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Abstract

The Congo Basin is the second largest rainforest after of the Amazon. This forest has more than 28

species of dominant trees (very large), of substantial commercial value, such as Wenge and Bosee-

Clair. In one part of the Congo Basin forest biome, situated in the Mai-Ndombe District of the

Democratic Republic of Congo, the government, forest communities and environmental service com-

panies are searching for better ways to conserve and sustainably manage forest resources. This implies

a knowledge of how much volume (i.e referred to as a ‘benefit’) one could sustainably extract without

significantly changing the forest structure and composition. This ‘benefit’ can be described as the

difference between some hypothetical uniform random distribution of trees and observed tree aggre-

gation. This thesis attempts to provide some answers that can lead forest managers to better qualify

and quantify this ‘benefit’, by determining the spatial distribution of dominant commercially valuable

trees via the development and use of mathematical-algorithm-based measurements which show the

level of tree aggregation (also referred to as clustering). For this purpose we have used spatial point

patterns methodologies using tools available in the R package for statistical analysis, mathematical

and forest criterions, and knowledge of the geomorphology of the selected Mai Ndombe District study

area.
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Resumen

La cuenca del Congo es el segundo bosque lluvioso más grande, luego de la Amazonía, él mismo que

contiene más de 28 especies de árboles dominantes (muy largos) de apreciable valor comercial como son

Wenge y Bosse-Clair. Una parte de este bosque está ubicado en el Distrito de Mai-Ndombe, República

Democrática del Congo, donde tanto el gobierno, las comunidades del bosque, como compañías de

servicio ambiental (nacionales e internacionales) desean encontrar un mecanismo que permita una

tala sostenible de recursos forestales, es decir, remover solamente el beneficio que se puede obtener

del bosque. Este beneficio es definido como la diferencia entre una hipotética distribución aleatoria

uniforme de los árboles y una agregación observada. Entonces, esta tesis es una respuesta que ayudará

al desarrollo de este mecanismo, determinando la distribución espacial que tienen estos árboles y

desarrollando un algoritmo que mida cierto nivel de agregación o agrupamiento de árboles. Para ésto,

se aplicó metodologías de patrones espaciales puntuales usando herramientas disponibles en el paquete

R para análisis estadístico, criterios matemáticos y forestales, y conocimiento de geomorfología área

de estudio la cual está ubicada en el distrito de Mai-Ndombe.
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1 SECTION

1.1 Introduction

Forests have an important impact for the earth’s global ecosystem equilibrium because they release

oxygen necessary for the respiration of organisms and they absorb CO2 which is the main greenhouse

gas that contributes to global warming. Forests are also important for community livelihood as they

provide food, wood for construction and energy, (amongst other values) and they provide a huge set

of critical habitat for a wide and very diverse range of fauna. The forest canopy acts as an interface

between the forest and the atmosphere. It also plays an important role in determining the structure

and properties of the understory and the forest floor.

Very large trees with heights greater than 30 m have been shown to be highly influential in the upper

vegetative canopy structure and they also are highly deterministic of forest ecology and forest biomass

regimes. In particular, they account for a large portion of the total forest above-ground biomass (Neef

et al. 2005, 1; Saalovara et al 2005) and have been recognized as reproductively dominant. Very large

canopy trees are therefore an important driving factor of forest succession, biodiversity and ecological

stability.

One way to know about the composition and structure of the forest is to analyze forest inventory

data using statistical methods in order to determine the distribution of tree species. Knowledge of

species distribution represents a significant tool for foresters and environmentalists, as well as for

governments, forest companies and forest dependent communities. Such knowledge can be very useful

in guiding sustainable management of forest resources.

1.2 Background and Justification

Sustainable forest resource logging and management requires removal of a volume of timber that

does not exceed the equivalent to the expected benefit1generated by projected tree growth over the

course of the harvesting/logging cycle. In the case of the Democratic Republic of the Congo (the

acronym is DRC, see appendix A for location) this can also be hypothesized as the difference between

some hypothetical uniform random distribution of trees and observed aggregation. In other words,

if there are aggregations of trees in a forest stand, trees that are an excess volume (i.e.by selectively

harvesting specific individual trees) can be removed without potentially altering the fundamental forest
1‘benefit’ herein refers to the cumulative net annual increase in merchantable forest stemwood/timber
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structure, composition and ecology. ‘Excess’ tree removal creates forest openings, which are sometimes

referred to as canopy gaps. This gap creation leads to a succession2. Succession regeneration ensures

the continuance of such ‘benefits’ in the future. Naturally regenerated trees in canopy gaps can

be harvested in subsequent logging cycles (in a selective forest management regime, a logging cycle

consists of a series of harvesting entries wherein the ‘benefit’ merchantable volume is progressively

extracted). Unfortunately, such ‘best management’ practice has yet to be conducted in the Congo,

mostly because of lack of information and knowledge, hence the importance of this study and others

like it.

Characterizing and quantifying aggregation and their related ‘benefits’ is difficult in the fields of

forestry ecology and management. It is not easy to obtain naturally-occurring, randomly distributed,

tree data, organized in harvesting blocks, and replicate such data. Classical statistics methodologies

are often not appropriate statistical models for such types of analyses (Cressie 1993, 578-579). There

is a need for new statistical models and approaches that address new questions.

A significant percentage of data used in resource assessment, environmental monitoring (e.g. for global

warming), and medicinal imaging, is spatial in nature. Additionally, in the field of forestry, recent

studies have showed encouraging results from spatial point patterns analysis of tree populations in

humid, wet tropical and dry forests of Africa (Linares Palomino, 2005, 317-318). Application of these

statistical models in analyzing Spatial Point Patterns vis-a-vis the study of tree distribution sheds light

needed to find answers to some fundamental questions related to: the statistical distribution function

for a tree population set, the level aggregation, the nature of relationship between individuals (i.e.

inhibition, repulsion, dominance, etc.) Such applications may help in ascertaining the presence and/or

non presence of external factors, such as human intervention (i.e. logging) or natural events (ex. tree

mortality and tree competition within forested management units) that can explain observed tree

distribution patterns. This enhanced knowledge could lead to better prediction and characterization

of future forest composition, species spatial distribution and forest stand structure that could, in turn,

better inform best management practices.

1.3 Hypothesis and Context

The upper canopy layer of the dense humid forests in the Lake Mai-Ndombe area that dominate the

study sites from which the data set was collected. This area is characterized by a relatively high

abundance of Milletia laurentii (Family: Fabaceae), commercially known as Wenge. Wenge is one of

28 other dominant, upper canopy, species that have commercial value ( see Appendix B) in the project

area. The results of the spatial distribution analysis of these trees from a mathematical perspective
2‘succession’ herein refers to nature regeneration of trees of the same dominant canopy species
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can potentially solve many questions about their ecological characteristics. Previous studies had

considered possible aggregations and this study seeks to shed light on a specific form of aggregation,

a possible tree grouping referred to as clustering. Considerable knowledge about spatial analysis has

been developed by many statisticians or mathematicians, such as Diggle, Cressie, Illian and others.

This study used such knowledge, along with the R software implementation package developed by

Baddeley and Turner (2005).

The spatial analysis of forest distribution, in the Lake Mai-Ndombe District, Democratic Republic of

Congo, from a forestry perspective has, as its primary objective: an enhanced understanding of tree

distribution (i.e. aggregation/clustering, random or uniform distribution) and ecological neighborhood

and interaction characteristics (see Appendix C). Such analytical results will help increase the overall

knowledge of the composition and structure of equatorial forest ecosystems (characterized by high

species diversity) and tree growth models. However, these analytical results will need to be ground

validated to be useful in decision support systems for foresters and ecologists vis-a-vis natural resource

management considerations, such as optimal, ecologically sustainable, selective tree extraction and

timber harvesting rates.

1.4 Proposal

The purpose of this study is to apply recent spatial point pattern analytical tools and methodologies

to data sets that represent a 100% sample of all commercially valuable trees within a specific set of

management units located in the dense, humid, ‘terra firma’ forests of the Lake Mai-Ndombe District

in the Democratic Republic of the Congo so as to: 1 - generally characterize the spatial distribution

these commercially valuable trees 2 - specifically explore a first level of aggregation/clustering of

Wenge (Milletia laurentii) and Bosse-Clair (Guarea Cedrata) trees.

1.5 Outline

Section 2 starts by providing the pertinent basic mathematic and forest definitions. Sub-section 2.1

presents mathematic definitions for such terms as ‘spatial point process, ‘point patterns’, ‘complete

spatial randomness’ (CSR) and others similar terms that lie within the domain of Spatial Statistical

Analyses. Sub-section ‘2.2.’ offers forest definitions, such as ‘tree crown spread’, ‘tree canopy’, and

‘tree aggregation’, which assist the reader in understanding the origin and characteristics of the data

sets used in this thesis study.

In section 3, the spatial statistical analysis methods and statistics tests which were applied in the

data set are described. Sub-section 3.1 presents the Quadrat Counts Method and Chi-Quadrat test

for CSR, which are used to investigate the intensity of the spatial points. Sub-section 3.2 describes
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the Monte Carlos Test, which is used in the Simulation Envelopes Methods (Sub-section 3.3). This

latter method is fundamental for the spatial analysis because it is applied over all the spatial distance

methods. Sub-section 3.4 describes in detail each of the spatial distance methods (F function, G

function and J function) for the First Moment Characteristic (intensity). Sub-section 3.5 conceptually

complements sub-section 3.4 with the description of the distance methods: K Function and Pair

Correlation g Function, which both prove the Second Moment Characteristic of the spatial point

patterns. Sub-section 3.6., provides definitions for the corrected estimates, which are used within the

distance methods to correct the existing edge-errors when the spatial point patterns are analyzed.

Sub-section 3.7 describes in general how and why modeling or model fitting is done for the studied

spatial points.

Section 4 contains the critical part of the thesis. It summarizes the key spatial statistic analyses of

the Bimpe Concession data set on the western edge of the Congo Basin Equatorial Forest Biome.

This overall analysis begins in sub-section 4.1 with a description of the data. The subsequent sub-

sections are generated by following the spatial statistics methods described in section 3, using the

implementation of these methods in the spatstat package developed by Baddeley in the statistic R

Tool. Firstly, the spatial point process intensity of all the blocks which form the Bimpe Concession was

investigated (Sub-section 4.2). With the observations and preliminary conclusions obtained in sub-

section 4.2, Block I was the first area subjected to the spatial exploration and analysis. Subsequently,

all the distance methods for the First and Second Moments were applied to Block I (Sub-section

4.3.). Then, using these last results with the basic forest and mathematic definitions, sub-section

4.3.5 describes the fit models applied to Block I.

Subsequently, sub-section 4.4 describes the analysis of the First and Second Moment Characteristics

for H, R1 and Z2 blocks via the application of the J and K functions, focusing on the functionality

of the methods and taking into account pertinent forest knowledge of the data set. Sub-section 4.5

then describes the same process in sub-section 4.4, but, in this case, for J, Q and Z1 Blocks. At

the end of these sub-sections, conclusions are presented about the spatial distribution of the Bimpe

Concession data set. The only step remaining was the analysis of the aggregation/clustering of these

spatial points, which is described in sub-section 4.6. Firstly, this analysis consisted of an exploration

of aggregation (Sub-section 4.6.1) using the knowledge of the preceding sub-sections. Secondly, a

description of the potential level of aggregation (sub-sections 4.6.2 and 4.6.3) for all the commercially

valuable trees was made. Thirdly, this exercise was repeated specifically for Wenge and Bosse-Clair

species trees only.

Section 5 presents the conclusions and recommendation of the thesis in summary form followed by

the bibliography, appendices, listed of tables, list of figures and nomenclature.
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2 SECTION

2.1 Basic Mathematical Definitions

A stochastic process is a collection of random variables {X (t) |t ∈ T} indexed by a set T . It is

common to take T to be a subset of the real numbers, say {1, 2, 3....} or [0,∞) but the index set can

also be points in a higher dimensional space (Ripley 1981, 9).

