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Resumen

La teoŕıa de testores ha presentado buenos resultados como un método de re-

ducción de dimensionalidad de bases de datos, siendo capaz de discriminar entre

elementos de clases distintas. Sin embargo, la condición de discriminación uti-

lizada en esta teoŕıa, no garantiza una buena capacidad de clasificación. Por esta

razón, buscamos evaluar los testores t́ıpicos haciendo uso de qué tan similares son

los objetos dentro de su misma clase y qué tan diferentes son los objetos de clases

diferentes. Realizando esta evaluación en tres bases de datos distintas y emple-

ando dos modelos de clasificación, finalmente se pudo determinar la capacidad del

algoritmo de selección de elegir los mejores testores t́ıpicos para este propósito.

Palabras clave: Teoŕıa de testores, testores t́ıpicos, capacidad de clasificación,

algoritmo de selección, modelo de clasificación.
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Abstract

Testor theory has shown great results as a dataset dimensionality reduction method,

being able to discriminate between elements from different classes. However, the

condition for discrimination used in this theory does not guarantee a good classi-

fication capability. Therefore, we look to evaluate the typical testors, taking into

account the similarities between elements from the same class and the distinctions

between elements from different classes. Making this evaluation in three differ-

ent dataset, and using two classification models, we ere able to finally determine

the capacity of the selection algorithm to choose the best typical testors for this

objective.

Keywords: Testor theory, typical testors, classification capability, selection al-

gorithm, classification model.
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Chapter 1

Introduction

Nowadays, data plays a huge roll in the development of new technology and the

progress of our society. Its acquisition, storage and use is of great importance to

any advancement, which is why its optimization is essential. One may believe that

with more data in a dataset, any classification model will obtain better results.

Even though there is some truth in this affirmation, it is not the most efficient

way to use this data. These datasets may contain large amounts of unnecessary

information that does not contribute in any way to the classification model. This

is where typical testors provide an important advancement. Typical testors allow

us find the most relevant features in a dataset such that we are able to reduce the

size of a dataset without affecting its ability to distinguish objects from different

classes. Throughout this work we will find a new way to identify the best typical

testors that fulfill this task in the finest way.

Testor Theory was developed during the 1960s, but with a different approach
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to the one given in this work. Initially, this theory was established to detect

faults within electrical circuits that executed boolean functions. However, it later

developed into a feature selection theory for various problems applied to supervised

learning algorithms [1, 2]. In this work, we will apply Testor Theory for feature

selection, in other words, as a dimensionality reduction method.

One of the main problems in Testor Theory, is that it doesn’t make any dis-

tinction between the typical testors that are found within a dataset. Therefore, in

theory, every typical testor should have the same result when applied in a classifi-

cation model. However, through testing, we have found that this is not the case.

Due to this, we would like to find a new way in which we can select the typical

testors that give the best results by considering their ability to distinguish objects

from different classes, as well as, find similarities between object from the same

class. Throughout this work, we will present the basic concepts of Testor Theory

and the classification models used to evaluate the typical testors. Just as well,

we will describe in detail the proposed typical testor selection algorithm that will

allow us to rank them based on certain factors. Furthermore, we will train and

test the classification model with these typical testors in order to determine the

usefulness of the method, as well as its limitations. Lastly, we will evaluate these

results and comment on the following steps to improve the algorithm.
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Chapter 2

Methodology

A dataset is a group of objects from different classes that are characterized by

a set of features. These features, and the values associated to each object, are

what allow us to distinguish objects that belong to distinct classes. Therefore,

we can analyze, which of these features or what subset of features contain enough

information to be able to identify the correct class for each object in the dataset.

In other words, we are looking for the most relevant features in the dataset. This

idea is what leads us to the concept of typical testors.

Throughout this section, we will cover the methodology used for this work

regarding the calculation of typical testors, their selection with the proposed algo-

rithm, and the classification models employed to test the viability of the suggested

solution. We will start with a brief introduction to Testor Theory and the math-

ematical background of each classification model. Furthermore, we will describe

the datasets used for this work, as well as any necessary changes made to them.
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Lastly, we will describe in detail the process taken in order to select, what we

expect to be, the best typical testors in terms of classification effectiveness.

2.1 Testor Theory

To understand Testor and the concept that allows it to perform a dimensionality

reduction, it is vital to introduce some important definitions.

Let U be a set of objects with n features and r classes to which they can

belong to [2, 3]. It is important to mention that the r classes are disjoint, that is,

if ci = {u ∈ U : u belongs to class i}, then ci ∩ cj = ∅ ∀ i, j ∈ {1, 2, . . . , r}.

Definition 1. Let |ci| = pi, then, the number of pairs of objects with distinct

classes will be

N =
r∑

k=1

k∑
i=1

pkpi −
r∑

i=1

p2i (2.1)

Definition 2. Let u ∈ ck, v ∈ cl where k ̸= l and let (u, v) the i-th pair out of

N possible ones, then we define the dissimilarity matrix M as follows

M = {mij}N×n mij ∈ {1, 0} (2.2)

where mij = 0 if obects u and v are similar in the feature j, and mij = 1
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otherwise [3].

