UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Exploring prophages in Salmonella enterica: an in-silico approach

Mecanismo de Titulación: Tesis en torno a una hipótesis o problema de investigación y su contrastación

Francisco Antonio Quelal Madrid

PhD. Sonia Zapata Directora de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Máster en Microbiología

Quito, 22 de diciembre de 2023

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN

Exploring prophages in Salmonella enterica: an in-silico approach

Francisco Antonio Quelal Madrid

Nombre del Director del Programa:	Patricio Rojas-Silva
Título académico:	M.D., Ph.D.
Director del programa de:	Maestría en Microbiología

Nombre del Decano del colegio Académico:
Título académico:
Decano del Colegio:

Carlos Valle Ph.D. COCIBA

Nombre del Decano del Colegio de Posgrados:HugTítulo académico:Ph.E

Hugo Burgos Ph.D.

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombre del estudiante:	Francisco Antonio Quelal Madrid
Código de estudiante:	00326901
C.I.:	1722906276
Lugar y fecha:	Quito, 22 de diciembre de 2023

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

DEDICATORIA

A mis padres y hermanos, por su amor incondicional y cuidados de siempre: todo lo bueno que tengo ahora empezó con ustedes. A mis amigos por sus enseñanzas y compañía a lo largo del tiempo. A mis maestros y mentores por transmitir sus enseñanzas y confiar en que nuestras enseñanzas van a trascender. A todos por mostrarme su amor y cariño, ya que este logro no es solo mío sino también de los que han caminado junto a mí todo este tiempo.

AGRADECIMIENTOS

A la Universidad San Francisco de Quito, al Instituto de Microbiología, por abrirme las puertas y hacerme sentir como en casa, y por todo el apoyo académico y logístico que me han brindado.

A Sonia Zapata, por su guía profesional y experta durante este proceso, y su apoyo incondicional que me inspira a seguir por este camino de científico.

A Carolina Armijos y Lorena Mejía, por sus comentarios y apoyo en la investigación.

A todo el equipo del Laboratorio de Parasitología, por su amistad y hacerme sentir siempre bienvenido.

Al equipo de Bioinformática del Instituto de Microbiología, por su guía y enseñanza en muchos aspectos que me permitieron realizar este estudio.

A mis amigos y compañeros de Maestría, especialmente Gaby, Santi y Pame, por permitirme aprender de ustedes y compartir lindos momentos.

A todos mis profesores y profesoras de la Maestría de Microbiología, por enseñarme muchas cosas útiles que no solo están a nivel académico, sino también permiten mi crecimiento personal.

A Bianca, por ser una gran amiga que me enseña y me apoya en los proyectos que me he propuesto, y a pesar de la distancia siempre me ha demostrado su amor y apoyo.

A mi familia, mamá, papá y hermanos, por su infinito amor que me permite seguir y alcanzar mis sueños y metas.

RESUMEN

Los profagos en *S. enterica* constituyen hasta un 30% del genoma accesorio, y pueden influir en la adaptación al medio ambiente y la susceptibilidad a otros bacteriófagos.

En el presente estudio se identificaron profagos en 142 genomas de *S. enterica* provenientes de granjas avícolas de los cuales 137 correspondieron al serovar Infantis, 3 a Typhimurium y 3 Enteritidis. Para esto se preparó una base de datos de 160 genomas de profagos de *S. enterica*, *E. coli* y otros profagos reportados en genomas de *Salmonella* pero que provenían de hospedadores no entéricos.

Luego del análisis bioinformático se identificaron cuatro profagos con >95% de identidad y >60% de integridad de los cuales, *Peduovirus pro483* fue el profago más prevalente, presente en 132 genomas de *S*. Infantis. *Enterobacteria ST104* y *Gifsy-2*, estuvieron presentes en un genoma de S. Typhimurium, y *Peduovirus fiAA91ss* presente solo en un genoma de *S*. Infantis. Por otro lado, se identificaron genes de virulencia tales como *gtgA* y *sodC*, y de exclusión de superinfección como *sieB* y *gp17*, en las secuencias correspondientes a *Enterobacteria ST104* y *Gifsy-2*.

El gen *terL*, común entre los profagos encontrados y otras secuencias relacionadas permitió esclarecer la relación de *Enterobacteria ST104* con otros *Lederbergvirus*, *Peduovirus pro483* y *fiAA91ss* con otros Peduovirus, y *Gifsy-2* con otros fagos lamboides.

A nuestro conocimiento este es el primer estudio que describe la presencia de profagos en cepas de *Salmonella enterica* aisladas en granjas avícolas ecuatorianas

Palabras clave: S. enterica, Infantis, profagos, in-silico, Ecuador.

ABSTRACT

Prophages in *S. enterica* constitute up to 30% of the accessory genome, potentially influencing adaptation to the environment and susceptibility to other bacteriophages.

In this study, prophage sequences were identified in 142 *S. enterica* genomes from poultry farms, with 137 corresponding to serovar Infantis, and 3 each to Typhimurium and Enteritidis. A comprehensive database containing 160 prophage genomes from *S. enterica, E. coli,* and other *Salmonella* prophages originating from non-enteric hosts was employed for bioinformatics analysis.

Four prophages, exhibiting >95% identity and >60% integrity, were identified. *Peduovirus pro483* emerged as the most prevalent, present in 132 S. Infantis genomes. *Enterobacteria ST104* and *Gifsy-2* were detected in a *S*. Typhimurium genome, while *Peduovirus fiAA91ss* was exclusive to a *S*. Infantis genome.

Notably, virulence genes such as *gtgA* and *sodC*, along with superinfection exclusion genes like sieB and gp17, were identified in the sequences corresponding to *Enterobacteria ST104* and *Gifsy-2*.

The *terL* gene, shared among the identified prophages and related sequences, provided insights into the relationships, elucidating the connection of *Enterobacteria ST104* with other *Lederbergviruses*, *Peduovirus pro483* and *fiAA91ss* with other *Peduoviruses*, and *Gifsy-2* with other lamboid phages.

To our knowledge, this marks the first study describing the presence of prophages in Salmonella enterica strains isolated from Ecuadorian poultry farms.

Keywords: S. enterica, Infantis, prophages, in-silico, Ecuador

CONTENT INDEX

RESUMEN	7
ABSTRACT	8
PART 1: GENERAL INTRODUCTION	12
Salmonella General Aspects	12
Salmonella enterica serovar Infantis	14
Prophages of Salmonella enterica	16
PART 2: SCIENTIFIC PAPER	20
Introduction	20
Methodology	21
Results	24
Discussion	31
Conclusions	37
REFERENCES	39
SUPPLEMENTARY MATERIAL INDEX	57

TABLE INDEX

Table 1. Number of Salmonella serovars harboring each of the prophages detected	25
Table 2. List of genes identified with potential influence on phage infection dynam	ics and host
physiology	29

FIGURE INDEX

Figure 1. Genome alignments between four most complete *Salmonella* prophages identified and their respective reference genomes in our custom database. Gene functions were color-coded as indicated in the figure legend. Conserved genetic blocks were highlighted as marked in the figure legend______28

Figure 2. Phylogenetic relationships using the terminase large subunit gene (*terL*). Reference sequences are written in green and found sequences in red. 3 clusters were observed: Cluster A (yellow) with *Peduovirus*-like sequences, ClusterB (cyan) with *Gifsy*-like sequences, and Cluster C with *Lederbergvirus*-like sequences. Maximum likelihood tree constructed with IQ-TREE2 with a fast bootstrap of 1000 iterations using a general time reversible model with gamma distribution (GTR+G) predicted with MEGAX_____31

PART 1: GENERAL INTRODUCTION

Salmonella General Aspects

Salmonella is a Gram-negative bacterium from the Enterobacteriaceae family. This genus comprises two species: *S. enterica* and *S. bongori*, being the first the most studied due to its pathogenicity (Hiyoshi et al., 2018). More than 2500 serovars have been identified, showcasing the remarkable diversity that enables *Salmonella enterica* to adapt to specific environments and hosts (Boyle et al., 2007; Coburn et al., 2007; Gymoese et al., 2019). Typically, *Salmonella* serovars fall into two primary groups: typhoidal and non-typhoidal. Typhoidal serovars exhibit a distinctive trait of colonizing and causing diseases exclusively in humans (Popa & Papa, 2021).

