From the dataset, leucine-rich-repeat-kinase II 

(LRRK2) and pIC50 values were respectively selected as enzyme and activity 

measurement parameter and were used for the QSAR study. The proposed model had 7 

descriptors and exhibited a strong prediction capability with a fivefold cross and external 

validations greater than 0.79. The model also approved all the requirements of the 

Tropsha’s validation test. The screening of the Drug Bank dataset led to the suggestion 

of three drugs to be studied as possible new treatments. Molecular docking calculations 

helped examine inhibitor-enzyme interactions, but more research is required for in-depth 

analysis. 

Key words: Parkinson’s disease, LRRK2, pIC50, QSAR, molecular docking, screening, 

Drug Bank. 
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INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disorder that affects 

approximately 10 million people worldwide and is characterized by the loss of 

dopaminergic neurons in the substantia nigra. It is a multifactorial disease caused by a 

combination of genetic and environmental factors like head injury and exposure to certain 

chemicals1. However, its underlying cause, as well as the mechanisms by which it 

progresses, remain unknown2,3. This is because PD involves several neurotransmitters3 

including dopaminergic and non-dopaminergic agents3–5, which makes it a very complex 

disorder. In addition, the knowledge of molecular targets to treat PD is narrow and 

incomplete2. Consequently, it is difficult to develop treatments that offer optimal results. 

In this context, there is an unmet to discover new compounds that offer an effective 

pharmacological profile to stop Parkinson's rapid progression. 

Current medicines for PD are limited, fail to stop its evolution and cause 

unpleasant side effects. In fact, most of them focus only on alleviating symptoms and 

slowing down the disease2, but they don’t address a solution for the root problem6. One 

of the most used drugs is levodopa (L-DOPA) in combination with monoamine oxidase 

B (MAO-B) inhibitors and other one-target drugs7. However,  L-DOPA gradually loses 

its efficacy, causes side effects like dyskinesia4, and may worsen symptoms like 

hallucinations and the dysregulation syndrome5. In the same way, MAO-B inhibitors 

cause hepatotoxicity and cheese reaction8. Moreover, the mixture of compounds leads to 

drug-drug interactions that produce severe side effects9. Therefore, patients end up with 

a bad quality of life. The difficulty is that the process to develop new medicines is long 

and expensive. First, because in vivo test are costly and show variability2. In addition, in 

vitro test have limitations due to the existing struggle to recreate an accurate environment 

since models used for the tests were originally designed to study brain cancer2. 
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In the last two decades some in silico, in vitro, and in vivo studies have been 

conducted to target different enzymes involved in PD. In this extent, several molecular 

targets have been of interest as antiparkinsonian agents. One of them is adenosine A2A 

receptor (AA2A), which belongs to the A-family of the G-protein-coupled receptors 

(GPCRs). This enzyme is involved in the control of motor functions and dopamine 

receptor activation.  Therefore, its inhibition increases the level of dopamine and 

enhances signaling transmission2,7,10. Different compounds, such as 1,3,5-triazine-

thiadiazole hybrids10,11, 2-benzylidene-1-indanone, and -tetralone derivatives12,13, have 

been investigated as potent inhibitors of this enzyme.  

In the same way, monoamine oxidase B is a target of interest as it plays a key role 

in the deamination of dopamine, which initiates a series of events that cause the 

development of PD14. Additionally, MAO-B inhibitors have shown neuroprotective 

properties3, so they are promising candidates for the treatment of this disorder. Scientists 

are looking for novel selective and reversible inhibitors of this target enzyme. Recent 

investigations have focused on acacetin 7-methyl ether15, rutamarin16, coumarins17 and 

derivatives from isocarboxazid8, 4-(3-Nitrophenyl)thiazol-2-ylhydrazone18, indole-

substituted benzothiazoles and benzoxazoles19, (S)-2-(benzylamino)-propanamide20, and 

eugenol21, between others.  

Researchers have also focused on leucine-rich-repeat-kinase II (LRRK2) as a 

target in the treatment of PD. It has been shown that mutations in the LRRK2 gene are 

related with familial PD and are a major genetic risk factor for sporadic PD because they 

damage dopaminergic neurons6,22,23. Therefore, it has been hypothesized that the 

inhibition of this enzyme may target a ground cause of the disorder and slow its 

progression by inducing adult neurogenesis6,23. Type II kinase inhibitors, as well as 

derivatives from 5-azaindazole6 and indolinone23, have been studied in this regard.   
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The searching of possible drugs assisted by in silico studies has attracted the 

attention of the research community, and the use of the quantitative structure-activity 

relationship (QSAR) approach in combination with other techniques as pharmacophore 

analysis, molecular docking, and molecular dynamics has demonstrated to be adequate 

for the case of different diseases, such as type 2 diabetes24, primary hyperoxuluria type 1 

(PHT1)25, tuberculosis26, drug-induced liver injury27 and SARS-CoV-228. QSAR studies 

seek to predict the biological activity of molecules based on their structural and 

physicochemical properties25,29. Meanwhile, molecular docking and molecular dynamic 

studies are used to explore the ligand-receptor interaction and predict the formation of 

stable complexes considering external conditions25,30. 

