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RESUMEN

Este trabajo compara métodos metaheurísticos para optimizar la sintonía en dos controladores

aplicados a procesos con largos tiempos muertos. Se utilizó un laboratorio de control de

temperatura Arduino con un retardo basado en software se utilizó para probar experimentalmente

los controladores optimizados. El Smith Predictor y el PI se sintonizan utilizando tres algoritmos

meta-heurísticos de optimización diferentes: Algoritmo de Optimización Ballena, Optimizador

Lobo Gris, y Optimizador León Hormiga, para buscar los parámetros para el mejor rendimiento

basado en el Error Cuadrático Integral como función de coste. Estos esquemas de control Estos

esquemas de control se comparan cualitativamente mediante distintos índices de rendimiento

para determinar cómo pueden mejorar estos algoritmos el rendimiento del proceso. estos

algoritmos pueden mejorar el rendimiento del proceso mediante la búsqueda de soluciones

óptimas para el ajuste de los parámetros. parámetros. Sin embargo, los resultados indican que el

Smith Predictor con el algoritmo de optimizacion por ballenas entre los esquemas de control

probados, es adecuado, equilibrado y funciona mejor en procesos térmicos con tiempos muertos

largos. .

Palabras clave: TCLAB, Smith Predictor, PI, tiempo muerto, metaheurística, algoritmos de

optimización.
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ABSTRACT

This work compares metaheuristic methods to optimize tuning in two controllers applied to

processes with long dead time. An Arduino Temperature Control Lab with an additional

software-based delay was used to test the optimized controllers experimentally. The Smith

Predictor and the PI are tuned using three different meta-heuristic optimization algorithms:

Whale Optimization Algorithm, Gray Wolf Optimizer, and Ant Lion Optimizer, to search

parameters for the best performance based on Integral Square Error as the cost function. These

control schemes are qualitatively compared using different performance indices to determine how

these algorithms can enhance the process performance by seeking optimal solutions for tuning

parameters. However, the findings indicated that the Smith Predictor with Whale Optimization

Algorithm, among the tested control schemes, is suitable, balanced, and performs better for

thermal processes with long dead time.

Keywords: TCLAB, Smith Predictor, PI, dead-time, metaheuristic, optimization algorithms.
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CHAPTER 1
INTRODUCTION

Dead time is commonly encountered in engineering, physics, and biology due to the inherent

nature of certain processes. It manifests in various applications, including aircraft operations,

chemical processes, teleoperation, and biological (Camacho and Leiva, 2020). Dead times can

arise from different sources, such as delays in control input, state variables or measurements,

wireless network transmission, physical transportation, and decision-making in response to

stimuli that affect the overall response of the system(Camacho and Martínez, 2017, Normey-

Rico and Camacho, 2007, Mejía et al., 2022).

It is crucial to recognize that dead time can significantly affect system performance, empha-

sizing the need for careful consideration and mitigation strategies to optimize operations and

minimize undesirable effects. (Camacho and Leiva, 2020, Normey-Rico and Camacho, 2007).

Processes that exhibit a long dead time (t0) compared to the dominant time constant (τ ) are

called dominant dead-time systems (t0 > τ ). This phenomenon can reduce the reaction time

to reject disturbances, decrease the performance and stability margins, and prolong the time

response of the process (Camacho and Martínez, 2017). Long dead time systems can cause

instability in the closed-loop control system (Camacho and Leiva, 2020). Moreover, achieving

effective control using a PID approach becomes challenging when dealing with long dead time.

Thus, various schemes and strategies have been developed to overcome this challenge. One

notable solution is the Smith predictor (SP), designed as the first compensator specifically

addressing dead time in feedback control systems(Mejía et al., 2022). The SP predicts the

system’s output based on the present input and the known dead time. This predicted output is

then utilized to calculate the control signal, which is applied to the system to minimize the error
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between the desired and actual outputs (Camacho et al., 2020).

Over the years, diverse adjustment methods have continuously been developed to enhance

delay compensation controllers (O’Dwyer, 1999). Most of these methods rely on First Order

Plus Dead-time (FOPDT) models. However, some time is required for additional fine-tuning of

improvements(Smith and Corripio, 2005); consequently, exploring alternative paths similar to

optimization algorithms has become a topic of active research (Darwish, 2018). An optimization

algorithm is a mathematical procedure that tries to find the best solution to a given problem.

An optimization algorithm aims to find the optimal solution that minimizes or maximizes a

given objective function. A notable example is the use of evolutionary methods inspired by

living organisms, commonly called meta-heuristic optimization algorithms (Darwish, 2018).