A spatial point process is a stochastic process. Let X is a finite random subset of a given bounded

region W under d -dimensional Euclidean space, and a realization of such a process is a spatial point

pattern x = {x1, ...., xn} of n ≥ 0 points contained in W . We say that the point process is defined on

W , and we write x = ∅ for the empty point pattern. The number of points n (X), is a random variable

N (B) = n (XB) for subsets B ⊆W , where XB = X
⋂
B (Møller, Jesper and Rasmus, Waagepetersen

P. 2006, 7).

In the notation of the spatial point are often numbered but does not imply any meaningful order of

the points which are characterized by the point patterns (Illian et al, 2008, 23).

The term process is usually associated with an evolution over time and that is why physicists and

engineers might prefer the term point field to refer to process where the index space is not time.

The spatial point processes can be a stationary process, if all probability statements about the process

in any region A of the plane are invariant under arbitrary translation of A, and/or an isotropic process

when the process is stationary under rotations about a fixed point, with homogeneity, about any point

(same invariance holds under rotation), i.e. if there are no directional effects (Diggle 1983, 46; Ripley

1988, 7).

The point patterns of a data set in a study can be Complete Spatial Randomness, which means that the

spatial points are follow the Uniform Poisson Distribution (rather unusual in nature), clustering, which

means presence of aggregation in the study data and regularly which means the presence of inhibition

in the studied data. According to Diggle (1983, 2-3), the nature of the pattern generated by a biological

process can be affected by the physical scale on which the process is observed. At a sufficiently large

scale a realization would show heterogeneity, which will tend to produce aggregated patterns. At a

smaller scale, the realization can be a less pronounced variation and the major determinant of the

pattern may then be the nature of the interactions amongst the points themselves.

The homogeneous planar Poisson point process, according to Diggle (1983, 50), subsequently

referred to without qualification as the Poisson process, is the cornerstone on which the theory of

spatial point processes is built. The Poisson process is defined by the following postulates, which are

the same used in the hypothesis of Complete Spatial Randomness.

1. For some λ > 0, and any finite planar region A, N (A) as a Poisson distribution with mean λ |A|.
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2. Given N (A) = n, the n events in A, form an independent random sample from the uniform

distribution on A.

To demonstrate that PP1 and PP2 are self-consistent, one first establish

1. For any two disjoint regions A and B, N (A) and N (B) are independent.

The demonstration can be seen in page 50 and 51 from Diggle (1983). The postulates PP1 and PP2

consequently define a spatial point process as well.

The first moment or intensity (υ) of point processes is the analogue of the expected value of a

random variable. The Campbell’s formula (See Baddeley et al 2007, 28) is an important result for the

intensity according to Baddeley. Then, let X be a point process on d-dimensional Euclidean space W

(or on any locally compact metric spaceW ). Let

υ (B) = E [Nx (B)] , B ⊂W (1)

where E is the expected value and υ on W is a measure, called the intensity measure of X, provided

υ (B) < ∞ for all compact B (See Baddeley et al, 2007, 26). If X is a stationary point process, the

intensity measure needs to be proportional to Lebesgue measure v. Then, considering a constant λ as

the intensity so

E [NX (B)] = λv (B) (2)

(Ripley 1988, 22).

Second moment (dependence and interaction) of Point processes: As the intensity υ has an

analogue in the classic statistic, the Second Moment of point processes has analogues which are the

variance and covariance of random variables. Let X be a point process on W , then X ×X is a point

process on W ×W consisting of all ordered pairs (x, x′) of points x, x′ ∈ X. The intensity measure

υ2 of X ×X is a measure W ×W satisfying

υ2 (A×B) = E [NX (A)NX (B)] (3)

, called the second moment measure of X (See Baddeley et al 2007, 32).

According to Ripley, if X is a stationary point process under translation and rotation and using the

formula (2), the second moment is reduced as (1988, 22):

E [NX (A)NX (B)] = λv (A ∩B) + λ2
ˆ ∞
0

vr (A×B) dK (r) (4)

and vr (A×B) =
´
σr ({y − x|x ∈ A, y ∈ B, d (x, y) = r}) dv (x) where σr is the uniform probability
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on the surface of the sphere in d -dimension Euclidean space of radius r. The crucial part of formula

(4) is that the second-moment description which is reduced to an increasing function K () on (0,∞).

Taking K (0) = 0, it is possible to have λK (r) = E [#of points with distance ≤ r|point at x] using

Palm probabilities (Baddeley et al 2007, 44-45) to formalize the conditioning on an event of probability

zero. Thus K () is a sort of inter-point distance distribution function, although K (r)→∞ as r →∞.

2.2 Basic Forest Definitions

Except when otherwise stated the definitions below are from (Ministry of Forestry and Range, 2008)

Forest aggregation: According Stephenson (1987, 1), there are two possible definitions for Forest

Aggregation:

1. where there are patches of trees exhibiting relatively homogeneous age and species composition;

2. “Groups [of plants] that have a high degree of homogeneity relative to their growth-form, species,

height, dbh (density by hectare), and number of layers, - definition by Bonnicksen and Stone’s

(1982)”.

The Congo Basin covers approximately three million square kilometers, which holds the world’s

second largest tropical forest of approximately two million square kilometers. The Basin’s forest

zone includes parts of six central African countries: Cameroon, Central African Republic, Congo,

Democratic Republic of the Congo, Equatorial Guinea, and Gabon, listed alphabetically. In the

Congo Basin the central area, also known as the “Cuvette Centrale” is characterized by extensive

forested and non forested wetlands. The climate in some areas is warm and humid with two wet and

two dry seasons. The mean temperature is approximately 25 0C. The average rainfall is about 1800

mm per year in 115 days. The result is an equatorial rainforest in which some species such as the

Wenge may shed their leaves during the major dry season (Bwangoy et al. 2010, 74)

A canopy is the more or less continuous cover of branches and foliage formed collectively by the

crowns of adjacent trees (11).

Climate change is defined as “An alteration in measured quantities (e.g., precipitation, temperature,

radiation, wind, and cloudiness) within the climate system that departs significantly from previous

average conditions and is seen to endure, bringing about corresponding change in ecosystems and

socio-economic activity” (13).

Co-dominant trees are average-to-fairly large trees with medium-sized crowns that form the forest

canopy. These trees receive full light from above but are crowded on the sides. They are healthy trees

of a species that is ecologically suitable for the site, and commercially valuable (Tarr and Stewards,

2009) Note that commercial value is included in the definition here specifically due to the nature of

this data set.
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A Crop tree is a healthy tree of a species that is ecologically suitable for the site and commercially

valuable (18).

Crown is “The live branches and foliage of a tree” and crown-class is “A tree classification category

referring to a tree’s relative height, foliage density, and ability to intercept light. Crown-class is an

indicator of past growth performance and calls attention to crop trees that could benefit from future

thinning and harvest operations. There are four classifications of trees: co-dominant trees, dominant

trees, intermediate trees and suppressed or overtopped trees.”(Tarr and Stewards, 2009)

“The dominant trees are larger-than-average trees with broad, well-developed crowns. These trees

receive direct sunlight from all sides and above but are crowded on the sides” (Tarr and Stewards,

2009)

A forest is “A complex community of plants and animals in which trees are the most conspicuous

members and where the tree crown density- the amount of compactness of foliage in the tree tops- is

greater than 10 percent” (36).

Forestry is the profession embracing the science, art, and practice of creating, managing, using and

conserving forests and associated resources for human benefit and in a sustainable manner to meet

desired goals, needs, and values (40).

3 SECTION

Remember the definition of Point Poisson Process, this stochastic process is defined as the cornerstone

of the theory of spatial point processes. Then for any spatial analysis to be successful, it usually begins

by the CSR test has a null hypothesis that considers that the spatial distribution for the studied data

set is uniform Poisson.

According to Illian (2008, 57-58), the simulation of the Poisson processes is easy to understand.

However, the derivation of the summary characteristics is technically challenging in some places.

Moreover, the method that has been implemented allows a comparison of empirical characteristics

with theoretical ones and facilitates the general understanding of the various summary characteristics.

A literature review of spatial statistic material by several authors who described and/or implemented

these methods and tests and their application pertaining to the data sets studied in this thesis was

carried out. The following methods, estimates and tests were selected to be part of the Spatial Statistic

Analysis of the spatial points (trees) of the Bimpe Concession in the Mpata Mbalu forest located in

the western shore of Lake Mai-Ndombe, in the Democratic Republic of the Congo (in the west central

part of the country).
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3.1 Quadrat-counts Method and Chi-square Test for CSR

The most elementary methods to study the intensity of a spatial points process based on counting

events in regions is Quadrat-counts, which is based on dividing the domain A (the total region) into

non-overlapping regions (quadrats) A1, ...., Ak of equal size such that A1∪...∪Ak = A. Most frequently,

the domain is assumed to have a rectangle boundary which is partitioned into r rows and c columns.

If nk is the number of events in the quadrat k and n̄ = n/ (rc) is the expected number of events in

any quadrat under CSR, then the standard Pearson Chi-square statistic is

χ2 =

k∑
i=1

(nk − n̄)
2

n̄
(5)

which is obtained in the Chi-quadrat test goodness-of-fit. The hypothesis of this test considered

the n points distributed uniformly and independently in the domain A, i.e., the quadrat counts are

independent Poisson variants with common mean. The reference distribution for χ2 is χ2
rc−1. Although

X2 is written as a Chi-square statistic χ2 for a contingency table, the double summation is used to

emphasize the row-column partition of the domain. Furthermore, no additional degree of freedom is

lost to the estimation of n̄, since n is known in a mapped point pattern. If the pattern is CSR, then

the ratio of sample variance and the sample mean should be approximately 1. X2, is thus also referred

to as the index dispersion

ID = X2
/

(rc− 1) (6)

according to Diggle (1983, 33). The goodness-of-fit test based on quadrat counts is simple and the

Chi-square approximation performs well provided that the expected number of events per quadrat

exceeds 1 and rc > 6. It is, however, very much influenced by the selection of the quadrat size.

3.2 Monte Carlo Tests

According to Schabenberger et al (2005, 87-88), the hypothesis of Monte Carlo test considers an

observed patterns Z ∈ W could be the realization of a points process model ψ. A Q statistic test

is chosen which can be evaluated for the observed pattern and for any realization simulated under

the model ψ. Let x0 denote the realized value of the statistic test for the observed pattern. Then

generate n realizations of ψ and calculate their respective test statistics: x1 = x (ψ1) , ...., xn = x (ψn).

The statistic x0 is combined with these and the set of x + 1 values is ordered (ranked). Depending

on the hypothesis and the choice of Q, either small or large values of Q will be inconsistent with the

model ψ. If ψ is rejected as a data-generating mechanism for the observed pattern when x0 ≤ x(k) or

x0 ≥ x(n+1−k), where x(k) denotes the kth smallest value, then this is a two-sided test with significance
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level

α = 2k/ (n+ 1) (7)

Advantages:

• The p-values of the tests are exact in the sense that no approximation of the distribution of the

test statistic is required.

• The p-values are inexact in the sense that the number of possible realizations under ψ is typically

infinite. At least the number of realizations will be so large that enumeration is not possible.

• The number n of simulations must be chosen sufficiently large. For a 5% level lest n = 99 and

for a 1% level test n = 999 have been recommended. As long as the model ψ can be simulated,

the observed pattern can be compared against complex point processes by essentially the same

procedure. Simulation tests thus provide great flexibility.

Disadvantages:

• Simulations of test have several critical choices at the user side, such as the number of simulations

and the test statistic.

• Diggles (1993) cautions against “data dredging”, the selection of a non-sensible statistic test for

the sake of rejecting a particular hypothesis. Even if a sensible statistic test is chosen, the results

of test simulations may not agree. The power of this procedure is also difficult to establish, in

particular, when applied to test for point patterns. The alternative hypothesis for which the

power is to be determined is not clear.

