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de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que

los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo

dispuesto en esas Poĺıticas.
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Resumen

Esta tesis presenta un estudio exhaustivo de un modelo de unión fuerte aplicado a

moléculas helicoidales, espećıficamente aquellas que se asemejan al ADN. Aborda

la modelización de la estructura de doble hélice del ADN y sus bases, empleando

principios de mecánica cuántica y f́ısica del estado sólido. La investigación tiene

como objetivo explorar las bandas de electrones asociadas con los orbitales π de

las bases del ADN, centrándose en los efectos de polarización de spin y los niveles

de enerǵıa cercanos al nivel de Fermi. La tesis integra enfoques de mecánica

clásica y cuántica, enfatizando la traducción y rotación de las bases dentro de

la estructura helicoidal. El objetivo final es comprender el comportamiento del

electrón en sistemas similares al ADN, contribuyendo aśı al campo más amplio de

la electrónica molecular.



8

Abstract

The thesis presents a comprehensive study of a tight-binding model applied to

helical molecules, specifically those resembling DNA. It addresses the modeling

of DNA’s double helix structure and bases, employing quantum mechanics and

solid-state physics principles. The research aims to explore the electron bands

associated with the π-orbitals of DNA bases, focusing on spin polarization effects

and energy levels near the Fermi level. The thesis integrates classical and quantum

mechanics approaches, emphasizing the translation and rotation of bases within

the helical structure. The ultimate objective is to understand the electron behavior

in DNA-like systems, contributing to the broader field of molecular electronics.
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Chapter 1

Introduction

This thesis develops a mathematical framework for a tight-binding model applied

to chiral-like molecules, with a focus on a basic DNA-like system. It begins by

examining the structure of a DNA molecule, which consists of two strands forming

a helical shape. The thesis delves into the modeling of DNA bases and their

atomic orbitals, aiming to understand the electronic properties of DNA through

this model.
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1.1 Problem Statement

A DNA molecule comprises two linked strands that wind around each other. It’s

similar to a ladder twisted in a helix-like shape. Each strand has a backbone made

of alternating sugar and phosphate groups. Attached to each sugar, there is one of

4 bases: adenine (A), guanine(G), cytosine (C) and thymine (T). DNA bases are

planar organic molecules bonded by sp2hybridization, where the atoms have their

pz orbital perpendicular to the planar molecule [1]. These pz orbitals represent the

π-band; I will model the rest of these bases with hydrogen-like atoms, where the

px and py orbitals represent the σ-bands. There are other parameters to consider,

particularly a tilt of the organic molecule to the x, y plane; I will call this tilt θ.

Also, the helix has a radius aand pitch b. The arc length between bases will be

denoted by ∆ϕ. The detailed model will be as follows.

1.1.1 DNA Model

Consider, if you will, a double-stranded DNA type infinite helix along the z axis.

Along these helices, there are evenly spaced hydrogen-like atoms with the px orbital

parallel to the normal vector of the helix. The py orbital is almost parallel to the

tangent vector, the specific orientation of the py and pz orbitals is obtained as

follows. Focus on the normal vector, call it exi
put ez′i

parallel to the z axis and

ey′i
= ez′i

× exi
now rotate along exi

an angle θ, the new positions of ey′i
and ez′i

are parallel to the py and pz orbitals respectably.
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For one of the two helices, the atoms are located at

Ri = a cosϕiex + a sinϕiey +
b

2π
ϕiez (1.1)

where ϕn = n∆ϕ the atoms of the other helix can be obtained by rotating Ri

an angle π along the z axis. Now, focus on how to model each of the basis. For

simplicity, we will assume that all bases are the same. Let εσ denote the energy of

the σ-band and επ the one of the π-band. The Hamiltonian of one of this basis at

the center of the coordinate system is.

ĥH =

|px⟩ |py⟩ |pz⟩


⟨px| εσ 0 0

⟨py| 0 εσ 0

⟨pz| 0 0 επ

(1.2)

As mentioned before, I am interested in the spin polarization effect so I will put

the spin-orbit correction from the fine structure. This Hamiltonian can be obtained

by considering the effective magnetic field felt by the e− since it is moving along

a electric field. This Hamiltonian has the form

ĥso =
ξ

ℏ
σ̂ · L̂ (1.3)

Where σ̂ denote the usual Pauli matrices, L̂ is the orbital angular momentum of

the hydrogen atom, and ξ is a constant with units of energy.
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Figure 1.1: DNA double helix-like structure. Each helix is represented by one
colour: light blue and pink. Bases (A), (C), (G), (T) have different colours as
well. 2 p-orbitals are also represented with the tilt.
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1.2 Objectives

I will be using all this information to obtain the electron bands associated with pz

orbitals. The main objective is to obtain energies of the electron in terms of the

z component of the wave vector and the z component of the spin. Also, expand

near the Fermi level with full and half full.
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1.3 Approach to the Problem and Organization

The thesis adopts a structured approach to model DNA-like molecules using a

tight-binding framework. It starts with classical and quantum mechanical analyses

of a particle constrained to a helix, crucial for understanding helical structures

like DNA. This is followed by adapting solid-state physics concepts to the helical

context, particularly focusing on lattice vectors and Bloch’s theorem. The core

of the thesis involves developing a Hamiltonian model for the molecule in real

and reciprocal space, examining electron bands, spin polarization effects, and the

influence of spin orbit coupling. The organization is sequential, building from

basic concepts to complex models, integrating both theoretical constructs and

mathematical formalisms.
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Chapter 2

Electron in a Helix

To begin the analisis of helix like molecules I will require some basic quantum

information of an electron or any quantum particle moving along a said helix.