From the state of the art about the possible searching of drugs for this disease, it 

is extremely difficult to find a concise, systematic, and diverse dataset for the possible 

development of a robust and predictive model based on the quantitative structure-activity 

relationship (QSAR) approach. In this respect, the present work aims to propose a dataset 

for the construction of a model focused on different machine learning algorithms, and the 

model is used for the screening of the Drug Bank database, searching the second use of 

well-known drugs for the treatment of PD. The results obtained in the previous described 

modelling are complemented with the molecular docking calculation for the selected 

enzyme as target. It is expected that the project has academic, social and economic 

impacts since computational studies are cheaper than in vitro ones27 and help reduce the 

number of experimental tests.  
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METHODOLOGY 

The methodology followed in this study is based on three different approaches of 

computer aided drug design (CADD): QSAR, molecular docking, and virtual screening. 

First, a dataset was constructed based on available information in the literature. Then, the 

dataset was used as input for the QSAR studies. In the same way, the results of the QSAR 

procedure were used to perform the virtual screening. Simultaneously, molecular docking 

analyses were executed using the compounds from the data set in addition to the drugs 

that excelled in the virtual screening. The process is summarized in Figure 1. 

 

Figure 1. Block diagram of the methodology process 

Construction of the data set and enzyme selection for the computational studies 

For the construction of the dataset, publications from the last 15 years about the 

enzymes being targeted in the treatment of Parkinson’s disease and current inhibitors of 

those enzymes were revised. Then, the parameters used to measure the inhibition of the 

enzymes in each study were identified. The collected information was classified 

according to the enzyme being studied in each paper and the parameter used to measure 

inhibition. The information was registered in a table in Microsoft Excel that distinguished 

between the following categories: name and structure of the inhibitor, name of the enzyme 

being targeted, the parameter used to measure the ligand-enzyme interaction and its 
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corresponding value, units of the quantity measured, and citation of the paper from which 

the information was taken. This table was used for the enzyme selection. 

Based on the number of inhibitors found for each enzyme and the efficiency of the 

process, only one target with its corresponding activity measurement parameter was 

selected for the computational studies. In this case, LRRK2 enzyme and the IC50 values 

for the inhibitors were chosen. IC50 values indicate the concentration of drug required to 

inhibit 50% of the enzymes31. However, some compounds from the selected group were 

discarded based on the following criteria: 

▪ values reported were inexact, meaning they used > or < to indicate 

concentrations above or below a certain number, and 

▪ molecules came from a dataset with less than 4 candidates. 

After polishing the list of LRRK2 inhibitors, a common control drug used for the 

biological assay was used as reference for the final construction of the dataset.  Then, the 

molecules were drawn by using GaussView software. 

Quantitative structure-activity relationship (QSAR) studies 

The molecules’ files created on the previous stage of the process, were introduced in 

QuBiLs-MIDAS software27 and all of them were merged in a single file. Next, the 

structures were transformed to their Keculé configurations to remove the resonance. 

Then, the molecules were optimized in 3D structures using the same Universal Force 

Field (UFF) parameter25. The structures were merged into a single set using Open Babel 

software and optimized with RDKIT software so that they had the same optimization 

parameters. Afterwards, ToMoCoMD MIDAS software was used to calculate de number 

of 3D topographic descriptors in a high-performance computer (HPC)25 and the best 

descriptors were selected based on the Shannon entropy value of 0.7 and the Pearson 
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coefficient of 0.7. Then, the IC50 quantities were transformed to their corresponding pIC50 

values using the formula 𝑝𝐼𝐶50 = −log⁡(𝐼𝐶50, 𝑀). 

 Prediction models that correlate the descriptors with the pIC50 values were built using 

different machine learning algorithms of Weka software. Three search methods—Genetic 

Search (GenSe), Greedy Stepwise (GreedSt), and Best First (BF)—were used with each 

of the following classifiers of the Wrapper Subset Evaluator: Gaussian Processes (GP), 

Linear Regression (LR), SMOreg, IBK, and Random Forest (RF). The process was 

repeated two consecutive times. Subsequently, models with less than 9 descriptors were 

selected and for each one of them, inhibitors were separated in a training set and a test 

set. The training and test sets were used to evaluate the performance and predictability of 

the models32. Models were evaluated and validated applying the external (Ext) and 

fivefold cross-validation (CV) methods. 

