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ABSTRACT 

Marine debris pollution poses a significant global threat to biodiversity, with plastics being the 

primary debris type found in oceans due to their low-cost production and high demand 

worldwide. Microplastics (MPs, <5 mm in size) are highly bioavailable to a wide range of 

marine taxa, including marine mammals, through direct and indirect ingestion routes (i.e., 

trophic transfer). Recently, MP pollution has been detected on the Galapagos Marine Reserve, 

so in this study we developed a baseline framework for MP pollution in the Galapagos sea lion 

(GSL, Zalophus wollebaeki) through scat-based analysis. We collected 180 GSL scat samples 

from the southeast region following strict quality assurance/quality control protocols to detect, 

quantify and characterize physical-chemical properties of MPs through visual observations and 

µFT-IR spectroscopy. We recovered 81 MPs of varying sizes and colors in 37% of samples 

(n=66), consisting mostly of fibers (69%, x̄=0.31 ± 0.57 particles scat-1). The number of 

particles per gram of sample wet weight ranged from 0.02 to 0.22 (x̄=0.04 ± 0.05 particles scat 

wet g-1). El Malecón and Punta Pitt rookeries at San Cristobal Island had the highest number 

of MPs (x̄=0.67 ± 0.51 and 0.43 ± 0.41 particles scat-1, respectively), and blue-colored particles 

were the most common in all samples. We identified eleven polymers in 46 particles, consisting 

mostly of polypropylene-polyethylene copolymer, polypropylene, cellulose, polyethylene, and 

polyvinyl chloride. The textile, fishing, and packaging industries are likely significant sources 

of microfibers into this insular ecosystem. Our results suggest that the GSL is exposed to MPs 

due to anthropogenic contamination and bioaccumulation associated with trophic processes. 

These findings provide an important baseline framework and insights for future research on MP 

pollution in the region, as well as for management actions that will contribute to the long-term 

conservation of the GSL. Keywords: Galapagos Marine Reserve, microplastics, plastic 

pollution, scat-based analysis, trophic transfer, Zalophus wollebaeki  
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INTRODUCTION 

Marine debris pollution is a global threat to marine biodiversity (Alfaro-Núñez et al., 2021; 

Gall & Thompson, 2015; Pelamatti et al., 2021). Plastics (i.e., synthetic polymers) (Geyer, 

2020) are the dominant debris type in the ocean due to their extremely high demand, low 

production costs, high durability, and persistence; with global plastic production waste reaching 

6.3 billion tons in recent years (Jepsen & de Bruyn, 2019; Du et al., 2022; Xiang et al., 2022). 

Demand for single-use plastic products increased significantly over the last few years to address 

the public health crisis caused by the SARS-CoV-2 virus outbreak, resulting in higher pollution 

rates (Peng et al., 2021). The widespread overuse of personal protective equipment (e.g., 

facemasks, gloves, hospital supplies) and delivery packaging resulted in additional major 

sources of plastic pollution (Gibbons et al., 2022). If historical trends hold steady, annual global 

plastic production is likely to reach 1100 million metric tons by 2050, implying a predicted 

cumulative plastic production of 34 billion tons since 1950 (Geyer, 2020). Thus, the mass 

production of plastics and deficient waste management strategies have made these synthetic 

materials a persistent threat to the environment, especially for marine ecosystems (Jambeck et 

al., 2015; Peng et al., 2021). 

Plastic litter degrades slowly but steadily in the ocean due to photolytic, mechanical, and 

biological action, resulting in meso- (5000 to 10000 µm), micro- (1 to 5000 µm), and nano- 

(0.001 to 1 µm) particles that are potential vectors of pathogens and chemical contaminants, 

with an estimated occurrence of over 170 trillion plastic particles within world’s oceans(da 

Costa, 2018; Zantis et al., 2021; Eriksen et al., 2023). There are primarily two different 

categories of microplastics (MPs). Primary MPs, which are particles directly available to the 

environment; and secondary MPs, which are the result of the fragmentation of larger debris 

(Laskar & Kumar, 2019). Similarly, the composition of these synthetic particles can either be 
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made up from fossil-based or bio-based polymers. Fossil-based polymers (e.g., polyethylene, 

polypropylene, polystyrene, polyvinyl chloride) use fossil fuels as feedstock and encompass 

most plastic products (Walker & Rothman, 2020; Du et al., 2022). Whereas bio-based polymers 

(e.g., cellulose), rely on biological sources as feedstock (Walker & Rothman, 2020); however, 

some types of cellulose have been anthropogenically modified, thus altering the natural 

polymer's chemical composition to enhance its strength and durability (Sanchez-Vidal et al., 

2018; Athey et al., 2020). Therefore, semi-synthetic cellulose is persistent in marine ecosystems 

and has a significant effect on microfiber abundance at a global scale (Athey et al., 2020; Adams 

et al., 2021).  