3.3 Simulation Envelopes

According to Schabenberger (2005, 88-89), a Monte Carlos Test calculates a single statistic test for

the observed pattern and each of the simulated patterns. Often, it is used with functions of the point

patterns. For example, let ri denote the distance from event si to the nearest other event and let

I (ri ≤ r) denote the indicator function with return 1, whether ri ≤ r. Then Ĝ (r) = 1
n

∑n
i=1 I (ri ≤ r)

is an estimate of the distribution function of nearest-neighbour event distances and can be calculated

for any value of r. With a clustered pattern, we expect an excess number of short nearest-neighbour

distances (compared to a CSR pattern). The method for obtaining simulation envelopes is similar to

that used for a Monte Carlos test, but instead of evaluating a single test statistic for each simulation,

a function such as Ĝ (r) is computed. Let Ĝ0 (r) denote the empirical distribution function based

on the observed point pattern. Calculate Ĝ1 (r) , ...., Ĝg (r) from g point patterns simulated under

CSR (or any other hypothesis of interest). Calculate the percentiles of the investigated function from
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the g simulations. For example, upper and lower 100% simulation envelopes are given by Ĝl (r) =

min
i=1,...,g

{
Ĝi (r)

}
and Ĝu (r) = max

i=1,...,g

{
Ĝi (r)

}
.

Finally, a panel is produced which plotsĜ0 (r),Ĝl (r), and Ĝu (r) against the theoretical distribution

function G (r), or, if G (r) is not attainable, against the average empirical distribution function from

the simulation,

Ḡ (r) =
1

n

g∑
i=1

Ĝi (r) (8)

3.4 Distance Methods for the First Moment Characteristic of a Point Pro-

cess

3.4.1 Empty space function F

Let X be a stationary point process in the d-dimensions Euclidean space. The contact distance

function or empty space function F () is the cumulative distribution function (c.d.f.) of the distance

d (u,X) from a fixed point u to the nearest point of X. That is

F (r) = P (d (u,X) ≤ r) = P (NX (b (u, r)) > 0) (9)

where NX (b (u, r)) is a number of events inside the ball b with radius r and center u. (Baddeley et al

2007, 22)

For a completely spatial random (Poisson) point process, the empty space function F (r) is determined

as

F (r) = 1− exp
(
−λπr2

)
(10)

where λ is the expected number of points per unit area (or intensity). According to Baddeley and Rolf

Turner (Estimate the empty space function F ), an estimate of F derived from a spatial point pattern

dataset can be used in exploratory data analysis and formal inference about the pattern (Cressie 1991;

Diggle 1983; Ripley, 1988). The estimate of F is a useful statistic summarizing the sizes of gaps in

the pattern in the analysis.

If X = {x1,.....xn} is a spatial point process in a region W , then an unbiased estimator of F is

F̂ (r) =
1

λd (w)

ˆ
w

I {d (u,X) ≤ r} du (11)

where I {} is the indicator function. It returns 1 when the condition is true and 0 otherwise. F̂ (r) is

an unbiased estimator of F for each r fixed value. For inferential purposes, an estimate of F is usually

compared to the theoretical value of F (r) and the deviations between both curves may suggest spatial

clustering or spatial regularity patterns. See the following illustration:
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3.4.2 The nearest neighbour distance function G

According to Baddeley et al (2004, 51-52) the nearest neighbour distance distribution is a related con-

cept to the Empty Space Function F . Then, let X be a stationary point process in the d-dimensional

Euclidean space. The nearest neighbour function G is the cumulative distribution function of the

distance d (x,X\x) from a typical point x ∈ X to the nearest other point of X. That is:

G (r) = Px (d (x,X\ {x}) ≤ r) = Px (NX (b (x, r) \ {x}) > 0) (12)

where NX (b (x, r) \ {x}) is the numbers of event inside the ball b with radius r and center x and Px

a probability. Using the Campbell-Mecke formula, the formula (9) is written as

G (r) =
E
[∑

x∈X
⋂
W I {d (x,X\ {x}) ≤ r}

]
E [X (W )]

(13)

where W is a window which contains the spatial points. See the folowing illustration:
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By stationary, we means that this does not depend on x. For a stationary Poisson process in the

d-dimensional Euclidean space, since Xx ≡ XU {x}, then

G (r) = 1− exp
(
−λπdrd

)
(14)

and in this case,

G (r) ≡ F (r) (15)

3.4.3 The function J

The Function J is an combination of the Empty Space Function F () and the Nearest Neighbour Dis-

tance Function G (), which is defined as follows: Let X be a stationary point process in d-dimensional

Euclidean space, then the Function J of X is defined as:

J (r) =
1−G (r)

1− F (r)
,∀r ≥ 0, F (r) < 1 (16)

For a uniform Poisson process the Function J is J (r) ≡ 1 using the equivalence (15).

This function has good properties with respect to many operations on point processes. One could be

the follwing: suppose X and Y are independent stationary point processes, with intensities: υX and

υY . Then the superposition X
⋃
Y has function J which is: JX⋃

Y (r) = υX
υX+υY

JX (r)+ υY
υX+υY

JY (r)

where JX (r) is J function of X and JY (r) is J function of Y (Baddeley et al, 2007, p.55-56).
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3.5 Inter-point Distance Methods for Second Moment Characteristic of

Point Processes

According to Illian et al (2008, 214) , Ripley’s K function, Besag’s L-function and the pair correlation

function g have often been regarded as the functional summary characteristics that are the most

important tools for the analysis of point patterns. In the spatial analysis of this thesis were the

spacial analysis of this thesis used Ripley’s K function and the pair correlation function g following

the recommendation of Illian et al (2008, 218) and the result of the exploration of the spatial tool

implemented in the package spatstat from the statistic software R.

3.5.1 The reduced second moment κ and the Ripley K function

Regarding the second moment of a stationary point process (section 2.1.9 and formula 4) whenK (0) =

0, it is possible to have

λK (r) = E [NX (b (x, r)) \ {x}] (17)

where x is the typical not counted point. In order to estimate the functions, let n be the number of

points in the window W and NX (b (xi, r) \ {xi}) be the number of points of N within distance r from

points xi, excluding xi itself. Then an estimator of λK (r) is

n̄ (r) =
1

n

n∑
i=1

NX (b (xi, r) \ {xi}) (18)

following the Palm distribution concept, remember that in a stationary point process the position of

the center does not matter. Then it is possible to read formula (17) as

λK (r) = E0 [NX (b (0, r)) \ {0}] (19)

Finally, this formula is divided by λ to have K (r) (the local point density fluctuations) alone from

the global point density λ. Hence, the popular summary characteristic K function is:

K (r) = E0 [NX (b (0, r)) \ {0}] /λ (20)

for r ≥ 0 . Using the Campbell-Mecke formula in (17), one has

λK (r) =
E
[∑

x∈X
⋂
W X (b (x, r) \ {x})

]
E [X (W )]

(21)

and the following illustration shows how works the K function.
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In general, one can expectK (r) proportional to rd; only for small r interesting deviations are observed.

The function has a simple form in the Poisson process case this is K (r) = πr2 for a planar case and

this K (r) = πrd for a general d-dimensional case.

The shape of K (r) relative to that of the Poisson process provides valuable information on the point

process distribution. Hence, when the data are not a Poisson process there are two interpretations

of K (r): If K (r) > πr2or K (r) > πrd then there are expectations of a cluster process (presence

of aggregation), and if K (r) < πr2or K (r) < πrd then there are expectations of a regular process

(presence of inhibition or repulsion) (Illian et al, 2008, 214-216).

The reduced second moment measure κis defined by λκ (B) = E0 (NX (B\ {0})) where there is a

reduction of sets from two to one. This justifies the word ‘reduced’. This mathematic expression

means that λκ (B) is equal to the mean number of points of NX in the set B conditional on the

typical point of NX begining at zero.

3.5.2 The pair correlation function g

According to Illian (2008, 219-220), the function g is considered the best methods to give information

about the second moment summary characteristic because it contains the same information and is an

easy way to understanding the K () function and J () function. The Pair Correlation g (r) function is

proportional to the derivative of K (r) with respect tor. Hence, considering the planar case the pair

correlation function is

g (r) =
K
′
(r)

2πr
(22)
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for r ≥ 0 and in the general d-dimensional case, g (r) = K
′
(r)

dπdrd−1 for r ≥ 0.

When r is large, the lim
r→∞

g (r) = 1, means there is independent between the two compared points

for large r. To be more precise, for this equation, the point process must have some distributional

properties (called mixing properties).

If there is a finite distance rcorr with g (r) = 1 for r ≥ rcorr then rcorr is called range of correlation.

This means that there are no correlations between point positions at larger distances.

It is clear that in the Poisson process or CSR case g (r) = 1 for r ≥ 0, i.e. which means that the

location of any point is entirely independent of the locations of the other points. Again, in typical

non-Poisson cases a characteristic behaviour of g (r) may be found in the cluster process if g (r) > 1

and regular process if g (r) < 1 , in particular for small radii in both cases.

The Second Moment Characteristics are related to statistical concepts such as spatial autocorrelation

and semi-variogram because all these functions study the distances (space) between variables (spatial

data) and what is it happening between these variables when these distances are short or long (in-

teraction and/or dependence). Therefore all these functions support the first law of geography that

“everything is related to everything else, but near things are more related than distant things” (Waldo

Tobler). See the following descriptions:

1. Spatial Autocorrelation, according to Zuur, states that pairs of subjects (points) that are close

to each other are more likely to have values that are more similar, and pair of subjects far apart

forms each other are more likely to have values that are less similar. It is important to mention

that the Function Ripley’s K is one of the indices of spatial autocorrelation.

2. According to Cressei (1993, 58), semi-variogram has been called the variogram divided by 2,

by Matheron (1962), therefore they are commonly referenced. The semi-variogram is a plot of

semivariance as a function of distance. The semi-variance measures the dissimilarity of sub-

jects within a single variable, compared to covariance which measures the similarity of one or

more variables. It is not normalized and values are not as constrained as are most correlation

coefficients (Zuur).

3.6 Corrected Estimates

According to Illian et al (2008, 180-183), the spatial statistics analysis with stationary point processes

faces a difficult problem at its window edges: data are given for a bounded observation window W

only, but the pattern is (implicitly) assumed to be infinite and the summary characteristic to be

estimated is defined independently of W and should not show any traces of W . However, natural
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estimators of the summary characteristic would need information from outside W , in particular for

unbiased or ratio-unbiased estimators.

Ripley (1998) presents the border method which is available when estimating a c.d.f. and has quite

wide applicability. However, accordingly the method used in this thesis for the “Border Corrected

Estimate” of the G () and F () distance methods, and the inter-point method K () is the reduced-

sample estimator developed by Baddeley et al.

3.6.1 Kaplan-Meier estimators

The content of this sub-section is a summary using of the paper from Baddeley and Gill (1997),

focusing on the application to these Kaplan-Meier estimators. Also, there are some ideas taken from

Balakrisman (2010, 481-490) in order to better understand the concept of survival data.

The estimation of F (), G () and K () is hampered by edge effects arising because the point process

is observed within a bounded window W . Essentially the distance from a given reference point to

the nearest point of the process is censored by its distance to the boundary of W . The edge effects

increase in proportion to the dimension of the space or the distances r. This problem of estimation

has a clear analogy with the estimation of a survival function based on a sample of randomly censored

survival times. The Kaplan-Meier estimator made this analogy and has various large-sample optimality

properties. Before describing the Kaplan-Meier estimators, will be presented preliminary definitions

will be presented that are necessary for understanding these estimates.