Non-typhoidal serovars represent the majority and are commonly associated with outbreaks and contamination of water sources through farming and agricultural practices (Guerrero et al., 2021). Among these serovars, some exhibit host specificity, with notable examples being *S*. Dublin in cattle and *S*. Cholerasuis in pigs (Hiyoshi et al., 2018). In humans, susceptibility to infection linkage on factors such as the individual's immune system and age, with early childhood, the elderly, and immunocompromised individuals being particularly vulnerable (Ao et al., 2015). Symptoms can range from mild, self-limiting gastroenteritis to more severe cases involving the invasion of epithelial cells in the host's intestinal tract through intracellular infection (Boyle et al., 2007).

The most severe cases of non-typhoidal salmonellosis are related to the virulence factors that confer different levels of adaptation to the host environment (Coburn et al., 2007). Six main virulence factors include secretion systems, fimbriae, flagella and flagellin, ion acquisition genes, superoxide dismutase genes, and virulence plasmids (Ibarra & Steele-Mortimer, 2009). Some virulence factors are characteristic to specific serovars and are also used for their differentiation. However, these factors can also be acquired from mobile genetic elements, particularly plasmids and bacteriophages (Cui et al., 2021; Figueroa-Bossi & Bossi, 1999; Jajere, 2019). These virulence factors are crucial in the epidemiology of certain *Salmonella* serovars due to their implication in the emergence and success of some strains associated to specific outbreaks (Boyle et al., 2007).

On the other hand, antimicrobial resistance has become another noteworthy characteristic in *Salmonella*, exhibiting a notable increase over the past few decades. Most cases of multidrug resistant (MDR) *Salmonella* affect developing countries primarily due to inadequate health systems, deficient prevention policies, and substandard food quality control measures (Jajere, 2019; WHO, 2023). MDR *Salmonella* is also a consequence of the intensive use of antimicrobials within the healthcare system and the food industry (Jajere, 2019; Van Boeckel et al., 2015; Vinueza Burgos, 2017). Currently, *S.* Typhi and several non-typhoidal *Salmonella* have been classified as serious threats by the Center for Disease Control and Prevention in the United States (CDC, 2022). Although epidemiologic surveillance of antimicrobial resistance is a common practice enforced by the World Health Organization (WHO), some local governments have failed to implement surveillance, complicating the identification of emerging resistance patterns (WHO, 2017).

The WHO (2015) has identified *Salmonella enterica* as one of the 31 pathogens responsible for causing intestinal or systemic diseases, ranking as the third leading cause of death among food-related illnesses. Particularly in Latin America, approximately 77 million people are victims of foodborne infections, with 9,000 fatalities resulting from contaminated food. Non-typhoid *Salmonella* alone contributes for 95% of these cases, alongside other foodborne pathogens such as *Campylobacter, Escherichia coli*, and Norovirus (WHO, 2015). This alarming situation underscores the pressing need to concentrate efforts on enhancing quality control measures and

implementing effective policies within agricultural systems, food safety practices, and public policies in the region (Guerrero et al., 2021).

Salmonella enterica serovar Infantis.

S. Enteritidis and *S*. Typhimurium are recognized as the main serovars responsible for infections in both humans and broilers. Contaminated products linked to these serovars, particularly raw chicken meat and eggs, are widely acknowledged as the primary sources of human infections (Guerrero et al., 2021). Since 2014, there has been a growing prevalence of *S*. Infantis in poultry farms, potentially attributed to the displacement of S. Enteritidis and S. Typhimurium through quality control and vaccination policies (Montoro-Dasi et al., 2023). This trend raises concerns about potential risks to human health.

Although the prevalence of certain serovars may vary geographically, *S*. Infantis has exhibited a clear predominance on a global scale (Moulana & Asgharpour, 2022). Since 2020, *S*. Infantis has been recognized as the fourth among the 10 most prevalent non-typhoidal serovars associated with human infections worldwide (Montoro-Dasi et al., 2023). This recognition underscores the importance of ongoing monitoring and research efforts to understand and mitigate the evolving dynamics of *S*. Infantis and its impact on public health.

In the European Union, the most prevalent serovars associated with human infections are *S*. Enteritidis, *S*. Typhimurium and its monophasic variant, *S*. Infantis and *S*. Derby, respectively, accounting for 54.6%, 11.4%, 8.8%, 2.0% and 0.93% of cases according to the European Centre for Disease Prevention and Control (ECDC) (2022). All serovars have been associated with different environments in the food and meat production industry (Ferrari et al., 2019).

In Latin America, *S.* Infantis has also been reported as an emerging serovar among poultry farms with different prevalence depending on the country (Vinueza-Burgos, 2017). Reports from Ecuador and Peru indicate that S. Infantis is the predominant serovar in broilers and

poultry farms, constituting a significant proportion ranging from approximately 83% to 98% of the isolates associated with this serovar (Vallejos-Sánchez et al., 2019; Vinueza-Burgos et al., 2019). This high prevalence may be attributed to the close interaction between poultry industries of Peru and Ecuador (Vinueza-Burgos et al., 2019). In other countries of the region, *S*. Infantis was reported as an underrepresented serovar in broiler, chicken meat and poultry farms (Lapierre et al., 2020; Medeiros et al., 2011). This highlights the need for more research focused on *S*. Infantis to understand the epidemiology of this emerging serovar in the region.

The emergence of this serovar could be attributed to vaccination and control programs aimed at *S*. Enteritidis and *S*. Typhimurium (Montoro-Dasi et al., 2023). The decline or neareradication of these previous serovars creates an ecological niche that facilitates the colonization and success of S. Infantis (ECDC, 2022; Montoro-Dasi et al., 2023). Additionally, *S*. Infantis strains have been reported to present different genetic features that include antimicrobial resistance, acquisition of mobile genetic elements and virulence factors which enhanced its pathogenicity and fitness (Montoro-Dasi et al., 2023).

The global dominance of *S*. Infantis in poultry farms is thought to be facilitated by a megaplasmid called pESI that imparts resistance and virulence features, including the adaptation to oxidative stress, mercury tolerance, fimbriae and a diverse number of resistance genes which explains the MDR patterns (Hall et al., 2022; Moulana & Asgharpour, 2022). It appears that pESI-like megaplasmids in *S*. Infantis have been vertically acquired, but other enteric commensals have also reported the presence of this type of megaplasmids (McMillan et al., 2020; Shah et al., 2017).

On the other hand, the presence of prophage sequences within *S*. Infantis could explain part of the success of this serovar in the poultry industry (Cohen et al., 2020; D'Alessandro et al., 2018; Trofeit et al., 2023). Prophages sequences normally carry genes associated with resistance

genes and virulence factors (Żbikowska et al., 2020) as well as genes associated with host cellular invasion, intracellular survival and biofilm formation (Wahl et al., 2019). These prophage sequences could have been acquired by interacting with other poultry-associated serovars, such as *S*. Gallinarum (Kipper et al., 2022). Nonetheless, information about prophages in *Salmonella* remains scarce and not deeply studied.

Prophages of Salmonella enterica

Up to 30% of the accessory genome of *Salmonella enterica* is comprised of prophages and these could play a crucial role in the genetic diversity of this microorganism (Wahl et al., 2019). Their influence has been extensively studied because of the expression of toxins, virulence factors and genes associated with metabolic intake affecting bacterial fitness and physiology (Kraushaar et al., 2017). However, prophages can also affect the interaction of *S. enterica* with its environment through the expression of specific genes that modulate signaling to other microorganisms or phages (Mottawea et al., 2018; Wahl et al., 2019).

While certain prophage species infecting *Salmonella* genomes have been reported in other bacterial hosts like *Escherichia coli, Yersinia, Klebsiella and Haemophilus*, induction assays have demonstrated that most prophages in *Salmonella* have narrowed their host range to specific serotypes and strains (Gao et al., 2020). The most common prophages found in *Salmonella* are *Lederbergvirus*-like phages (formerly p22-like phages), from which *Lederbergvirus* p22 and *Lederbergvirus* ST64T features as the most studied prophages found in *S.* Typhimurium conferring O-antigen modifications, phage resistance, and other characteristics to the host (Gao et al., 2020; Switt et al., 2015; Wahl et al., 2019). Other common phages found in *Salmonella* are lamboid phages *Gifsy-1, Gifsy-2* and *Gifsy-3*, conferring virulent characteristics and promoting transduction or interaction with other genomic elements through recombination (Wahl et al., 2019). Most prophages have been described within *S.*

Typhimurium genomes due to its importance as a clinical and environmental prevalent serovar, but studies focused on other serovars are crucial to understand the adaptation of *Salmonella* to specific circumstances (Fong et al., 2022; Gao et al., 2020; Trofeit et al., 2023). A study by Cohen et al. (2021) has established that the predominant prophages in *S*. Intantis are *Bcepmuvirus bcepmu* (as a conserved sequence in different *S*. Infantis lineages), *Peduovirus pro483* (emergent and diverse among *S*. Infantis lineages) and *Gifsy-1* (predominant in *Salmonella* along with other lamboids and *Gifsy*-like phages).