Depending on various factors (i.e., size, density, abundance, color), MPs are bioavailable to a 

wide range of marine species at different trophic levels (Wright et al., 2013), either through 

direct (Gouin, 2020) or indirect ingestion of contaminated prey (Nelms et al., 2018). Thus, MPs 

can be transferred bottom-up, starting from the foundation of marine food webs (i.e., planktonic 

organisms) and triggering a domino effect of bioaccumulation to higher trophic levels (Botterell 

et al., 2019; Costa et al., 2020; Miller et al., 2020). These characteristics make marine mammals, 

particularly cetaceans and pinnipeds, susceptible to direct and indirect MP ingestion routes 

depending on species-specific feeding strategies (Nelms et al., 2019a; Zantis et al., 2021). 

Raptorial feeding is the main trophic strategy in pinnipeds, meaning that they feed on prey using 

only their jaws and teeth, typically consuming them entirely (Hocking et al., 2017), thus 

suggesting trophic transfer as main route of MP ingestion for this group. Several methods have 

been developed to study the intake and abundance of MPs in marine mammals, being gut-

content and scat-based analyses the most used (Zantis et al., 2021). Scat-based analysis has 

proven to be an effective non-invasive method for detecting and quantifying MPs in pinnipeds 
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(Eriksson & Burton, 2003; Nelms et al., 2018, 2019b; Perez-Venegas et al., 2018, 2020; Pérez-

Guevara et al., 2021; McIvor et al., 2023).  

MP pollution has been detected in the Galapagos Islands' southeast region (Alfaro-Núñez et al., 

2021; Jones et al., 2021, 2022; Muñoz-Pérez et al., 2023), where the Galapagos sea lion (GSL, 

Zalophus wollebaeki) establishes its main reproductive rookeries (Páez-Rosas et al., 2021). This 

endemic pinniped is listed as endangered by the International Union for Conservation of Nature 

(IUCN) because of drastic population declines over the last four decades (Trillmich, 2015). 

Among its main threats are climate change, emerging diseases associated with invasive species, 

and impacts related to human activities near the archipelago (Páez-Rosas & Guevara, 2017; 

Riofrío-Lazo & Páez-Rosas, 2021). Plastic pollution has become one of the main anthropogenic 

threats to this species (Jones et al., 2021; Muñoz-Pérez et al., 2023), since the GSL is susceptible 

to biomagnification of persistent organic pollutants (POPs) (Alava et al., 2011; Alava & Ross, 

2018), which are toxic contaminants that can be absorbed and transported by MPs. Nonetheless, 

there are no data on the abundance of MPs for this species, even though these particles are 

bioavailable in the food web and that the GSL has been catalogued as the mammal with the 

highest risk of ingesting plastic debris in the archipelago (Jones et al., 2021, 2022; Muñoz-

Pérez et al., 2023). 

The largest GSL rookeries are located on the southeast islands of the archipelago (i.e., Española, 

Floreana, San Cristobal, and Santa Fe), with an estimated population of 2300 to 4100 

individuals (Riofrío-Lazo et al., 2017; Páez-Rosas et al., 2021). The trophic efficiency of this 

region is significantly influenced by Humboldt current , which provides cold and highly 

productive waters (Riofrío-Lazo et al., 2021). However, this current is also an important driver 

of plastic debris pollution in the archipelago (Jones et al., 2021). Direct geographical exposure 

to this current has likely resulted in the prevalence of MPs in virtually all habitats of the 
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southeast islands (Jones et al., 2021, 2022; Muñoz-Pérez et al., 2023). Therefore, the aim of 

this study is to establish a baseline framework for MP pollution in GSL rookeries from the 

southeast region of the Galapagos Marine Reserve. This information will be useful as reference 

values for further research, spatiotemporal monitoring of MPs in the Galapagos archipelago, 

and the planning of conservation strategies for the GSL.  
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METHODS 

Sample collection 

Fresh scats (n=180) of adult GSLs were collected along the coastline at five main rookeries of 

the southeast region of the Galapagos Marine Reserve in August 2021: El Malecón and Punta 

Pitt (n=60 and 30, respectively; San Cristobal Island), Punta Suárez (n=30; Española Island), 

Post Office (n=30; Floreana Island), and Bahía de Santa Fe (n=30; Santa Fe Island) (Figure 1). 

Some of the scat sampling was based on direct observations of depositions of adult individuals, 

while other scat samples were categorized within this age class based on their size and 

consistency. Scat samples were collected with metal forceps disinfected with 70% alcohol and 

placed inside labelled aluminum envelopes. Samples were then frozen at -20 °C until further 

laboratory processing.  

Microplastic isolation 

Scats were thawed at room temperature for 24 h, and standardized subsamples of approximately 

15 g were separated to isolate MPs. Subsamples were separated from the core of the scat to 

avoid sand or debris that might have contained external MPs. Oxidative digestion with Fenton's 

Reagent (H2O2 + Fe catalyst) was employed by adding 150 ml of 30% H2O2 with 150 ml of 

FeSO4 to the subsamples in Erlenmeyer flasks, to then incubate them for 72 h at 60 °C to 

maximize digestion efficiency. These reagents do not compromise the integrity of the polymers 

and present higher digestion rates compared to other commonly used oxidative reagents for 

organic matter digestion (Prata et al., 2019a, 2019b). 