Furthermore, the applicability domain (AD) of the test set on the training of the best 

model was analyzed. The AD is the theoretical range in which QSAR predictions are 

considered reliable and accurate, and it is defined by the training set of a model25. It was 

determined using AMBIT software through the defined consensus by default of 4 

methods: Range, Euclidean distance, City-block and probability density 25.  

Drug Bank screening 

The Drug Bank database was screened using the best model from the QSAR study 

and the pIC50 value of each compound was predicted. The compounds with a pIC50 value 

higher than 9 were selected and the current applications of each one of them were 

investigated to determine the most suitable drugs to be potential treatments for 

Parkinson’s disease. The selected drugs were subjected to molecular docking studies. 
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Molecular docking studies  

To perform the molecular docking studies, the X-ray diffraction crystal structure of 

human LRRK2 (PDB:4YZN) was downloaded from the Protein Data Bank (PDB). Then, 

PyMOL software was used to prepare the enzyme and the inhibitors for the molecular 

docking calculations25. Waters were removed and the natural ligand was separated from 

the enzyme25. Afterwards, all LRRK2 inhibitors from the dataset, as well as the selected 

compounds from the Drug Bank and the natural ligand, were docked against the enzyme 

using AutoDock Vina software. Before performing the docking calculations, 

AutodockTools was used to add polar hydrogens and obtain the structures in .PDBQT 

format25. The coordinates used for the calculations were based on the active site of the 

enzyme (x=-8.308, y=16.203, z=18.565) and the grid box size was 12, 14 and 14 

Angstrom for x, y, and z axes respectively.  
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RESULTS AND DISCUSIONS 

Construction of the data set and enzyme selection for the computational studies 

During the literature revision, three enzymes outstood as targets of interest in the 

treatment of PD (AA2A, MAO-B and LRRK2) have been primarily studied. In addition, 

it was determined that Ki and IC50 values are the main parameters used to measure the 

biological activity of the enzymes’ inhibitors. However, the reported values for some of 

the molecules were inexact and, therefore, those compounds were discarded from the 

dataset. Based on this information, an histogram was constructed (Figure 2).  

 

Figure 2. Number of inhibitors found per enzyme and per biological activity indicator 

Figure 2 indicates the number of inhibitors found for the enzymes of interest and 

the corresponding parameter used to measure their activity. It can be seen that the 

category with the greatest number of molecules is the one that measures the inhibition of 

MAO-B in terms of IC50 values. In contrast, few studies used Ki to measure the inhibition 

of this enzyme. Only 11 molecules entered the previously mentioned category. This is 

probably related to the fact that experimental IC50 values are obtain at lower costs of time, 

materials and effort than Ki ones33. Regarding the number of compounds studied as 

LRRK2 inhibitors, it is slightly inferior to the one of AA2A.  However, it can still be 

considered a strong and reliable dataset. LRRK2 was preferred over MAO-B and AA2A 
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because of structural diversity of the inhibitors found and based on the fact that they have 

the same control compound: Sunitinib6,23,34, which is a multi-specific tyrosine kinase 

inhibitor35. The 2D structure of this molecule is depicted in Figure 3. The two rings at the 

left bottom were used as scaffold of the other derivative compounds, which may suggest 

they play an important role in the inhibition of the enzyme.  

 

Figure 3. Structure of Sunitinib 

QSAR Studies 

More than forty subset of descriptors were found with the different combination of 

machine learning techniques and searching methods. Then, fifteen individual models with 

less than 9 descriptors were selected for further studies. All of them satisfy the criteria of 

QCV
2 > 0.7 when they are trained to predict the pIC50 values. The models were named 

from M1 through M15 as indicated in Table A1 from the supplementary information. 

After dividing the molecules in the corresponding training (75%) and test (25%) sets and 

performing the external and cross-validations (Table A2), the best two models were 

identified. They were selected on the basis that both of their validation coefficients, QCV
2 

and QExt
2, are greater than 0.79.  The exact values are shown on Table 1, as well as the 

corresponding MAEs. Model M1 was preferred over M10 because it has less descriptors 

and smaller external and cross-validation MAE.  



19 

 

Table 1. Characteristics of M1 and M10 models 

Name of 

the Model 

Machine 

Learning 

Algorithm 

Number of 

descriptors 
QCV

2 MAECV QExt
2 MAEExt 

M1 LR 7 0.798 0.354 0.795 0.363 

M10 SMOreg 9 0.797 0.390 0.803 0.373 

 

The AD of model M1 was analyzed as described in the methodology section. 

Fortunately, all molecules from the test set entered the domain and no recalculation of the 

statistical parameters had to be done. The performance of model M1 was analyzed by 

plotting the experimental pIC50 values of each inhibitor against the ones predicted 

computationally through the model’s equation, the fivefold cross-validation and leave-

one-out (LOO) methods for the training set and the external evaluation for the test set. 