Having obtained this matrix, we can define the idea of testor and typical testor.

Definition 3. Let J be the set of features that define the objects in U . T ⊆ J

is a testor if and only if ∄ u, v ∈ U such that they are similar in every feature

[4, 5]. In terms of M , the matrix restricted to T , that is M|T , does not have rows

with only zeros.

Definition 4. If ∄ T2 ⊂ T such that T2 is also a testor, then we say that T is

a typical testor [4, 5].

Let us consider that the matrix M will have redundant information for the

calculation of typical testors, for which we look to reduce it and only keep the

rows that contain the most relevant information.

Definition 5. Let f and g be rows in matrix M . We say that f < g if

∀j ∈ {1, 2, . . . , n}, fj < gj. Furthermore, if ∄ h row of M such that h < f , then f

is called a basic row of M [2, 3].

Definition 6. Let MB be the matrix that contains every basic row in M , then

we say that MB is the basic matrix of M [3].

Now, in order to relate the set of typical testors obtained from M and the same

set obtained from MB, we may use the following proposition.

Proposition 1. Let Ψ∗(M) be the set of typical testors of M , then it is true

that
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Ψ∗(M) = Ψ∗(MB) (2.3)

In other words, the set of typical testors of M is the same for MB [3].

Having defined the notions of testor theory, we can observe that the subset of

features selected in a typical testor, can be considered as the minimum collection

of features that allows us to distinguish elements from distinct classes.

This preliminary information about typical testors, allows us to introduce one of

the most important testor searching algorithms, known as Yablonski & Compatible

Sets, also known as YYC.

2.1.1 YYC Algorithm

The YYC algorithm [6] is a recursive algorithm that calculates typical testors.

Instead of directly searching for the typical testors of the whole basic matrix, as

many other methods do, it looks to find the typical testors up to the i-th row of

the basic matrix in the i-th iteration. In other words, each iteration, the algorithm

updates the set of typical testors when a new row is added. The way in which

this method works, is by validating the compatibility between an element of the

set of typical testors up to the i-th row and an element of the set of typical testors

of row i + 1. This means that the algorithm adds, to each typical testor, a new

feature, depending on the positioning of 1s in row i+ 1, and then checks that the

tipicity property is not lost.
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2.2 Classification Models

For this work, we will measure the effectiveness of the method proposed through

the accuracy obtained by two different classification models. For this, we will

first define the mathematical background for these models. The two classification

models that will be used for this work are Support Vector Machines and Artificial

Neural Networks.

2.2.1 Support Vector Machines (SVM)

The Support Vector Machine model, also known as SVM, allows us to make data

classifications. Just like any other classification model, a mathematical background

is what enables it to classify objects from different categories. As we will see in

the following section, each datasets used for this work only has two classes, which,

in turn, simplifies the SVM mathematical approach that we will cover.

The main goal of this model, is to find the best hyperplane in a high dimen-

sionality space in terms of a generalized performance metric [7]. Before setting

forward any definitions about the model, we need some context about the dataset

and how every feature relates to this generalized metric. First of all, we consider

a dataset with l objects, defined by n features. Let U = {(x1, y1), . . . , (xl, yl)} be

the set of objects in the dataset, where xi ∈ Rn y yi ∈ {−1, 1}[7]. It is impor-

tant to mention that the numerical value of each component of xi, is given by the

features that define the object. In case any features are categorical, it is simple

to transform the data into numerical values for each category and maintain this
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definition of the objects for the model. On the other hand, yi represents the class

to which the i-th object belongs to.

Definition 9. Let w be an n-dimensional vector and b a scalar, then we define

the following hyperplane

x ·w + b = 0 (2.4)

where w is orthogonal to the hyperplane. This hyperplane, separated the

objects from both classes [8].

We can now define two new hyperplanes parallel to the first which do not

detach any elements from each class. Such hyperplanes will be the following.

x ·w + b = 1 (2.5)

x ·w + b = −1 (2.6)

Proposition 3. Let γ be the distance between the parallel hyperplanes, then

the following equation describes it in term of w

γ =
2

||w||
(2.7)
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Hence, the objective of the method is to maximize γ, in other words, to mini-

mize ||w|| [7].

Definition 10. The optimization problem is the minimization of ||w||2 under

the following restriction

yi[(xi ·w) + b]− 1 ≥ 0 ∀i ∈ {1, . . . , l} (2.8)

where xi is the i-th object in the dataset and yi is the object’s class [7].

Furthermore, we look to solve this problem by using its lagrangian formulation.

L(w,α, b) =
wTw

2
−

l∑
i=1

αi[yi(xi ·w + b)− 1] (2.9)

where αi ≥ 0 ∀i ∈ {1, . . . , l} are the Lagrange multipliers [7].

To justify the convexity of the problem, let us consider that we look to minimize

a quadratic objective function under linear restrictions. Thus, we can solve this

problem through an equivalent maximization problem. To find the dual problem,

we need to impose the following optimality conditions.