Digested samples were then transferred into a Sediment-Microplastic Isolation (SMI) unit along 

with 700 ml of a saline solution of 1.2 g/cm3 density (337 g of NaCl dissolved in 1 L of ultra-

filtered water) to isolate MPs from the digested solution using the principle of density floatation 
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(Masura et al., 2015; Coppock et al., 2017). The samples were left in the SMI unit for 24 hours, 

after which the valve was closed to separate the processed sample into two solutions. Only the 

supernatant was vacuum filtered using glass fiber filters (pore size 1.2 μm) and stored in Petri 

dishes sealed with Parafilm.  

Microplastic identification  

Glass fiber filters were examined with a Nikon SMZ1000 stereomicroscope in search of 

potential polymer-based particles, classifying them as either fibers, fragments, or films. 

Recovered potential MPs were photographed and characterized (i.e., coloration and length, 

which was the measurement of the farthest points of each particle). Chemical composition was 

also characterized by micro-Fourier-Transform Infrared (μFT-IR) spectroscopy on a 

PerkinElmer Frontier μFT-IR spectrometer to confirm anthropogenic origin of the particles. 

The μFT-IR spectrometer records were compared with a spectral library at the Scientific and 

Technological Centres of Universitat de Barcelona (CCiTUB). 

Quality Assurance/Quality Control (QA/QC) protocol 

A strict QA/QC protocol was followed for each step involving interaction with samples (field 

and laboratory phases). In the field, for sample collection, environmental controls (i.e., exposed 

glass fiber filters) were placed in an open area of each study site to recover potential airborne 

fiber contamination. Sand controls were also collected, although subsequently discarded as we 

worked with core subsamples, which were not in contact with the substrate.  

In the laboratory, sample processing, including reagent preparation and filtration processes, was 

always carried out inside a laminar flow hood with positive pressure. Procedural blanks (i.e., 

exposed glass fiber filters) were placed at all workspaces to recover potential airborne fiber 

contamination. Nitrile gloves and cotton laboratory coats were always required. All materials 
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used (e.g., glass containers, forceps, SMI units, etc.) were carefully rinsed with ultra-filtered 

water before use and between samples. Hydrogen peroxide and iron catalyst solutions were 

vacuum filtered with glass fiber filters (pore size 1.2 μm) before oxidative digestion of scats. 

Reagent controls were also used to recover potential airborne fiber contamination in the 

digestion process. Finally, saline solution controls were implemented to measure potential 

external MP contamination in this reagent. 

Control correction 

Fiber contamination confirmed by μFT-IR was shown in procedural blanks (x̄=0.21 fibers per 

control), reagent (x̄=0.23 fibers per control), and saline solution controls (x̄=1.07 fibers per 

control). Four polymers were identified: cellophane, polyethylene, cellulose, and polystyrene. 

To correct for this external contamination, the mean values for each polymer were determined 

in each individual control, and then added up; as shown in the following equation: x̄polymer = x̄PB 

+ x̄RC + x̄SC, where x̄polymer refers to the overall mean particles for each polymer in all controls, 

x̄PB to the mean of the specific polymer in procedural blanks, x̄RC to its mean in reagent controls, 

and x̄SC to its mean in saline solution controls. 

Approximately one cellophane particle of contamination per control sample was determined. 

Therefore, all particles corresponding to this polymer type were discarded (n=9), except for one 

cellophane-mesoplastic film which was found directly in the sample. Means of the remaining 

polymer types were <0.4, so they were not discarded in the dataset. Two cellulose particles 

(n=2) were also visually discarded due to similarities with natural fibers. With these 

adjustments, 32% of the 143 potential particles analyzed by μFT-IR had a confirmed 

anthropogenic origin determined by its chemical composition. However, 253 potential particles 

were originally recovered from all samples. To extrapolate the control data to the full dataset, 
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the proportion of particles discarded by μFT-IR (68%) was removed proportionally for each 

sample (n=172 discarded particles). 

Statistical analyses 

Statistical analyses (significance level of α=0.05) were performed with STATISTICA 7 

software. Shapiro-Wilk tests were performed for normality check. Since data did not satisfy 

normality, non-parametric Kruskal-Wallis tests were performed to analyze potential statistical 

differences in total recovered MPs, MPs scat g-1, and MPs sizes among all studied rookeries.  
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RESULTS 

Microplastic quantification and characterization 

A total of 81 MP particles were retrieved in 37% of the collected GSL scats (x̄=0.45 ± 0.65 per 

scat subsample, hereafter referred to simply as scat) (Figure 2). Fibers were the most frequent 

MP shape found (69%, x̄=0.31 ± 0.57 particles scat-1), followed by fragments (26%, x̄=0.12 ± 

0.35), and films (5%, x̄=0.02 ± 0.15). El Malecón and Punta Pitt rookeries at San Cristobal 