Similarly, model M10 was assessed by relating the experimental and predicted pIC50 

values using the external and cross-validation approaches.   

 

 

           a                                                                       b                       

Figure 4. a) External and cross validation (CV) of M1 model, b) External and cross 

validation (CV) of M10 model                                   
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As it can be seen in Figure 4, the two models, M1 and M10, present a good 

linearity (both Q2s >0.79) which indicates their robustness to predict LRRK2 inhibition 

within the AD. In addition, model M1 showed a good fitting when values were plotted 

using the models’ equation and the LOO prediction method as shown in Figure 5.  

 

           a                                                                    b 

 

c 

Figure 5. a) Prediction by model's equation, b) Prediction by LOO method, c) Prediction 

by model’s equation when all molecules are included in the same set. 

Model M1 has a correlation coefficient (R2) of 0.846, meaning its equation can 

reliably predict the inhibitory activity of LRRK2 of this dataset. When the molecules from 

the test set were considered, R2 of the adjustment only decreased by 0.014. The LOO 
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method of prediction presents the lowest linearity. Nonetheless, its Q2 value varies very 

little in comparison to those of the external and CV. Therefore, the results are consistent 

between one another and M1 can be considered a robust prediction model.  

Furthermore, the accuracy of model M1 was validated using the Tropsha’s test as 

found in the literature26 (Table 2). All the statistical parameters of Table 2 approved the 

validation test. Consequently, they corroborate the previous results on M1’s robustness 

and reliability.  

Table 2. Validation based on the Tropsha's test for QSAR modeling 

 Leave-One-Out Validation External Validation 

Criterion  Result Assesment  Result  Assesment  

r2 > 0.6 0.846 Pass 0.846 Pass 

r2val > 0.5 0.786 Pass 0.795 Pass 

(Q2val − R0'
2)/Q2val < 0.1 0.048 Pass 0.070 Pass 

(Q2val − R0
2)/Q2val < 0.1 0.002 Pass 0.000 Pass 

abs (R0
2 − R0´

2) < 0.1 0.036 Pass 0.056 Pass 

0.85 < K < 1.15 0.999 Pass 0.978 Pass 

0.85 < k’ < 1.15 0.996 Pass 1.019 Pass 

 

Finally, the collinearity between descriptors of M1 was analyzed to guarantee 

there is no redundant information or overfitting in the model. A Pearson coefficient of 

r<0.7 between the descriptors was stablished as baseline to consider it a strong model25. 

No descriptor had a correlation coefficient higher than 0.6 (Figure 6), which confirms the 

models’ strength. A table with the descriptors’ full names as well as a detailed matrix of 

all the Pearson coefficients can be found in the supplementary information (Table A3 and 

Table A4).  
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Figure 6. Pearson correlation coefficients for descriptors of model M1 

 The descriptors were also analyzed in terms of their number of appearances in the 

models. It was determined that models M1 and M10 only had one common descriptor 

(Table A3), which indicates there is diversity between them. This also suggests that an 

ensemble model could be built to significantly increase their prediction capacity while 

analyzing a wider range of structural and physicochemical properties. The common 

descriptor is present in two other of the remaining best 15 models as well. This fact 

advocates the importance of the descriptor in the prediction of pIC50 values of the dataset. 

Similarly, descriptor GV[5]_KA_ps_MID, which belongs to M10, is present in 40% of 

the best models, demonstrating its relevance in the prediction of the selected parameter.  

 Properties like softness (s), hardness (h), polarizability (p), electronegativity (e), 

Van der Waals volume (v), charge (c), and molecular weight (m) were found as 

descriptors. These parameters have been analyzed in the drug development of numerous 

diseases24,25,27. It should be remarked that the property most frequently evaluated by the 

descriptors of M1 and M10 is polarizability. This is probably due to the presence of highly 

electronegative atoms like oxygen, nitrogen, and halogens in the inhibitors.  



23 

 

Drug Bank screening 

The screening of the Drug Bank database resulted in a list of approved and 

experimental drugs that could be explored as potential new treatments for PD. Model M1 

was used to predict the pIC50 values of the different drugs as described in the methodology 

section, of which 273 compound entered the AD. 32 out of the 273 molecules had a pIC50 

greater than 9 and, between them, four exhibited properties that make them suitable for a 

second application as PD treatments. Most of the compounds that presented a pIC50 > 9 

are experimental drugs (22 out of 32) and, therefore, there is no available information on 

their applications. For that reason, they were discarded. Similarly, antibiotics and 

antivirals were not considered appropriate options since antimicrobial and antiviral 

resistance are a major problem nowadays36,37. The remaining molecules, Triamterene, 

Phenazopyridine, Cannabigerol, and Ademetionine, were plausible alternatives due to 

their anti-inflammatory and analgesic characteristics (Table 3). Nonetheless, 

Ademetionine was also left out because it produces unwanted side effects38–40. Detailed 

information of each of the 32 drugs is found in the supplementary information (Table B1).  