3.6.1.1 Survival data Survival data is defined as follows: Let X1, ..., Xn be a set of nonnegative

random variables (i.i.d.) representing the smaller of the failure time of interest (observed times) with

distribution function F (t) = P [Xl ≤ t] and S(t) = 1−F(t) a survival function. Let C1, ..., Cn be a set

of nonnegative random variables (i.i.d.) independent of all Xl with distribution function H (). Under

the right censoring one observes only Dl = I {Xl ≤ Cl}, the indicator of the event {Xl ≤ Cl}, and

Zl = Xl ∧ Cl, the min (Xl, Cl). This Xl is completely observable if and only if Xl ≤ Cl , i.e. Dl = 1.

Then (Z1, D1) , ...., (Zn, Dn) is a sample of censored survival times Zl.

3.6.1.2 Kaplan-Meier estimator of the empty space function F Every point x in the window

W contributes one possibly censored observation of the distance from an arbitrary point in space to the

point process X. The analogy with survival times is to regard d (x,X) as the distance (time) to failure

and d (x, ∂W ) as the censoring distance, where ∂W denotes the boundary of W . The observation is

censored if d (x, ∂W ) < d (x,X).

From the data X
⋂
W it is possible to compute d (x,X

⋂
W ) and d (x, ∂W ) for each x ∈W .
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Regarding that min (d (x,X) , d (x, ∂W )) = min (d (x,X
⋂
W ) , d (x, ∂W )) (Baddeley and Gill, 1997,

36), then it can indeed be observed that min (d (x,X) , d (x, ∂W ))

and I {d (x,X) ≤ d (x, ∂W )} for each x ∈ W . Then the set {x ∈W : min (d (x,X) , d (x, ∂W )) ≥ r}

can be thought of as the set of points “at

risk of failure at distance r” and {x ∈W : d (x,X) = r, d (x, ∂W ) ≥ r} are the “observed failures at

distance r”.

Geometrically, these two sets are the closures of:

{x ∈W : d (x,W c) > r} \
{
x ∈ Rd : d (x,X) ≤ r

}
and

∂
({
x ∈ Rd : d (x,X) ≤ r

})⋂
{x ∈W : d (x,W c) > r} respectively.

The following panel illustrated the analogy with survival times:

Now, let X be an almost surely stationary point process and W be defined in the d-dimensional

Euclidean space, a fixed compact set. Based on the data X
⋂
W , the Kaplan-Meier estimator F̂ of

the Empty Space Function F of this point process, is defined by:

F̂ = 1− r
π
0

(
1− dΛ̂ (s)

)
= 1− exp

(
−Λ̂ (r)

)
(23)

where Λ̂ (r) is defined by:

Λ̂ (r) =

ˆ r

0

∣∣∂ ({x ∈ Rd : d (x,X) ≤ s
})⋂

{x ∈W : d (x,W c) > s}
∣∣
k−1

|{x ∈W : d (x,W c) > s} \ {x ∈ Rd : d (x,X) ≤ s}|k
ds (24)

where |.|k−1 denotes k − 1 dimensional Hausdorff measure (surface area).
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The reduced-sample estimator of the Empty Space Function F which is the border correction is:

F̂ rs =

∣∣{x ∈W : d (x,W c) > r}
⋂{

x ∈ Rd : d (x,X) ≤ r
}∣∣
k

|{x ∈W : d (x,W c) > r}|k
(25)

The K-M estimator of the formula (23) of F is based on the continuum of observations generated

by all x ∈ W . It is see that, the estimator is a proper distribution function and is even absolutely

continuous, with hazard rate δ̂ (r) equal to the fraction of the integral in the formula (24) evaluated

at r and using the k dimensional Hausdorff measure for the integral.

3.6.1.4 Kaplan-Meier estimator of the nearest neighbour function G Observe that the

function G () has special continuity properties, in contrast to F (); in fact G may degenerate, as in

the case of a randomly translated lattice.

Let X
⋂
W = {x1, ..., xm} be the observed point pattern. For each point xi ∈ X observed in the

windowW , one has the censored distance from xi to the nearest other point of X is si = d (xi, X\ {x})

and the censored distance by its distance to ∂W is ci = d (xi, ∂W ). Then

G (r) = 1−
∏
s

(
1− # {i : si = s, si ≤ ci}

# {i : si ≥ s, ci ≥ s}

)
(26)

where s in the product ranges over the finite set {si}. Hence, the new reduced-sample estimator of

G (r) is:

Ĝ1 (r) =
# {i : si ≤ r, ci ≥ r}

# {i : bi ≥ r}
(27)

and the modification obtained by replacing X ({x ∈W : d (x,W c) > r}) by an estimate of its expec-

tation is:

Ĝ2 (r) =
|W |k
n

# {i : si ≤ r, ci ≥ r}
|{x ∈W : d (x,W c) > r}|k

(28)

3.6.1.5 Kaplan-Meier estimator of the Ripley’s function K K (r) was defined in formula

(20). Equivalently it is λK (r) =
∑∞
n=0Gn (r) where

Gn (r) = P {X (b (0, r)) > n|0 ∈ X} (29)

is the distribution function of the distance from a typical point of X to the nth nearest point. For

each Gn, it is possible to form a Kaplan-Meier estimator, since that this distance is censored at

the boundary just as before. The sequence of K-M estimators always satisfies the natural stochastic

ordering of the distance distributions.
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3.6.1.6 Advantages and disadvantages The distance from a fixed point to the nearest point of

the process is right-censored by its distance to the boundary of the window, it is a first advantage.

The resulting estimators have a ratio-unbiasedness property that is standard in spatial statistics, it is

a second advantage.

The estimators are strongly consistent when there are independent replications or when the sampling

window becomes large, it is a third advenatage.

A disadventage is according to Baddeley & Gill, that the Kaplan-Meier estimator for the functions F (),

G () and K () appears to be substantially more efficient than the simple border correction (reduced-

sample) under simulations. However, the K-M estimator of function K is less efficient than sophis-

ticated edge corrections (Ripley Isotropic Estimator) but it is offset by its ease implementation in

arbitrary windows.

3.6.2 Additional corrected estimates for inter-point distance methods

According to Ripley (2008, 31), there are a two problems with the estimator of K (r) formula 16.

First: the bias for small λ is unavoidable; it stems from the need for two points to compute any inter-

point distance information. Second: the bias from edge correction is both more serious and avoidable.

Ripley presents six different edge corrector estimates to solve this but only three (using in the applied

methods) are describe a follows:

3.6.2.1 Ripley isotropic correction estimate of K function This correction is based on

isotropy. Consider just one pair of spatial points (x, y). If the ball b (x, d (x, y)) is not wholly contained

within W , then there could be unobserved points at distance d (x, y) from x.

It is this that causes the underestimation in K̂0 (r), and to compensate one counts the pair (x, y) more

than once, in fact k (x, y) times where 1
k(x,y) = |∂b(x,d(x,y))∩W |

|∂b(x,d(x,y))| is the proportion of the perimeter of

the circle which is within W and ∂b (x, d (x, y)) is all the points which are in the ball b (x, d (x, y)).

Note that in most cases k (x, y) = 1 since x will not be within distance r of W c, at least for small r.

Define

K̂2 (r) =
1

λ2a

∑
k (x, y) I [0 < d (x, y) ≤ r] (30)

to be the unbiased estimator with a windowW convex and r ≤ r0 the circum-radius ofW . Considering

(4) E
[
λ2aK2 (r)

]
=
´
k (x, y) I [0 < d (x, y) ≤ r] dµ2 (x, y)

one has E
[
λ2aK2 (r)

]
= λ2

´∞
0

{´
k (x, y) I [0 < d (x, y) ≤ r] dvr (x, y)

}
dK (s)

or E
[
λ2aK2 (r)

]
= λ2

´ t
0
a dK (s) = λ2aK (r) for r ≤ ro

The effect of the correction factor k is to rescale the σs terms in νs. This is possible if W ∩ ∂b (x, s)

has positive length for each x ∈W . For a convex set this will hold for s ≤ r0.
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Unbiasedness up to r0 will usually suffice; for a disc it is the radius and for a rectangle half the length

of a diagonal. Nevertheless, Ohser (1983) extended the range of unbiasedness by redefining K̂
′

2 (r) as:

K̂
′

2 (r) =
1

λ2

∑ k (x, y) I [0 < d (x, y) ≤ r]
ν {x|∂b (x, d (x, y)) ∩W 6= ∅}

(31)

This rescales the νs term to a provided ν {x|∂b (x, s) ∩W 6= ∅} > 0, and so K̂
′

2 (r) is unbiased for

t ≤ t1, the diameter of W , the diameter of W which is convex. Note that K̂
′

2 and K2 agree for r ≤ r0

(Ripley 1988, 32-33).

3.6.2.2 Translation-corrected estimate of K function Ripley (1988, 34), Ohser and Stoyan

(1981) also proposed a correction based on the proportion of translations of (x, y) /x ∈ W ∧ y ∈ W .

Call this θE (x− y) and note that it is symmetric, θ (−h) = θ (h).

Then K̂4 (t) = 1
λ2a

∑
θ (x− y)

−1
[0 < d (x, y) ≤ t] which is again unbiased.

3.7 Fiting Models

As mentioned in the beginning of section 2.3., the spatial statistics analysis is started by applying some

methods under the homogeneous Poisson process. The purpose of this was to find the distribution of

studied patterns which characterize the data. When the CSR hypothesis is rejected, this means the

pattern could be clustered, or regular, or both. Fitting some alternatives (parametric) models is a

way to provide more definition and clarity. After a model has been fitted, diagnostic tests should be

performed to assess its goodness-of-fit. Finally, inference for the estimated parameters is often needed

in response to a specific scientific question. A current theoretical distribution for the estimators can

be difficult to obtain, in which case approximations may be necessary. At the very least, a bias

and variance should be obtained. If the point patterns are not CSR there are three more options:

clustering, regular or a combination of both. In the literature, several spatial models were found to

model spatial data sets, accordingly, these three options:

• in case of clustered distribution one can use an inhomogeneous Poisson process or a Cox process

or a Poisson cluster process,

• in case of regular distribution, one can use a simple inhibition process

• The Markov point process is a model which incorporates both patterns.
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4 SECTION

4.1 Data Description

4.1.1 Selection of the study area

Three sites located in the Democratic Republic of the Congo were initially considered for spatial point

pattern data analysis: Bimpe (see Appendix A), Lisala and Lukolela, all of which are located within

the Congo Forest Basin (that comprises 45% of the Democratic Republic of Congo). However, due to

differences in structure and composition of the forests in the three areas, a final selection of one site was

made based on recommendations from experts who took into consideration key factors such as forest

intactness and planned future works. The Mpata Mbalu forest, within the Bimpe forest concession,

was chosen for the following reasons: (1) the timber extraction has been suspended in the concession

and (2) the concession has been allocated for conservation. This ensures that the analysis conducted

herein will be used for conservation management purposes (Bwangoy, personal communication). The

position of trees, recorded using a Global Positioning System (GPS) in spherical coordinates (latitude,

longitude), were converted to projected coordinate systems (Universal Traverse Mercator – UTM -

zones 33 and 34). The data was provided in a Geopanelic Information System (GIS) format as

Environment Systems Research Institute (ESRI) shape file format. All files were uploaded into the R

package wherein analyses were done on the attributes of each area

The shapefiles contain the (x, y) coordinates representing locations of each commercially valuable

dominant canopy tree which are the principal data for this study. They also contain attributes

pertaining to each tree such as: species name, block name and others attributes, all of which are

stored in the shapefile (dbf subfile). To facilitate analysis in R, the tree (x, y) coordinates were joined

with the attributes in the “dbf” file.

In personal communication with the forester, (Bwangoy Bankanza) who designed the forest inventory

and supervised and carried out quality control checks at the end, it was ascertained that the error

never exceeded 5% (i.e. missed trees did not exceed 5% and were normally in the 1 to 2% range). The

crews were well trained and supervised.

4.1.2 Description of the study site (Bimpe Concession)

The Bimpe Concession is located in the Lake Mai Ndombe District on the western shore of the Lake

Mai Ndombe. The terrain is flat with nearly 50% of the area being swamp forest (See appendix A).