This field encompasses the study of computer science, mathematics, and biology and has

gained significant attention in recent years. These methods are inspired by life in nature; these

bioinspired computing optimization algorithms offer powerful problem solving strategies. In

addition, they have been increasingly used in machine learning to find optimal solutions to

challenging problems in the realms of science and engineering(Mejía et al., 2022, Darwish,

2018).

This work compares and evaluates two control methods for systems with long dead time.

The first method uses a proportional-integral (PI) controller, and the second uses the Smith

predictor. The two controllers are tuned, considering three metaheuristic optimization methods.

They are whale, gray wolf, and ant-lion optimization algorithms. The evaluation uses an

Arduino Temperature Control Lab (TCLab) (de Moura Oliveira et al., 2021). For comparison

purposes, the controllers are initially adjusted using Dahlin’s and Skogestad (Camacho et al.,

2020) methods. The performance indices considered are the integral square error (ISE), the

integral square controller output (ISCO), the optimization algorithm time, the settling time and

the maximum overshoot. Finally, the results indicate that the Smith predictor combined with

Whale optimization is particularly effective for the studied process.



13
The remainder of the study is organized as follows. Section II introduces fundamental

concepts, Section III provides a brief description of the TCLab kit, Section IV reports the two

controllers, Section V discusses the optimization algorithms, Section VI presents the results and

analytical evaluation, and Section VII concludes this work.
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CHAPTER 2
FUNDAMENTALS

This Section gives the background to understand the most relevant topics of this study.

2.1 Dead time
In control systems, dead time is the time it takes for an input signal to be processed and an

output signal to be generated. It is also known as transport time or time delay (Normey-Rico

and Camacho, 2007).

2.2 Proportional Integral Control (PI)
The PI controller combines two essential components: proportional control and integral control.

Proportional control governs the strength of the control action and its responsiveness to the error.

On the contrary, integral control enables the controller to address steady-state error and eliminate

any deviation between the desired setpoint and the actual output (Camacho et al., 2020).

2.3 Smith Predictor (SP)
The Smith predictor is a controller designed to handle dead time in systems. It is often used

with PI or PID controllers, which are adjusted to regulate the process without delay. The term

"predictor" refers to its ability to estimate the system output without delay. However, it is

important to note that this traditional Smith predictor approach is only suitable for stable systems

(Camacho et al., 2020).

2.4 Whale Optimization Algorithm
The Whale Optimization Algorithm (WOA) is a metaheuristic algorithm that draws inspiration

from the hunting behavior of humpback whales. To find optimal solutions to complex optimiza-

tion problems, WOA incorporates two distinct phases: exploration and exploitation. During

the exploration phase, whales randomly traverse the solution space, allowing the algorithm to

explore a wide range of potential solutions. Subsequently, in the exploitation phase, whales
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adjust their movements based on a designated leader, gravitating towards the most favorable

solution. The algorithm also incorporates the encircling of promising regions and cooperative

behaviors, similar to the whales’ cooperative bubble-net hunting strategy, which intensifies

the search process. By harmonizing these distinct behaviors, the WOA strikes an equilibrium

between global and local search, rendering it highly effective in diverse domains that require

optimization (Mirjalili and Lewis, 2016).

2.5 Gray Wolf Optimizer
The Gray Wolf Optimization (GWO) algorithm emulates the leadership hierarchy and hunting

strategies observed in gray wolves in the natural world. It utilizes four categories of gray wolves,

alpha, beta, delta, and omega, to replicate the hierarchical structure within the pack. Additionally,

to guide the optimization procedure, the algorithm incorporates the essential steps of the hunting

process, including searching for prey, encircling the prey, and attacking the prey. (Mirjalili et al.,

2014).

2.6 Ant Lion Optimizer
The Ant Lion Optimization (ALO) algorithm imitates the hunting behavior of natural antlions. It

incorporates five key stages of prey capture, including the random movement of ants, constructing

traps, ensnaring ants in the traps, capturing prey, and rebuilding traps. By emulating these steps,

the ALO algorithm aims to optimize problem-solving processes like the efficient hunting

mechanisms observed in antlions (Mirjalili, 2015).
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CHAPTER 3
ARDUINO TEMPERATURE CONTROL LAB OVERVIEW

This section provides an overview of the TCLab kit, its fundamental components, and its

behavior.