Island had the highest number of MPs (x̄=0.67 ± 0.51 and 0.43 ± 0.41 particles scat-1, 

respectively), followed by Punta Suárez (x̄=0.33 ± 0.32), Post Office (x̄=0.33 ± 0.38), and Bahía 

de Santa Fe (x̄=0.27 ± 0.29) (see Table 1 and Figure 3). The number of particles per gram of 

sample wet weight ranged from 0.02 to 0.22 (x̄=0.04 ± 0.05 particles scat wet g-1). Kruskal-

Wallis tests showed statistical differences in total MPs recovered (H(4)=10.37, p=0.04) and MPs 

scat g-1 (H(4)=10.22, p=0.04) among rookeries, specifically, between El Malecón and Bahía de 

Santa Fe (multiple comparisons of median ranks, p<0.05). 

MP particles sizes ranged from 20 to 4340 μm (x̄=864.09 ± 833.82 μm). Particles registered in 

each rookery were grouped into five size-classes: Class A (20 to 1000 μm), Class B (1001 to 

2000 μm), Class C (2001 to 3000 μm), Class D (3001 to 4000 μm), and Class E (4001 to 5000 

μm). Class A was dominant in all rookeries (Figure 4), despite significant differences observed 

in MP size-composition among rookeries (H(4)=28.83, p<0.01), mainly among San Cristobal 

Island rookeries (i.e., El Malecón and Punta Pitt) and Punta Suárez and Post Office rookeries 

(multiple comparisons of median ranks, p<0.05) (Table 2).  

Blue (45%) and black (32%) were the predominant MP colorations in all rookeries (Figure 5). 

MP prevalence in scats varied along sampled rookeries; being San Cristobal rookeries those 
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that showed the highest values: El Malecón and Punta Pitt (52% and 33%, respectively) (Table 

3). 

Chemical characterization by μFT-IR spectrometry 

Anthropogenic origin of 46 particles was confirmed through chemical characterization by μFT-

IR spectrometry. A spectrum of eleven different polymers was identified, being the most 

common polypropylene-polyethylene copolymer (PP-PE); polypropylene (PP); cellulose; 

polyethylene (PE); and polyvinyl chloride (PVC): with 22%, 18%, 17%, 11%, and 11%, 

respectively. These were followed by polyacrylonitrile (PAN); polyester tere-&iso-phthalate 

(PETP); poly(ethylacrylate:st:acrylamide) copolymer (PEAA:ST:AA); polystyrene-

polyacrylonitrile copolymer (PS-PAN); polystyrene (PS); and cellophane.           

Chemical composition at each rookery varied in diversity and dominance of polymers. El 

Malecón rookery had the greatest diversity of polymers (eight different types), being PP 

dominant. Punta Suárez rookery was composed of six different polymers, with cellulose being 

dominant. Punta Pitt and Post Office rookeries was composed of seven and three different 

polymers (all equally represented). Finally, Bahía de Santa Fe rookery was composed of two 

different polymers, being PP-PE copolymer the dominant (Figure 6).   
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DISCUSSION 

Quantitative and physical properties of recovered microplastics 

Fibers were the predominant shape of MPs retrieved from scats of GSL rookeries at the 

southeast of the Galapagos Marine Reserve, consistent with a trend of predominance of these 

anthropogenic particles in marine environments (Browne et al., 2011; Lusher et al., 2017; Athey 

et al., 2020) and its subsequent bioaccumulation in marine mammals (Zantis et al., 2021). The 

use of synthetic fibers has displaced natural fibers (e.g., cotton, wool) due to its low production 

costs and high demand (Lusher et al., 2017); being textiles, fisheries (e.g., lines, nets, ropes) 

and packaging, the most representative industries that contribute with microfiber fluxes into the 

marine environment (Lusher et al., 2017; Gago et al., 2018; Jensen et al., 2019). Microfibers 

recorded in previous studies in the Galapagos Marine Reserve were primarily composed of 

semisynthetic celluloses, PP, polyester (PES), and nylon (Jones et al., 2021), which is consistent 

with the polymers observed in our study. Browne et al. (2011) suggested that sewage affluents 

are a major source of microfiber discharges into the environment through washing clothes, 

where a single garment can release up to 1900 fibers per wash. Considering that the urban 

centers of the Galapagos have poor wastewater management strategies (Ragazzi et al., 2016; 

Mateus et al., 2020), this could be a potential source of contamination. Therefore, it is crucial 

to address this environmental risk when proposing mitigation strategies aimed at countering 

MP pollution in coastal environments (Liu et al., 2022).  

Small sized MPs are the most bioavailable around the Galapagos Marine Reserve, due to the 

constant fragmentation processes that synthetic particles undergo (Alfaro-Núñez et al., 2021). 