The climax forests are both dense, humid evergreen and semi-deciduous (some of the trees shed their

leaves during the dry season and some do not). Both forest climax types are species diverse (over 50

different species per hectare). These forests are part of the Congo lowland equatorial forest biome.
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The study area excluded flooded forest (also referred to as swamp forests) and considered only ’terra

firma’ forest (those forests that are not flooded during the rainy season).

The climate is humid with an average annual rainfall of approximately 1800 mm per year recorded

in Selenge, a community located in the mid-section of the Bimpe forest concession and just north of

the actual study area. The region is characterized by two rainy seasons (one major3 and one minor)

and two dry seasons (one major and one minor). The major rainy season starts in September and

ends in November and the minor one starts in March and ends in May of each year. The major dry

season starts in June and ends in August, while the minor dry season starts in December and ends in

February of each year. Soils are poor with little organic matter in the mineral horizons. Tree roots

are shallow near the surface (upon which one finds the litter-humus soil layer, which is also referred

to as the forest floor) so to be able to uptake nutrients from the rapidly decomposing organic matter

found in the forest floor (i.e. known as detritus coming from litter fall). The commercially valuable

trees are usually very large dominants, with heights often exceeding 30 m.

The data points consist of all inventoried (100% sample) commercially valuable trees. These trees

are of species that have recognized commercial valuable. They are ground- marked for harvesting,

with their (x, y) coordinates recorded along with the species and diameter at breast height attributes.

Some of the tree species may be clustered as opposed to randomly

dispersed due to seed dispersion vectors and other ecological and geomorphological factors.

4.1.3 Description of forest blocks to be analyzed

The Bimpe data set is distributed across seven blocks (Figure 1) situated on terra firma forests of

commercial value surrounded by swamp forest areas. This study began analyzing all the blocks as a

complete undivided data set, but the first observations created the necessity to continue the spatial

analysis on a block by block basis. The analysis first took a mathematical approach vis-à-vis the

characterization of the spatial distribution of commercially valuable trees. It was focused so that

eventually some aspects of the mathematical analysis could have a forestry dimension, which, in turn,

could lead to possible forestry applications. For each block, the attributes (i.e. (x, y) coordinates,

species, diameter at breast height, etc... as contained in a dbf file) from the existing data set at the

time of collection were used. Using the R statistical package, we generated discrete area polygons from

the existing forest blocks. Each polygon has a discrete set of points. The polygon borders were drawn

as closely as possible to the actual Mpata-Mbalu terra firma forest management block boundaries

(part of the Bimpe forest concession) and each polygon contains all of the data set trees of these forest

management blocks (it should be noted that Block I boundaries were subsequently modified as part

of this study).
3The major rainy season is the one wherein most of the annual precipitation occurs
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The words tree(s) and point(s) are used interchangeably in the analysis to describe the spatial point

patterns of this data set.

The main unit of measure of forest area is the hectare or 10, 000 m2. Other units used in the study

were either fractions (i.e. 50X50 meter quadrats or ¼ of a hectare) or multiples (i.e. 2 hectares) of

that standard unit of measure, with the object to see whether the results from the spatail statistics

methods (QuadratCount) was or not dependent of this unit of measure using. All main variables are

usually expressed as units per hectares (ex. density is expressed in trees per hectare)

In this study the standard unit of area measure was the ‘hectare’, whose symbol is ‘ha’. The following

are the main reasons it is used:

1. The Democratic Republic of Congo adopted the metric system in 1910 and the hectare is metric

unit of measure. The hectare is the measurement unit of area the most widely used throughout

the world. In the European Union and others countries (DRC), it is the legal unit of measure in

domains concerned with land ownership, planning, and management, including law (land deeds),

agriculture, forestry and town planning.

2. One of the principal variables was crown diameter (range was 6 to 30 meters - according to Asner

et al, 2002, 486)) and the 1 hectare quadrat (100m X 100m) is a suitable size for visualizing tree

crowns spatial distribution at various densities/intensities.

Study results need to use units of measure that are in standard use by forest ecologists and managers.
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4.2 Investigating the Intensity

This analysis started by doing an exploratory analysis of the ‘intensity’ (i.e. the number of points

per unit of area, such as points per hectare). 2 ‘intensity’ alternatives were investigated: uniform

(homogenous) or non-uniform (non-homogenous). In order to investigate the nature of the inten-

sity of the points in the data set, we used the following three methods from the packages spatstat

and stat of the R Tool Software: 1 - the summary of point patterns ‘summary(P)’; 2 - Kernel Den-

sity Estimation with sigma 95 ‘density(P,sigma=95,edg=TRUE)’ with the Quadrat Counting for

a point patterns methods ‘quadratcount(P,nx=dx,ny=dy)’; and 3 - the Chi-squared test of CSR

‘quadrat.test(P,nx=dx,ny=dy)’.
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The results of this exploratory analysis provided some insight as to the nature of the spatial distribution

of points. In the next step, we carried out a formal analysis of the nature of the spatial distribution

was carried out. This started with the application of the Complete Spatial Randomness (CSR) test.

In this test, the null hypothesis is that the spatial point process distribution follows a uniform Poisson

point process (CSR). For this kind of data set, it would not be surprising to have a mix of spatial

point process distributions.

The following list presents the observations and preliminary conclusions of the results of the initial

spatial analysis from the three statistic methods listed above. These results are presented in various

figures and tables (within the document itself or as appendices to the document) specified in the list

according to its necessity.

• Block I has the smallest number of the points. H and Z2 Blocks have similar number of points

(approximately 900) and blocks J, Q, R1 and Z1 have a relative high number of points (between

2200 to 3020 - see Table 1).

• The high number of vertices within the polygon areas indicated that the approximated bound-

aries are very irregular (see Table 1). It was noted that the polygon areas defined using the

R package followed closely the physical boundary of the real blocks of the Bimpe Forest Con-

cession Map (see Appendix A). Very irregular boundaries are an indication of the presence of

natural phenomena such as adjacent swamp forest, while less irregular boundaries indicate that

the adjacent areas are external anthropogenic interventions such as logging roads, constructed

or planned, and/or property/adjacent concession boundaries. (personal communication with

Bwangoy Bankanza, the forest scientist who designed the timber sampling and block layout

plan)

• Concerning polygon areas, the Block Q is of particular interest due to a relatively high number
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of points (third highest total; 2651) for a relatively small area (third smallest total area). With

an average intensity of 3.07 point per hectare, it is reasonable to speculate the presence of a

clustered distribution and the absence of historical logging of commercially valuable species. In

contrast, Block I, has the smallest area (376.82 hectares) and also has the smallest average point

intensity (less than 0.42 points per hectare), which may be an indication of a high dispersion

probability or ‘thinning’ (Baddeley A. et al., 2004).

• Block J is the biggest block in number of points (3017) and in area (2964.12 hectares). Conse-

quently, the isotropic and translation edge corrections were not computed, following a Baddeley

et al recommendation that a border method is much faster and statistically efficient for large

numbers of points in a data set.

• Blocks Z1 and Q have the highest average intensity of all the blocks (see Table 1), however

they potentially have both localized clustered distribution, as well as regular distribution (see

Appendix C). Hence, it may be advisable to divide the block according to this suspected pattern

and to analyze the two sub areas independently.

• The p-values from the Chi-Squared test of CSR ‘quadrat.test(P,nx=dx,ny=dy)’ using Quadrat

Counts Method rejected the null hypothesis for all blocks with exception of Block I where the p-

value was greater than 5%. Ignoring the warning message from the Chi-squared test (principally

for the irregularly boundary of the blocks), the cuts were made for 1 hectare-sized quadrats.

This size was used because it is a common measure in forestry (see Table 2). Intuitively, it was

assumed that the spatial points of Block I should follow a uniform Poisson distribution (CSR).

Additionally, the Chi-Squared test was applied with 4 and 4.5 hectare sized quadrats to verify

the independence of the p-value with respect to the size of the quadrat. The results showed a

p-value in Block I which indicated particularly high variance. As such, Block I needed to be

analyzed in more detail.



28

With these observations and preliminary conclusions, it was possible to develop a path to study the

Spatial Point Patterns of the Bimpe Concession data set. The study of Spatial Point Patterns focused

on finding what kind of point patterns (random, cluster and regular) characterized the data set. This

represents an analysis of the space, distance and interaction between points. The methods that were

used were: theF function - ‘Estimate of the Empty Space’ (Fest is the name of the function in R), the

G function - ‘Nearest Neighbour Distance’ (Gest is the name of the function in R) and the K function

- ‘Estimate of Ripley’s reduced Second Moment’ (Kest is the name of the function in R). To validate

these function results, it was necessary to use the ‘simulation envelope’ method (envelope is the name

of a function in R), which is similar to the one used in the Monte Carlos test (Schabenberger et al

2005) for obtaining simulation envelopes. Also, it is necessary to mention the sensitivity of this test in

relation to the error-I type. The theoretical distribution function is simulated under CSR distribution,

but in cases it may be necessary to follow other hypotheses as in the case of ‘Q’ Block and Block Z1

(See Appendix C). Hence, the null hypothesis ‘H0’ is: The point patterns of the sample follow a CSR

distribution and the alternative hypothesis ‘Ha’ is: The point patterns of the sample do not follow a

CSR distribution, in each case.

Accordingly for a preliminary analysis of the blocks, they were divided in three groups. These groups

are:

1. Block I

2. Blocks H, R1 and Z2

3. Blocks J, Q and Z1

Block I was analyzed as a model to show the step by step results of the spatial methods selected to

find the spatial distribution. In the second and third groups the estimates of function J and Pair
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Correlation Function g were the only tests applied which summarize the results of the F , G and K

functions. Three groups were used to analyze the assumption of aggregation described in Section 1.

4.3 Spatial Point Patterns for Block I

Block I shows high dispersion (See Appendix C) as the 158 spatial points are spread out over 480.38

hectares. As mentioned previously, the Chi-Quadrat test could not reject the null hypothesis when

the number of quadrants was big. This suggests that the point processes follow a CSR. Even with this

evidence, the error-II type of the null hypothesis was possible to occur when the warning message is

ignored in the Chi-quadrat test. However, given that the boundary of all the blocks is very irregular,

it can be expected that quadrats on the edges will have no points.

4.3.1 Estimation of the empty space function F

Figure 2 shows the curves of the Empty Space Function Fusing the Fest function from the R spatstat

package. When Fest function is plotted, thex axis represents the radius of the estimate of F (r) (whose

recommended range is [0, 170.62]) and the y axis represents the F (r) function in the two panels . The

Fest function gives more than one estimate of F (r). The Kaplan-Meier estimate curve (black),

the Border Corrected Estimate curve (red) and the theoretical Poisson curve (green - based on the

estimated intensity) is shown in panel ‘a’. The Simulation Envelopes of the Summary Function was

applied to the Kaplan-Meier Estimate (See panel ‘b’), with 99 simulations (5% level) under CSR and

a 0.01 significance level of a point wise Monte Carlo Test.
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When the radius is 7.11 meters, the first contact distance appears, that means the cumulative empirical

distribution have value greater than 0 (information having by the summary of function Fest). When

the radius is greater than 70 meters; it is possible to observe the cumulative empirical distribution

approaching close to the lower simulation envelope, according to the deviation between the Kaplan-

Meier estimate function and the theoretical Poisson function. Additionally, looking at the results

of the ‘a’ panel (of Figure 2), the observations curve ‘Km(r)’ is always below the theoretical curve

with the only exception being when the radius is between 14.22 and 42.65 meters. The tendency

of the observation curve to be below the lower simulation curve when the radiuses are ascending,

may suggest the presence of clusters. However, it can be concluded from the results that: the null

hypothesis cannot be rejected because the cumulative empirical distribution of the observations in ‘b’

panel (distances or radiuses) falls within the CSR simulation envelope.