Table 3. Description of the selected medicines from the Drug Bank 

Name Drug Bank ID Description 

Triamterene DB00384 Potassium-sparing diuretic used in the treatment 

of edema and hypertension41. 

Phenazopyridine DB01438 Local anesthetic used for the relief of discomfort 

caused by pain, burning, and irritation42.  

Cannabigerol DB14734 Natural product found in Cannabis sativa and 

Helichrysum. It enhances appetite and acts as an 

anti-inflammatory, antioxidant and 

neuroprotective agent43.  

Ademetionine DB00118 Physiologic methyl radical donor used as anti-

inflammatory and applied in the treatment of 

depression, liver disorders, fibromyalgia, and 

osteoarthritis. It has also been used as dietary 

supplement for the support of bone and joint 

health, and as a mood and emotional regulator44.  
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Molecular docking studies 

 The interaction between LRRK2 enzyme and its inhibitors (the compounds of the 

dataset and the three selected drugs) was studied in detail with molecular docking, and 

the obtained results were compared to the ones of the natural ligand (4K5). Two of the 

compounds exhibited the same docking scores as the natural ligand (-8.6 kcal/mol), and 

four of them presented even more negative energies (from -8.7 to -9.2 kcal/mol). For the 

molecules that displayed more positive scores, the range varied between -6.0 kcal/mol 

and -8.5 kcal/mol, of which 15 compounds had energies lower than -8 kcal/mol (Table 

C1). This shows that, in general, the molecules from the proposed dataset can easily 

interact with LRR2 enzyme. However, when taking into consideration the pIC50 values, 

compound 1_31 is the most promising candidate to be a possible new treatment for PD 

since it has the highest pIC50 value and almost the same binding energy as the natural 

ligand of LRRK2 enzyme (Table C1). 

The molecular docking calculations were validated by comparing the natural 

ligands’ experimental and docked conformations and verifying they overlap in the 

enzyme’s active site (Figure 7). The overlaying of both structures demonstrates the 

viability of this procedure to be applied in the study of the binding mode of LRKK2 

inhibitors. Additionally, the docking scores were plotted against the pIC50 values to 

determine if any correlation existed between them (Figure C1). The plot shows a tendency 

of increasing pIC50 as the docking scores become more negative.  However, it was found 

that they cannot be used to predict the pIC50 of a molecule because their correlation is 

extremely low (0.13).   
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Figure 7. Comparison between 4K5 experimental (turquoise) and docked (violet) 

conformations 

Regarding the drugs from the Drug Bank database, Triamterene was the one with 

the most negative docking score (Table 4), which indicates it is more easily binded to the 

enzyme than the other two. Moreover, Triamterene has a high pIC50 value compared to 

the molecules of the dataset. Consequently, this drugs exhibits a good interaction in terms 

of inhibition potential and energy needed. However, it should be taken into account that 

there is a significant difference (11.6%) in the docking affinity when compared to 4K5.   

Table 4. pIC50 values and docking affinities of the selected drugs 

Name  pIC50  

Docking score 

(kcal/mol) 

Triamterene 9.471 -7.6 

Cannabigerol 9.408 -7.1 

Phenazopyridine 9.591 -6.8 

 

Structural analysis of the inhibitors selected from the Drug Bank database 

The structures of the selected medicines were also analyzed and compared to the 

ones of compound 1_31 (which has the highest pIC50 value within the molecules of the 

dataset) and LRRK2’s natural ligand (Figure 8). Interestingly, almost all of them contain 

nitrogen heterocycles. The presence of resonance in these structures may affect their 

reactivity and interaction with the enzyme due to stabilization of the ligand and the 

formation of hydrogen bonds, especially in the N- and C- terminals of LRRK2 which 
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have shown to contain protein-protein interaction domains that regulate the enzyme’s 

activity and localization45. However, there is currently no concise information on the 

mechanisms by which LRRK2 inhibitors interact with it and, therefore, not much can be 

discussed in this regard.  

                          

               a                                                                   b 

                                         

   c                                                 d                                                  e 

Figure 8. Chemical structure of a) Triamterene, b) Phenazopyridine, 

c) Compound 1_31, d) Cannabigerol, and e) 4K5 
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CONCLUSIONS   

The dataset proposed by this work contributed to the construction of a prediction 

model that can be used to search the second application of already existing drugs as 

treatments of PD.  Model M1 is a robust model with 7 descriptors that can reliably predict 

pIC50 values over its applicability domain. Predictions performed with the internal 

fivefold cross-validation, the LOO method and the model’s equation demonstrated to 

have a good determination coefficient (R2 and Q2 >0.79). Likewise, it achieved a 

remarkable prediction of the test set with a QExt
2 of 0.795. Additionally, the model 

approved all the items analyzed in the Tropsha’s test, which confirmed its consistency 

and strength. Regarding the descriptors of M1, there was no significant correlation 

between them (<0.6), meaning there is not redundant information or overfitting. 