∂L

∂w
= w −

l∑
i=1

yiαixi = 0 (2.10)
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∂L

∂b
=

l∑
i=1

yiαi = 0 (2.11)

From equation 2.10, we can obtain an expression for w and we can replace

it in equation 2.9 to obtain the objective function for the dual problem [7]. Let

α = {α1, . . . , αl}, then

max(F (α)) =
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

yiyjαiαj(xi · xj) (2.12)

This objective function is subjected to the restriction presented in equation

2.11 and taking into account again that αi ≥ 0 ∀i ∈ {1, . . . , l}.

By solving the dual problem, we obtain the values for the Lagrange multipliers,

αi. This result lets us define the support vectors that give name to this model.

Definition 11. Let xi, xj be two objects from distinct classes. If αi and αj

are different from 0, then we say that xi and xj are support vectors that generate

the hyperplanes that separate both classes [7].

Having defined the mathematical background for an SVM model, we can pro-

ceed to define the same for Neural Network models.
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2.2.2 Artificial Neural Networks

The second classification model that we will use for this work are Artificial Neural

Networks (ANN or NN). This model takes a different approach to the one shown

for Support Vector Machines, but is also based on an optimization process.

Let x be an object in the dataset, the main purpose of this classification model

is to find a function φ, such that φ(x) is the class to which x belongs to [9, 10]. To

begin with this brief introduction to NN, let us consider a dataset with n features,

that is, each object in the dataset may be described as x = (x1, . . . , xn).

Definition 12. Let y be the class of object x and w = (w1, . . . , wn) be the

weight vector that allows us to define z as follows

z = (w1, . . . , wn) ·


x1

...

xn

+ b = wTx+ b (2.13)

then the final output y through some function φ is

y = φ(z) (2.14)

[10].

To ease the notation, let w0 = b and x0 = 1, and redefine x = (1, x1, . . . , xn)
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and w = (b, w1, . . . , wn). It is important to mention that function φ(z) is called

an activation function.

The following diagram extracted from [9], will helps us understand the way the

model works.

Figure 2.1: Single neuron diagram

As we can see form figure 2.1, this model is based on update the weights in

order to generate the proper value for y when applying the activation function.

Therefore, we look to understand the process made in order to do this. Let us

consider that ŷ is the given class, and both y, ŷ ∈ Z.

Definition 13. Let E(w) : Rn −→ R be a differentiable function in the

neighborhood of a point w ∈ Rn. Then we say that E is the error function and

that −∇E is the direction to which E is fastest decreasing [9].

Therefore, we can calculate ∇E to find an expression to update the weights.

Let us consider E as the square error, defined as follows.

E =
1

2

n∑
i=1

(ŷ − y)2 =
1

2

n∑
i=1

(ŷ − φ(z))2 (2.15)

Therefore, we have the following.
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−∇E(w) = −
(
∂E

∂w1

, . . . ,
∂E

∂wn

)

=⇒ − ∂E

∂wi

= (ŷ − y)φ′(z)xi (2.16)

Definition 14. Let ∆wi be the value that updates the i-th component of the

weight vector. Then we have the following expression

∆wi = η(ŷ − y)φ′(z)xi (2.17)

Where η ∈ (0, 1) is defined as the learning rate of the model [11].

Thus, we can update each component of the weight vector using the following

recursive expression.

wi = wi +∆wi (2.18)

Therefore, we have obtained a way to update our weight vector that minimizes

the error function. Hence, this learning algorithm will be able to update the

weights in such a way that the computed outputs match the desired outputs and

successfully classify the objects in the dataset.
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2.2.3 Model Evaluation Scores

In order to evaluate how good the classification obtained from one of the previous

models is, we will use two specific scores. These scores are the accuracy of the

model and the AUC score. Here we will define the both of these scores in order to

understand their use in the following chapter.

First of all, in order to define the accuracy of a classification model, let us

define a confusion matrix since the information it contains will allow to calculate

it. A confusion matrix, for a two class dataset, has the information regarding a

classification model. It has four values: True Positive (TP), False Positive (FP),

True Negative (TN) and False Negative (FN). Both TP and TN represent the

objects that where correctly classified, while FP and FN represent the objects

that were incorrectly classified. Having defined this value, we have the following

equation for calculating the accuracy.

accuracy =
TP + TN

FP + FN + TP + TN
(2.19)

In other words, we say that the accuracy of a classification measures the ratio

of correct predictions over the total number of evaluations [12].

On the other hand, in order to define the AUC score, we have to introduce the

ROC curve. This curve is a representation of the sensitivity vs. 1 - specificity of a

diagnostic test. Using this curve, the area under the curve (AUC) represents the

effectiveness of the model. In this case, we consider that a value of 0.5 suggests
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that there has been no discrimination, while a value of 1 represents a perfect

classification. [13].

2.3 Datasets

Datasets showcase certain challenges when it comes to applying the concepts from

Testor Theory. As we have seen, typical testor calculation requires a dissimilarity

matrix which has the information about the distinction between objects from dif-

ferent classes. Due to this fact, the comparison method used in any features that

have non-discrete values would result in a column of 1s in the dissimilarity and

basic matrix. In turn, this would make the mentioned feature a typical testor by

itself, which would not represent the full benefits of the method used.