With this in mind, I will first obtain all posible information for a classical particle

confined to a helix. Then, I will use the canonical quantization procedure discussed

in chapter 4 of Shankar [2] to obtain a quantum hamiltonian for a spin 0 particle.

This will be our first step to analize a spin 1
2
particle.
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2.1 Classical Particle Along a Helix

2.1.1 Lagrangian Formalism

A free particle moving along a right-handed helix of radius a and pitch b at some

arbitrary time t has a position.

x(t) = a cos q(t) y(t) = a sin q(t) z(t) =
b

2π
q(t) (2.1)

With q(t) being the independent or generalized coordinate. Something to note:

I will drop the time dependencies from now on, remember they exist. Also, this

trajectory came from imposing

x2 + y2 = a2 z =
b

2π
arctan

(y
x

)
(2.2)

These are holonomic constraints; hence, the Lagrangian of the system is only

the kinetic energy and the Lagrange multipliers. I can remove the multipliers by

putting the velocities in terms of q and q̇. The velocities are

ẋ = −aq̇ sin q ẏ = aq̇ cos q ż =
b

2π
q̇ (2.3)

The Lagrangian is

L(q, q̇) =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
=

1

2
m

(
a2 +

b2

4π2

)
q̇2

(2.4)
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Finally, for this section, at least, we need the conjugate momentum p.

p =
∂L

∂q̇

p = m

(
a2 +

b2

4π2

)
q̇

q̇ =
1

m

(
a2 +

b2

4π2

)−1

p

(2.5)

2.1.2 Hamiltonian Formalism and Poisson Brackets

First, the Legendre Transformation to obtain the Hamiltonian; for this, I will be

using the information from (2.4) and (2.5)

H(q, p) = pq̇ − L(q, q̇)

H(q, p) =
1

2m

(
a2 +

b2

4π2

)−1

p2
(2.6)

Recall the definition of the Poisson Brackets, let ω(q, p) and λ(q, p) be 2 functions

defined in the phase space the quantity {ω, λ}PB is called the Poisson brackets

between ω and λ, and is defined as

{ω, λ}PB =
∂ω

∂q

∂λ

∂p
− ∂ω

∂p

∂λ

∂q
(2.7)

From this, it is a bit obvious that

{q, p}PB = 1 (2.8)
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2.1.3 Other Quantities of Interest

To finish the classical procedure, I put some quantities of interest as functions of q

and p. In particular, I will need both the z component of momentum and angular

momentum. For completeness I will give the whole vectors L and p, note that we

already have x from (2.1)

p(φ, pφ) = m
dx

dφ

dφ

dt

L(φ, pφ) = x(φ, pφ)× p(φ, pφ)

After a straightforward calculation, the results are outlined below.

px =
−a

a2 + b2

4π2

sin(q)p

py =
a

a2 + b2

4π2

cos(q)p

pz =
bp

2π
(
a2 + b2

4π2

)
(2.9)

Also, something interesting, we can write p in terms of x and p

p =
1

a2 + b2

4π2

(
−py, px, bp

2π

)

Finally, the angular momentum

Lx =
−ab

2π
(
a2 + b

4π2

)(q cos q − sin q)p

Ly =
−ab

2π
(
a2 + b

4π2

)(cos q + q sin q)p

Lz =
a2(

a2 + b2

4π2

)p
(2.10)
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From equations (2.6), (2.9) and (2.10) its clear that

{pz, H}PB = 0

{Lz, H}PB = 0

Meaning that both pz and Lz are constants of motion. I have completed the

classical analysis for a particle moving along a helix. Time to go into the quantum

realm.
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2.2 Quantum Hamiltonian for Spin 0 Particle

Now, I need to promote q and p to operators, but most importantly, I need to find

the Hilbert space H These operators act in Hilbert space H. It should not be a

surprise that H will be the set of bounded complex functions in a certain interval;

Furthermore, the procedure will give some surprising and useful results.

2.2.1 Some Useful Definitions and a Very Important As-

sumption

Definition 1. Let f : R → R be a analytical function and ω̂ an operator acting

on H. Assume that f(ω) = a0 + a1ω + a2ω
2 + · · · then f(ω̂) is an operator acting

on H defined by

f(ω) = a01̂+ a1ω̂ + a2ω̂
2 + · · · (2.11)

Definition 2. Let ω : P −→ R mapping (q, p) → ω(q, p) where ω(q, p) denotes

a physical quantity, also ω is analytical at (0, 0). The operator ω̂ is defined with

the following recipe. First, expand ω in its Taylor series centred at (0, 0). Second,

whenever there is a product pq, write it as 1
2
(pq + qp). Finally, change all p → p̂

q → q̂.
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We can use these definitions to get the linear and angular momentum as operators.