Interestingly, only one of the seven descriptors coincided with the ones of M10 (the 

second best model). Therefore, it is suggested to build an ensemble model in future work 

to enhance the prediction capacity while analyzing a wider range of properties.   

The screening of the Drug Bank database led to the proposal of three already 

existing medicines to be investigated as potential new treatments for PD. All three 

compounds presented pIC50 values greater than those of the dataset. On the contrary, their 

docking scores were significantly more positive compared to the one of the natural ligand. 

Nevertheless, it is recommended that these molecules are tested as LRRK2 inhibitors to 

experimentally determine their feasibility as PD therapies or lead compounds for them.  

Molecule 1_31 from the dataset is also a promising candidate for a possible new treatment 

since it has the highest pIC50 value of the set and almost the same binding energy as the 

natural ligand of LRRK2 enzyme.  

The molecular docking calculations facilitated the study of the interactions 

between the inhibitors and the enzyme. Still, further studies are needed for a deeper 
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analysis. Thus, molecular dynamic calculations are proposed as an alternative to get a 

more profound insight on the ligand-enzyme interactions. Even with little available 

information about the binding mechanisms, this procedure might be useful for a better 

understanding of the inhibition process. It is thought that research in this area may lead 

to the development of better treatments for PD45. 
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APPENDIX A: QSAR STUDIES 

Table A1. Best 15 models from the QSAR study 

Name of the 

Model 

Machine 

learning 

algorithm 

applied 

Descriptive name of the model 

M1 LR JM_LR_GA_3_7 

M2 LR JM_LR_GA_4_6 

M3 LR GP_GreedSt_50_LR_BF_10_M_8 

M4 IBK LR_GenSe_245_IBK_GreedSt_7 

M5 SMOreg GP_GreedSt_50_LR_BF_10_M_8 

M6 LR GP_BF_49_LR_BF_10_M_7 

M7 SMOreg SMOreg_GenSe_225_SMOreg_GreedSt_11_M_8 

M8 LR JM_LR_GA_2_6 

M9 SMOreg GP_BF_49_LR_BF_10_M_7 

M10 SMOreg SMOreg_GreedSt_21_IBK_BF_11_M_9 

M11 LR JM_LR_GA_1_7 

M12 IBK IBK_BF_23_IBK_GreedSt_11_M_7 

M13 IBK IBK_GreedSt_11_M_7 

M14 LR SMOreg_GenSe_225_SMOreg_GreedSt_11_M_8 

M15 LR SMOreg_GreedSt_21_IBK_BF_11_M_9 

 

The table presents the best fifteen models from the QSAR study. It provides 

information about the name given to easily identify the model, the machine learning 

algorithm applied for the CV and the name given to indicate the different characteristics 

of each model. Regarding the descriptive names, the first group of letters indicates the 

classifier of the Wrapper Subset Evaluator used and the second one is the search method 

applied. The numbers correspond to the amount of descriptors of the models after each 

multiple linear regression was performed. The letter M at the end of the names indicates 

that some descriptors were manually removed. It should be noted that models M1, M2, 

M8, and M11were named on a slightly different basis. However, LR and GA (Genetic 

algorithm) still correspond to the classifier and search method used, and their last number 

does indicate the amount of descriptors of that model.  
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Table A2. QCV
2, QExt

2 and corresponding MAE of the best 15 models  

Name of the 

Model 
QCV

2 MAECV QExt
2 MAEExt 

M1 0.798 0.354 0.795 0.363 

M2 0.760 0.394 0.801 0.358 

M3 0.873 0.310 0.754 0.425 

M4 0.678 0.470 0.819 0.359 

M5 0.862 0.316 0.769 0.406 

M6 0.866 0.324 0.745 0.410 

M7 0.725 0.422 0.848 0.323 

M8 0.835 0.326 0.714 0.429 

M9 0.856 0.328 0.761 0.416 

M10 0.797 0.390 0.803 0.373 

M11 0.842 0.331 0.782 0.372 

M12 0.799 0.382 0.730 0.383 

M13 0.799 0.382 0.730 0.383 

M14 0.678 0.470 0.819 0.359 

M15 0.758 0.424 0.821 0.375 

 

 Table A2 presents the fivefold QCV
2 and QExt

2 for the best fifteen models with the 

corresponding mean absolute error for each one.  
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Table A3. Descriptors of models M1 and M10, their abbreviations and number of 

appearances in the best 2 and best 15 models 

 

 

 

 

 