4.3.2 Estimation of the nearest neighbour distance function G

Whether the null hypothesis from the empty space function (or contact distance function) was not

rejected, then there is a high possibility that the Nearest Neighbour Function G will produce a similar

result. Once again, the Figure 3 presents two panels: Nearest Neighbour Distance function G and

Simulation Envelopes to G function under the same conditions, but the recommended range of the

radius is between 0 to 131.69 meters.
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Regarding the results in Figure 3, the null hypothesis is again not rejected because the cumulative

empirical distribution of the observations is falling within the simulation envelope under CSR. In the

panel ‘a’, the nearest neighbour did not appear until after a radius of 24.77 meters, showing that

there could be an inhibition between points. However, this needs to be proved. Panel ‘a’ shows that,

between the radiuses of 0 to 43.68 meters, the cumulative empirical distribution (black or red) is almost

completely below the cumulative theoretical distribution (green). The biggest distance between both

curves is 0.07, which occurred when the radius was about 34 meters. This indicated the presence of

clusters (according to the Simulation Envelope definition). However, in panel ‘b’, the curve of the

observations continues inside the boundary of the simulations envelope under CSR (hi and lo). This

indicates that the null hypothesis cannot be rejected and the presence of clusters is discarded.

4.3.3 Estimation of the reduced second moment K function

The next function that needed to be applied was the K function ‘Kest’. It was used for analyzing

the interaction between points and their impacts in the patterns of Block I. The K function is the

Ripley’s Reduced Second Moment Function which analyses the interaction between a given ‘x’ point

of the process and all the points inside a circle with a radius ‘r’.

The theoretical function K (r) begins with a radius of 1.4 meters, which is considered to be the first

radius for the circle of interaction. However, the first interaction in the observations (or empirical

function) does not appear until around r = 25 meters which is 18 times greater than the first radius
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(sub-section 4.3.2).

The presence of deviations between all the estimates and the Kpois(r) curves in ‘a’ panel suggests

spatial clustering because the various estimate curves tend to be greater than the theoretical curve

(Cressie, 1993). In the ‘b’ panel, the observations curve is under the CSR simulations envelope,

but when the radius is equal to and greater than 297 meters, the observations curve is greater than

hi(r) curve, hence the null hypothesis cannot be accepted and it is possible to have spatial clustering

with radiuses equal to and greater than 297 meters (see definition of Simulation Envelopes). Another

possible conclusion could be that there are dependent interactions between the points inside the ball

when radiuses are equal to or greater than 297 meters.

4.3.4 First and second moment characteristic analysis for I

To support or to discard the results from the Estimates of the Empty Space Function F and of the

Nearest Neighbour Distance Function G (First Moment Characteristic), it is recommended to apply

the Estimate the Function J in the spatial analysis of the data set. With the same criterion, it is

also recommended to use the Pair Correlation Functiong to support or to discard the results of the

Estimate of the Function K (Second Moment Characteristic).

4.3.4.1 Estimate the function J According to section ‘3.4.3.’ and formula (19), the J (r) function

of a stationary point process is defined as: J (r) = 1−G(r)
1−F (r) where G (r) is the nearest neighbour distance

distribution function of the point process and F (r) is its Empty Space Function. For a completely
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random (uniform Poisson) point process, the J (r) Function is identically equal to 1. Deviations when

J (r) is greater than 1 suggests spatial regularity (inhibition) and when J (r) is less than 1, it suggests

spatial clustering (aggregation).

Figure 5 shows the J function on panel (a) and the Simulate Envelopes to J function on panel (b) .

For both panels, the x axis represents the radius. The recommended range of the radius r is between

0 to172.0001 meters for this observation in particular. The y axis represents the J (r) function in

both panels. The panel on panel (a) presents the following three estimates of the J function: the

Kaplan-Meier Estimate (black), the Border Corrected Estimate (red), and the Uncorrected Estimate

(green), as well as the theoretical Poisson curve J (blue). The Simulation Envelopes of the Summary

Function was applied to the Kaplan-Meier Estimate, panel (b), with 99 simulations (5% confidence

level) under CSR with a 0.01 significance level of point wise Monte Carlo Test.

In analyzing the results from the ‘a’ panel, it was observed that the first radius greater than 0 is

3.91 meters for all the J functions and this value is used to generate the next radiuses. Between the

radiuses of 3.91 and 39.09 (10 times the first radius) meters, the empirical estimate curves track over

the theoretical curve and it is possible to see two peaks in this range of radiuses and the greater of

these two peaks is 0.06 units (when the radius is 31.27 meters). This is a small value, which suggests

that the presence of inhibition should be discarded. For the rest of the observations, (i.e. between

43.00 to 172.00 meters, the maximum recommended radius), the empirical estimate curves are under

the theoretical Poisson curve, suggesting the presence of clustering. The lowest point (0.17) from the
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Kaplan-Meier estimate has a distance of 0.83. As such, the presence of clustering could be rejected.

In conclusion, considering the simulations envelope to J function panel ‘b’ (Figure 5), the deviations

in the observations are small and accordingly all observations fall within the CSR region. Hence, it

is possible to discard the presence of inhibition and clustering in Block I. One should remember that

the recommended range of radiuses in the ‘a’ panel is used for the Simulation Envelope Methods to J

function, confirming that Block I has a CSR distribution. The only remaining analysis for this block

is the Pair Correlation Function Method.

4.3.4.2 Pair correlation function g under CSR According to sub-section 3.5.2, for a stationary

Poisson process, the pair correlation function is identically equal to 1. When g (r) shows values less

than 1, it suggests inhibition between points; but when g (r) values are greater than 1, it suggests

clustering. The Simulation Envelopes were applied to the ‘pcf’ functions, as well as the F , G and K

functions.

Both panels ‘a’ and ‘b’ of Figure 6 show a recommended range of ‘r’ radius between 0 and 710.93

meters and the first radius for the circle of interaction is 1.39 meters. These values of curves and

the first radius for the circle of interaction were in the same range obtained with the K function

which shows the relationship between functions. Taking into account the two estimated empirical

values and the theoretical Poisson value in the ‘a’ panel, when the radius is between 26.38 and 699.82

meters, the g (r) values are greater than 1, which suggests the presence of clustering between points.

However, the calculated maximum difference is 0.61 (when the radius is 81.92 meters or 59 times the
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first radius), suggesting that the presence of clusters still needs to be proven. Regarding the results

of Simulation Envelope of the Function K (Figure 4, ‘b’ panel) for radiuses less than 297.14 meters,

the observations curve is within the CSR region which could suggest that the presence of clustering

could occur between 297.14 and 710.93 meters of radius.

In the ‘b’ panel, the empirical curves are under the theoretical curve in the left extreme g(r) when the

radius of the circle interaction is between 1.29 and 12.50 meters which implies the presence of spatial

point patterns regularity. However, since the values in the Estimate of the Function K do not appear

until 24.99 meters of radius, then the assumed regularity is discarded.

Hence the presence of clustering is apparently significant as shown in Figure 7, where the circles have

radiuses greater than 297.14. Looking closely at Figure 7, where the circles of interaction all have a

radius of 300 meters , it is possible to observe one circle with the most interactive points (19 points)

at the center of the Block I and circles with lesser number of points (more than 2 points) throughout

the block. Near the northern edge there is one circle with just 2 interactive points. In conclusion,
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the null hypothesis cannot be completely accepted for the Second Moment Characteristics and it is

necessary therefore to explore Fit Models for Block I.

4.3.5 Fit models for block I

According to Cressie, Baddeley et al, Illian et al and Schabenberger et al, if the null hypothesis of the

CSR test is rejected, then the spatial point patterns should have a clustering or regularly tendency or

both. Different authors have developed different models to fit the distribution of the data set being

studied. Some of these models are Inhomogeneous Points Process, Cox Process (cluster), Poisson

Cluster Process and Simple Inhibition Process (regular).

Spatial points from Block I have a CSR distribution under the First Moment Characteristics (inten-

sity), but the average intensity is 0.33 points per hectare, and accordingly the interaction between

points should not exist. However, when you apply the methods (Function K) under the Second

Moment Characteristics, the null hypothesis is rejected because there is a clustering tendency when

the interaction circle radiuses increase. This ‘controversial’ behaviour of Block I suggests, that one

should ignore the potential new models and find the factors that are affecting the uniform Poisson

distribution of these spatial points. In another words, in this case, the Fit-Model was using methods

where if the null hypothesis is not rejected, the observations show a CSR distribution. Looking at

Block I, (see Figure 7) it is possible to make the following observations:

• In the center-west part of the block there is the biggest concentration of the quadrats (one

hectare) with points.

• In the northern part of the block there are more quadrats without points and there are two

points with distances of contact to other points, greater than 300 meters.

• In the southeastern part, around the edge, there are no quadrats with points.

• In the northwestern corner, there are quadrats without points that extend 400 meters from the

last point to northwestern tip of the block.

• Around the eastern edge there are no quadrats with points.

With these observations and knowledge of the study area forests, such as the distribution patterns of

swamp and ‘terra firma’ forests and the tendency for commercial value trees not to be found right

on the edge where swamp forests meet terra firma forests, it is possible to suggest that the empty

space around the border can be a factor as to why the null hypothesis (spatial points are under

CSR distribution) was rejected when Second Moment Characteristic was used. To demonstrate this

assumption two Fit methods were used: The Cuts Method and The Exclusion-Edge Methods.



37

4.3.5.1 Results of the cuts method and the exclusion-edge method for block I The Cuts

Method: Block I empty edge was progressively cut until the observation curve tended to fall under

the CSR region without rejecting any points for the Second Moment Characteristics. Regarding the

cuts, if the observation curve (empirical curve) maintained its original track or increased its slope in

relation to the CSR region (using the K Function in the Simulation Envelope Method), the cut was

discarded. In this case, there were four potential cuts (see ‘a’ panel in Figure 8), but only two showed

influence without changing the recommended range of Function K. Hence, the observations curve fell

within the CSR region up to a radius of 337.41 meters, whereas without the cut, the curve stayed

inside the CSR region up to a radius of 270.41 meters. However, the null hypothesis was rejected

because there were observations that fell outside the CSR region as shown in the ‘a’ panel in Figure

9.

The Exclusion-Edge Method: Reviewing again the observations and results for Block I, there was one

cut missing in the northern part, but there was significant empty space between two remote spatial

points and the rest of the spatial points. Additionally, the map from the Bimpe Concession shows a

human intervention (road) bordering the northern edge of Block I. Taking this into consideration, this

method consisted in using the remote spatial points as the limit and, in doing so, drawing back the

edge of Block I by excluding significant empty spaces on the edge. In the case of the northern edge,

this also involved the exclusion of two isolated remote points.
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This new area, with the two isolated points removed (see ‘b’ panel from Figure 9), now has 156

points with intensity of 0.47 points per hectare within an area of 333.13 hectares. The results of

the J-Function (First Moment Characteristics) are under CSR distribution as expected, and for the

Second Moment Characteristic, the Reduced Second Moment Function K in the Simulation Envelope

Methods was applied. In conclusion, the null hypothesis could not be rejected without the 2 points,

as observed in the ‘b’ panel (Figure 9).
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The remaining step was the analysis of the results which would make the Pair correlation Function

support or discard the results from the K Function for Block I, considering the new border/area with

the two isolated points excluded. Between the first radius (1 meter) and up to a radius of 20.5 meters,

the observation curve is lower than the lower simulation envelope curve, hence suggesting the presence

of inhibition. However, given that the interaction between points did not appear until the radius of

24.8 meters, (from the results returned of the function Gest, see sub-section 4.3.2). Hence the presence

of inhibition is discarded again. The rest of the observations are completely under the CSR (uniform

Poisson distribution) region as shown in Figure 10. In conclusion, the null hypothesis could not be

rejected.
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The results of the Exclusion-Edge Method concluding that the greater part of the new area (region

with red colour, panel ‘a’ of Figure 11) of Block I, which excluded the two northernmost isolated points,

has a CSR distribution, with an intensity of 0.47 points per hectare. The question remains. What

happened within the northern area of exclusion that included the two removed isolated points? The

absence of points in this excluded area may suggest the influence of and/or partial presence of swamp

forests (i.e. water levels fluctuate between the dry and rainy season). To answer this question it is

necessary to obtain knowledge of this area as well as possible human intervention that can potentially

be deduced by study of the Bimpe Forest Concession map. The following are two possible scenarios

and the resulting impacts on the spatial point distribution analysis:

1. If the empty area between the two rejected points and the CSR area of Block ‘I’ was swamp

forest, then the Exclusion-Edge Method explains the distribution of Block I, provided that

supporting forestry evidence could be obtained that would help explain the existence of the two

rejected points.