Alternatively, we propose a “discretization” of any non-discrete features in the

dataset. The way in which we carry out this discretization starts by analyzing the

features of type float64. In order to maintain a similar dataset to the original one,

we look to discretize each feature in the same way. In this case, we separate the

each feature into ten uniform intervals (categories). Furthermore, we group the

values of the feature into each of these categories being left with only ten different

values and successfully discretizing the feature. This is a preliminary idea of the

process to prepare the dataset for the dissimilarity and, further ahead, the typical

testor calculation. Now, we will cover the process taken for each dataset.
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2.3.1 Stellar Classification Dataset - SDSS17

The first dataset used for this work is the Stellar Classification Dataset - SDSS17

retrieved from the Kaggle platform [14]. As it was mentioned before, certain

changes were needed in order for us to be able to use the dataset for typical testor

calculation regarding the values shown in some of the features. However, before

this transformation, we were also required to consider other changes to the dataset

that would ease the needed calculations.

First of all, the original dataset had 3 distinct classes: “GALAXY”, “STAR”,

and “QSO” (quasar), only the last two were used for this work. This decision

was taken due to the fact that the GALAXY class has around double the amount

of elements in comparison to the other two classes, which were balanced between

them. In addition to this, we have to take into consideration that the dissimilarity

matrix is obtained by comparing elements from different classes, and the number of

comparisons are greatly increased with the addition of another class. The number

of rows that this matrix has, is of great importance to the problem since the

computational power is limited for the execution of the algorithms.

In a similar way, some features had to be eliminated from the original dataset

since the information they contained did not provide any contrasting data be-

tween classes. Some of these features included identification information which

was unique for each object which would result in the feature being a typical testor

by itself, but not containing any relevant information to contrast both classes. Due

to this elimination, the dataset was reduced to 11 features instead of 17. The list

of features that were kept for the study is displayed in table 2.1 [14].
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Feature Description Type
alpha Right ascension angle float64
delta Declination angle float64
u Ultraviolet filter in the photometric system float64
g Green filter in the photometric system float64
r Red filter in the photometric system float64
i Near infrared filter in the photometric system float64
z Infrared filter in the photometric system float64

field ID Field identification number int

redshift
Redshift value based on the increase in

wavelength
float64

plate SDSS plate identification int

fiber ID
Identification of the fiber that pointed the

light at the focal plane
int

Table 2.1: Stellar Classification Dataset Features

As it was mentioned at the beginning of the section, each of the features with

a data type float64 were discretized in order to calculate the dissimilarity matrix.

It is relevant to mention that during the discretization of these features, certain

considerations had to be taken into account to avoid involuntary mistakes. Note

that the uniform intervals generated for the discretization were chosen by taking

the maximum and minimum values present in the feature and calculating the

length necessary for the intervals in order to cover the interval (min,max). There

exists a particular case in which the length of these intervals could be greatly

affected, which is when the maximum or minimum values of the feature are too far

apart from the rest of the values. In this case, we would eliminate the element to

which this value corresponds to and eliminate from the database. Following this

step, we recalculate the minimum and maximum value of the feature to discretize

it. This case was found only in the feature “u”, and the steps aforementioned were

taken to solve it.
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Having finished this process we were ready to proceed to the calculation of the

dissimilarity matrix, and typical testors afterwards.

2.3.2 QSAR Biodegradation Dataset

The second dataset employed for this work is the QSAR Biodegradation Dataset

retrieved from the UCI Machine Learning Repository platform. This dataset con-

tains information about 1055 chemicals that determines if they are ready biodegrad-

able (RB), or not ready biodegradable (NRB) [15]. Just like the previous dataset,

this one requires certain alterations in order to calculate the dissimilarity ma-

trix. However, since this dataset only contains two classes it was not necessary

to eliminate any other classes. Just as well, we do not require to eliminate any

features and, thus, we maintain all 41. In this case, each element is characterized

by 41 molecular descriptors, out of which, 17 present non-discrete values. These 17

descriptors are modified by implementing the discretization algorithm previously

discussed.

Due to the high number of features in this dataset, and the fact that the

database has been kept the same apart from the discretization, no table will be

provided with the information of each feature. Such information may be found in

[15].

Having discretized the dataset, we can proceed to calculate its dissmilarity

matrix and, eventually its typical testors.
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2.3.3 Credit Approval Dataset

This dataset is the Credit Approval Dataset retrieved from the UCI Machine

Learning Repository platform. It contains information regarding credit card ap-

plications, although, to protect the confidentiality of the data, the features don’t

contain any labels [16]. With a total of 690 objects, the dataset divides into two

classes, “+” with 307 objects, and “−” with 383 objects. There exists a particular

issue with this dataset, which is the fact that there are some values missing, and

we had to address this problem to begin working with it.

Before making any changes to the dataset, we have to take into account that

any value given for this missing data will have an effect during the discretization of

any features with data type float64. This was the case for one feature which had a

total of 12 missing values. The approach taken for this case was to appropriately fill

these values in such a way that they are different from the rest, but affect minimally

the discretization. That is, this values are the only ones within their interval, but

the rest of the values are evenly distributed within the other 9 intervals. This was

achieved by giving a value of “0” to these missing spaces. For every other missing

value in categorical features, we simply added a new category for these values.