Figure 3.1: Temperature Control Laboratory

This kit is built on the Arduino Leonardo platform, as illustrated in Fig. 3.1. It requires

a USB connection for communication and an electrical power supply. The kit includes two

BJT heaters and their respective sensors that simulate a real-time thermal process. Also,

temperature measurement is performed using voltage signals captured by the sensors, which are

then converted into digital values using a 10-bit Analog-to-Digital Converter (ADC) within the

Arduino. Finally, the heaters are regulated using the pulse width modulation (PWM) technique,

as mentioned in reference (de Moura Oliveira et al., 2020).

3.1 TCLab Model identification
A FOPDT model was derived from the TCLab thermal process using the reaction curve proce-

dure(Smith and Corripio, 2005). The corresponding parameters are presented in Table 1, and the

validation results are illustrated in Fig. 3.2. This validation shows how effectively the model

follows the behavior of the thermal process, which is useful in simulation.
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(a)

(b)

Figure 3.2: Model Validation: FOPDT Model and Real process responses

Table 3.1: FOPDT Characteristic Model Parameters

Values

Parameters Values

K 0.9201

τ 182

t0 15
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3.2 TCLab with additional delay
The model revealed that TCLab has a dead time t0, less than the dominant time constant τ .

Considering that this study is about processes with dominant dead time, a software time delay of

185 [s] was incorporated, resulting in t0 = 200 [s].

Figure 3.3: Block Diagram for the Thermal Process.

Fig. 3.3 shows the new block diagram with the additional dead time added to the original

system. Therefore, the new transfer function for the FOPDT model with dominant dead time

can be expressed as follows.

G(s) =
0.92

182s+ 1
e−200s (3.1)
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CHAPTER 4
CONTROLLERS APPROACHES

This section discuss the empirical approach used for implementing the Smith Predictor and

Proportional Integral controllers. The complementary delay time was incorporated into the

system using MathWorks Simulink, with the simulations performed on a laptop equipped with

an i7 7th Generation Processor operating at 2.8 GHz and 24GB RAM. Additionally, to design

the Smith Predictor, a process diagram was utilized, which is illustrated in Figure 4.1.

Figure 4.1: Process Diagram

4.1 PI Controller
Based on the FOPDT model, a Proportional Integral (PI) controller was implemented applying

Dahlin equations to obtain the Proportional Gain (Kp) and the integral Gain (Ki). The Dahlin

Method was chosen as the tuning method for the PI controller due to its frequent application in

process control industries, as mentioned in (Smith and Corripio, 2005) and the calculations and

parameter values obtained were specified in Table 4.1.

Moreover, the process controller output signals are depicted in Fig. 4.2, showcasing the

response to a reference change.
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Table 4.1: Dahlin Nominal Parameters

PI Controller
Parameters Equation Values

Kp
1
2K

(
τ
t0

)
0.5972

Ki
1
τ

0.0054

Figure 4.2: Nominal process results of the PI Controller.

Analyzing Figure 4.2, it becomes evident that the system variable is able to closely follow

the set point without significant deviations or noise. Its characteristics will be seen in section VI.

4.2 Smith Predictor Controller
A second controller was developed, employing the Smith predictor approach. This controller

incorporates a PI controller within the SP scheme. However, the distinction lies in the tuning

method used. Equations from reference (Camacho et al., 2020), for a first-order model, with τc

as the tuning parameter were applied, and it is noteworthy that some of the controllers discussed

in (Camacho et al., 2020) consider τc to be equal to t0.

Subsequently, the designed controller was tested, and the results obtained are depicted in

Figure 4.3, demonstrating its satisfactory performance. The controller parameter values utilized

are presented in 4.2.
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Table 4.2: Nominal Values with τc as adjustment parameter

PI Controller for SP

Parameters Equation Values

Kp
τ
τc

0.91

Ki
1
τ

0.0054

Figure 4.3: Nominal process results of Smith Predictor Controller.

Analyzing Figure 4.3, it is evident that the process variable exhibits precise tracking of the

reference signal without notable deviations or noise. Additionally, the control signal effectively

regulates the thermal process with a rapid settling time, displaying no overshoot or oscillation.

This improved performance can be attributed to the advantageous characteristics of the Smith

Predictor, which is known for its superior performance in systems with long dead-time. Its

characteristics will be shown in Section VI.

Despite achieving satisfactory results, there exist notable variations in the performance

characteristics between the two controllers. Consequently, in the next section, optimization

algorithms are employed to explore how the compensators performance can be optimized.
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CHAPTER 5
OPTIMIZATION ALGORITHMS

This section discusses the implementation of the three metaheuristic optimization algorithms

described before.