2. If the empty area between the two rejected points and the CSR area of Block I was logging

(considering the closed human intervention as the road) or incurred natural tree death, this

potential scenario can be solved via a purely mathematical perspective.

4.3.5.2 Simulation of the excluded area with the two isolated points for block I Using

the postulates of the homogenous Poisson process distribution (Diggle 1993, 50), it is possible to find
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the number of points missing in the rejected area of Block I by simulation.

Denote by A the rejected area (green on Figure 11) under CSR and B the CSR area (red on Figure

11) of Block I.

According to the data set and construction of region in R, A and B are disjoint. According to PP3,

N (A) and N (B) are independent.

According to PP2 N (A) = n the number of points which A has a homogenous Poisson process

distribution and N (B) = 156 from the Block I analysis

According to the Block I analysis, the intensity of Bis .47 points per hectare, hence using PP1 and

knowing the A area (57.67 hectares), it possible to know that the number of points that could have

been in the excluded area is 27. As there are already two points in the area, then there are 25 points

missing.

Using the function rpoispp from the spatstat package developed by Baddeley in R, it is possible to

simulate the 27 points of this block. The simulation could not allocate the exact existing location

for the two existing points but using more than 100 iterations it was possible to arrive at the best

hypothetical representation of the missing spatial points (see panel (b) on Figure 11).
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N (A
⋃
B) = 183 points with average intensity of 0.47 points per hectares over an area of 390.46

hectares within a polygonal boundary with 57 vertices (see ‘b’ panel Figure 11). The Figure 12 shows

the J Function and K Function results for the new area ‘C’ where the null hypothesis could not be

rejected. These results were expected because the two areas have a CSR distribution.

4.4 First and Second Moment Characteristic Analysis for Blocks H, R1

and Z2

According to the Block I analysis, the F function and G function which analyze the First Moment

Characteristics for spatial points are both related used in the calculation of the J Function. Addition-

ally, the application of Simulation Envelope Method within these distance methods brings the best

results which can describe the spatial distribution of these point patterns. Thus, blocks H, R1 and Z2

were analyzed only using the function J. The results of the analysis are given below:

Studying the First Moment (intensity) of the blocks H, R1 and Z2, they followed the CSR distribution

because the whole observation curve (the best estimator of J-function) was between the lower and

higher Simulation Envelope curves under CSR, hence the null hypothesis cannot be rejected. However,

when the radiuses increase there is a tendency towards clustering (See Appendix E, panels of J

Function).

Studying the Second Moment Characteristics (dependence and interaction between points), blocks H
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and Z2 followed CSR when the radiuses were small, but as these radiuses grow, clustering is observed

(when the observation curve is greater than the higher simulation envelope curve under CSR). However,

Block R1 shows that when the radiuses are greater than 700 meters, regularity patterns were observed

(when the observation curve is less than the lower simulation envelope curve under CSR - see Appendix

E, K Function panels).

4.5 First and Second Moment Characteristic Analysis for J, Q and Z1

Studying the First Moment Characteristic (intensity), J and Q blocks show clustering for radiuses

greater than 60 and 45 meters respectively when the observation curve (the best estimator of J-

function) is less than the lower simulation envelope curve under CSR, hence the null hypothesis is

rejected for both blocks. However, the observation curve of Block Z1 falls completely within the CSR

region. Hence the spatial point patterns follow the uniform Poisson distribution, which means the

null hypothesis could not be rejected (see Appendix F, J-function panels).

Studying the Second Moment Characteristics (interaction between balls, two intensities) the J, Q and

Z1 blocks present peculiar observation curves when the K Function and the Simulation Envelope to

function K are applied. Accordingly, the results are described block by block. The point patterns

of Block J follow CSR distribution because the observations curve (Block J has more than 3000

points, and accordingly, the estimator border is significant) is between the lower and higher simulation

envelopes which are under CSR, hence the null hypothesis cannot be rejected. Block Q shows strong

clustering distribution because the observations curve is over the higher simulation envelope under

CSR when the radiuses are greater than 112 meters, and the slope of the observation curve is steeper

than the slope of the theoretical curve when the radiuses increase. Finally, Block Z1 shows both

strong regularity and clustering patterns (i.e. the observations curve crossed the CSR region more

than one time). Between 165 and 572 meters of radius, the observation curve is greater than the

higher simulation envelope indicating a presence of clustering. Between 590 and 883 meters of radius

(the last radius for the observations curve), the observation curve is less than the lower simulation

envelope, hence there is a presence of regular point patterns (See Appendix F, K -Function panels).

4.6 Exploring Aggregation

4.6.1 Aggregation analysis for the more dense areas of Bimpe Concession

Previous studies have explored possible aggregation. This study seeks to shed light on this form

of possible tree grouping (type of clustering). The distance methods helped us find whether or not

the distribution of the trees exhibited a clustering tendency as shown in the results here-above. A

literature review directed at finding information on crown diameters of these very large trees with
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commercial value shows that the approximate range would be 6 to 30 meters (Asner et al, 2002,

486). Personal communication with the foresters involved in the inventory work revealed that an

approximate average crown diameter may be 15 meters. If the average was 20 meters and the distance

between two points is less than 20 meters, then these trees are interacting between themselves. Using

this information, it is possible to detect which blocks have the higher aggregation levels. To explore

aggregation, the blocks were divided into sub blocks that exhibited a presence of clustering (first or

second moment characteristics). These sub-blocks have the characteristics of having the highest point

densities of the block. These selected sub-blocks were divided into 100 X 100 meter (1 hectare) units.

The numbers of points contained within these hectares is shown. The size of these sub-blocks was

variable (See Appendix G). For each sub-bock, at least three hectares which had a high number of

spatial points (trees) were selected and these were then divided into quadrats of 10 x 10 meters to find

the crossing crown points (assuming an average crown diameter of 20 meters) between them. When

there are more crossing crown points in a closed area, then the relative level of aggregation is higher.

It can be assumed that when there are a relatively high number of points within a hectare there is

a higher probability to have more crossing crown points. An analysis of aggregation confirmed this

pattern (See table 3 and Appendix H).

To know whether or not the clustering tendency (principally via the Second Moment Characteristics)

has changed from the original block, distance methods J Function and K Function were applied to

each of the sub-blocks studied. The results showed that, under the First Moment Characteristics

(intensity), all the sub-blocks followed the uniform Poisson distribution (see table 4 and Appendix
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I). This implied a clustering tendency change vis-à-vis J and Q sub-blocks, because originally these

blocks showed a presence of clustering (see Appendix F).

However, using the Second Moment Characteristics (dependence and interaction between points), the

results showed all the sub-blocks have a clustering tendency (see table 5) with varying intensities. For

example, the observations curves of H, J and Z2 blocks were still very close to the higher simulation

envelope, but in the case of Q, R1 and Z1 blocks, the deviations between both the empirical and

theoretical curves was still there (see Appendix I). The empirical curves of sub-blocks Z1 and J have

appreciable changes from the original blocks (see Appendix E).

In doing this, we observed that both the area and the form of the selected boundary have a tremendous

influence over how the spatial point patterns are distributed. In sub-block R1, it was thereby clearly

possible to detect the presence of clusters, which were not visible in block R1 when we studied it using

the same distance methods.
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This semi-manual aggregation analysis focused in the more dense parts of each block. The objective

was to explore the level of tree aggregation. Using the geometrical knowledge specifically regarding the

distance of two circles with one common point (See Figure 13), and the Nearest Neighbour Distances

(nndis) and the Nearest Neighbour (nnwhich) functions from the spatstat package in R Tool, we

developed two functions which are described below.

The first function ‘numneigdistlessmaxcrownd’ gives the nearest neighbours and their correspondent

distances per each spatial point. These distances need to be less than a given distance (per example:

maximum crown distance).

The second function ‘aggregationlevel’ gives the same information as the first function, but in this

case, it lists only the points with have a least one nearest neighbor. Additionally, it shows the number

of nearest neighbours per spatial point which will be used.
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Finally, these functions provided a relative measure of aggregation levels and together they formed an

Algorithm of Aggregation called ‘First Wave of Clustering ’. The levels measured will be have same

name of this Algorithm of Aggregation in this thesis. The reason to call ‘First Wave of Clustering’

is because it only allows us to know the point-to-point connections (tree-to-tree distances). It does

not provide knowledge of more than two points in the same direction or the total mathematic tree.

The Figure 14 panels show two clustering groups in Block H within a circle with a set radius (R1=15

meters) with the one center being tree 573 (A group), and the other center being tree 572 (B group).

These circles are considered to be the first wave level of clustering.

To show the limitation of this algorithm, there is a circle which represents a hypothetical second wave

level of clustering with a radius (R2) of 20 meters and center at tree 573. This circle contains three

hypothetical trees which are a first level of clustering (trees 572, 571, 575) as the nearest neighbours

of tree (573). Figure 14 has five groups: two empirical and three hypothetical (see Table A). If the

hypothetical second wave level of clustering would be computed, with the connection of more than

two spatial points following in the same direction, it would be possible to have the connections:573→

572→ X1, 573→ 571→ X2 or 573→ 575→ X3. Additionally, in Table B of Figure 14, one can see

the nearest neighbour distances of the empirical trees of Block H. From this exercise, one can assume

that the nearest neighbour hypothetical distances are less than 15 meters for the first wave (nearest

neighbours of a center being tree 573) and less than 20 meters for the second wave (again nearest

neighbours of a center being tree 573).
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4.6.2 First wave of clustering algorithm for the all blocks

Using the First Wave of Clustering Algorithm, it was possible to know and to analyze the First Level

of Aggregation for all the blocks which form the whole data set of Bimpe Concession Area. The

average crown diameter of the trees used was 15 meters (as described in sub-section 4.6.1).
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Table 6 presents a summary of the results of the First Wave of Clustering Algorithm. With it, following

observations can be made:

• It appears that the # of points with a least one nearest neighbour is directly proportional to

the average intensity per block however, in the case of blocks Q and Z1, this does not happen.

• The maximum number of the nearest neighbours to a spatial point is 5 when the nearest neigh-

bour distance is 15 meters, but this was observed only once (in block R1)

• Block R1 has the most number of nearest neighbours per spatial points.

• Block Z1 shows the most aggregated spatial points and, when one takes into account the % of

clustering (column 5), this block also has the highest level of aggregation.

• Block I does not have aggregation with a nearest neighbour distance of 15 meters. As mentioned

in sub-section (4.3.3), there is interaction between the points only for radiuses greater than 25

meters.

• The total number of nearest neighbour per number of points (column 11) is not always equal to

the number of points with a less one nearest neighbour because there are some trees which share

one or more nearest neighbour trees (ex. see point-to-point: 573-574 and 573-574 of Figure 14)

as is the case in block H.

• When the number of nearest neighbour points increases, the level of aggregation increases ac-

cordingly, because there are more trees which are interactive within a distance less than 15

meters.

• Regarding the % of clustering for all the blocks (column 5), the level of aggregation per block

never exceeds 30% of the total corresponding points (trees).
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In addition (as per Table 6 results), the First Wave Level of Clustering Algorithm provides the nearest

neighbour distance for each spatial point (trees) for aggregations based on a 15 meter radius. For all

blocks, this information was summarized along with the distance (D(K())>) at which the interactive

radius is greatest and the following observations was obtained (See Table 7).