Prophages remain in a dormant state in the *Salmonella* genome, and they tend to be inherited vertically. Under specific stressful conditions, prophages can excise from the bacterial chromosome or integrate into it (Wahl et al., 2019). The excision or integration of prophages is typically triggered by factors such as DNA damage, the availability of hosts, or even the influence of other phages. These events can significantly impact the fitness of the host (Mottawea et al., 2018).

S. enterica genomes also present defective prophage sequences that have lost the ability to form infectious particles but retain certain features (Bobay et al., 2014; Henrot & Petit, 2022). The interaction with other mobile genetic elements, host defensive systems, recombination events and a high mutation rate are the main reasons prophages can lose function (Bobay et al., 2014). However, some defective prophages can be reactivated by the influence of other infecting phages that provide the correct signaling or specific functions. *S. enterica* can contain defective phages that can no longer be induced or reactivated and are fixed, similar to pathogenicity and genomic islands (Kaur & Jain, 2012).

Prophage virulence genes are the most studied for their effect on *S. enterica* survival and adaptability to the environment (Wahl et al., 2019). The most common functions provided by prophages while lysogenized in their host are the expression of toxins, secretion systems and

antimicrobial resistance (Bobay et al., 2014; Canchaya et al., 2004; Wahl et al., 2019). A common virulence gene is *sopE*, *a*ssociated with cellular invasion. This gene was originally identified in *SopEPhi* prophage in *S. enterica* SL1344 and has been found in many other prophage species modulating the adaptation of *S. enterica* to new environments (Bachmann et al., 2014; Wahl et al., 2019). The impact of *sopE* harboring genomes has been reported to be essential in the emergence of certain serovars like *S.* Infantis (Petrovska et al., 2016; Rusconi et al., 2016).

The contribution of prophages in *S. enterica* is important especially for their implications on phage therapy success (Wahl et al., 2019). Some prophage genes can modulate the infection of other phages through the expression of genes that modify surface receptors used by other phages to recognize their target (Owen et al., 2020). An example of these modifications is found in *p22*-like phages, which carries the *gtrABC* operon for O-antigen recognition, but when lysogenized modifies the host O-antigen composition by glycolysation (Wahl et al., 2019). Another known function is the superinfection immunity or exclusion found in many *Salmonella* phages. The most notable examples are the *SieA* and *SieB* found in *p22*-like phages, blocking the C2 receptors (Cenens et al., 2016).

Some prophage genes have been reported to have different functions depending on the *Salmonella* serovar in which they are integrated. For example, *Lederbergvirus BTP1* has been reported to confer immunity to *p22*-like phages when is integrated in *S*. Typhimurium through expression of *bstA* gene (Owen et al., 2021), but when infecting *S. enterica* ST313 it was found to act as a virulence factor affecting the macrophage uptake during intracellular infection (Herrero-Fresno et al., 2017). These differences in function highlight the need to study the effects of prophages in different bacterial hosts. Since *S. enterica* is characterized for its ubiquity in a diversity of environments and hosts, the interaction of prophages and their

influence on the species behavior, the study of prophages is important to understand the biology of this bacterium.

PART 2: SCIENTIFIC PAPER

Introduction

Prophages are specific forms of bacteriophages that are integrated into the bacterial genome as lysogens and remain latent until certain environmental or host physiological conditions trigger their excision (Dion et al., 2020). Phageomes are estimated to comprise approximately 80% of the virome in some environments, particularly gut microbiomes (Dion et al., 2020; Henrot & Petit, 2022; Wendling, 2023), and can represent >20% of their host's genome (Dion et al., 2020; Nishijima et al., 2022; Wendling, 2023). While residing latent in a genome, prophages can influence several aspects of their host's physiology, such as virulence, metabolic intake, antimicrobial resistance, and phage infections, making them an interesting focus, especially for gastrointestinal tract pathogens like *Salmonella* (Nayfach et al., 2021; Tisza & Buck, 2021; Wahl et al., 2019).

In *S. enterica*, prophages constitute up to 30% of the accessory genome and are recognized as one of the main contributors to the species' diversity (Wahl et al., 2019). Their influence has been traditionally studied through the expression of virulence genes and other characteristics that influence the adaptation of *S. enterica* to different environments, but recent studies have focused on the influence of prophages in the infection dynamics, through the expression of genes that confers resistance to certain groups of phages (Dion et al., 2020; Henrot & Petit, 2022; Wahl et al., 2019). A clear example is observed in many *p22*-like phages which harbor superinfection exclusion genes that prevent the infection of multiple phages by inducing abortive infection or surface antigen modification (Owen et al., 2021).

Understanding the influence of prophages in *S. enterica* is crucial for comprehending the emergence of certain strains or serovars. This influence operates through the expression of

virulence genes, promoting the success of these strains in specific environments (Cohen et al., 2020; Gymoese et al., 2019; Moura de Sousa et al., 2021; Weissman et al., 2018).

The main objective of this study was to detect *S. enterica* prophages within 142 S. *enterica* genomes from poultry farms, chicken carcasses and clinical casesto assess their functionality, presence of virulence genes and influence in the bacterial fitness. This investigation aims to unravel the relationships between the identified prophages and other related bacteriophages associated with *S. enterica*, providing comprehensive insights into the intricate microbial ecosystems.

Methodology

Genome Assembly

The genome Assembly Protocol utilized 151 Illumina NextSeq paired-end sequences obtained from a previous study (Mejía et al., 2020) (available under bioproject PRJEB37560). Details regarding sequence names and serovars are provided in Supplementary Table 1. Trimmomatic (v0.39) (Bolger et al., 2014) was employed to trim ambiguous nucleotides from paired-end sequences, ensuring a quality threshold >20 and a minimum length of 100 bp. Quality control was performed using MultiQC (v1.16) (Ewels et al., 2016). SPAdes (v3.15.4) (Prjibelski et al., 2020) facilitated the assembly of filtered sequences, employing a cut-off value of 25 and a careful pipeline flag. Only assembled scaffolds were utilized to ensure the identification of large prophage genomes. Assembly quality was assessed with Abyss (v2.3.5) (Jackman et al., 2017), utilizing the abyss-fac flag, and BUSCO (v5.5.0) (Manni et al., 2021). To guarantee less fragmented identified prophage genomes, and to obtain more comprehensive and informative results, we selected genomes meeting specific criteria: assemblies with <150 scaffolds, N50 >150 kb, L50 <15, genome completeness >85%, and a file size >4.1 MB.

Prophage database and genome identification

A database of *Salmonella* prophage genomes was created for *in silico* identification using BLAST Command Line Applications (v2.13.0+) (Altschul et al., 1990; Morgulis et al., 2008) with the *megablast* task, with a percent identity >95%, and an E-value <E-100, to ensure high similarity and statistical significance in our BLAST results. The database consisted of 160 reference prophage genomes retrieved from prior studies (Gao et al., 2020; Switt et al., 2015) that established that these genomes were exclusive or related to *S. enterica* genomes to avoid other prophages with a wide range of hosts (Supplementary Table 2). The completeness and correct species assignment of the references were assessed through manual comparison with the NCBI Nucleotide and RefSeq databases (Sayers et al., 2022) and the latest information from the International Committee on Taxonomy of Viruses (ICTV) (Turner et al., 2021; Walker et al., 2020). Only matches with lengths >6 kB were selected because *Inovirus M13* was the smallest prophage genome in our database with 6408 bp.

Prophage genome annotation and gene functionality

Each identified prophage genome species was concatenated and realigned with its respective reference from our custom database (Supplementary Table 2) using MAFFT (v7.520) (Katoh et al., 2019). Previous studies (Ha & Denver, 2018; Hatfull et al., 2010; Pope et al., 2011) used alignments representing 45%-58% of the reference genome with >90% of identity to evaluate gene function and completeness level. In our case we used prophage genomes whose alignment represented >60% of the reference genome and a percent identity >95% to ensure a higher proportion of the prophage genomes recovered prior to evaluate their function through gene annotation.