This agrees with our results, where MPs grouped into Class A (20 to 1000 μm) were the most 

represented in all rookeries. MP-size-class composition showed significant differences among 

San Cristobal Island rookeries and other rookeries/islands, which were associated with a greater 
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abundance of MPs between 20 and 1000 μm in El Malecón and Punta Pitt rookeries. A possible 

explanation could be the abundance of MP pollution sources, which can be land- (75-90%) or 

sea-based (10-25%) (Perumal & Muthuramalingam, 2022). San Cristobal Island maintains 

urbanized areas with a main fishing and tourist port of the archipelago (Páez-Rosas & Guevara, 

2017; Walsh et al., 2019). These conditions increase the exposition to both terrestrial and 

marine sources of contamination for this island’s rookeries; unlike the other rookeries that are 

located on geographically remote islands with no urbanization, and consequently less exposed 

to pollution sources. In urbanized areas, industrial activities, runoff, and sewage may provide 

additional inputs of micro debris into the ocean, causing nearby sites to contain higher 

particulate discharges and thus more diverse physical characteristics (Dris et al., 2015; Perumal 

& Muthuramalingam, 2022).  

Blue was the main color in our samples, followed by black. This agrees with several studies of 

MPs in marine mammals (Zantis et al., 2021). Ingestion of marine debris of anthropogenic 

origin is driven by its detectability in marine ecosystems and the foraging strategy of different 

animal groups, based on Thayer's law (i.e., the detectability of a prey item is reduced by 

counter-shadowing, in visual predators) applied to debris (Santos et al., 2016). Blue colored 

MPs are the most common in aquatic taxa, probably due to their visual similarities to animal 

prey (Santos et al., 2021; Du et al., 2022). Therefore, reporting this information is important as 

it provides comparability between studies (Zantis et al., 2021). 

Spatial variability in microplastic contamination patterns 

San Cristobal is one of the islands with the highest levels of MP pollution in surface waters 

(x̄=0.89 particles m-3), as well as in benthic sediments, mostly composed of fibers (Jones et al., 

2021). This explains our results, since El Malecón rookery, located within an urban center of 

San Cristobal Island, had predominance of fibers in scats. This condition was maintained in 
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Punta Pitt rookery, despite being more distant from the urban center of San Cristobal Island 

(i.e., it is located at the north-east end of the island). However, their exposure to MPs is high 

because it is geographically located at a highly exposed area to the accumulation of plastic 

debris due to the influence of marine currents and windward effects, with high particle 

concentrations previously recorded at the coastline (x̄=381 ± 68 particles m-2) (Jones et al., 

2021, 2022; Muñoz-Pérez et al., 2023).  

Punta Suárez (Española Island), Post Office (Floreana Island), and Bahía de Santa Fe (Santa Fe 

Island) rookeries reported lower concentrations of MPs and similar abundances among them. 

Since these three sites are not urbanized, MP pollution would be mostly influenced by sea-

based anthropogenic sources (e.g., fishing) (Perumal & Muthuramalingam, 2022). The areas 

designated for artisanal fishing at these rookeries are in proximity (or even overlapping) to the 

foraging grounds of GSLs (Jeglinski et al., 2012; Páez-Rosas & Aurioles-Gamboa, 2014; Páez-

Rosas et al., 2017). Abandoned, lost, or discarded fishing gear (i.e., "ghost fishing") are 

weathered under environmental conditions, causing materials such as nets or ropes to degrade 

over time and to fragment into smaller particles (e.g., microfibers) (Montarsolo et al., 2018), 

which is consistent with the types of polymers found at these rookeries (e.g., PP-PE, PP, PE). 

Muñoz-Pérez et al., (2023) found that artisanal and industrial fishing gear (e.g., monofilament 

lines, nets, ropes, strings, etc.) were a major source of macroplastic pollution throughout the 

Galapagos Marine Reserve. Therefore, it is suggested that the fishing industry has a significant 

effect on the prevalence of MPs in our samples. 

Chemical identification and diversity of polymers 

We identified eleven distinct polymers in GSL scats, being polypropylene-polyethylene 

copolymer (PP-PE) the most common. PP-PE is created by copolymerizing PP and PE, which 

allows it to exhibit the most important features of both polymers, enhancing its thermal and 
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mechanical properties when compared to either polymer in isolation (Teh et al., 1994). PP 

copolymers are a significant source of marine debris due to their widespread use in the 

production of synthetic materials, such as ropes (Jang et al., 2014), pipelines, or packaging 

materials (Zhang et al., 2020). Our samples also contained a significant amount of PP and PE, 

which are among the most abundant polymers in the ocean, accounting for 46% of global plastic 

production, especially for packaging and fishing materials (Andrady, 2017; Geyer, 2020). 

Cellulose fibers were also highly represented in our samples, which was expected considering 

that cellulosic fibers are highly abundant in the oceans due to their importance in textiles (Suaria 

et al., 2020). Although some authors do not classify cellulosic particles strictly as microplastics, 

their increased persistence when chemically modified makes them a risk for marine organisms 

(Athey et al., 2020; Adams et al., 2021). 