As we mentioned before, the information regarding the features has been cen-

sored in order to protect the confidentiality of the data. Therefore, we are not able

to provide any further information about this. Any other additional information

may be found in [16].
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2.4 Typical Testor Calculation

Throughout this section we will describe the approaches taken to calculate the

typical testors for each of the datasets previously described. Depending on the

length of the dataset, we calculated the typical testors in different ways in order

to avoid lengthy calculations that are not necessary.

2.4.1 Stellar Classification Dataset - SDSS17

For this dataset, we have to consider that the number of elements is fairly large

and the dissimilarity matrix would be as well. The “QSO” class has a total of

18961 objects, while the “STAR” class has a total 21543 objects. Therefore, the

resulting dissimilarity matrix would be have a dimension of 408476823×11, which

is exceedingly extensive, and, thus, it would take a long time to reduce it to basic

matrix. Given this, we took a different approach.

Even though the way in which we addressed this situation would cause to not

calculate the typical testors of the entire dataset, any calculated from a consid-

erable subset of objects should maintain their property of distinguishing classes

with any new objects. From this idea, we took the following process. First of

all, we separated the objects from different classes and randomly permuted each

list in order to select 3000 random objects from each one. We must take three

groups of 1000 objects from each subset of elements and compare the i-th group

from class “QSO” with the i-th group from class “STAR”, thus we are left with

three 1000000× 11 dissimilarity matrices. Later, we reduce each matrix to a basic
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matrix, concatenate them and reduce it again to a basic matrix.

Having obtained this final basic matrix, we can finally calculate the typical

testors associated with it. This calculation is done through the YYC algorithm.

2.4.2 QSAR Biodegradation Dataset

In this case, the dataset only contained 854 elements, for which we used a straight-

forward method in order to calculate the basic matrix and typical testors as de-

scribed in Testor Theory. Hence, we generated a dissimilarity matrix by comparing

every pair of objects from different classes, in this case, ready biodegradable and

not ready biodegradable. From this dissimilarity matrix, we reduce it to basic

matrix and calculate the typical testors by using the YYC algorithm.

2.4.3 Credit Approval Dataset

Just like with the QSAR Biodegradation Dataset, with only 690 elements, this

dataset doesn’t require any new approach for its typical testor calculation. We

compare the elements from the “+” and “-” classes in order to calculate the dis-

similarity matrix. Afterwards, we calculate the basic matrix and its typical testors.
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2.5 Typical Testor Selection Algorithm

From the previous section, we have seen that through Testor Theory we are able

to calculate a set of typical testors without making any distinction between them.

Therefore, we put forward an idea that helps us rank the typical testors in order

to identify which ones will provide a better classification.

As we can see from Testor Theory, typical testors have the property of pre-

senting the least number of features that allow us to differentiate between two

elements of different classes. Now, the following question presents itself. Could

these features present differences between elements of the same class? Following

this line of thought, one can wonder how could typical testors be related to sim-

ilarities between elements of the same class. Thus, we look to take into account

these similarities when we choose the proper typical testors.

In order to analyze these similarities, we must first define certain notions to

extend Testor Theory. Let us remember that we defined U as set of of objects with

n features and r classes to which they can belong to. Thus, we have the following

definitions.

Let |ci| = pi, then, the number of pairs of objects in the class ci will be

Nsi =

pi∑
k=1

pi − k =
pi(pi − 1)

2
(2.20)

Now, we can define the similarity matrices SMk for each class in the following
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way.

Definition 15. Let u ∈ ck, v ∈ ck and (u, v) be the i-th pair out of Nsk

possible ones, then we define the similarity matrix SM

SMk = {(sm)ij}Nsk
×n (sm)ij ∈ {1, 0} (2.21)

where (sm)ij = 0 if objects u and v are different in the feature j, and (sm)ij = 1

otherwise.

Having defined the r similarity matrices, we put forward an idea to score the

typical testors based on these matrices. Let us consider that we look to have

the most similarities within each class, which is why we score each similarity ma-

trix individually. The way in which we calculate each score is by calculating the

percentage of 1s in the similarity matrix restricted to the typical testor.

Definition 16. Let SMk be the k-th similarity matrix and TT a typical testor,

then we score the TT by using the following equation

sk =
1

Nsk × |TT |

Nsk∑
i=1

∑
j∈TT

{(sm)ij} (2.22)

Now, we have to use this r scores obtained in order to calculate a generalized

score for the typical testor. This is done in the following way.

Definition 17. Let sk be the score for the typical testor TT in the k-th simi-
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larity matrix SMk, then the similarity score for the typical testor is the following

ss =
r∏

k=1

sk (2.23)

Notice that we calculate the product of every score. We take this approach

since we look to ensure that we have the most similarities within all of the classes.

Therefore, we can rank the typical testors by taking into account the score obtained

from equation 2.23. However, this approach can be improved even further.