Gene and ORF calling were performed using Prodigal (v2.6.3) (Hyatt et al., 2010) with the -g11 flag to specify the bacterial-plastid genetic code. Gene sequence identification was performed using BAKTA (v1.8.1) (Schwengers et al., 2021). Annotated genomes were visualized and curated using Geneious Prime (v2023.0.2) (Kearse et al., 2012) to evaluate nonsense stop codons and incorrectly identified ORFs. Hypothetical gene sequences were aligned against the UniProt (Coudert et al., 2023) database using the BLAST online service. Curated annotated genomes were compared with taxonomically closely related references according to the ICTV (Turner et al., 2023; Walker et al., 2020) taxonomy to identify shared gene features with the same protein coding product.

Prophage genome analysis

Genomes of *Salmonella* prophages were mapped to their respective reference genomes from our database using Bowtie2 (v1.3.1) (Langmead & Salzberg, 2012) to identify the location of the genes found. Subsequently, the annotated genomes were aligned using progressiveMauve (v2.4.0) (Darling et al., 2010) to identify conserved regions or locally colinear blocks when comparing the *Salmonella* prophages with their corresponding reference genomes. Genome comparisons between the identified prophages and the reference genomes were generated using graphical representations in Geneious Prime (v2023.0.2) (Kearse et al., 2012).

Salmonella prophage species estimation

Further validation of *Salmonella* prophage identification involved a manual comparison to identify shared genes among the detected prophage genomes, their corresponding references in our database, and other taxonomically related phages from the ICTV (Turner et al., 2023; Walker et al., 2020) database (Supplementary Table 2). te (Kumar et al., 2018). Subsequently, a maximum likelihood tree was constructed with IQ-TREE2 (v2.2.5) (Nguyen et al., 2015) using the previously generated alignment, employing a fast bootstrap of 1000 iterations. The resulting tree was visualized with FigTree (v1.4.4) (http://tree.bio.ed.ac.uk/software/figtree/).

Additionally, using the same parameters, a second maximum likelihood tree was constructed with complete genome sequences.

Results

Salmonella genomes and prophage identification

After trimming the 151 paired-end reads to remove duplicated or ambiguous sequences, an average of 1.24 million reads (ranging from 0 to 14.1 million reads) remained. Subsequently, these reads were assembled into genomes, of which only 142 genomes met the criteria of <150 scaffolds, N50 >150 kB, L50 <15, genome completeness >85%, and file size >4.1 MB, necessary for unfragmented prophage genome identification (Supplementary Table 1; Supplementary Figure 1).

The 142 assembled genomes exhibited an average of 152.63 scaffolds, with scaffolds averaging 153,849 bp for N50 and 6.62 bp for L50. To ensure no data loss, the genome size and file size of the assembled genomes maintained an average of 4.71 Mbp and 4.84 MB, respectively (Supplementary Figure 1). Of there genomes 136 were identified as *S. Infantis*, 3 were *S.* Enteritidis and 3 were *S.* Typhimurium (Supplementary Table 3).

Thirteen distinct *Salmonella* prophage-associated sequences were identified with an identity >95% (Supplementary table 3). Notably, only one genome from *S*. Infantis (0.70%) did not harbor any *Salmonella* prophages. Of the remaining genomes, 11 out of 142 (7.75%) contained 1 prophage, 120 out of 142 (84.51%) harbored 2 prophages, 9 out of 142 (6.34%) hosted 3 prophages, and only one (0.70%) featured 4 prophages.

Peduovirus pro483 was the most prevalent, followed by *Stockinghallvirus FSL SP-004*. Other prophage matches found constituted less than 6% of the analyzed genomes. *Punavirus SJ46, Phage Gifsy-1, Lambdavirus lambda* and *Peduovirus fiAA91ss* were uniquely identified in their respective samples.

Phage Gifsy-2 was identified in one *S*. Infantis, two *S*. Typhimurium, and two *S*. Enteritidis genomes. *Salmonella phage ST64B* was present in three *S*. Enteritidis and two *S*. Typhimurium genomes. Only one *S*. Typhimurium genome harbored Enterobacteria phage ST104 with 95.02% query coverage (Table 1).

Prophage Species	Detected genome size	Reference genome size	Query coverage	Number of prophage harboring genomes (%)	Serovar
	12887 bp		44.07 %	49 (34.51%)	Infantis
	12914 bp		44.17 %	1 (0.70%)	Enteritidis
Peduovirus pro483	12945 bp	29237 bp	44.27 %	5 (3.52%)	Infantis
	22183 bp*		75.87 %	63 (44.37%)	Infantis
	22230 bp*		76.03%*	14 (9.86%)	Infantis
Stockinghallvirus FSL SP-004	6055 bp	29742 bp	20.36 %	120 (84.51%)	Infantis
Peduovirus Wphi	6853 bp	32684 bp	20.97 %	8 (5.63%)	Infantis
Shinella phane Sfll	6087 bp	41475 hr	14.68 %	1 (0.70%)	Infantis
Snigella phage SJII	10031 bp	41475 bp	24.18 %	2 (1.41%)	Infantis
	13532 bp	44510 hrs	30.40 %	1 (0.70%)	Infantis
Enterobacteria phage mEp400	<i>nEp400</i> 14114 bp 445	44510 bp	31.71 %	1 (0.70%)	Infantis
$S_{-1} = 110070 = 12$	13543 bp	77275 has	17.50 %	1 (0.70%)	Infantis
Salmonella phage 118970-sals	25721 bp	//5/5 Up	33.24 %	1 (0.70%)	Infantis
Peduovirus fiAA91ss	22122 bp	33628 bp	65.78%*	1 (0.70%)**	Infantis
Lambdavirus lambda	16347 bp	48502 bp	33.70 %	1 (0.70%)	Infantis
Phage Gifsy-1	22005 bp	48491 bp	45.38 %	1 (0.70%)**	Infantis
	6091 bp		13.29 %	1 (0.70%)	Typhimurium
Plana Cifar 2	6091 bp	45840 bp	13.29 %	2 (1.41%)	Enteritidis
Phage Gifsy-2	6429 bp		20.40 %	1 (0.70%)	Infantis
	31512 bp*		68.71 %	1 (0.70%)	Typhimurium
Enterobacteria phage ST104	38150 bp*	41391 bp	95.02 %	1 (0.70%)**	Typhimurium
	15325 bp		38.17 %	2 (1.41%)	Typhimurium
Salmonella phage ST64B	15325 bp	40149 bp	38.17 %	3 (2.11%)	Enteritidis
Punavirus SJ46	10688 bp	103445 bp	10.33 %	1 (0.70%)**	Infantis
(*)Selected prophages with query coverage >60% (**) Only sample presenting the current Salmonella prophage					

Table 1. Number of Salmonella serovars harboring each of the prophages detected

We selectively retained matches with an identity >95% and query coverages >60% to determine gene function through genome annotation. Only 4 prophage genomes met these criteria:

Peduovirus pro483 and *Peduovirus fiAA91ss* in *S*. Infantis samples, and both *Enterobacteria phage ST104* and *Phage Gifsy-2* in the same *S*. Typhimurium sample (Table 1).

Prophage genome analysis

Finally, four *Salmonella* prophage genomes selected for genome annotation were mapped and aligned to their respective references to identify their gene location and conserved regions.

Only *Enterobacteria phage ST104* showed a similar number of features compared to its reference genome. Matches for *Peduovirus pro483* and *fiAA91ss* revealed a clear loss of features associated with structural proteins, infection, and excision proteins in contrast to their reference genomes. Regarding *Phage Gifsy-2*, genes encoding phage structural proteins, transcription, and excision proteins were absent from the identified sequence (Supplementary Figure 3).

The prophage *FQ-Enterobacteria ST104* showed the presence of the gene *lar*, encoding a restriction alleviation protein, which was absent in its reference genome. Our recovered sequence also lacked the following genes: *gtrA*, *gtrB*, and *gtrC*, encoding O-antigen conversion proteins; *xis*, for an excisionase enzyme; *ninY* and *ninZ*, for phage nuclease enzymes; *gp64*, for a holin enzyme; and *gp13*, for a DNA transfer protein (Figure 1A).

Sequences of *FQ-Peduovirus pro483* and *Peduovirus pro483* revealed clear differences with their reference sequences. *FQ-Peduovirus pro483* lacked a block of 12 genes, including *int* (phage integrase), *ogr* (a late control protein), *cox* (excisionase), *dnaB* (recombinase), *gpB* (replication initiation), *dksA* (zinc-finger-like protein), *gpA* (nicking at origin protein), and 4 hypothetical proteins (Figure 1B). Notably, the gene *tfaE*, a tail fiber assembly protein, was found to be inverted in our sequence. Furthermore, in contrast to the absence of the 12 genes upstream, a conserved block of 3 genes was identified downstream, in which *ogr* was duplicated in the reference genome (Figure 1B).