Obtaining the Hilbert space H requires to solve the Schrodinger equation with

the appropriate boundary conditions. An excellent idea would be to confine the

particle to the helix, meaning that after N turns, the wave function is 0. This will

cause headaches in the long run. With the benefit of hindsight, we will choose

another condition.

Definition 3. The very important assumption

The wave function will have periodic boundary conditions with period ∆ϕ i.e.

ψ(q) = ψ(q +∆ϕ) (2.12)

I will justify this later. Let us continue with the quantization.

2.2.2 Quantizatization Procedure

Now, I will promote our canonical variables to operators with the appropriate

commutation relation p → p̂ and q → q̂. The commutation can be obtained from

(2.8).

[q̂, p̂] = iℏ{q, p}PB

[q̂, p̂] = iℏ1̂
(2.13)

The representation of the p̂ and q̂ will be similar to the position representation,

where q̂ multiplies and p̂ differentiates. Let ψ : R → C, map q to a probability
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density amplitude ψ(q) the operators q̂ and p̂ acting on ψ are defined as follows.

(
q̂ψ
)
(q′) = q′ψ(q′)(

p̂ψ
)
(q′) = −iℏdψ

dq

∣∣∣∣
q′

(2.14)

Which, of course, are consistent with (2.13), in case the function on which q̂ and

p̂ operate are multivariable, the only change in equation (2.14) is d
dq

→ ∂
∂q
. The

final piece of the the puzzle is obtained from the Schrodinger equation.

(
ĤΨ

)
(q, t) = iℏΨ̇(q, t)

−ℏ2

2m

(
a2 +

b2

4π2

)−1
∂2Ψ

∂q2
= iℏ

∂Ψ

∂t

(2.15)

Equation (2.15) is the same equation of a free particle in one dimenssion with

mass m∗ = m
(
a2 + b2

4π2

)
. The boundary conditions are obtained from (2.12).

Take Ψ(q, t) = e−iωtψ(q), then

ψn(q) =
1√
Ω
eilnq ln =

2π

∆ϕ
n (2.16)

Finally, from equation (2.10) and (2.9):
[
L̂z, Ĥ

]
= 0,

[
p̂z, Ĥ

]
= 0 and

[
L̂z, p̂z

]
= 0

meaning there exists a complete set of eigenvectors for them. Equation (2.16) was
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chosen with that condition in mind. The eigenvalues are outlined below.

(p̂zψ)(q) =
ℏbln

2π
(
a2 + b2

4π2

)ψ(q)(
L̂zψ

)
(q) =

ℏa2ln(
a2 + b2

4π2

)ψ(q)(
Ĥψ
)
(q) =

ℏ2a2(ln)2

2m
(
a2 + b2

4π2

)ψ(q)
(2.17)

We now convert the ”very important assumption” into something a bit more useful:

treating p̂ as the generator of translations along the helix, we can rewrite the very

important assumption as

(e−ip̂∆ϕψ)(q) = ψ(q +∆ϕ) = ψ(q) ℏ = 1 (2.18)

We can also write it in terms of p̂z and L̂z, the generators of translation and

rotations along the z-axis.

p̂∆ϕ =
a2

a2 + b2

4π2

p̂∆ϕ+
b
2π

a2 + b2

4π2

p̂
b

2π
∆ϕ

p̂∆ϕ = L̂z∆ϕ+ p̂z
b

2π
∆ϕ

Definition 4. Let f : R −→ R be any function defined along the helix. Let q

be a point in the helix the value f(q +∆ϕ) can be obtained by the application of
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the operator T̂ to f evaluated at q. Where

T̂ = exp

(
−ip̂z

b∆ϕ

2πℏ

)
exp

(
−iL̂z

∆ϕ

ℏ

)
(2.19)

The very important assumption has now evolved to

T̂ψ = ψ (2.20)
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2.3 Spin 1
2 Particle

As we all know, considering only L̂ with the electron is incomplete, it also has an

intrinsic angular momentum: spin. How do we add the spin to our result? What

I am going to do is to evolve the very important assumption once more. Version

3 of the assumption is to change L̂z in (2.19) to Ĵz where

Ĵz = L̂z + Ŝz (2.21)

The translation operator can now be written as

T̂new = e−i∆ϕp̂R̂z(∆ϕ) R̂z(∆ϕ) = e−iŜz∆ϕ (2.22)

T̂new = T̂oldR̂z(∆ϕ) (2.23)

(2.24)

Definition 1. I am going to use some abuse of notation here: let T̂ be defined

as in (2.19). define a function with the same letter that maps a integer n to a

translation i.e.

T̂ (n) =
(
T̂
)n
R̂z(n∆ϕ) (2.25)

Sorry, dear reader, for the notation, remember T̂ with no argument is T̂ = T̂ (1).