Model Descriptor Abbreviated name Number of 

appearance 

in best 2 

models

Number of 

appearance 

in best 15 

models

S_TrC_AB_nCi_3_M22(M5)_SS1_T_

LG3L[1-2]_LGL[1-2]_h_MID
S_LGL_h_MID 1 1

I50_TrF_AB_nCi_3_M21(M11)_SS7_

T_KA_h_MID
I50_KA_h_MID 1 2

AC[3]_I50_Tr_AB_nCi_3_M20(M11)

_SS4_T_LG3P[2]_LGP[2]_e-v-

p_MID

AC[3]_T_evp_MID 1 4

HM_TrC_AB_nCi_3_M25(M13)_SS3

_T_LGA[1.0-2.0]_p_MID
HM_LGA_p_MID 1 2

N1_B_AB_nCi_2_SS2_H_T_KA_c-

h_MAS
N1_KA_ch_MAS 1 3

AC[2]_K_TrC_AB_nCi_3_M20(M13)

_NS1_C_KA_c_MID
AC[2]_C_c_MID 1 2

M1 & M10
S_TrC_AB_nCi_3_M22(M13)_NS3_

P_KA_p_MID
S_NS_p_MID 2 4

AM_TrC_AB_nCi_3_M21(M15)_SS3

_T_LG3P[3]_LGP[3]_p_MID
AM_LGP_p_MID 1 2

K_TrC_AB_nCi_3_M25(M8)_SS7_T

_LGA[6.0-7.0]_p_MID
K_LGA_p_MID 1 1

AC[1]_K_TrC_AB_nCi_3_M21(M15)

_NS1_C_KA_c_MID
AC[1]_KA_c_MID 1 1

GV[5]_K_TrB_AB_nCi_3_M25(M1)_

NS4_A_KA_p-s_MID
GV[5]_KA_ps_MID 1 6

VC_TrC_AB_nCi_3_M25(M15)_SS5

_T_KA_p_MID
VC_KA_p_MID 1 1

AC[5]_K_TrC_AB_nCi_3_M21(M13)

_MP6_T_KA_m_MID
AC[5]_KA_m_MID 1 1

P3_F_AB_nCi_2_SS2_H_T_NSRW_e

_MAS
P3_KA_e_MAS 1 1

S_B_AB_nCi_2_MP5_D_LGP[1;2;6]_

c-m_MAS
S_KA_cm_MAS 1 5

M1

M10 
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Table A4. Pearson coefficients of M1 model's descriptors 

 

 It should be noted that Table A4 represents a symmetrical matrix and, therefore, 

only half of it is presented to avoid redundant information.  
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APPENDIX B: DRUG BANK SCREENING 

Table B1. Characteristics and applications of the Drug Bank drugs with predicted pIC50 

values greater than 9 

Drug 

Bank ID 
pIC50 

Chemical 

Formula 
Status Characteristics and applications  

DB00426 10.058 C14H19N5O4 approved; 

investigational 

-Guanine analogue used to treat herpes 

virus infections46.                                              

-Rapidly transforms to the active46. 

antiviral compound penciclovir46.                                                                                                               

-Hepatic 

metabolism46.                                                                                               

-77% 

absorption46.                                                                                                            

-Symptoms of overdose include 

constipation, diarrhea, dizziness, fatigue, 

fever, headache, nausea, and vomiting46. 

DB01421 11.798 C23H45N5O14 approved; 

investigational 

-Antibiotic used in the treatment of acute 

and chronic intestinal amebiasis and for 

the management of hepatic coma46.                                                      

-Poorly absorbed after oral 

administration46.                                                                         

DB01896 15.443 C6H8BNO2 experimental -Not Available  

DB02037 10.702 C4H6N4O2 experimental -Not Available  

DB02797 13.032 C6H6BNO4 experimental -Not Available  

DB03505 10.124 C8H8N4O experimental -Not Available  

DB04008 10.032 C17H16N8Zn experimental -Not Available  

DB04360 11.962 C8H7BO2S experimental -Not Available  

DB08993 11.306 C25H43N13O10 experimental -Antitubercular agent46. 

DB13673 10.932 C18H37N5O10 experimental -Antibiotic used in the treatment of eye 

infections46. 

DB00384 9.471 C12H11N7 approved -Potassium-sparing diuretic used int the 

treatment of edema and hypertension41. 

DB00955 9.156 C21H41N5O7 approved; 

investigational 

- Antibiotic used to treat a wide variety 

of infections in the body46. 

DB01438 9.591 C11H11N5 approved - Local anesthetic used for the relief of 

discomfort caused by pain, burning, and 

irritation42. 

