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Abstract 

Intertidal systems are ideal for the study of the variation produced by natural oscillations 
and environmental and human perturbations. These systems are also important for 
humans as barriers against erosion and as a source of food and recreation. However, in 
Ecuador we lack a basic understanding of the patters of community structure and the 
variation associated with seasonal cycles and the influence of oceanographic processes at 
different spatial and temporal scales.  In many parts of the world large-scale oceanic 
atmospheric oscillations (ENSO, PDO) and marine currents largely determine the abiotic 
conditions experienced by intertidal communities, and modulate the biological 
interactions that establish community structure. As seasonal and inter-annual variation 
causes temperature patterns and nutrient and larval supply to change, these communities 
can be stressed into altered states. Understanding the impacts of these changes in 
community structure and biodiversity is critical for enabling scientists and policy makers 
to detect dramatic changes in community structure and to envision management actions. 
We assessed intertidal communities along a latitudinal productivity and temperature 
gradient covering 360 km of the Ecuadorian coast. We performed 20 quadrats in the low 
zone at each of 10 sites during both warm and cold phases of the seasonal cycle, and took 
algal biomass samples from each quadrat. Community structure was significantly 
different between sites, and while the biogeographic zone (North vs. South sites) did not 
explain this variation, quadrats taken at each site were significantly different between 
phases. Biomass was higher in southern sites than in northern sites, as was diversity, 
evenness, and species richness and abundance of mesoconsumers. This study provides 
baseline data for intertidal communities along the continental coast of Ecuador, and 
illustrates the complex nature of the combination of nutrients, temperature, and biological 
interactions in determining intertidal community structure. 
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Resumen 
Ecosistemas intermareales presentan un sistema ideal para estudiar la variación producida 
por cambios naturales y perturbaciones ambientales y antropogénicos. Estos sistemas son 
también importantes para los humanos por su función como barreras contra la erosión 
costera y como fuente de comida y recreación. Sin embargo, en el Ecuador carecemos de 
un conocimiento de los patrones de estructura de comunidades y la variación en éstas que 
se asocia a los ciclos estacionales y la influencia de procesos oceanográficos a diferentes 
escalas temporales y espaciales. En muchas regiones del mundo, ciclos atmosféricos de 
gran escala (ENSO, PDO) y corrientes marinas grandes determinan en gran parte las 
condiciones abióticas que se experimentan en las comunidades intermareales, y modulan 
las interacciones biológicas que determinan la estructura de la comunidad. Con el cambio 
de patrones de temperatura y fuentes larvarias causado por variación estacional e inter-
anual, estas comunidades pueden ser forzadas a estados alternativos por el estrés 
ambiental. Un conocimiento de los impactos de estos cambios en estructura de 
comunidades y biodiversidad es necesario para poder detectar cambios dramáticos y crear 
soluciones y estrategias de manejo. Nosotros evaluamos comunidades intermareales a lo 
largo de una gradiente de productividad y temperatura que cubre 360 km de costa 
ecuatoriana. Realizamos 20 cuadrantes en la zona baja de cada uno de 10 sitios durante 
ambos fases del ciclo estacional (uno caliente y otro frio), y tomamos muestras de 
biomasa de algas de cada cuadrante. La estructura de las comunidades se difería 
significativamente entre sitios, y mientras zona biogeográfica (Norte vs. Sur) no 
explicaba esta diferencia, los diferentes fases de muestreo (caliente y frio) si lo hacían. 
Biomasa era más alta en sitios del sur que en el norte, como también la diversidad, 
equidad, y riqueza y abundancia de especies de mesoconsumidores. Este estudio 
proporciona un base de datos para las comunidades intermareales a lo largo de la costa 
continental del Ecuador, e ilustra la naturaleza compleja de la combinación de nutrientes, 
temperatura, e interacciones biológicas para la determinación de patrones de estructura de 
comunidades intermareales. 
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Introducción 

 Ecuador lacks basic information about biodiversity patterns and community 

structure of many marine systems and how these patterns relate to biological, human and 

environmental factors. Such understanding is key to enable managers and scientists to 

detect natural variation from that caused by human or environmental perturbations. 