The PI and SP schemes were optimized based on simulation using these algorithms to

minimize the integral square error by adjusting the reference point. The optimized parameters

obtained were subsequently tested using the TCLab. Additionally, in the optimization process,

each procedure was assigned the same values (except for the boundaries) to compare them. This

was done to obtain a new population that potentially offered improved solutions to replace the

previous generation (nominal methods).(Mejía et al., 2022, Arora, 2019).

Parameters to run the optimization (Kp, Ki):

• Search Agents (N) = 30

• Max iterations (Maximum number of generations) = 30

• Lower boundaries = [0.0001, 0.0001]

• Upper boundaries: for PI = [5, 5] for SP = [1, 1]

Increasing N and Max iteration values did not yield any advantages. Therefore, a value of 30

was sufficient to optimize the process without sacrificing information. The PI controller had

wider limits, as they did not affect the implementation in the thermal process. On the other hand,

for the SP controller, narrower limits were established, with a difference 10% from the Nominal
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tuned Ki serving as a reference. This was done to prevent oscillations caused by the limitations

of the TCLab PWM.

Figure 5.1: Processes Results with WOA, GWO and ALO.

Figure 5.1 presents the results of applying heuristic optimization algorithms to controllers in

the real-time thermal process.
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CHAPTER 6
EVALUATION AND CONTRASTS

In this section, several tests are considered for evaluation of purposes. Table IV shows the

values of the tuning parameters and the time spent to obtain these optimal values, and in Table

V, the performance indices ISE, ISCO, Mp(%) so as the ts are shown to see the dynamic

performance for the response and controller action.

Table 6.1: Algorithms Comparisons

PI Scheme Kp Ki Opt. Time (s)

Nominal 0.5972 0.0054 —

Whales 1.2446 0.0030 134

Gray Wolves 1.1947 0.0034 159

AntLion 1.3738 0.0033 163

SP Scheme Kp Ki Opt. Time (s)

Nominal 0.91 0.0054 —

Whales 0.9 0.0098 303

Gray Wolves 0.9 0.0097 368

AntLion 0.9 0.0095 414

The SP scheme with the Whale Optimization Algorithm (WOA) achieved the fastest opti-

mization time and the lowest Integral Square Error (ISE) in all cases. The lowest ISE value

obtained was 10430, representing a significant improvement of 75% compared to the nominal PI

scheme and a 23% better performance than the nominal SP method. Also, the PI scheme with

WOA had a 1.41% lower ISE than GWO and 7.67% compared to ALO. On the other hand, the

SP scheme with WOA had a 0.4% lower ISE compared to GWO and 1.23% compared to ALO.
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These findings highlight the superior performance and control effectiveness of the Smith

Predictor using WOA to minimize the integral square error.

Table 6.2: Performance Indices Comparison

PI Scheme ISE ISCO Mp% ts(s)

Nominal 4,2E+05 1.001E+07 4,63 1500

Whales 3,49E+05 1,06E+07 22,85 2485

Gray Wolves 3,54E+05 1,06E+07 25,71 2520

AntLion 3,78E+05 1,09E+07 37,14 2850

SP Scheme ISE ISCO Mp% ts(s)

Nominal 13580 1,21E+06 0 1400

Whales 10430 1,25E+06 0 1200

Gray Wolves 10470 1,25E+06 0 1000

AntLion 10560 1,25E+06 0 1135

Figure 6.1: Normalized Performance Comparison a) PI b) SP: Integral Square Control Output (ISCO), Integral
Square Error (ISE), Settling Time (ts) and overshoot (Mp).

Fig. 6.1 shows the superior performance of SP in all elements. Additionally, the optimization

with WOA demonstrated superiority in most aspects except for the settling time in the SP

controller. However, considering that the cost function was the squared integral error, this

algorithm outperformed all tests.
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CHAPTER 7
CONCLUSIONS

This study aimed to explore metaheuristic algorithms for finding optimal tuning parameters for PI

and SP controllers in systems with a long dead time using the TCLab kit. The analysis compared

three algorithms (WOA, GWO, and ALO) and assessed their ability to improve controller

performance by minimizing ISE through parameter tuning. Different performance indices were

used to observe variations in behavior between schemes and their metaheuristic optimizations.

The results demonstrated that all algorithms successfully found solutions. However, WOA stood

out by reducing the integral square error. It is important to note that optimization with the lowest

values, such as ISE, can perform a high overshot value, which is sometimes not the most suitable

choice. Therefore, the cost function can be done by balancing factors that consider most aspects

of performance.
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