Let us consider that the similarity score (ss) only considers 1s within each

similarity matrix, but does not take into account the difference between elements

from different classes. The typical testors let us find the features for which each

pair of elements from distinct classes are different in at least one of them, however,

they do not give us information about how different these objects are. Hence we

look to take a similar approach as the one with the similarity matrices, but with

the dissimilarity matrix.

Definition 18. Let M be the dissimilarity matrix, then the dissimilarity score

for the typical testor TT is the following

ds =
1

N × |TT |

N∑
i=1

∑
j∈TT

{mij} (2.24)

Now, we must find a way to use both scores in order to rank the typical testors.

Let us consider that before working with both scores, we must first normalize the
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similarity score with respect to the maximum value obtained for ss by a typical

testor. That is, we divide each value of ss by the largest value obtained. Let us

denote ssn as the normalized similarity score for a typical testor.

Definition 19. Let ds and ssn be the dissimilarity and normalized similarity

scores respectively, then the score for typical testor TT is the following

score = ds+ ssn (2.25)

Finally, we have reached a score that considers both similarities and differences

between the objects in the dataset and allowing us to rank the typical testors

previously obtained.

Throughout the following section, we will analyze the usefulness of this method

in the different datasets, contrasting the efficiency of a classification model by using

the best and worst typical testors found by applying this metric.
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Chapter 3

Results

As we mentioned in the previous chapter, we look to analyze the convenience of

the proposed typical testor ranking algorithm by considering the efficiency of the

classification model used. Throughout this chapter, we will observe the results

obtained from the typical testor calculation and evaluate the new selection algo-

rithm based on the accuracy of the model training and AUC value obtained for

each one. We look to interpret whether, or not, the best typical testors present

an advantage when used to train a classification model, as opposed to the worst

classified typical testors.
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3.1 Typical Testor Calculation

From the previous chapter, we were able to calculate the typical testors for each

dataset. The following table presents the summarized information about the

datasets and their corresponding typical testors.

Dataset No. Features No. TT Min. Length Max. Length
Star Class 11 19 2 4

QSAR Biodeg 41 11533 11 19
Credit 15 6 8 9

Table 3.1: Typical testor calculation summary

As we can see from table 3.1, the number of typical testors obtained from each

dataset greatly varies. Just as well, we can see that the dataset reduction proposed

by the typical testors lets us eliminate around at least 40% of the original features

in all three datasets, and more than 50% in two of them. This, together with the

results obtained from the classification effectiveness tests done later on, show the

usefulness of Testor Theory as a dimensionality reduction method.

Having shown the results obtained from the typical testor calculations, we can

proceed to apply the selection algorithm and test the classification model with

these typical testors.

3.2 Classification Model Scores

In order to analyze the effectiveness of each classification model, we must separate

the objects from the dataset into a training set and a testing set. In order to
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avoid any bias within the training of the model, the testing objects were randomly

selected. For both classification models, we took 33% of the data for the testing

set, the other 67% was used to train the model.

Here, we present both the accuracy score and AUC score, corresponding to

each model when using the selected typical testors. Just as well, we will present

these scores for the model trained with the full set of features, in order to compare

the usefulness of the typical testors as a dimensionality reduction method.

It is important to mention that we will not present any other performance

metric, such as the F1, Recall, True Negative Rate (TNR), True Positive Rate

(TPR), False Positive Rate (FPR), False Negative Rate (FNR) and F1 score. This

is due to the fact that the AUC score allows us to consider the balance between the

number of elements in each class of the dataset, while the other scores don’t. In a

similar way, other scores only consider some of the values obtained in a confusion

matrix, while the accuracy score will use every value, giving us a more general

idea.

3.2.1 Star Classification Dataset (SVM Model)

No. Features Accuracy AUC score

11 99.54 % 0.9955

Table 3.2: Full dataset SVM training accuracy (Star Classification)
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No. Features Accuracy AUC score

4 99.89 % 0.9990

4 99.89% 0.9990

4 99.89% 0.9990

Table 3.3: Best typical testors SVM training accuracy (Star Classification)

As we can see from tables 3.2,3.3, the top selected typical testors present a clas-

sification accuracy and AUC score even better to those calculated for the full set

of features. Thus, the reduction achieved by Testor Theory was successful for the

classification provided by an SVM model.

No. Features Accuracy AUC score

2 70.38 % 0.7039

4 56.34 % 0.5643

4 58.22 % 0.5827

Table 3.4: Worst typical testors SVM training accuracy (Star Classification)

In contrast to table 3.3, table 3.4 shows that the selected worst typical testors

present a largely inaccurate classification of the objects in the testing set. Both

the accuracy and AUC scores, show that these typical testors are not able to

distinguish elements from different classes. Notice that both tables, 3.3 and 3.4,

display typical testors with the same length. Thus, the number of features does not

seem to be a relevant factor when it comes to obtaining acceptable classification

scores.
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3.2.2 Star Classification Dataset (Neural Network)

No. Features Accuracy AUC score

11 99.54 % 0.9995

Table 3.5: Full dataset NN training accuracy (Star Classification)

No. Features Accuracy AUC score

4 99.61 % 0.9999

4 99.66% 0.9998

4 99.64% 0.9993

Table 3.6: Best typical testors NN training accuracy (Star Classification)

In a similar way, tables 3.5, 3.6, present great results in terms of the accuracy

and AUC score in comparison to the model trained with the full set of features.