In *FQ-Peduovirus fiAA91ss*, a block of 13 downstream genes was absent (Figure 1C). These genes included *int* (phage integrase), gpC (a transcriptional regulator), *istA* and *istB* (genes for a transposable element), *dnaB* (recombinase), gpB (for replication initiation), gpA (nicking at origin protein), *cdtvA*, *cdtvB*, and *cdtvC* (encoding cytholethal toxins), and 2 hypothetical proteins. Additionally, 2 inverted blocks were identified: gpG (a tail fiber assembly protein) and a block consisting of *fI*, *fII*, and *e*, associated with phage tail proteins. Notably, 2 genes were found to be unique to *FQ-Peduovirus fiAA91ss: tfaE* (a tail fiber assembly protein) and pinE (a DNA invertase) (Figure 1C)

FQ-Phage Gifsy-2 lacked 21 genes compared with its reference (Figure 1D). Upstream was evident the absence of a block consisting of *int*, for a phage integrase, *xis*, for excisionase, and *recT*, a recombinase, and downstream a block of 3 genes for *gpN*, *gpT*, for tail fiber assembly, *sseI*, a virulence determinant, was missing. Important features present for both were also found: *sodC*, for superoxide dismutase, and *gtgA*, for a type III secretion system.

Figure 1. Genome alignments between four most complete *Salmonella* prophages identified and their respective reference genomes in our custom database. Gene functions were color-coded as indicated in the figure legend. Conserved genetic blocks were also highlighted.

Ultimately, *FQ-Enterobacteria phage ST104* and *FQ-Phage Gifsy-2* both presented 3 genes with potential influence on host physiology and phage infection dynamics: *ral* (restriction alleviation protein), *sieB*, and *gp17* (superinfection exclusion), *lomR* (an opacity protein for surface antigens), and *sodC* (superoxide dismutase). In contrast, both *Peduovirus pro483* and *fiAA91ss* only presented *pinE*, which has a potential influence on phage infection as it encodes a DNA invertase (Table 2).

Prophage identified	Gene name	Function
	ral	Restriction alleviation protein
FQ-Enterobacteria phage ST104	sieB	Superinfection exclusion protein
	gp17	Superinfection exclusion protein
FQ-Peduovirus pro483	pinE	DNA invertase
FQ-Peduovirus fiAA91ss	pinE	DNA invertase
	lomR	Opacity protein for surface antigens
FQ-Phage Gifsy-2	gtgA	O-antigen conversion protein
	sodC	Superoxide dismutase

Table 2. List of genes identified with potential influence on phage infection dynamics and host physiology.

Salmonella prophages positioning and relationships

A maximum likelihood tree was constructed based on the alignment of the *terL* gene, which is the only gene shared among all analyzed prophage sequences (Figure 2).

Upon comparing the prophage sequences using the *terL* gene, it was evident that all *Peduovirus*like sequences formed a cohesive cluster (Figure 2, Clade A). Notably, FQ-*Peduovirus pro483* and FQ-Peduovirus fiAA91ss exhibited strong similarity, with a robust bootstrap value, despite their corresponding references being positioned in different branches within the *Peduovirus* clade.

FQ-Phage Gifsy-2 clustered with its reference and other lamboid prophages like Gifsy-1, Enterobacteria phage Fels-1, and Salmonella phage Fels-2. Intriguingly, Lederbergvirus HK620 and Lederbergvirus sf6 also grouped within this cluster (Figure 2, Clade B).

All *Lederbergvirus*-like sequences formed a distinct clade, with FQ-*Enterobacteria ST104* and its corresponding reference placed in the same branch, as expected (Figure 2, Clade C).

Since the *terL* gene was the sole shared gene among the analyzed prophage sequences, another maximum likelihood tree was constructed, this time utilizing complete genomes

(Supplementary Figure 2). Here, a different topology and relationships emerged in contrast to Figure 2. The *Peduovirus*-like clade included all *Peduoviruses*, except *Peduovirus pro147*, with FQ-*Peduovirus pro483* and FQ-*Peduovirus fiAA91ss* more closely related to REF-*Peduovirus pro483* (Supplementary Figure 2, Clade A).

FQ-*Phage Gifsy-2* was associated with *Gifsy-1*, forming a smaller clade, and its corresponding reference showed a closer relationship with *Peduovirus* rather than other lamboids, as observed previously (Supplementary Figure 2, Clade B).

Finally, *Lederbergvirus*-like sequences were found in a larger clade, encompassing prophages previously grouped with *Gifsy-2* in Figure 2, while maintaining FQ-*Enterobacteria ST104 associated* with its reference and other *Lederbergviruses* (Supplementary Figure 2, Clade C).

Figure 2. Phylogenetic relationships using the terminase large subunit gene (*terL*). Reference sequences are written in green and found sequences in red. 3 clusters were observed: Cluster A (yellow) with *Peduovirus*-like sequences, ClusterB (cyan) with *Gifsy*-like sequences, and Cluster C with *Lederbergvirus*-like sequences. Maximum likelihood tree constructed with IQ-TREE2 with a fast bootstrap of 1000 iterations using a general time reversible model with gamma distribution (GTR+G) predicted with MEGAX.

Discussion

Prophages in *S. enterica* are significant contributors to the species' genetic diversity, playing a crucial role in the adaptability of *S. enterica* to diverse environments and influence susceptibility to other infecting phages (Hu et al., 2021). Despite their ubiquity in *S. enterica* genomes comprising up to 30% of the accessory genome, studies on prophages remain scarce (Wahl et al., 2019).

In this study, we identified four prophages that best met our selection criteria: *Enterobacteria phage ST104, Peduovirus pro483, Peduovirus fiAA91ss* and *Phage Gifsy-2.* Although additional matches were excluded, there is a possibility of their association with these prophage

sequences. This is supported by observed mosaicism in phages, where specific genes or genetic blocks exhibit conservation, despite not sharing the same evolutionary history due to horizontal gene transfer (Jonge et al., 2019; Yu et al., 2017). Furthermore, our observations revealed that the identified prophages exhibited genome fragmentation or incompleteness, particularly in the cases of Peduovirus pro483 and Gifsy-2 matches. It is noteworthy that the phenomenon of prophage genome fragmentation or the presence of defective prophages is a common occurrence in bacterial genomes (Wahl et al., 2019). This reflects the rapid degradation of prophage sequences upon integration into the bacterial chromosome. Prophages play a crucial role in host survival, balancing the risk of bacterial lysis with the potential for adaptation through the expression of prophage genes. The degradation of prophages can be viewed because of selective pressure to stabilize defective or incomplete prophages (Bobay et al., 2014). Although the mechanisms governing the selection of prophages in bacterial genomes remain incompletely understood. The most described stabilization mechanisms involve recombination with other infecting phages or mobile genetic elements that share insertion sites or homologous genes (Bobay et al., 2014; Cohen et al., 2020; Gymoese et al., 2019). Additionally, host defense strategies target key phage genes, thereby promoting the selection of prophage sequences that enhance host fitness (Moura de Sousa et al., 2021; Weissman et al., 2018). Since our objective was to recover the most complete and functional prophage sequences, we narrowed our genome analysis to only the prophage matches mentioned above to ensure that functionality was not lost and to evaluate their influence on bacterial genomes and host physiology.

Prophages play a significant role in *S. enterica* genomes, with earlier studies linking specific serovars to prophages and environments (D'Alessandro et al., 2018; Switt et al., 2015). This is congruent with our results where *Peduovirus pro483* emerged as the most prevalent prophage sequence suggesting this prophage adapted to *S.* Infantis in the poultry farm environment, since *Peduovirus pro483* was originally isolated from an avian pathogenic *Escherichia coli*, and

present in *S*. Typhimurium isolated from poultry farms (Gymoese et al., 2019; Petrovska et al., 2016). Additionally, *Peduvovirus pro483* was commonly reported carrying the gene *sopE*, facilitating bacterial host epithelial cell invasion as in other *Peduovirus P2*-like prophages found in emerging clones from poultry environments (Gymoese et al., 2019; Pretovska et al., 2016; Rusconi et al., 2016). Although our match did not present the *sopE* gene, its absence could be attributed to recombination events, suggesting that *Peduovirus pro483* might be fixed in *S*. Infantis as evidence of its adaptation to poultry farms (Moura de Sousa et al., 2021; Weissman et al., 2018), as observed in the loss of functions and the presence of *pinE* (DNA invertase) in our recovered sequence.