Rocky shores have been widely used worldwide to study biodiversity patterns and 

ecological processes because shores are tractable systems that constitute ideal indicators 

of impacts such as climate change and fishing. Furthermore, coastal systems are 

important to humans as a barrier against storms, tsunamis and hurricanes, for recreational 

purposes or as a source of food. Our study aims to understand patterns of vertical, 

horizontal, and temporal zonation in the rocky intertidal ecosystems of Ecuador, their 

importance to both ecological and human coastal areas, and how these systems are being 

affected by anthropogenic forces of change. 

  Patterns of community composition in intertidal ecosystems are strongly 

determined by abiotic conditions, such as nutrient supply (mainly nitrogen and 

phosphorous), wave exposure, water and air temperatures, and by biological interactions, 

such as competition for space, predation, herbivory, facilitation and larval recruitment 

(Posey et al. 1995). Both species interactions (Kraufvelin et al. 2010) and abiotic factors 

(Broitman et al. 2001, Scrosati and Heaven 2007) are very important in determining the 

biological communities found in rocky intertidal habitats. These complex interactions are 

not always predictable, for example, when changes initially appear favorable to a certain 

species or guild of species, additional impacts such as increased recruitment of predators, 

which  reduces the population of prey, can cause unexpected effects (Cloern et al. 2007). 
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As conditions change, previously inferior competitors or invading species newly entering 

the system can become dominant as conditions become more favorable, especially if they 

are superior dispersers (Gilman et al. 2010).  

 Abiotic conditions, and in turn biological interactions, are affected by large-scale 

phenomena, such as ocean oscillation cycles, seasonality, and current patterns (Wang and 

Fiedler 2006), which manifest on the local scale in the form of upwelling regimes, degree 

of wave action, nutrient and oxygen supply, and water temperatures. The ecological 

structure of marine communities is largely governed by variation in these processes and 

how they modulate species interactions, such as competition and predation. For example, 

on Galápagos rocky shores, warmer waters associated with low nutrient levels caused a 

dramatic shift in community structure that was facilitated by grazers (Vinueza et al. 

2006). Predation rates can also be modulated by temperature and nutrients. For example, 

whelks and sea stars increase their metabolic and predation rates with higher water 

temperature (Yamane and Gilman 2009). This has important implications if such 

organisms are key species, and can have the effect of reducing diversity. Where strong 

upwelling produces high levels of plankton food for barnacles, local populations and 

percent cover is much higher, and predator populations and rates of predation track these 

increases (Witman et al. 2010). Increased marine nutrient levels can also increase primary 

productivity and nutritional content of algal species, which in turn increases herbivory 

rates (Cebrian et al. 2009).  The occupation of primary space by algae and sessile 

invertebrates can effectively create the demersal habitat and thus determine the 

composition of intertidal communities (Jones et al. 1994, de Juan and Hewitt 2011).  Any 

changes in the control of primary space, whether by the direct effects of variation in 
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temperature and nutrient/food supply, or by altered levels of competition or consumption 

by predators and grazers, would therefore have far-reaching effects on diversity and 

community structure.  

 The equatorial West coast of South America is heavily influenced by ENSO 

phenomena. Yearly variation in marine conditions occurs as the strengths of the Panama-

Bight (also known as “El Niño”) and Humboldt (locally termed “Peru”) currents affect 

the position of the Intertropical Convergence Zone, creating annual warm and cold 

phases along the coast, with particularly strong El Niño or La Niña years occurring on a 

semi-decadal basis (Wang and Fiedler 2006). This marine seasonality can cause strong 

local variation in water temperatures and nutrient supply, with corresponding impacts on 

marine communities (Vinueza 2006). Under most global climate change models, climatic 

phenomena such as ENSO events are predicted to become more frequent and more 

extreme (IPCC 2001), causing more extreme temperature changes for longer durations. 

Warmer water temperatures increase metabolic rates and lead to higher levels of biomass 

(Lamberti and Resh 1985) and stronger species interactions (Yamane and Gilman 2009). 

However, higher sea surface temperatures also correspond to greater stratification and 

reduced nutrient supply to the photic zone (Hoegh-Guldberg and Bruno 2010). 

Additionally, the increased storm frequency and strength predicted by climate change 

models are expected to create stronger wave disturbances (Przeslawski et al. 2008), 

which have been shown to have mixed effects in rocky intertidal communities 

(Kraufvelin et al. 2010, Scrosati et al. 2010).  