Therefore, we can argue that there are typical testors that successfully reduce the

number of necessary features to distinguish elements from different classes.

No. Features Accuracy AUC score

2 59.05 % 0.6370

4 54.94% 0.5488

4 58.71% 0.6059

Table 3.7: Worst typical testors NN training accuracy (Star Classification)

Table 3.7 corroborates the results from the SVM model since the typical testors



43

classified as “worst”, are not able to provide an accurate classification of the objects

in the testing set.

Having analyzed the results from the first dataset, we look to further evaluate

the selection algorithm with other datasets. This way, we can convince ourselves

that the preliminary results obtained from the Star Classification Dataset were

not biased in any way and that the method is useful for any other dataset.

3.2.3 QSAR Biodegradation Dataset (SVM Model)

No. Features Accuracy AUC score

41 91.77 % 0.9169

Table 3.8: Full dataset SVM training accuracy (QSAR Biodeg)

No. Features Accuracy AUC score

17 92.21 % 0.9199

17 92.21% 0.9202

14 87.23% 0.8710

Table 3.9: Best typical testors SVM training accuracy (QSAR Biodeg)

This dataset presents great accuracy and AUC scores throughout the best typical

testor selection list in comparison to the scores obtained for the full dataset. The

first two typical testors in table 3.15 have even better accuracy and AUC scores

than the ones showed in table 3.8. However, the third typical testor’s scores

decreased, although not a large amount in comparison to the full set training.
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No. Features Accuracy AUC score

15 89.39 % 0.8935

14 89.17% 0.8911

15 89.61% 0.8951

Table 3.10: Worst typical testors SVM training accuracy (QSAR Biodeg)

From table 3.10 we can see that the scores obtained are not that far from the

ones we got from the best typical testors. Notice that the third best typical testor

presents even slightly worse scores, however the scores are also not far from the

ones obtained in table 3.8. This fact tells us that, in a general manner, the typical

testors obtained from this dataset will achieve good results in terms of accuracy

and AUC scores when using and SVM model.

3.2.4 QSAR Biodegradation Dataset (Neural Network)

No. Features Accuracy AUC score

41 93.20 % 0.9437

Table 3.11: Full dataset NN training accuracy (QSAR Biodeg)

No. Features Accuracy AUC score

17 90.23 % 0.9379

17 89.94% 0.9384

14 88.53% 0.9268

Table 3.12: Best typical testors NN training accuracy (QSAR Biodeg)
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Once again, the results obtained from tables 3.11,3.12, show that the selected

typical testors successfully reduced the number of features needed, specially when

we consider the AUC score. The AUC score obtained for the three best typical

testors is just slightly less than the one obtained for the full set of features. It is

important for us to notice that for the Neural Network, the third testor presents

results very similar to the ones obtained for the first two, as opposed to what we

saw with the SVM model. Thus, we can argue that the results of the selection

algorithm may vary depending on the classification model used.

No. Features Accuracy AUC score

15 86.83 % 0.9003

14 86.69% 0.8893

15 87.11% 0.9044

Table 3.13: Worst typical testors NN training accuracy (QSAR Biodeg)

In table 3.13 we can observe similar results to the ones obtained for the SVM

model. Even though these results are slightly worse in comparison to the ones

in 3.12, they still maintain good AUC scores, having two with a value over 0.9.

Therefore, we can deduce, once again, that typical testors maintain a good clas-

sification attribute in a general manner. Having said this, we can notice that,

even this case, the best testors (only the first two in both cases) present slightly

better results, closer to the one obtained from the full set of features, in terms of

accuracy and AUC score. However, the selection of the worst typical testors lacks

accuracy. Nonetheless, the application of this method would focus on finding the

best typical testors.
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3.2.5 Credit Approval Dataset (SVM Model)

No. Features Accuracy AUC score

15 86.17 % 0.8627

Table 3.14: Full dataset SVM training accuracy (Credit Approval)

No. Features Accuracy AUC score

8 84.19 % 0.8426

9 84.58% 0.8471

9 69.56% 0.6935

Table 3.15: Best typical testors SVM training accuracy (Credit Approval)

For the final dataset, tables 3.14,3.15 show similar accuracy and AUC scores, but

only with the first two best typical testors. The third typical testor in table

3.15 shows a considerable deficit in both accuracy and AUC score. However, let

us notice that the number of typical testors obtained in this dataset is only six.

Therefore, as long as there isn’t any typical testors within the “worst” typical

testors list that presents results similar to that of the ones obtained with the full

set of features, we can say that the algorithm is working appropriately.

No. Features Accuracy AUC score

9 76.67% 0.7645

9 69.96% 0.6981

9 76.28% 0.7606

Table 3.16: Worst typical testors SVM training accuracy (Credit Approval)
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As mentioned before, we were expecting to not find any good results in table

3.16. We can now say that the algorithm has successfully ordered the list of typical

testors, placing the best at the top. Both the accuracy and AUC scores in table

3.16, show the inaccuracy of the classification model trained with these typical

testors.