Our study found only one *S*. Infantis genome harboring *Peduovirus fiAA91ss*. Our sequence matching also harbored the *pinE* gene, indicating a relationship to *Peduovirus P2* and other *Peduovirus* like *Peduovirus pro483*. In contrast to the reference genome used in our database, our match did not harbored cytolethal toxins and transposon insertion sequences, reinforcing the idea that certain phage functions are lost immediately after integration in the host genome due to recombination and influence of other mobile genetic elements (Bobay et al., 2014; Moura de Sousa et al., 2021; Weissman et al., 2018).

Although our *S. enterica* genomes did not exhibit a prevalence for *Phage Gifsy-2*, all sequences related to this prophage were identified across all serovars in our genomes. While lamboid phages such as *Phage Gifsy-1*, *Phage Gifsy-2*, and *Phage Gifsy-3*, have been documented to facilitate adaptability to the environment and horizontal gene transfer between *S. enterica* serovars through other phages, resulting in common conserved genetic blocks in Typhimurium and Enteritidis serovars (Braetz et al., 2023; Kurasz et al., 2023; Svahn et al., 2023), reports of *Phage Gifsy-2* in *S.* Infantis are limited. Interestingly a report by Calarga et al. (2021) presented *Phage Gifsy-2* in *S.* Infantis genomes along with *Peduovirus L413-C*, a *Yersinia pestis* phage also related to *Peduovirus fiAA91ss* (Qi et al., 2022), reinforcing the idea of *Gifsy*-like phages

in *Salmonella* enhancing adaptation to certain environments through interaction with other phages.

Enterobacteria phage ST104 present in *S.* Typhimurium is congruent to previous reports that associated this prophage with *S.* Typhimurium DT104 phage type strain (Parker et al., 2021). While this prophage is reported to be exclusive of *S.* Typhimurium DT104 and other related strains in cattle and ground beef production (Parker et al., 2021), our match stands out as one of few *Enterobacteria phage ST104* found in *S.* Typhimurium from poultry environments. The acquisition of this prophage by *S.* Typhimurium from poultry farms may be a result of the intensive use of antimicrobials in poultry production as prophylactics and growth promotors (Van Boeckel et al., 2015; Vinueza Burgos, 2017) since *Enterobacteria phage ST104* has been reported promoting antimicrobial resistance gene transduction (Emmanuel, 2021; Parker et al., 2021).

Apart from the four prophages previously described, there were 9 prophage sequences that were discarded from further analysis due to no fulfilling the selection criteria (>60% complete) (Table 1). We want to highlight the presence of *Stockinghallvirus FSL SP-004* and *Peduovirus Wphi* among these 9 prophage sequences because they represented the second and third most prevalent prophage sequences found, respectively. Previous reports of *Stockinghallvirus FSL SP-004* (previously known as *Salmonella phage FSL SP-004*) have found this prophage associated to *S*. Newport in dairy farms (Moreno Switt, 2013; Moreno Switt et al., 2013; Silva et al., 2016). This differs from our findings in which we reported *Stockinghallvirus FSL SP-004* only in *S*. Infantis, indicating that this prophage could be circulating in more than one serovar and could be associated to other environmental settings. As for *Peduovirus WPhi*, this prophage has been reported only in human microbiota and isolated from *E. coli* O145 in cattle feces (Farahmandzad et al., 2022; Shridhar et al., 2019), being a similar case as Stockinghallvirus FSL SP-004. Further studies focused on the identification of these prophages

could clarify the origin and influence of these prophages in *S*. Infantis genomes. The fragmentation and incompleteness of these prophage sequences could indicate the degradation and later stabilization of these sequences in the host genome as previously described (Bobay et al., 2014; Weissman et al., 2018).

Genes influencing *S.* enterica physiology through virulence factors and immunity to phage superinfection have also been found in *S.* Typhimurium. These genes were commonly carried by *Enterobacteria phage ST104* and *Phage Gifsy-2* when integrated in the same genome, which is congruent to our findings (Emmanuel, 2021; Parker et al., 2021). While avian-related *S. Typhimurium* is known to also harbor the *sopE* gene found in various emerging clones with *Enterobacteria phage ST104* (Kirkwood et al., 2021), our *S.* Typhimurium did not present this virulence gene in the sequence matching corresponding to this prophage. Both prophages featured superinfection exclusion genes like *gp17* and *sieB*, known to protect from superinfection of *p22*-like and lamboid phages (Berngruber et al., 2010; Folimonova, 2012; Monteiro et al., 2019) and *sodC*, a virulence factor which protects *S. enterica* from oxidative stress from macrophages during intracellular infection (Ammendola et al., 2005; Figueroa-Bossi & Bossi, 1999; Golubeva & Slauch, 2006). This could explain the relationship observed of *Enterobacteria phage ST104* with *Lederbergvirus p22* and *Phage Gifsy-2* with *Phage Gifsy-1* and *Salmonella phage Fels-1* (Wahl et al., 2019; Sattar et al., 2023).

Studies focusing on *S*. Infantis with a similar approach to ours have reported 4 to 8 prophages per genome (Cohen et al., 2020; Gymoese et al., 2019), while for other serovars, the median number was 5 prophages per genome (Mottawea et al., 2018). In comparison, our study detected a lower number of prophages in our genomes. This difference may be attributed to the contiguity of the genomes used, as ours were not contiguous enough, despite adapting our assembly protocol to ensure less fragmented prophage genomes and more comprehensive results. This circumstance represented a limitation of our study which can be solved by using

more contiguous genomes in future studies. This could yield similar results to the findings by Cohen et al. (2020) and Gymoese et al. (2019) where complete gap-free genome sequences were obtained using both short and long read sequencing pipelines for prophage identification. Although we only identified the terL gene as the shared gene among our four prophages and other related phages, it proved sufficient to construct a maximum likelihood tree and validate the accuracy of our prophage identification. The *terL* gene is recognized for its utility in phage group classification due to its conservation, which arises from its crucial role in correct phage DNA length packaging (Wangchuk et al., 2021). While other phage genes encoding essential proteins, such as phage integrases and capsid proteins, are also valuable for distinguishing between phage groups (Dion et al., 2020; Switt et al., 2015), the prevalence of recombination events and high mutation rates currently hinders the establishment of clear phylogenetic relationships (Turner et al., 2021). Viruses, in general, lack a distinct common ancestor. To further affirm the precision of our prophage identification protocol, we constructed another maximum likelihood tree using complete genomes. The observed relationships were different, especially for Lederbergviruses, which encompassed a larger cluster, the reduction of the Gifsylike cluster and the dillucidation of Peduovirus pro483 and fiAA91ss relationships. This could be due to the larger component of the genome included which established a more robust classification evidenced by higher bootstrap values. Similar approaches have been employed using Hidden Markov Models (HMM) to classify prophages using the similarity between certain proteins or sequences (Gauthier et al., 2022; Mohammed et al., 2023). We did not use this approach because our objective was to obtain an estimation of the identification method.

Finally, we want to acknowledge that the study of prophages in *Salmonella* is crucial due to their impact on the host's adaptation to the environment and susceptibility to other infecting phages (Howard-Varona et al., 2017; Hu et al., 2021). Previous studies have isolated novel phages through different approaches, with prophage induction being the most common (Shin et
al., 2014; Segall et al., 2019; Lakshminarasimhan, 2022). However, this approach is not suitable for our detected prophages since they lack essential genes for prophage excision and the following bacterial lysis and our *S. enterica* genomes exhibited resistance to ciprofloxacin (Mejía et al, 2020), an antimicrobial agent frequently used for prophage induction due to its effect on bacterial replication (Devos et al., 2017; Segall et al., 2019). Despite these limitations, there are other approaches focused on the ability of some prophages to influence the infection of specific lytic phages by protecting their host from superinfection when lysogenized (Das & Jha, 2020; Owen et al., 2020, 2021), as also observed in this study in *S.* Typhimurium harboring *Enterobacteria phage ST104* and *Phage Gifsy-2*.

To the best of our knowledge, this study marks the first attempt to utilize an *in-silico* approach, examining the impact of prophages on phage infection dynamics and their implications for *S*. Infantis emergence in Ecuador. This is particularly relevant for MDR *S*. Infantis, given its increasing prevalence worldwide, especially in association with poultry farms and the presence of the pESI-like megaplasmids which enhance its adaptation and success in these environments (Donado-Godoy et al., 2015; Mejía et al., 2020; Vinueza-Burgos et al., 2019; Voss-Rech et al., 2015). In the country, previous studies focused on prophages have primarily explored antimicrobial resistance (Burnett et al., 2021) and served as genotyping tools (Corrales-Martínez et al., 2023). Data about prophages circulating in *Salmonella* strains of interest are crucial for the development of prevention policies in the epidemiologic surveillance and studies regarding the biology of *Salmonella* in different environments.