The trophic flexibility of the GSL could account for the high diversity of polymers found in our 

samples. Previous studies have shown that there is food resource partitioning in GSL rookeries, 

employing at least three trophic strategies: epipelagic, mesopelagic, and benthic (Villegas-

Amtmann et al., 2008; Páez-Rosas & Aurioles-Gamboa, 2010; Schwarz et al., 2021). These 

conditions increase the ecological niches occupied by this species and their prey catalog, 

consequently increasing the potential for trophic transfer and accumulation of MPs of different 

densities. Polymer density directly affects MPs buoyancy (van Sebille et al., 2015; Ajith et al., 

2020; Wang et al., 2020). Low-density polymers (e.g., PP-PE, PP, PE) are positively buoyant, 

and therefore concentrate in surface waters (epipelagic zone); whereas high-density polymers 

(e.g., PVC, PAN), are negatively buoyant and tend to accumulate in the sediment (benthic zone) 

(Ajith et al., 2020). This spatial variation, based on polymer density, allows MPs to be widely 

available to different taxonomic groups (Wang et al., 2020). Therefore, the trophic breadth of 

GSLs would explain the high polymer diversity observed at rookeries with high prey species 
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richness, such as El Malecón and Punta Suárez (Páez-Rosas & Aurioles-Gamboa, 2014), as 

well as the low diversity of polymers observed in Bahía de Santa Fe rookery, where GSLs 

maintain a reduced trophic spectrum (Urquía et al., unpublished data).  

Nonetheless, although the buoyancy of MPs is relevant to predict its spatial distribution, it can 

be altered by external factors, such as biofouling or aggregations with other debris (Corcoran 

et al., 2015; Kooi et al., 2017). Likewise, the spatial dynamics of MPs are driven by a 

multifactorial set of interactions, including the physical-chemical characteristics of the 

particles, proximity to sources, ocean current patterns, wind strength and direction, climatic 

events (e.g., El Niño Southern Oscillation), etc. (van Sebille et al., 2012, 2015; Jensen et al., 

2019; Wang et al., 2020; Muñoz-Pérez et al., 2023).  

Comparison with previous otariid studies 

The empirical evidence on the incidence of MPs in otariids is increasing, including at a regional 

scale (Perez-Venegas et al., 2018, 2020; Ortega-Borchardt et al., 2023). Therefore, 

comparability between studies through standardized methodological and experimental 

approaches is essential to objectively understand the dynamics of MP pollution at different 

scales (Pérez-Guevara et al., 2021). McIvor et al. (2023) emphasized the importance of 

selecting appropriate relative measures for MP abundance to achieve comparability between 

studies, since inherent variations in experimental designs can lead to biased interpretations (e.g., 

water content, total mass of the sampled scat, etc.). For this reason, we used different relative 

measures, such as particle number per scat/gram, prevalence, etc., to enable objective 

comparability with other studies (Table 4).  

Our findings indicate a relatively low prevalence of MPs in scat samples of the GSL, when 

compared to other studies of otariids in northern hemisphere (Donohue et al., 2019; Ayala et 
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al., 2021). Regionally, Perez-Venegas et al. (2018, 2020) reported abundances of 2.7-13.35 and 

2-15 particles g-1 for three otariid species along the Peruvian and Chilean coasts, which differs 

widely from our results (0.02-0.22 particles wet g-1). This could be explained by the low MP 

concentrations previously reported in southeast Galapagos archipelago, relative to other regions 

of the planet (Alfaro-Núñez et al., 2021; Jones et al., 2021). At a basin scale, it is suggested that 

MPs reach the Galapagos Marine Reserve from oceanic basins of South America, with Peru 

being a major source (van Sebille et al., 2019; Muñoz-Pérez et al., 2023). Thus, the observed 

difference between regional-scale concentrations of MPs in otariids would likely be due to 

geographic proximity to large-scale sources of MPs. However, the high relative abundance of 

fibers reported in other otariid species suggests that this type of micro debris bioaccumulates in 

their prey, moving through different trophic boundaries until they reach top predators (Andrady, 

2017). 

Ortega-Borchardt et al., (2023) found a high variation of polymer types in scat samples of 

California sea lions (Zalophus californianus), which was associated with the high diversity of 

marine debris types within their environment. Polyethylene terephthalate (PET), PP, and PE 

were the predominant polymers found in that study, which partially agrees with our results, 

where PP and PE, as well as the copolymer of both (PP-PE), were the most representative. 

Likewise, Donohue et al., (2019) reported PE as the only polymer in samples from Northern 

fur seals (Callorhinus ursinus), and although the number of samples chemically analyzed was 

very low, it demonstrates the ubiquity of this polymer in marine ecosystems.  