Finally, the two notations are equivalent. T̂ (n) = T̂n Additionally, it is not hard
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to show that

T̂ (−n) = T̂−1(n) = T̂ †(n)

The new translator operator acts over a new Hilbert space.

Definition 2. Let σ =↑, ↓ with Ŝz |↑⟩ = ℏ
2
|↑⟩ and Ŝz |↓⟩ = −ℏ

2
|↓⟩ define our new

Hilbert Space V as the direct product of H with {|↑⟩ , |↓⟩} i.e.

V = H⊗ {|↑⟩ , |↓⟩} (2.26)

Let ψ, φ ∈ H. The following notations are equivalent

ψ |↑⟩+ φ |↓⟩ =

ψ
φ

 (2.27)

The elements of V are called spinors The spinor that obeys the ”very important

assumption” is

|ln⟩ = ψn R̂z(n∆ϕ) |σ⟩ (2.28)
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Chapter 3

From Crystals to Helices.

What can we apply from

solid-state physics?

Crystals, as systems, have a gigantic advantage over many others in the periodicity

of the unit cell. Any physical quantity that depends on the position say the electron

density ρ, have the propriety

ρ(x) = ρ(x+R)

Where R is any of the so-called lattice vectors. All the necessary calculations

can be done in 1 unit cell instead of the whole crystal. Unfortunately, the DNA-

Molecule is twisted, so treating it as a one-dimensional crystal will make the unit
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cell contain ten bases per helix; with two helices, there are 20 bases, and for three

orbitals per base, we have 60 matrix elements in the Hamiltonian, if we add the

spin degree of freedom, we now have 120. So, the fantastic advantage of periodicity

has flown out the window.

That said, this doesn’t mean we can’t use the idea of crystals in helices. Most

quantum results of solid-state physics have an analogous result in helices. In this

chapter, I will generalize these results to any helix. These conclusions may even

work for any material in a manifold-like shape, but I will stay with helices for now.
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3.1 The New Lattice Vectors

How to move inside the molecule?

Recall in Chapter 1 that the arc length between sites is the same. Also, each site

is rotated about the other by the same amount, meaning the molecule has some

periodicity.

3.1.1 The Translation Operator

Let |x⟩ be a position eigenket and R denote any site in the helix. An operator

that maps |R⟩ to |R′⟩ was defined in the ”very important assumption” (2.25).

But how do we know this is the correct generalization? Well, we see what made

the original lattice vectors so important.

For any lattice with lattice vectors Ri, all the information is contained in the

Hamiltonian Ĥ. If the lattice is truly infinite, moving the lattice by a vector Rj

leaves the lattice the same. i.e

[e−ip̂·R̂, Ĥ] = 0 (3.1)

Our translation operator T̂ (n) rotates an angle ∆ϕ along the z-axis and moves

the helix upwards by a distance b
2π
∆ϕ as shown in (2.19). This means that what-
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ever the Hamiltonian is, it must be that

[
T̂n, Ĥ

]
= 0 (3.2)

The operator T̂n defines the periodicity in the system.

With this, it is time to justify our ”very important assumptions”.

Proof. Since T̂n commutes with Ĥ, then they share a set of eigenvectors. Also,

T̂n is a unitary operator, meaning the eigenvalues of T̂n are of the form eiα where

α ∈ R. Finally, the probability amplitude is determined up to a constant phase; I

choose the eigenvectors so that the eigenvalue of T̂1 is 1.

3.1.2 What Becomes of the Reciprocal Lattice Vectors

To define the reciprocal lattice, we consider the equation (2.16). If we change

q → q + n∆ϕ we obtain the same result. Now consider the wave function at one

of the sites, meaning q = m∆ϕ then we can change ln → ln + lk and again obtain

the same wave function i.e.

ψn(q) = ψn(q +∆ϕ) (3.3)

ψn(∆ϕ) = ψn+1(∆ϕ) (3.4)

This allows us to define the Brillouin Zone for the conjugate momentum l as the

interval centered at 0 with a length equal to the smallest value of |ln|.
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Definition 1. For a right-handed helix with sites separated by an angle ∆ϕ, the

first Brillouin Zone is the interval

[
− π

∆ϕ
,
π

∆ϕ

]
(3.5)
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3.2 What becomes of Bloch’s Theorem?

At this point, dear reader, this section should be quite clear. Bloch’s Theorem is a

inmediate consecuece of (3.2). What can we add to our solution (2.28) such that

is an eigenket of T̂ (n)?