Conclusions

Our study was centered on the identification of prophages in *S*. Infantis, particularly those associated with poultry farms, and exhibiting resistance to multiple antimicrobials. Despite challenges in genome contiguity affecting prophage identification, we identified 4 prophages,

with *Peduovirus pro483* being the most prevalent. While some prophages showed evidence of adaptation, loss of functions, or possible recombination, their influence on host physiology remains unclear, having detected this characteristic only in 2 prophages within a *S*. Typhimurium genome. Our findings underscore the need for more contiguous genomes, experimental validation, and focused research on prophages, especially in the context of the rising prevalence of multidrug-resistant *S*. Infantis, emphasizing their potential impact on phage therapy efficacy.

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Ammendola, S., Ajello, M., Pasquali, P., Kroll, J. S., Langford, P. R., Rotilio, G., Valenti, P., & Battistoni, A. (2005). Differential contribution of sodC1 and sodC2 to intracellular survival and pathogenicity of Salmonella enterica serovar Choleraesuis. Microbes and Infection, 7(4), 698–707. <u>https://doi.org/10.1016/j.micinf.2005.01.005</u>

Bachmann, N. L., Petty, N. K., Ben Zakour, N. L., Szubert, J. M., Savill, J., & Beatson, S. A. (2014). Genome analysis and CRISPR typing of Salmonella enterica serovar Virchow. BMC Genomics, 15(1), 389. <u>https://doi.org/10.1186/1471-2164-15-389</u>

Berngruber, T. W., Weissing, F. J., & Gandon, S. (2010). Inhibition of Superinfection and the Evolution of Viral Latency. Journal of Virology, 84(19), 10200–10208. https://doi.org/10.1128/jvi.00865-10

Bobay, L.-M., Touchon, M., & Rocha, E. P. C. (2014). Pervasive domestication of defective prophages by bacteria. Proceedings of the National Academy of Sciences, 111(33), 12127–12132. <u>https://doi.org/10.1073/pnas.1405336111</u>

Boyle, E. C., Bishop, J. L., Grassl, G. A., & Finlay, B. B. (2007). Salmonella: From Pathogenesis to Therapeutics. In Journal of Bacteriology (Vol. 189, Issue 5, pp. 1489–1495).

Braetz, S., Schwerk, P., Figueroa-Bossi, N., Tedin, K., & Fulde, M. (2023). Prophage Gifsy-1 Induction in Salmonella enterica Serovar Typhimurium Reduces Persister Cell Formation after Ciprofloxacin Exposure. Microbiology Spectrum, 11(4), e01874-23. https://doi.org/10.1128/spectrum.01874-23 Burnett, E., Ishida, M., de Janon, S., Naushad, S., Duceppe, M.-O., Gao, R., Jardim, A., Chen, J. C., Tagg, K. A., Ogunremi, D., & Vinueza-Burgos, C. (2021). Whole-Genome Sequencing Reveals the Presence of the blaCTX-M-65 Gene in Extended-Spectrum β-Lactamase-Producing and Multi-Drug-Resistant Clones of Salmonella Serovar Infantis Isolated from Broiler Chicken Environments in the Galapagos Islands. Antibiotics, 10(3), Article 3. https://doi.org/10.3390/antibiotics10030267

Calarga, A. P., Gontijo, M. T. P., de Almeida, L. G. P., de Vasconcelos, A. T. R., Nascimento,
L. C., de Moraes Barbosa, T. M. C., de Carvalho Perri, T. M., Dos Santos, S. R., Tiba-Casas,
M. R., & Marques, E. G. L. (2022). Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000–2019). Brazilian Journal of Microbiology, 53(3), 1249–1262.

CDC. (2022, July 15). The biggest antibiotic-resistant threats in the U.S. Centers for Disease Control and Prevention. <u>https://www.cdc.gov/drugresistance/biggest-threats.html</u>

Cenens, W., Makumi, A., Govers, S. K., Lavigne, R., & Aertsen, A. (2016). Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association. PLOS Genetics, 11(12), 1–19. <u>https://doi.org/10.1371/journal.pgen.1005770</u>

Coburn, B., Grassl, G. A., & Finlay, B. B. (2007). Salmonella, the host and disease: A brief review. Immunology & Cell Biology, 85(2), 112–118. <u>https://doi.org/10.1038/sj.icb.7100007</u>

Cohen, E., Rahav, G., & Gal-Mor, O. (2020). Genome Sequence of an Emerging Salmonella enterica Serovar Infantis and Genomic Comparison with Other S. Infantis Strains. Genome Biology and Evolution, 12(3), 223–228. <u>https://doi.org/10.1093/gbe/evaa048</u>

Corrales-Martínez, J., Jaramillo, K., Satán, C., Tadesse, D., Villavicencio, F., Sánchez-Gavilanes, L., Rivadeneira-Martínez, B., Balcázar, J. L., & Calero-Cáceres, W. (2023).

Genomic Characterization of a Who Critical Priority Isolate Enterobacter Kobei Harboring Oxa-10, Kpc-2, and Ctx-M-12 Recovered from a Water Irrigation Channel in Ecuador (SSRN Scholarly Paper 4610213). <u>https://doi.org/10.2139/ssrn.4610213</u>

Coudert, E., Gehant, S., de Castro, E., Pozzato, M., Baratin, D., Neto, T., Sigrist, C. J. A., Redaschi, N., Bridge, A., & The UniProt Consortium. (2023). Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 39(1), btac793. https://doi.org/10.1093/bioinformatics/btac793

Cui, L., Wang, X., Zhao, Y., Peng, Z., Gao, P., Cao, Z., Feng, J., Zhang, F., Guo, K., Wu, M., Chen, H., & Dai, M. (2021). Virulence Comparison of Salmonella enterica Subsp. Enterica Isolates from Chicken and Whole Genome Analysis of the High Virulent Strain S. Enteritidis 211. Microorganisms, 9(11), Article 11. <u>https://doi.org/10.3390/microorganisms9112239</u>

D'Alessandro, B., Perez Escanda, V., Balestrazzi, L., Iriarte, A., Pickard, D., Yim, L., Chabalgoity, J. A., & Betancor, L. (2018). A novel prophage identified in strains from Salmonella enterica serovar Enteritidis is a phylogenetic signature of the lineage ST-1974. Microbial Genomics, 4(3), e000161.

Darling, A. E., Mau, B., & Perna, N. T. (2010). progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE, 5(6), e11147. https://doi.org/10.1371/journal.pone.0011147

Das, J., & Jha, G. (2020). Bacteriophages: Co-evolving with bacteria to provide useful traits. Polymorphism, 4, 72–82.

Devos, S., Van Putte, W., Vitse, J., Van Driessche, G., Stremersch, S., Van Den Broek, W.,Raemdonck, K., Braeckmans, K., Stahlberg, H., Kudryashev, M., Savvides, S. N., & Devreese,B. (2017). Membrane vesicle secretion and prophage induction in multidrug-resistant

Stenotrophomonas maltophilia in response to ciprofloxacin stress. Environmental Microbiology, 19(10), 3930–3937. <u>https://doi.org/10.1111/1462-2920.13793</u>

Dion, M. B., Oechslin, F., & Moineau, S. (2020). Phage diversity, genomics and phylogeny. Nature Reviews Microbiology, 18(3), Article 3. <u>https://doi.org/10.1038/s41579-019-0311-5</u>

Donado-Godoy, P., Byrne, B. A., León, Castellanos, R., Vanegas, C., Coral, A., Arevalo, A., Clavijo, V., Vargas, M., Romero Zuňiga, J. J., Tafur, M., Pérez-Gutierrez, E., & Smith, W. A. (2015). Prevalence, Resistance Patterns, and Risk Factors for Antimicrobial Resistance in Bacteria from Retail Chicken Meat in Colombia. Journal of Food Protection, 78(4), 751–759. https://doi.org/10.4315/0362-028X.JFP-14-349

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. <u>https://doi.org/10.1093/nar/gkh340</u>

Emmanuel, I. E. (2021). Challenges of Phage Therapy as a Strategic Tool for the Control of Salmonella Kentucky and Repertoire of Antibiotic Resistance Genes in Africa. In Bacteriophages in Therapeutics. IntechOpen. <u>https://doi.org/10.5772/intechopen.95329</u>

European Centre for Disease Prevention and Control. (2022). The European Union One Health 2021 Zoonoses Report. EFSA Journal, 20(12), e07666. https://doi.org/10.2903/j.efsa.2022.7666

Farahmandzad, F., Lanjanian, H., Arefian, E., & Kavousi, K. (2022). Bacteriophages in Gut Microbiome Interactions in Patients with Inflammatory Bowel Disease: Differences by Sex and The Disease Type [Preprint]. In Review. <u>https://doi.org/10.21203/rs.3.rs-1240997/v1</u>

Ferrari, R. G., Rosario, D. K. A., Cunha-Neto, A., Mano, S. B., Figueiredo, E. E. S., & Conte-Junior, C. A. (2019). Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-analysis. In Applied and Environmental Microbiology (Vol. 85, Issue 14, pp. e00591-19).