Most studies on otariids reported blue as the predominant color of MPs found in scats (Perez-

Venegas et al., 2018, 2020; Ayala et al., 2021; Ortega-Borchardt et al., 2023). While it has been 

suggested that this might be explained due to physical resemblance between synthetic particles 

and food items, there are more complex evolutionary approaches. Santos et al. (2021) suggested 
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that there are three traits that determine the likelihood of plastic ingestion in an animal: (1) the 

level of resemblance of plastics to prey, both visually and chemically, (2) food selectivity 

(generalist to specialist), and (3) nutritional status of the animal. Páez-Rosas et al. (2017) 

suggested that GSLs have a certain level of specialization in their diet (high frequency 

consumption of a limited number of prey items), although they may also be flexible in their 

trophic spectrum and incorporate different prey to reduce intraspecific competition, or in 

response to fluctuation in resource abundance. Since this species exhibits a certain level of prey 

selectivity, it is unlikely that it intentionally ingests plastics; therefore, MP ingestion would not 

depend on vision but on trophic transfer, as has been reported in other marine predators (Nelms 

et al., 2018). In this context, Santos et al. (2021) suggested that to achieve a reduction in the 

probability of encounter between plastic items and animals, the only approach is to reduce 

plastic production.  
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CONCLUSION 

We have quantified MP pollution in a top predator of the Galapagos Marine Reserve, 

establishing a baseline to monitor its impacts on Galapagos sea lion populations. The increasing 

marine debris pollution derived from plastics could affect the survival of coastal marine species, 

so it is important to detect spatiotemporal changes in the abundance of this pollutants through 

time. We emphasize the importance of (1) further research into the ingestion of MPs by 

potential prey, especially those at higher trophic levels, to evaluate potential bioaccumulation 

routes, (2) assessments in different regions of the Galapagos Marine Reserve, where, although 

oceanographic conditions and anthropogenic impacts differ, plastic pollution persists, and (3) 

evaluation of the effects of MP ingestion in Galapagos sea lions, specifically with regard to the 

biomagnification of chemical pollutants. We encourage the use of our results in the planning of 

conservation and plastic pollution mitigation strategies for this species. 

Limitations and recommendations 

The standardization of methods for quantifying MPs through scat-based analysis is essential, 

yet very complicated to achieve. Accurately quantifying MPs in scats is dependent on several 

factors, such as experimental design, sample weight, reagent efficiency to digest samples, 

quality controls, correction factors, etc. In this study, some limitations were identified and 

carefully addressed to guarantee the reliability of our data. The principle of density floatation 

was applied with sodium chloride to maximize the efficiency of MP retrieval, even though this 

salt is not ideal because it theoretically only recovers MPs formed by polymers with densities 

lower than 1.2 g/cm3. However, some high-density polymers were recovered in our samples 

(e.g., PVC, PAN), probably because they aggregated with organic residues in the supernatant 

solution of the SMI units.  
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We recommend that future studies seek to maximize the efficiency of oxidative digestion of 

scats to avoid the use of additional reagents (thus, additional potential contamination sources), 

while increasing the total mass of the scat sample to be digested. Thereby, saving both time and 

budget in the study, and granting more reliability when quantifying synthetic particles through 

scat-based analysis. We also encourage researchers on MPs in wildlife to be transparent 

regarding communicating the limitations of their studies, so that they can be considered in the 

interpretation of the results. This information is expected to be useful to the scientific 

community and contribute to the development of new, more accurate and efficient 

quantification methods. 
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TABLES 

Table 1. MP abundance in scat samples of Galapagos sea lion rookeries from the southeast 

Galapagos archipelago. Number of scats analyzed (n), number of the different shapes of MPs 

found per rookery, and total mean with standard deviation (x̄ ± SD) of MPs per scat rookery 

and rookery are reported. 

Rookery Island n Fibers Fragments Films Total x̄ ± SD 
El Malecón San Cristobal 60 28 11 1 40 0.67 ± 0.51 
Punta Pitt San Cristobal 30 6 6 1 13 0.43 ± 0.41 

Punta Suárez Española 30 8 1 1 10 0.33 ± 0.32 
Post Office Floreana 30 8 2 0 10 0.33 ± 0.38 

Bahía de Santa Fe Santa Fe 30 6 1 1 8 0.27 ± 0.29 
Total 180 56 21 4 81 0.45 ± 0.65 
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Table 2. Multiple comparisons of median ranks of MPs particle sizes found on scat 

samples of Galapagos sea lion rookeries from the southeast Galapagos archipelago. 

Highlighted values (*) show significant statistical differences. 

 

  

Rookery El Malecón Punta Pitt Punta Suárez Post Office Bahía de Santa Fe 
El Malecón — — — — — 
Punta Pitt 1.0000 — — — — 

Punta Suárez 0.0009* 0.0143* — — — 
Post Office 0.0029* 0.0357* 1.0000 — — 

Bahía de Santa Fe 0.0666 0.2468 1.0000 1.0000 — 
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Table 3. MP prevalence in scat samples of Galapagos sea lion rookeries from the southeast 

Galapagos archipelago. 

 

  

Rookery Island n Samples w/ 
MPs  

Samples w/ 
no MPs Prevalence (%) 

El Malecón San Cristobal 60 31 29 52 
Punta Pitt San Cristobal 30 10 20 33 

|Punta Suárez Española 30 7 23 23 
Post Office Floreana 30 10 20 33 

Bahía de Santa Fe Santa Fe 30 8 22 27 
Total 180 66 114 37 
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Table 4. Characterization of MPs found on different otariid species though scat-based analyses*. 