3.2.6 Credit Approval Dataset (Neural Network)

No. Features Accuracy AUC score

15 86.36 % 0.8636

Table 3.17: Full dataset NN training accuracy (Credit Approval)

No. Features Accuracy AUC score

8 83.33 % 0.8408

9 83.67% 0.8184

9 79.87% 0.7360

Table 3.18: Best typical testors NN training accuracy (Credit Approval)

In a similar way, the results obtained with a Neural Network shown in tables

3.17,3.18, lets us observe that only the first two typical testors are able to train the

model with a similar outcome in comparison to the full set of features. However,

the third typical testor presents increased scores than the ones obtained with the

SVM model.
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No. Features Accuracy AUC score

9 79.65 % 0.7867

9 78.14% 0.7705

9 80.74% 0.7621

Table 3.19: Worst typical testors NN training accuracy (Credit Approval)

Table 3.19 shows results similar to the ones obtained for the third best typical

testor. The scores obtained from these typical testors show a considerable decrease

in comparison to the scores of the full set of features, specially in AUC score. Thus,

the algorithm, once again, has been able to select the best typical testors for both

classification models.

Having presented these results, we can now give a deeper evaluation of the

effectiveness of the proposed selection algorithm. Just as well, we can further

analyze the limitations of the method and its applications. In the following section,

we will expand on these topics and talk about further improvements that can be

made to the algorithm.
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Chapter 4

Conclusions

From the results shown in the previous chapter we can evaluate the proposed algo-

rithm for typical testor selection and discuss some of the limitations it may present.

As seen throughout chapter 3, the proposed “best” typical testors displayed accu-

racy and AUC scores very similar to the ones obtained from the full set of features,

for both the SVM model and Neural Network. Therefore, the algorithm was suc-

cessfully selecting typical testors that were able to train a classification model with

great results in comparison to the ones obtained by using the full set of features.

This fact was seen for all three selected typical testor in the first dataset, but only

with the first two typical testors for the second and third dataset. In the case of

the latter dataset, the total amount typical testors was the main cause for the low

scores presented by the third typical testor.

One thing that we should notice from the tables displaying the results for

the worst typical testors, is that the scores obtained were somewhat ambiguous.
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One may see that the values for accuracy and AUC scores didn’t really hold a

relationship between these “worst” typical testors. For example, in table 3.16, the

first and third typical testors presented increased values of accuracy and AUC score

in contrast to the second one. However, these typical testors are categorized as not

useful, which is why the fact that the worst typical testors may still present certain

complications in terms of the order, is not relevant. From the results obtained, we

may consider the algorithm a success when it comes to focusing on finding typical

testors that maintain a similar outcome for the classification model training as the

one done by using the full set of features.

Furthermore, note that the length of the typical testors selected as “best” has

no clear correlation their selection. In other words, the longest typical testors

weren’t always selected as “best”. Take, for instance, the typical testors selected

for the Credit Approval Dataset. The best typical testor was a length of 8 features,

while the ones selected as “worst” had a length of 9 features. Likewise, in the

QSAR Biodeg Dataset, the largest typical testor had a total of 19 features, while

the best ones selected had only 17. Thus, even though one may argue that larger

typical testors contain more information and will have better results when training

a classification model, our algorithm has been able to find that the length of a

typical testor doesn’t necessarily affect their classification capabilities.

In essence, the proposed algorithm has been able to successfully pinpoint some

of the best typical testors in each dataset, with certain flaws, specially for the worst

typical testors. However, as a first approach to typical testor selection, the results

obtained have allowed us to find typical testors with both accuracy and AUC scores
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very similar to the ones obtained from the full set of features. In addition to this,

we have been able to determine the fact that the length of a typical testor does not

directly influence its capability to properly train a classification model. Moreover,

some new testing must be done in order to keep improving the algorithm.

4.1 Future Work

As mentioned before, we have obtained preliminary results on this selection algo-

rithm and it still has a lot of room for improvement. In the first place, for this

work, we have only considered datasets with two classes, which is more convenient

for the typical testor calculations. However, it would be essential to test the al-

gorithm with datasets that contain various classes. In a similar way, as seen in

chapter 2, we have given the same weight to the normalized similarity and dissim-

ilarity scores in order to rank the typical testors. A variation of these weights, in

other words, giving more relevance to one of these scores, may prove to be more

effective when selecting the typical testors. Furthermore, for datasets that present

larger sets of typical testors, it would be relevant to test the classification models

with a longer list typical testors in order to contrast the information. Lastly, for

cases such as the QSAR Biodeg Dataset, in which both the best and worst typical

testors showed good accuracy and AUC scores, it would be pertinent to contrast

these scores with those obtained for randomly selected typical testors. This would

allow us to observe that, as expected, every typical testor has similar scores.

As we have seen in this chapter, although the preliminary results showed great



52

promise, there still is room for improvement. We will continue to develop this

idea with different datasets and different approaches to testing. However, the road

ahead is promising for this development.
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