Ψl(q) =
1√
Ω
eiqlul(q) (3.6)

ul(q) = ul(q +∆ϕ) (3.7)

l ∈
[
− π

∆ϕ
,
π

∆ϕ

]
(3.8)

For the tight binding method, e now write the Bloch Expansion for the helix,

let |ψ⟩ be a spinor eigenket of a site of the helix. Then,he Bloch Expansion is given

by

|Ψl⟩ =
∑
n

eilϕnR̂z(−n∆ϕ)T̂ (n) |ψ⟩ (3.9)
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Chapter 4

Hamiltonian of the Molecule in

Real Space

4.1 Sites Hamiltonian

As the Tight Binding model suggests, the Hamiltonian is hydrogen-like for each

site, with the energies denoted in (1.2). First, I will work with the spin-orbit

Hamiltonian for the hydrogen atom. Then, I will use translations and rotations

on the Hamiltonian to displace it to the correct position and with the correct

orientation.
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4.1.1 Spin Orbit Hamiltonian In p Orbitals Basis

Definition 1. Let, |1⟩, |0⟩, |−1⟩ denote the eigenkets of L̂z in the hydrogen-like

atom with l = 1 and m = 1, 0,−1 respectively. The p orbitals are defined as:

|px⟩ =
−1√
2
(|1⟩ − |−1⟩),

|py⟩ =
i√
2
(|1⟩+ |−1⟩),

|pz⟩ = |0⟩ .

(4.1)

Using the typical tricks of angular momentum (see, for example, chapter 3.5 of

[3]) I can evaluate the product L̂ · Ŝ by using the following properties: Let Ĵ

denote either L̂ or Ŝ define

Ĵ± =Ĵx ± iĴy.

For L̂ it is true that:

L̂+ |1⟩ = 0, L̂+ |0⟩ = ℏ
√
2 |1⟩ , L̂+ |−1⟩ = ℏ

√
2 |0⟩ ,

L̂− |1⟩ = ℏ
√
2 |0⟩ , L̂− |0⟩ = ℏ

√
2 |−1⟩ , L̂− |−1⟩ = 0,
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for |↑↓⟩ we have:

Ŝ+ |↑⟩ = 0, Ŝ+ |↓⟩ = ℏ |↑⟩ ,

Ŝ− |↑⟩ = ℏ |↓⟩ , Ŝ− |↓⟩ = 0.

Now, I can expand the product L̂ · Ŝ as

L̂ · Ŝ =
1

2

(
L̂+Ŝ− + L̂−Ŝ+

)
+ L̂zŜz

I list some matrix elements below

⟨pxσ| L̂ · Ŝ |pyσ′⟩ = −iℏ ⟨σ| Ŝz |σ′⟩ ,

⟨pyσ| L̂ · Ŝ |pzσ′⟩ = −iℏ ⟨σ| Ŝx |σ′⟩ ,

⟨pzσ| L̂ · Ŝ |pxσ′⟩ = −iℏ ⟨σ| Ŝy |σ′⟩ .

Clearly

⟨piσ| L̂ · Ŝ |pjσ′⟩ = −iℏ
2

2
ϵijk ⟨σ| σ̂k |σ′⟩ (4.2)
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Thus, I can write ĥso as

ĥso =

|px⟩ |py⟩ |pz⟩


⟨px| 0 −iσ̂zξp iσ̂yξp

⟨py| iσ̂zξp 0 −iσ̂xξp

⟨pz| −iσ̂yξp iσ̂xξp 0

. (4.3)

The complete Hamiltonian is the sum of the last two equations. Let us call it ĥ

ĥ = ĥH + ĥso. (4.4)

4.1.2 Putting the Hamiltonians in the Molecule

The solution of the hydrogen atom in terms of the spherical harmonics has the

(x, y, z)-orbital along the (x, y, z)-axis. Meanwhile, for the model, we need them

translated and rotated. Let’s start with some definitions.

Definition 2. Let Ĵ = L̂+ Ŝ. Define Û(θ), Ûm, ĥ(θ), and |pµ0⟩ as

Ûx(θ) = e−ip̂xae−iĴxθ,

Ûm = e−ip̂m∆ϕ = e−i(p̂z b
2π

+L̂z)m∆ϕ,

ĥ0(θ) = Ûx(θ)ĥÛx(−θ),

|pµ0⟩ = Ûx(θ)e
iŜxθ |pµ⟩ .

The operator Ûx(θ) translates and rotates along the x-axis, which tilts and moves
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any object to the border of a cylinder with radius a. The Helix’s complete Hamil-

tonian (without hopping) can be obtained by summing over the Hamiltonians for

each site.

Ĥso =
∞∑

n=−∞

T̂nĥ0(θn)T̂
†
n (4.5)

With T̂n as defined in (2.25).
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4.2 Hopping Hamiltonian

Let µ, ν stand for x, y, z, and m,n for integers. Greek letters will denote orbitals

and Latin letters will denote sites in the helix. The Slater-Koster overlaps only

depend on the position of the orbitals and they don’t affect their spin. Hence, I

define the hopping Hamiltonian as

Ĥ =
∑
µ,ν

∑
m,n

|pµn⟩ tmn
µν ⟨pνm| ⊗ 1̂s (4.6)

Where |pµm⟩ = Ûm |pµ⟩ is the µ orbital with the correct orientation for the

site m. The hopping energies tmn
µν depend on the orientation between orbitals.

Therefore, I need to define a unit vector associated with each orbital. Since the pµ

orbital is in the µ direction, I can get the unit vectors by first rotating along the

z axis and then rotating on the new x axis.