 Our study describes patterns of community structure along a latitudinal gradient 

of the Ecuadorian coast. Ecuador is placed at the mixing zone of two major tropical 
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eastern Pacific current regimes (Panama-Bight and Humboldt currents), and is strongly 

affected by ENSO phenomena. Understanding the similarities and differences between 

the northern and southern coasts is very important, since any disparities in abiotic factors 

between phases of the ENSO and between biogeographical regions (this may occur as a 

continuous gradient from North to South) could be expected to create differences in 

diversity patterns and interaction strengths between sites. In areas where inter-annual 

variation can be much greater than seasonal variation within a given year, overall 

diversity has been shown to be much higher than in nearby regions with more stable 

conditions (Blanchette et al. 2009). Such is the case here, lending even more importance 

to understanding how these phenomena manifest along the coast of Ecuador. 

 Rocky shores present an ideal study system for marine ecological processes, as 

they are accessible, easy to manipulate, and contain several model organisms for tracking 

changes in abiotic factors, species interactions, and community structure. The continental 

coast of Ecuador has long been overlooked as a potential research site for intertidal 

community ecology, with most studies focusing on diversity censuses (Cruz et al. 2003). 

This has left the area virtually unstudied, creating a large knowledge gap regarding 

intertidal community composition and the ecological processes and oceanographic 

phenomena that affect local marine habitats. We sought to investigate how ENSO-driven 

seasonality affects intertidal communities along the coast of Ecuador, whether distinct 

biogeographical regions exist based on closer proximity to warm or cold water currents, 

and how regions of differing productivity and temperatures react to warm and cold 

phases.   
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Métodos 

Study Sites 

 We sampled rocky intertidal communities at 10 different sites stretching North to 

South along the Ecuadorian coastline. We took visual quadrats and physical samples 

from intertidal communities at each site during a peak cold La Niña event (August-

October) and warm normal phase (February-April) of the seasonal cycle. Our choice of 

sites was determined by the presence of relatively flat rocky benches with similar abiotic 

conditions at the landscape level and with semi-regular spacing throughout the entire 

study area. Based on the environmental variables presented at each site, we grouped our 

sites into two different categories: “exposed” sites with high wave exposure, low sand 

burial, and deep nearshore waters, and “protected” sites with low wave exposure, 

medium-high sand burial, and extended shallow nearshore platforms.  

 We took a series of qualitative and quantitative measurements of the local 

environmental conditions at each site, We measured the physical characteristics of each 

study site, including sand burial by averaging the percent cover of sand in the low zone at 

each site, and measured wave height visually, by making observations at each site at the 

same time of day during the same tide series.  

 

Intertidal Community Surveys 

 At each site, we defined intertidal zones based on natural zonation patterns of 

major primary space occupiers and the relative positioning of each area with regard to 

tidal height. We defined the low zone as the area dominated by erect algae, followed by 
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the mid zone dominated by encrusting algae and the high shore dominated by sessile 

invertebrates and encrusting algae. We then laid out a 100 meter transect tape parallel to 

shore that followed the contour of the intertidal zone being assessed. Within each low 

zone, we performed 20 quadrats of 50 x 50 cm placed horizontally on the substrate at 10 

m intervals along the length of the transect tape. Within each quadrat, we evaluated the 

intertidal community, categorizing organisms down to the family, genus, or species level, 

and quantifying the presence of each taxonomic group. Mobile species were counted 

individually, and percentages were determined for the amount of the quadrat area taken 

up by primary space-occupying organisms (e.g., barnacles, algae, etc.) and exposed 

substrate such as rock or sand. We took photographs of each quadrat for later 

confirmation of our field assessments. Additionally, we removed all algae from a 10 x 10 

cm square at the center of each quadrat and froze it in a plastic bag for later weighing. 

We took samples and quadrats during both cold (La Niña) and warm (El Niño) phases at 

each site. 

 

Sample Processing 

 We separated out each algal biomass sample taken from low-zone quadrats in 

water in a plastic container to remove the sediment. We then removed all fauna from 

within the blades of algae and identified and recorded their abundance. We placed the 

algae in individual tin foil cups and placed them in a drying oven at 70° C for 48 hours. 

We then measured dry mass for each sample.  

 

Statistical Analyses 
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 We assessed differences in community structure in low zone quadrats between 

sites, between phases (warm/cold), and between biogeographical zones (North/South). 