Common 
name Species Country Positive 

samples 
Prevalence 

(%) Abundance 
Chemically 
confirmed 

MPs 
Polymer ID Colors (>10%) Shape Reference 

Galapagos 
Sea Lion 

Zalophus 
wollebaeki Ecuador 66 (180) 37 

81 particles; 
0.45 ± 0.65 particles scat-1; 
0.02–0.22 particles wet g-1; 
0.04 ± 0.05 particles wet g-1 

46 particles 

PP-PE, PP, PE, 
PVC, PAN, 

PEAA:ST:AA, 
PETP, PS, PS-
PAN, cellulose, 

cellophane 

Blue (45%), black 
(32%), non-colored 

(11%) 

Fibers: 69%; 
Fragments: 

26% 
Films: 5% 

This study 

California 
Sea Lion 

Zalophus 
californianus Mexico – – 294 potential particles**;                      

0.14 ± 0.32 particles g-1 77 particles 

PET, PP, PE, 
ABS, PAN, PVA, 
PV, PEA, PEU, 
rayon, cellulose 

Blue (54%), black 
(24%) 

Fibers: 92%; 
Fragments: 

8% 

(Ortega-
Borchardt et 

al., 2023) 

South 
American 
fur seal 

Arctocephalus 
australis Chile/Peru 34 (51) 67 2.7–13.35 particles wet g-1 – – 

Blue (45%), white 
(24%), black (16%), 

and red (15%) 
Fibers: 100% 

(Perez-
Venegas et al., 

2018) 

South 
American 
fur seal 

Arctocephalus 
australis Chile/Peru 

44(205) 21 2–15 particles g-1 6 scats*** PET, cotton, 
nylon Blue, white, and red Mostly fibers 

(Perez-
Venegas et al., 

2020) 

Juan 
Fernández 

fur seal 

Arctocephalus 
philippii Chile/Peru 

South 
American 
sea lion 

Otaria 
flavescens Chile/Peru 

South 
American 
sea lion 

Otaria 
flavescens Chile/Peru 8 (10) 80 47 potential particles** – – Mostly blue 

Fragments: 
91%; 

Fibers: 9% 

(Ayala et al., 
2021) 

Northern fur 
seal 

Callorhinus 
ursinus 

United 
States of 
America 

44 (44) 100 584 potential particles** 2 particles LDPE 

Fragments: White 
(99%); 

Fibers: Black, 
white, purple, blue, 

Fragments: 
55%; 

Fibers: 41% 

(Donohue et 
al., 2019) 
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red, yellow, 
transparent (no %) 

Antarctic 
fur seal 

Arctocephalus 
gazella 

Western 
Antarctica 0 (42) 0 – – – – – (Garcia-Garin 

et al., 2020) 

Antarctic 
fur seal 

Arctocephalus 
gazella Tasmania 145 

– 
164 particles; 

1–4 particles scat-1 
164 particles 

PE, PP, poly(1-
Cl-1-butenylene) 
polychloroprene, 
melamine-urea 

(phenol) 
(formaldehyde) 

resin 

White (33%), brown 
(19%), blue (15%), 
green (15%), yellow 

(15%) 

Particles and 
fibers 

(Eriksson & 
Burton, 2003) 

Subantarctic 
fur seal 

Arctocephalus 
tropicalis Tasmania – 

* Modified from McIvor et al., 2023, and Ortega-Borchardt et al., 2023.   

** “Potential particles” refers to the fact that this study did not undergo through control correction, or chemically confirmation of the 

anthropogenic origin of the particles before reporting the total abundance of MPs.  

*** This study did not report the number of chemically confirmed particles, but only the number of scats subjected to μFT-IR spectrometry 

analysis
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FIGURES 

 

Figure 1. Study areas showing the locations of Galapagos sea lion rookeries from the southeast 

Galapagos archipelago. Circle sizes are based on animals counted on each rookery during field 

work. 
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Figure 2. MPs retrieved in scat samples of Galapagos sea lion rookeries from the southeast 

Galapagos archipelago. 
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Figure 3. MP abundance in scat samples of Galapagos sea lion rookeries from the southeast 

Galapagos archipelago. Mean and standard deviation (x̄ ± SD) of particles per scat and rookery 

are reported above the plotted bars.  
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Figure 4. MP-size-class composition found on scat samples of Galapagos sea lion rookeries 

from the southeast Galapagos archipelago. Class A: 20 to 1000 μm, Class B: 1001 to 2000 μm, 

Class C: 2001 to 3000 μm Class D: 3001 to 4000 μm, Class E: 4001 to 5000 μm. 
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Figure 5. Percentage of MP colorations found on scat samples of Galapagos sea lion 

rookeries from the southeast Galapagos archipelago. (A)  Total average. (B) In each of 

the different rookeries. 
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Figure 6. Percentage of μFT-IR confirmed polymers found on scat samples of Galapagos sea 

lion rookeries from the southeast Galapagos archipelago. (A)  Total average. (B) In each of the 

different rookeries. 

 