DB02844 9.774 C18H29N7O3S experimental -Not Available  

DB03016 9.324 C13H11N5O experimental -Not Available  

DB04790 9.043 C20H22N4O4 experimental -Not Available  

DB04791 9.897 C20H22N4O4 experimental -Not Available  

DB04793 9.982 C20H22N4O4 experimental -Not Available  
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DB06915 9.686 C10H8O5 experimental -Not Available  

DB06937 9.116 C13H9NO4 experimental -Not Available  

DB07032 9.376 C14H10O3 experimental -Not Available  

DB07649 9.383 C19H23N5OS experimental -Not Available  

DB07698 9.553 C18H14ClN5 experimental -Not Available  

DB07731 9.908 C9H10N6O experimental -Not Available  

DB08048 9.638 C13H10N2O3 experimental -Not Available  

DB08163 9.939 C17H27N7O4 experimental -Not Available  

DB08694 9.881 C14H11N7O experimental -Not Available  

DB08707 9.123 C17H11ClN4O experimental -Not Available  

DB08787 9.381 C16H11Cl2N5 experimental -Not Available  

DB14734 9.408 C21H32O2 experimental -A natural product found in Cannabis 

sativa and Helichrysum species43. 

-It enhances appetite and acts as an anti-

inflammatory, antioxidant and 

neuroprotective agent43. 

DB00118 9.726 C15H22N6O5S approved; 

investigational; 

nutraceutical 

- Physiologic methyl radical donor used 

as anti-inflammatory and applied in the 

treatment of depression, liver disorders, 

fibromyalgia, and osteoarthritis. It has 

also been used as dietary supplement for 

the support of bone and joint health, and 

as a mood and emotional regulator44. 

DB09004 9.101 C14H22ClNO withdrawn -Cough suppressant that is withdrawn 

from the US and EU markets. Clobutinol 

may prolong the QT interval. In 2007, 

Clobutinol was determined to cause 

cardiac arrhythmia in some patients46. 
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APPENDIX C: MOLECULAR DOCKING STUDIES 

Table C1. pIC50 values and docking scores of the dataset molecules 

Name  pIC50  

Docking scores 

(kcal/mol) 

3_12 7.509 -9.2 

1_33 8.398 -8.8 

1_29 6.387 -8.8 

1_30 7.022 -8.7 

1_35 7.921 -8.6 

1_28 6.770 -8.6 

1_31 8.699 -8.5 

3_13 8.155 -8.5 

3_7 8.097 -8.4 

1_7 6.420 -8.4 

3_3 7.854 -8.3 

3_11 8.398 -8.2 

2_33 8.000 -8.2 

1_34 7.824 -8.2 

2_36 7.699 -8.2 

2_34 7.699 -8.2 

1_27 6.959 -8.2 
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1_26 6.886 -8.2 

2_37 5.272 -8.2 

1_32 7.959 -8.1 

2_16 6.959 -8.1 

2_38 6.886 -8.0 

1_1 5.310 -7.9 

3_6 8.523 -7.8 

3_4 8.155 -7.8 

3_2 7.959 -7.8 

3_1 7.337 -7.8 

1_3 7.013 -7.8 

2_23 5.156 -7.8 

2_48 5.058 -7.8 

Sunitinib 7.553 -7.7 

2_39 6.553 -7.7 

2_42 6.310 -7.7 

3_10 8.398 -7.6 

1_4 6.824 -7.6 

1_2 6.409 -7.6 

2_43 6.119 -7.6 

2_40 5.824 -7.6 

2_11 4.812 -7.6 

3_5 8.046 -7.5 

1_10 5.796 -7.5 

2_8 5.631 -7.5 

2_10 5.498 -7.5 

2_44 5.921 -7.4 

1_20 5.721 -7.4 

2_45 5.438 -7.4 

2_21 5.417 -7.4 

1_18 7.174 -7.3 

1_9 6.409 -7.3 

1_39 6.114 -7.3 

1_6 6.081 -7.3 

2_47 5.876 -7.3 

2_19 5.873 -7.3 

2_4 5.438 -7.3 

2_49 5.220 -7.3 

2_12 5.138 -7.3 

1_23 7.066 -7.2 

2_2 5.664 -7.2 

2_13 5.421 -7.2 

1_19 6.886 -7.1 
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1_17 6.721 -7.1 

1_11 6.387 -7.1 

2_20 5.770 -7.1 

1_25 6.602 -7 

2_50 6.260 -7 

1_8 5.523 -7 

1_12 6.276 -6.8 

1_24 6.770 -6.7 

1_15 5.620 -6.5 

2_22 5.240 -6.5 

1_16 6.523 -6.4 

1_22 7.167 -6.3 

1_14 6.056 -6.3 

1_13 5.328 -6.3 

1_21 6.357 -6 

 Table C1 presents the pIC50 values and docking scores of all the molecules from 

the dataset in increasing order of affinity energy.  

 

Figure C1. Correlation between pIC50 values and docking scores of the dataset 

inhibitors  
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