Percent cover was averaged across all 10 quadrats from each of two transects taken at 

each site during each seasonal phase. Algal species were classified into functional groups 

after Steneck and Dethier (1994). We performed a Bray-Curtis similarity analysis using a 

square-root transformation of the mean percent cover data for each functional group of 

algae and the group of sessile invertebrates. We performed a nonmetric multi-

dimensional scaling (MDS) for visual interpretation of the data, and found that sites were 

grouped well both by zone and by phase (Figure 2). Based on this analysis, we performed 

a crossed analysis of similarity (ANOSIM) with replicates to test for significant 

differences between community composition during each phase at each site, and a nested 

ANOSIM to test for significant grouping of sites into different zones. 

 We analyzed the differences in mean dry algal biomass between sites graphically. 

We also assessed the differences in the invertebrate community living in the algal 

biomass samples by quantifying evenness (J’), species richness and abundance, and 

diversity (H’ ) at each site during each phase. 
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Resultados 

 The distribution of our study sites along the coast of Ecuador can be seen in 

Figure 1, a GIS-created map indicating the relative location of each site along the 

Ecuadorian coastline. Five of these sites fell within the category of “exposed,” and five 

were “protected” sites. Additional characteristics of each site are summarized in Table 2. 

Mean distance between sites was 41.63 km, with a range of 0.50 – 132.32 km. Our study 

design thus encompassed several spatial scales (from 50 x 50 cm quadrats to 361.44 km). 

For ease of interpretation of the results, we labeled the sites 1-10 from North to South. 

Our results also led us to classify these sites into five northern and five southern sites, 

denoted from here forward as N1-5 and S6-10. 

 The multivariate analysis of intertidal community structure in low zone quadrats 

indicated that sites were significantly different from each other (P <.001). These 

differences were primarily due to disparities between Northern and Southern sites and 

between warm and cold phases in the functional groups of corticated foliose, corticated 

macrophytic, articulated calcareous, and filamentous algae (Figure 3). Southern sites had 

higher percent covers of articulated calcareous and corticated foliose algae during the 

cold phase, and increased cover of corticated macrophytes during the warm phase. 

Conversely, northern sites had higher percent covers of filamentous algae and sessile 

invertebrates during the cold phase, and increased cover of corticated foliose and crustose 

algae during the warm phase.  

 The MDS plots and cluster analysis of community structure data show that sites 

were grouped by phase, zone, and exposure (Figure 2). The analysis of these relationships 

using the ANOSIM routine indicated that samples were grouped by phase (that is to say, 
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community structure in low intertidal zone quadrats was significantly different between 

phases at each site; P <.001), although the grouping was not affected by zone. 

 Mean dry algal biomass was not significantly different between sites.  

However, when ordered according to geographic position, we observed that biomass in 

southern sites was much higher than in northern sites (Figure 4). The community of 

mobile invertebrates living within each algal sample also varied between sites, with 

patterns similar to those seen in the biomass results. Mean values for Shannon-Weaver 

diversity index, evenness index, species richness, and invertebrate abundance were all 

higher in southern sites than in northern sites during both warm and cold phases (Figure 

5). No clearly significant patterns existed between warm and cold phases assessed across 

all sites. 
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Discusión 

 Our study offers the first quantitative assessment of intertidal community 

structure along the coastline of continental Ecuador, and of how that structure varies 

between local cold and warm phases of the seasonal cycle, including a cold period or La 

Niña and a normal warm event. The Ecuadorian coastline is relatively small, 

approximately 650 km in length (compared for instance to the nearby Galápagos 

archipelago with more than 1800 km of coastline). However, the convergence of two 

major coastal marine currents, the Humboldt and Panama-Bight currents, creates a unique 

mix of water temperatures, nutrient levels, and larval supply. Our assessment of the 

intertidal community along the coast of Ecuador showed that differences do exist in the 

community composition in low zones between sites.  