Definition 1. Define, just for this section, Rµ(θ) as the rotation matrix of angle

θ along the µ axis. The first rotation is along the z-axis an angle ϕm

Rzm =


cosϕm − sinϕm 0

sinϕm cosϕm 0

0 0 1


The second rotation is the tilt, which is obtained by rotating along the new x axis
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which we will call x′ for the moment.

Rx′(θ) = RzmRx(θ)(Rzm)
−1

The new orientation of the p orbitals can be calculated with a rotation matrix Am

Am = Rx′(θ)Rzm = RzmRx

Am =


cosϕm − sinϕm cos θ sinϕm sin θ

sinϕm cosϕm cos θ − cosϕm sin θ

0 sin θ cos θ


(4.7)

With this matrix, we can obtain the normal vector parallel to the pµ orbital on

the mth site by

n(pµm) = Ameµ

n (pxm) = (cosϕm, sinϕm, 0)

n (pym) = (− sinϕm cos θ, cosϕm cos θ, sin θ)

n (pzm) = (sinϕm sin θ,− cosϕm sin θ, cos θ)

(4.8)

4.2.1 Slater-Koster two Center Aproximation

The hopping energies tmn
µν can be obtained by integrating the respective spherical

harmonics. Thankfully, [4] have already done it and obtained a result that only

depends on the orientation of the orbitals and the interatomic distance. The

hopping energy for two parallel orbitals is called (ppπ), whereas if the orbitals are
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facing each other then is called (ppσ). For an arbitrary rotation, there is a linear

combination of (ppσ) and (ppπ) [5]. Since I am only working with p orbitals, I will

call them Vπ and Vσ. The final approximation is

Vσ,π = κσ,π
ℏ

mR2
mn

(4.9)

Where κ depends on the particular atom and Rnm = Rn−Rm. Some illustrations

of the σ and π hopping are shown in figures 4.1, 4.2 and 4.3

Figure 4.1: Two p-orbitals connected by a σ bond
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Figure 4.2: Two p-orbitals connected by a π bond
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Figure 4.3: Two p-orbitals connected by a combination of π and σ bonds

The hopping energies are given by

tmn
µν = n (pµm) · n (pνn)V

π
pp +

n (pµm) ·Rnm n (pνn) ·Rnm

Rnm ·Rnm

(
V σ
pp − V π

pp

)
(4.10)

I now work with this expression to obtain a more useful result. I can write the dot

product as a · b = aTb. Putting this information in the previous expression and

changing n(pµm) = Ameµ I can remove the unit bases.

tij = AT
i

(
Vπ +RjiR

T
ji

Vσ − Vπ

|Rij|2

)
Aj

tijµν = eT
µ t

ijeν

(4.11)

For a Helix, the term inside the parenthesis only depends on the radius, pitch and
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angle between bases. Note that I can write Rji as

Rji =


−2a sin

ϕj−ϕi

2
sin

ϕj+ϕi

2

2a sin
ϕj−ϕi

2
cos

ϕj+ϕi

2

b
2π
(ϕj − ϕi)



= Rz

(
ϕj + ϕi

2

)
0

2a sin
ϕj−ϕi

2

b
2π
(ϕj − ϕi)


Take

rj−i =
1√

4a2 sin2(ϕj − ϕi) +
b2

4π2 (ϕj − ϕi)
2


0

2a sin
ϕj−ϕi

2

b
2π
(ϕj − ϕi)


The expression for tij is now

tij = Rx(−θi)
(
Rz(ϕj − ϕi)Vπ

+Rz

(
ϕj − ϕi

2

)
r(j−i)r

T
(j−i)Rz

(
ϕi − ϕj

2

)
(Vσ − Vπ)

)
Rx(θj)

(4.12)

The tilt angle θ is different for each base. A list of all possible angles can be found

in [6]. The tilt angle is half of the propeller twist, meaning that θi is in the order

of 6.3o or 0.1 radians. Since I am simply approximating, I will take θ = 0.

For the Bloch Expansion, it will be useful to separate the tij matrix in its

symmetric and anti-symmetric components i.e. (tij)(m,n) and (tij)[m,n]. We only
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consider the first neighbours so i = 1; j = 2.

t12s =
tij + (tij)

T

2
=


txx t(xy) tzx

t(xy) tyy tyz

tzx tyz tzz

 (4.13)

t12A =
tij − (tij)

T

2
=


0 −t[xy] 0

t[xy] 0 0

0 0 0

 (4.14)

Where

txx =
16πa2 sin4

(
∆ϕ
2

)
((ppσ)− (ppπ))

16πa2 sin2(∆ϕ) + b2∆ϕ2
+ (ppπ) cos(∆ϕ),

t(xy) =
8πa2 sin2

(
∆ϕ
2

)
sin(∆ϕ)((ppσ)− (ppπ))

16πa2 sin2(∆ϕ) + b2∆ϕ2
,

tzx =
2ab∆ϕ(cos(∆ϕ)− 1)((ppπ)− (ppσ))

16πa2 sin2(∆ϕ) + b2∆ϕ2
,

tyy =
4πa2 sin2(∆ϕ)((ppσ)− (ppπ))

16πa2 sin2(∆ϕ) + b2∆ϕ2
+ (ppπ) cos(∆ϕ),

tyz =
2ab∆ϕ sin(∆ϕ)((ppσ)− (ppπ))

16πa2 sin2(∆ϕ) + b2∆ϕ2
,

tzz =
b2∆ϕ2((ppσ)− (ppπ))

π
(
16πa2 sin2(∆ϕ) + b2∆ϕ2

) + (ppπ),

t[xy] = (ppπ) sin(∆ϕ).