• The nearest neighbour distance is more frequently between 14 and 15 meters, and the minimum

nearest neighbour distance is 4.69 meters and the maximum is 15 meters.

• Regarding the minimum nearest neighbour distance per block, it is always greater than the

distance value (D(K())>) at which the interactive radiuses are greater (values from the Estimate

of FunctionK per block). This result shows the accuracy of the spatial methods used.

4.6.3 First wave of clustering algorithm for Wenge and Bosse-Clair

This primary focus of this thesis was to provide answers from a mathematic perspective to the critical

hypothesis of the foresters who have been analyzing the forest area from which the study’s data set was

collected. The foresters suggested that we should focus on Wenge and Bosse-Clair trees, coincidently

these are the two species which are densest in the data set. Then, with an average crown diameter of

15 meters, the First Wave of Clustering Algorithm was applied only with the spatial points consisting

only of Wenge and Bosse-Clair trees. The results are shown in Table 8, and from those results, one

can make the following observations:

• Block J shows more than 50% of its trees aggregated and accordingly it is possible to suggest

that these trees have a relatively high clustering pattern. It is useful to remember that Block J

has not been subjected to known human intervention (See Appendix A).

• Comparing the number of points with a least one nearest neighbour with the column 5 of the

table 6, between 36% and 77% of the total trees aggregated are Wenge or Bosse-Clair, with the
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exception of Block Z1 (12%).

• Block R1 shows a relatively strong aggregation level as it has the highest number of nearest

neighbour points with more than one point (23 points in total, see last column).

• Regarding the percentage of clustering (column 5) for all tree species, it is possible to suggest a

lower level of aggregation for Wenge and Bosse-Clair at an average crown diameter of 15 meters.

This conclusion does not take into consideration forestry or ecological factors.

The First Wave of Clustering Summary of the distances is presented in Table 9. According to these

results, the following observations can be made:

• The nearest neighbour distance is more frequently between 12 and 15 meters, and the minimum

nearest neighbour distance is 4.94 meters and the maximum nearest neighbour is 15 meters.

• Regarding the minimum nearest neighbour distance per block, it is always greater than the

distance value (D(K())>) , which is always less than any interactive radiuses of the estimate of

FunctionK( see sub-section (4.6.2)).
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5 SECTION

5.1 Conclusions and Recommendations

5.1.1 Conclusions

• According to sub-section 4.2 (Investigating the intensity) , the blocks of the Bimpe Forest Con-

cession have very irregular boundaries which are an indication of the presence of natural phe-

nomena such as adjacent swamp forest. Less irregular boundaries indicate that the adjacent

areas are external anthropogenic interventions such as logging roads, constructed or planned,

and/or adjacent property. Taking these factors into account for Block I, results were obtained

after the ‘Cuts Methods’ was applied (sub-section 4.3.5.1) with the two net areas of influence

being less than that of the entire block.

• The spatial distribution analysis of the Bimpe Concession data set was done by grouping the

seven blocks according to their intensity characteristics. Block I was treated as an individual

group because it presented a particular distribution with a strong tendency to CSR in contrast

to the others Blocks. The second grouping consisted of the blocks H, R1 and Z2 given that

their Kernel Smoothed Intensities are similar with some small dense areas around the dispersed

areas (see Appendix C). The third group included the remaining blocks J, Q and Z1, which

have the densest areas. However this group was selected due to the presence of some unexpected

behaviour such as: Block J has more than 3000 points with an apparently regular distribution in

an area of relatively low density, and yet it does not present external anthropogenic interventions

(See Appendix A). Block Q has two sub-areas with strong but different patterns, one showing

apparent clustering and the other showing regular distribution. It has the highest average

intensity (3.07 points per hectare) and it shows external anthropogenic interventions along its

borders. Block Z1 presents two sub-areas strongly marked similar to Block Q, but the difference

with Block Q is that the panel of JFunction graph/panel showed a strong distribution under

CSR, while the panel of K Function completely rejected the null Hypothesis. Hence, for each of

these three groups it is possible to conclude:

– According to the First Moment Characteristic (F , G and J sub-section 4.3), the spatial

point patterns of block I is homogeneous. However, the Second Moment Characteristic

(J and g sub-section 4.3) cannot accept the hypothesis and the point patterns showed a

clustering tendency when the radius was increased. Applying Fit Models (see sub-section

4.3.5.), block I has a CSR distribution with the assumption that the northern area (See

Figure 11) was logged (considering the closed human intervention of the adjacent road) or
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incurred natural tree death.

– H, R1 and Z2 blocks followed the CSR distribution when analyzed using the First Mo-

ment Characteristics (sub-section 4.4.), implying that these blocks have homogenously

distributed point patterns. Otherwise, when analyzed with the Second Moment Char-

acteristics, the blocks H and Z2 followed CSR distribution at very smallest radiuses, but

when the radiuses grew, clustering was observed. Block R1 followed CSR distribution how-

ever when the radiuses were greater than 700 meters, regularity patterns were observed.

Hence, blocks H and Z2 have a CSR distribution with interactions and/or dependences

between the points when the radiuses are greater than 5.16 meters. Block R1 showed a

CSR distribution, which potentially resulted from external anthropogenic and/or natural

events (See Appendix A). In the distribution of Block R1, it is not possible to discard a

pre-existing clustering pattern, which could have been altered by these events.

– According to the analysis of the First and Second Moment Characteristics, Block J is non-

homogenous, but does not have interactions and/or dependences between its point patterns.

However, the aggregation analysis (sub-section 4.6.) discarded the absence of interaction

between the trees. Block Q shows strong clustering distribution, however its two sub-areas

suggest high variance in the level of clustering completely within this block. Finally Block

Z1 is homogenous but with interactions and/or dependences between its point patterns.

• Taking into account all the above conclusions, it can be summarized that the spatial point

patterns of the Bimpe Forest Concession study area have a mixed distribution. This is not

surprising. The presence of swamp forest around each block and anthropogenic and/or naturals

events have had a significant impact on spatial distribution of trees reflected in results obtained

using spatial analysis methods. Hence, a detailed study of these areas using forest management

and forest ecology knowledge is necessary to obtain a more complete understanding of the spatial

distribution of trees within these blocks.

• The results of the spatial analysis of block I informs both forest ecology and management in that

it presents and explains the importance of key factors to be considered in the spatial distribution

of the points (trees) such as the geographic landforms, human interventions such as roads and

natural events such as tree death interventions.

• The aggregation analysis in the more dense areas (called sub-areas) of the blocks showed that al-

most all the blocks are homogeneous with interactions between their points (clustering patterns)

with the exception of Block I when a crown diameter of 20 meters is assumed. Accordingly, it

is possible to conclude that Block I is under CSR distribution and the presence of a regular
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pattern in Block R1 can be completely discarded.

• Using an average crown diameter of 15 meters and applying the First Wave Level of Clustering

Algorithm for all the spatial points, the level of aggregation per block never exceeds 30% of the

total spatial points (trees). Hence, the overall aggregation level of the Bimpe Forest Concession

Area is not strong at the time the data set was collected and compiled. The external anthro-

pogenic and/or natural events could be contributing factors. It is also important to note that

aggregation is strongly dependent on the average crown diameter chosen.

• With respect to the main proposal of this thesis, the aggregation analysis applied to the trees of

Wenge and Bosse-Clair species of trees, it is possible conclude that all of this subset presented

aggregation, with the exception being Block I. The level of aggregation was not dense (less than

10% of points have overlap between its crowns). However the Block J showed that 56% of the

Wenge and Bosse-Clair trees have aggregation patterns (interaction and/or dependence). It was

noted that Block J has only 5 species, however this block did not show external anthropogenic

interventions. Accordingly, it is possible to assume that natural events such as normal tree

mortality due to fluctuating water levels given the presence of adjacent swamp forest or generally

unsuitable soil nutrients as possible causes.

• When one compared the minimum nearest neighbour distance of all the trees (all species) and the

trees of Wenge and Bosse-Clair species in each block (Table 8 and Table 10), with the interaction

distance over which the Function K showed presence of interaction or/and dependence between

spatial point patterns, it could be determined that the average crown diameter chosen was

proper.

• This spatial analysis consists of recently applied theory that attempts to provide some missing an-

swers to the forest managers of the area where the data set came from. In this specific case, these

results could help foresters decide the level and spatial characteristics of tree removal/harvesting

without altering the fundamental forest structure and composition (sub-section1.2).

5.1.2 Recommendations

• The use of spatial analysis methods, for the spatial analysis of data set of Bimpe Forest Con-

cession Area data set, should be accompanied by background knowledge of the study data (past

forest management and forest ecology in this case) so to provide more accurate results, taking

into account the large size and complexity of the data set.

• For future applications, it is best to first use, the Estimate of Function J with the Simulate

Envelope Method, when one is analyzing the First Moment Characteristics. However, for the
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Second Moment Characteristics (interaction and/or dependence) it is recommended to first use,

the Estimate of Function K and, depending on the results obtained, then applying Simulate

Envelope Method.

• The First Wave of Clustering Algorithm needs to be scaled more to provide the total level of

aggregation, and it be would be useful to explore the development of new algorithms for a more

complete and accurate, mathematic-based, theory of spatial distribution (particularly for forest

data set).

• The results of sub-section 4.6, the existence and location of aggregation (clustering) in any forest

are very important to be study because it will be a key factor in determining sustainable extrac-

tion rates that will not significantly alter forest structure composition and ecological functions.

The goal is to cut just the ‘interest’ or ‘benefit’ without going beyond such a level of extraction

that would diminishing a threshold forest stock level that is often referred to as the ‘principal’.
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5.2 Appendix

5.2.1 Appendix A: Map of the Bimpe Concession
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5.2.2 Appendix B: Species of trees of Bimpe Concession Area

5.2.3 Appencix C: Block’s density of Bimpe Forest Concession Area
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5.2.4 Appendix D: Mapped point patterns from Special Wenge and Bosse-Clair of Trees

in Bimpe Forest Concession Area
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5.2.5 Appendix E: J-function and K-function panels for blocks H, R1 and Z2
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5.2.6 Appendix F:J-function and K-function panels for blocks J, Q and Z1
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5.2.7 Appendix G: Exploration of aggregation
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5.2.8 Appendix H: The three more dense hectares in exploration of aggregation
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5.2.9 Appendix I: J-function and K-function panels from the sub-blocks
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5.5 Notation Index

5.5.1 Abbrevations

a.s. almost sure

c.d.f. cumulative distribution function

i.i.d. independent and identically distributed

p.d.f probability density function

r.v. random variable
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5.5.2 Nomenclature

Rd The d-dimensional Euclidean Space (set of real numbers)

d dimensions

R Statistic Software Tool

X(t) Index random variables (p. 7)

B or A a compact region in Rd

VB,k Basic event N which has kpoints in the compact regionB (p. 7)

N Point process

N (.) Number of spatial point in a compact region as N (A) (p. 9)

υ First Moment of point processes

λ Intensity

λ (.) Intensity Function

E [.] Mean value

X Point Process

υ2 Second Moment of point processes

K Ripley’s Function

0C Centigrade degrees

r Number of rows for of compact regionA (p. 13)

c Number of columns for of compact regionA (p. 13)

n Number of realization of point processes model (p. 13-14)

n̄ Expected number of events in any quadrat under CSR (p. 13)

Z An observed pattern in S

α Significance level of a test (p. 14)

I (.) Indicator function which returns 1, if (.) is true or false else.

G or G (.) Nearest Neighbour Distance Function

Ĝ(.) Estimate the Nearest Neighbour Distance Function G (p. 15)

For F (r) Contact Distance or Empty Space Function

r or s Measure of a radius of some ball b

F̂ (r) Estimate the Empty Space Function F

Jor J (r) The Function J

J A Block from the Bimpe Forest Concession Area

gor g (r) Pair Correlation Function

(x, y) The coordinates of a spatial point (tree)
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