 We expected sites to differ in the percent cover of different primary space 

occupiers, because even sites that are in close proximity to each other can experience 

wide variation in community composition due to small-scale oceanographic conditions, 

type of substrate available, wave exposure, and other confounding factors (Benedetti-

Cecchi 2001). This was confirmed by the one-way ANOSIM test, but our interest was in 

seeing if these differences were grouped based on the geographic location of each site 

and/or the phase changes in dominating currents (and consequently, water temperatures, 

nutrient levels, and larval supply). Other studies have observed such variation along 

latitudinal gradients (Schoch et al. 2006, Konar et al. 2010), but the general belief among 

marine ecologists has held that such differing results in nutrient supply could not be 

produced within such a small geographic area based on large-scale dominating currents 

alone (Menge 1992).  
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 Our visual analyses using MDS plots and cluster analysis pointed out phase, zone, 

and exposure as possible grouping factors for the differences observed. Wave action is a 

key factor in determining community structure (Schoch et al. 2006, Kraufvelin et al. 

2010)  due to the disturbance caused by physical forces such as crashing waves, sand 

burial, rates of erosion, moving rocks, etc., which reduces the efficiency of consumers 

(Sousa 1979, Menge and Sutherland 1987). Thus, we selected our study sites in order to 

provide a mix of exposure levels. While biogeographic zone initially appeared to be a 

viable factor for site groupings (clusters of N and S sites in Figure 2a), this did not turn 

out to be a significant factor for defining patterns in community structure. The small scale 

across which our study sites were spaced, the inclusion of intermediate sites (e.g., La 

Tiñosa, Cabo Pasado; see Figure 1), and the loss of resolution derived from grouping 

primary space occupying species into functional groups all may have masked the trend 

we expected to observe. In spite of these limitations, our results could indicate that, at this 

spatial scale, the differences in community composition caused by local conditions and 

marine processes appear to be stronger than large-scale processes, such as dominating 

ocean currents, which may affect sites at either end of the study range differently. Much 

of the variation observed across several spatial scales can also be due to differences 

between quadrats in very close proximity to each other (Benedetti-Cecchi 2001), and the 

local conditions at each study site can often mask large-scale trends between sites (de 

Juan and Hewitt 2011). Our division of sites into 5 North and 5 South was not a priori, 

but rather based on biomass data (Figure 4) and satellite imaging (Saba et al. 2008), along 

with anecdotal evidence from local fishermen. Perhaps a reassessment of our site 

groupings may yield a more coherent result. Alternatively, oceanographic conditions 
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along this latitudinal gradient might not be as extreme as those observed in the 

Galápagos, or in Peru were the Humboldt current might have a stronger impact on 

community, or in Colombia and Panama, where the Panama-Bight current is more 

dominant. An extension of this study farther north and south would provide greater 

comprehension of the disparate communities created by these two major current systems.  

 Although biogeographical zone was not a significant factor for differentiating 

between site groups, the ENSO phase (warm/cold) was. Based on the ANOSIM test, 

transects carried out at all sites during the months of the strong La Niña event from 

August-October 2010 were significantly different in community composition from 

transects carried out during the weak El Niño event during February-April 2011. These 

correlations coincide with the results of previous studies that showed how major 

differences in water temperature (Yamane and Gilman 2009, Meager et al. 2011) and 

nutrient supply (Vinueza et al 2006, Witman et al. 2010) could change both the amount 

of biomass present and the dominance patterns of primary space occupiers. The effects of 

nutrient levels on algal diversity and biomass are not constant, but rather are dependent 

on the biological interactions inherent to the intertidal community (Kraufvelin et al. 

2010). 

 In addition to direct measurement of nutrient levels, algal biomass is frequently 

used as a proxy for productivity in marine ecosystems in the photic zone (e.g., Vinueza et 

al. 2006). Our results show that a gradient does exist in marine productivity along the 

coast of Ecuador, with greater levels of biomass in southern sites than in northern sites. 

Our results also indicate a dividing point in marine productivity between Puerto Cayo and 

La Tiñosa, which could signify that a mixing zone exists between the Humboldt and 



13 

 

 

 

Panama-Bight currents situated near the Manta Peninsula (closest site: La Tiñosa). This 

evidence for the location of the mixing zone coincides with satellite imaging techniques 

for marine productivity (Saba et al. 2008). In addition to the differences observed in 

biomass between southern and northern sites, the biomass at each individual site was, on 

average, higher during the cold phase than during the warm phase. We conclude that 

biomass differences between sites are due to shifts in large-scale dominating currents, 

rather than to local processes such as upwelling. Measured differences in biomass 

coincide with results from studies such as Vinueza (in press), which showed that higher 

marine productivity produces higher levels of biomass in sites across all baseline 

productivity values. Diversity, evenness, species richness, and abundance of 

mesoconsumers in algal samples followed similar trends to that of dry algal biomass, 

with greater values in southern sites, evidence that the impacts of higher productivity 

levels on the southern Ecuador coast are also felt in consumer groups. Such shifts in long-

term oceanographic phases have been shown to propagate up through higher trophic 

levels before (Vinueza et al 2006, Cloern et al. 2007). Our results using the Shannon-

Weaver diversity index also coincide with those from Worm et al. (2002), showing that 

nutrient supply and diversity in marine ecosystems are closely correlated.  