(4.15)

With this information, I can plot the energy contribution as a function of the

angle ϕ. Figure 4.4 represents the values of the energy as a function of distance. It’s
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not hard to see that considering only first neighbours is not enough, in particular

we can see that the biggest contribution of tzx is in the forth neighbour. Either

way, the purpose of this and the following chapter is to show the use fullness of

the method, hence I will only take into account first neighbours.

Figure 4.4: Hopping energies involving z-orbitals each dashed line represent a
neighbour. We present ∆ϕ ∈

[
π
5
, 11π

5

]
i.e. the first 11 neighbours
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Chapter 5

Hamiltonian In Reciprocal Space

5.1 Electron Bands For a Particle With No Spin

Definition 1. Let |pµi
⟩ denote the µ orbital at site i and l be the quantum

number associated with the operator

L̂z + p̂z
b

2π

Define the ket

|l, µ⟩ = 1

N

∑
i

eilϕi |pµi
⟩ (5.1)

where N is the number of sites and l is in the first Brillouin Zone.

Note that this definition is very similar to the usual Bloch expansion in crystals.
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Also, it is consistent with (3.9) only with the spin part removed. It’s not hard to

show that |l, µ⟩ is an eigenket of T̂ (n) for any integer n. Finally, for this crude

model I will assume that
〈
pµj

∣∣pµi

〉
= δji . With this, I now calculate the matrix

elements of the site Hamiltonian and the hopping Hamiltonian in this base

⟨l′µ| Ĥ1 |lν⟩ =
1

N

∑
i,j

e−il′ϕieilϕj ⟨pµi
| Ĥ1

∣∣pνj〉
Ĥ1

∣∣pνj〉 = εν
∣∣pνj〉

⟨l′µ| Ĥ1 |lν⟩ =
1

N

∑
i,j

e−il′ϕieilϕjενδ
j
i δ

ν
µ

⟨l′µ| Ĥ1 |lν⟩ =
1

N

∑
i

e−i(l′−l)ϕiενδ
ν
µ

⟨l′µ| Ĥ1 |lν⟩ = δl
′

l δ
ν
µεν

For a fixed l I can write

Ĥ1(l) =

|lx⟩ |ly⟩ |lz⟩


⟨lx| εσ 0 0

⟨ly| 0 εσ 0

⟨lz| 0 0 επ

(5.2)
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Now for the hopping Hamiltonian.

⟨l′µ| Ĥ2 |lν⟩ =
1

N

∑
i,j

e−il′ϕieilϕj ⟨pµi
| Ĥ2

∣∣pνj〉
Ĥ2

∣∣pνj〉 = ∑
µ=x,y,z

[
tj−1,j
µν

∣∣pµj−1

〉
+ tj+1,j

µν

∣∣pµj+1

〉 ]
⟨l′µ| Ĥ2 |lν⟩ =

1

N

∑
i,j

e−il′ϕieilϕj
[
t12µνδ

i
j−1 + t21µνδ

i
j+1

]
⟨l′µ| Ĥ2 |lν⟩ =

1

N

∑
i

e−i(l′−l)ϕi

[
eil

′∆ϕt12µν + e−il′∆ϕt21µν

]
⟨l′µ| Ĥ2 |lν⟩ = δl

′

l

(
cos (l∆ϕ)(tSIM)µν + i sin(l∆ϕ)(tASIM)µν

)

Once again, for a fixed l I can write the Hamiltonian as a 3× 3 matrix

Ĥ2(l) =


txx t(xy) tzx

t(xy) tyy tyz

tzx tyz tzz

 cos(l∆ϕ) +


0 it[xy] 0

−it[xy] 0 0

0 0 0

 sin(l∆ϕ) (5.3)

The values for Vπ and Vσ can be find in [7]. The pitch, radius and angle between

bases are in [6]. Substituting in (4.15)

txx = −30meV, t(xy) = 10meV, tzx = 5meV,

tyy = 5meV, tyz = 20meV,

tzz = −20meV,

t[xy] = −20meV.
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Since I am only considering first neighbours, take ∆ϕ = π
5
.

Figure 5.1: Electron band associated to the z-orbital in the First Brillouin Zone,
defined over the quantum number l. The dashed lines represent the border of the
zone. The energy is measured with respect to επ
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5.2 Electron Bands for a particle with spin

Definition 1. Take all the information from equation (5.1). Define the ket

|l, σ, µ⟩ = 1√
N

∑
i

eilϕi |pµi
⟩ R̂z(ϕi) |σ⟩ (5.4)

The process for expressing the Hamiltonians on the basis (5.4) is analogous to that

of the previous section. The main difference is in the arguments of the sine and

cosine in equation (5.2): for spin ↑ we change l → l + 1
2
and for spin ↓, l → l − 1

2
.

The only Hamiltonian I am missing is Ĥso, which can be calculated from:

⟨l′, σ′;µ| Ĥso |l, σ; ν⟩ =
1

N

∑
i,j

e−i(l′ϕi−lϕj) ⟨σ′| R̂z(−ϕi) ⟨pµi
| Ĥso

∣∣pνj〉 R̂z(ϕj) |σ⟩

Recall that, by my assumption, the p-orbitals of different sites are taken to be

orthogonal to each other. Also, using the fact that Ĥso is a sum over the spin-

orbit Hamiltonian of each atom, it is not hard to show that

⟨pµi
| Ĥso

∣∣pνj〉 = −iδijϵµνγξR̂z(ϕi)σ̂γR̂z(−ϕi)

From this, it follows that:

⟨l′, σ′;µ| Ĥso |l, σ; ν⟩ = −iξϵµνγ
1

N

∑
i

e−i(l′−l)ϕi ⟨σ′| σ̂γ |σ⟩

= δl,l′(−iξ ϵµνγ) ⟨σ′| σ̂γ |σ⟩
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The complete Hamiltonian for a fixed l is a 6×6 matrix. We use the same notation

from equation (4.3) to write it as a 3× 3 matrix:

Ĥ(l) =


εσ 0 0

0 εσ 0

0 0 επ

⊗ 1s

+


txx t(xy) tzx

t(xy) tyy tyz

tzx tyz tzz

⊗

cos[(l + 1
2
)∆ϕ] 0

0 cos[(l − 1
2
)∆ϕ]



+


0 it[xy] 0

−it[xy] 0 0

0 0 0

⊗

sin[(l + 1
2
)∆ϕ] 0

0 sin[(l − 1
2
)∆ϕ]



+


0 −iσ̂zξ iσ̂yξ

iσ̂zξ 0 −iσ̂xξ

−iσ̂yξ iσ̂xξ 0



(5.5)

Something important to note about equation (5.5) is that the first 3 terms are

already diagonal on the spin space, so I need not consider the fourth term for

polarization to occur. This is a direct consequence of the symmetry from equation

(3.2), in which the rotation in T̂n uses the total angular momentum
ˆ⃗
J . I can also

examine what happens when ξ → 0. It appears that the spin-orbit term goes

to 0 but spin polarization does not. The mathematical reason for this is that

T̂n contains a rotation along the z-axis, and when the spin-orbit Hamiltonian is
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taken into account, both the spin and orbital angular momenta must be rotated.

Without a term in the hamiltonian that affects spin the generator of rotations is

not Ĵ , but L̂.
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5.3 Diagonalization

Equation (5.5) is a 6×6 matrix with degenerate states. I will treat the degeneracy

using hte SW transformation. A really nice derivation of the method can be found

in [8]. The first order correction in the {|z ↑⟩ , |z ↓⟩} is:

Ĥ1 =

 tzz cos
(
∆ϕ
(
l + 1

2

))
0

0 tzz cos
(
∆ϕ
(
l − 1

2

))
 (5.6)

Using only this correction the new bands are in figure 5.2. As we can see the

bands are separated from the centre a distance ±1/2 this correspond to the shift

obtained by considering the total angular momentum Ĵ . The second correction to

the Hamiltonian is:

Ĥ2 =

 (t2yz+t2zx) cos2(∆ϕ(l+ 1
2))+2ξ2

ϵπ−ϵσ

2iξ sin(∆ϕ
2 )(tyz+itzx) sin(∆ϕl)

ϵπ−ϵσ

−2iξ sin(∆ϕ
2 )(tyz−itzx) sin(∆ϕl)

ϵπ−ϵσ

(t2yz+t2zx) cos2(∆ϕ(l− 1
2))+2ξ2

ϵπ−ϵσ

 (5.7)

This correction has interaction between spin states, the interaction (non di-

agonal elements) are proportional to xi meaning they are small. Obtaining the

allowed energies of this Hamiltonian we get figure 5.3.
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Figure 5.2: Electron bands with spin included and corrections up to first order.
Again, the energy is measured with respect to επ, and the dashed lines denote the
zone boundary
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Figure 5.3: Electron bands with spin included and corrections up to second order.
Again, the energy is measured with respect to επ, and the dashed lines denote the
zone boundary
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5.4 Conclusion

The thesis concludes by demonstrating the successful application of the tight-

binding model to helical molecules, specifically a DNA-like system. It highlights

the complexity and uniqueness of electronic behaviors in these structures, signifi-

cantly influenced by their helical nature. The research contributes to understand-

ing molecular electronics and the properties of DNA, with implications for future

studies in both physics and biology. The study’s innovative approach of integrating

solid-state physics concepts with molecular structures provides a new perspective

on studying complex biological molecules.
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