 The fact that biomass results segregated well by geographic zone but not phase, 

and that community structure was significantly grouped by phase but not zone, presents 

an interesting situation for interpretation. This might indicate that nutrient levels are 

consistently higher in southern than northern sites, regardless of which phase of the 

seasonal cycle is dominating. At the same time, the consistent variation observed in the 

community structure at each site between warm and cold phases could indicate that, as 
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the confluence zone of the Humboldt and Panama-Bight currents is pushed farther North 

or South, larval supply changes, as well as the temperature optimums for different algal 

species and sessile invertebrates. The results support our hypothesis that southern sites, 

with their closer proximity to the cold water Humboldt current, are more productive than 

northern sites, and that sites along the Ecuadorian coast change in the composition of the 

intertidal community with variation caused by the ENSO cycle. 

 Variation in ocean temperatures and productivity levels cannot be discussed 

without mentioning the implications of global climate change.  Globally, sea surface 

temperatures have risen by 0.6°C over the past 100 years (Pachauri 2007). As the effects 

of climate change continue to be revealed to marine scientists, the importance of the role 

of species interactions is becoming more apparent (Gilman et al. 2010). Although 

biological interactions can impact between-site patterns of species richness and 

abundance (Kraufvelin et al. 2010), oceanographic conditions are very strong drivers of 

community structure (Broitman et al. 2001), and are susceptible to large-scale variation 

driven by forces such as ENSO and climate change. Studies such as ours that investigate 

changing patterns in dominance of marine organisms and the scales over which these 

changes occur are essential for predicting and adapting to modifications to marine 

ecosystems caused by climate change (Harley et al. 2006). Long-term monitoring of the 

marine ecosystems along the coast of Ecuador will be needed to gauge the response of 

these biological interactions to future climate change induced phenomena, such as 

stronger and more frequent ENSO events (IPCC 2001).  

Our study has produced many new questions that need answering in order to 

better understand the ecological processes at work along the continental coast of Ecuador. 
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For instance, given the complex and often site-specific interactions between herbivores 

and nutrients in determining algal community structure (Burkepile and Hay 2006), what 

role are herbivores playing in the patterns we have described here? Are these rocky 

shores following similar patterns than for example Galápagos, Panamá, Colombia or 

Peru? Additionally, we frequently observed local fishermen gathering large numbers of 

predatory whelks and cone snails from the intertidal areas at our study sites during low 

tides. Although the complexity of marine food webs reduces the probability of major 

alterations caused by selective fishing (Bascompte et al. 2005), these predatory whelks 

may be strong top-down regulators of community structure by limiting the populations of 

sessile invertebrates and herbivores, as has been shown in other systems (Menge 2000, 

Przeslawski et al. 2008), and their large-scale removal may cause strong changes to the 

intertidal community. Future studies that further explore the relationships between 

varying levels of productivity, intertidal mollusk removal, and the local implications of 

climate change are certainly warranted. Finally, our grouping of algae into functional 

classes reduced our ability to assess changes in algal diversity and species 

presence/absence between sites and phases. A fine-scale evaluation of algal diversity 

along the Ecuadorian coast would provide this information. 
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Site Sand cover (%) Wave height (m) Exposure (E/P) Site code 
Playa Escondida 50.9 0.5 P N1 

Galera 0.6 1.8 E N2 
Estero de Plátano 20.7 1.0 E N3 

Cabo Pasado 16.4 1.3 P N4 
La Tiñosa 25.2 0.9 P N5 

Puerto Cayo 11.7 0.4 P S 
Los Frailes 22.6 1.0 P S 

Playita 3.8 2.1 E S 
Punta Blanca 2.8 1.8 E S 

Anconcito 7.0 1.5 E S 
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