Figueroa-Bossi, N., & Bossi, L. (1999). Inducible prophages contribute to Salmonella virulence in mice. Molecular Microbiology, 33(1), 167–176. <u>https://doi.org/10.1046/j.1365-</u> 2958.1999.01461.x

Folimonova, S. Y. (2012). Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. Journal of Virology, 86(10), 5554–5561. https://doi.org/10.1128/jvi.00310-12

Fong, K., Lu, Y. T., Brenner, T., Falardeau, J., & Wang, S. (2022). Prophage Diversity Across Salmonella and Verotoxin-Producing Escherichia coli in Agricultural Niches of British Columbia, Canada. Frontiers in Microbiology, 13. https://www.frontiersin.org/articles/10.3389/fmicb.2022.853703

Gao, R., Naushad, S., Moineau, S., Levesque, R., Goodridge, L., & Ogunremi, D. (2020). Comparative genomic analysis of 142 bacteriophages infecting Salmonella enterica subsp. Enterica. BMC Genomics, 21(1), 374. <u>https://doi.org/10.1186/s12864-020-6765-z</u>

Gauthier, C. H., Abad, L., Venbakkam, A. K., Malnak, J., Russell, D. A., & Hatfull, G. F. (2022). DEPhT: A novel approach for efficient prophage discovery and precise extraction. Nucleic Acids Research, 50(13), e75. <u>https://doi.org/10.1093/nar/gkac273</u>

Golubeva, Y. A., & Slauch, J. M. (2006). Salmonella enterica Serovar Typhimurium Periplasmic Superoxide Dismutase SodCI Is a Member of the PhoPQ Regulon and Is Induced

in Macrophages. Journal of Bacteriology, 188(22), 7853–7861. https://doi.org/10.1128/JB.00706-06 Guerrero, T., Erazo, E., Bayas-Rea, R. D. L. Á., & Zapata Mena, S. (2021). Systematic Review: Nontyphoidal Salmonella in Food from Latin America. Foodborne Pathogens and Disease, 19. https://doi.org/10.1089/fpd.2020.2925

Gymoese, P., Kiil, K., Torpdahl, M., Østerlund, M. T., Sørensen, G., Olsen, J. E., Nielsen, E. M., & Litrup, E. (2019). WGS based study of the population structure of Salmonella enterica serovar Infantis. BMC Genomics, 20(1), 870. <u>https://doi.org/10.1186/s12864-019-6260-6</u>

Ha, A. D., & Denver, D. R. (2018). Comparative Genomic Analysis of 130 Bacteriophages Infecting Bacteria in the Genus Pseudomonas. Frontiers in Microbiology, 9, 1456. https://doi.org/10.3389/fmicb.2018.01456

Hall, J. P. J., Botelho, J., Cazares, A., & Baltrus, D. A. (2022). What makes a megaplasmid? Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1842), 20200472. https://doi.org/10.1098/rstb.2020.0472

Hatfull, G. F., Jacobs-Sera, D., Lawrence, J. G., Pope, W. H., Russell, D. A., Ko, C.-C., Weber,
R. J., Patel, M. C., Germane, K. L., Edgar, R. H., Hoyte, N. N., Bowman, C. A., Tantoco, A.
T., Paladin, E. C., Myers, M. S., Smith, A. L., Grace, M. S., Pham, T. T., O'Brien, M. B., ...
Hendrix, R. W. (2010). Comparative Genomic Analysis of 60 Mycobacteriophage Genomes:
Genome Clustering, Gene Acquisition, and Gene Size. Journal of Molecular Biology, 397(1), 119–143. <u>https://doi.org/10.1016/j.jmb.2010.01.011</u>

Henrot, C., & Petit, M.-A. (2022). Signals triggering prophage induction in the gut microbiota. Molecular Microbiology, 118(5), 494–502. <u>https://doi.org/10.1111/mmi.14983</u>

Herrero-Fresno, A., Espinel, I. C., Spiegelhauer, M. R., Guerra, P. R., Andersen, K. W., & Olsen, J. E. (2017). The Homolog of the Gene bstA of the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin. Infection and Immunity, 86(1), e00784-17. <u>https://doi.org/10.1128/IAI.00784-17</u>

Hiyoshi, H., Tiffany, C. R., Bronner, D. N., & Bäumler, A. J. (2018). Typhoidal Salmonella serovars: Ecological opportunity and the evolution of a new pathovar. FEMS Microbiology Reviews, 42(4), 527–541. <u>https://doi.org/10.1093/femsre/fuy024</u>

Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., & Sullivan, M. B. (2017). Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. The ISME Journal, 11(7), Article 7. <u>https://doi.org/10.1038/ismej.2017.16</u>

Hu, J., Ye, H., Wang, S., Wang, J., & Han, D. (2021). Prophage activation in the intestine: Insights into functions and possible applications. Frontiers in Microbiology, 12, 785634.

Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 119. https://doi.org/10.1186/1471-2105-11-119

Ibarra, J. A., & Steele-Mortimer, O. (2009). Salmonella – the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cellular Microbiology, 11(11), 1579–1586. <u>https://doi.org/10.1111/j.1462-5822.2009.01368.x</u>

Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S. A., Jahesh, G., Khan, H., Coombe, L., Warren, R. L., & Birol, I. (2017). ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Research, 27(5), 768–777. https://doi.org/10.1101/gr.214346.116

Jajere, S. M. (2019). A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary World, 12(4), 504–521. <u>https://doi.org/10.14202/vetworld.2019.504-521</u>

Jonge, P. A. de, Nobrega, F. L., Brouns, S. J. J., & Dutilh, B. E. (2019). Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends in Microbiology, 27(1), 51–63. <u>https://doi.org/10.1016/j.tim.2018.08.006</u>

Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. <u>https://doi.org/10.1093/bib/bbx108</u>

Kaur, J., & Jain, S. K. (2012). Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiological Research, 167(4), 199–210. https://doi.org/10.1016/j.micres.2011.08.001

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kipper, D., Mascitti, A. K., De Carli, S., Carneiro, A. M., Streck, A. F., Fonseca, A. S. K., Ikuta, N., & Lunge, V. R. (2022). Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Veterinary Sciences, 9(8), 405.

Kirkwood, M., Vohra, P., Bawn, M., Thilliez, G., Pye, H., Tanner, J., Chintoan-Uta, C., Branchu, P., Petrovska, L., Dallman, T., Hall, N., Stevens, M. P., & Kingsley, R. A. (2021). Ecological niche adaptation of Salmonella Typhimurium U288 is associated with altered pathogenicity and reduced zoonotic potential. Communications Biology, 4(1), Article 1. https://doi.org/10.1038/s42003-021-02013-4

Kraushaar, B., Hammerl, J. A., Kienöl, M., Heinig, M. L., Sperling, N., Dinh Thanh, M., Reetz, J., Jäckel, C., Fetsch, A., & Hertwig, S. (2017). Acquisition of virulence factors in livestock-

associated MRSA: Lysogenic conversion of CC398 strains by virulence gene-containing phages. Scientific Reports, 7(1), Article 1. <u>https://doi.org/10.1038/s41598-017-02175-4</u>

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. <u>https://doi.org/10.1093/molbev/msy096</u>

Kurasz, J. E., Crawford, M. C., Porwollik, S., Gregory, O., Tadlock, K. R., Balding, E. C., Weinert, E. E., McClelland, M., & Karls, A. C. (2023). Strain-Specific Gifsy-1 Prophage Genes Are Determinants for Expression of the RNA Repair Operon during the SOS Response in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 205(1), e00262-22. https://doi.org/10.1128/jb.00262-22

Lakshminarasimhan, A. (2022). Prophage induction therapy: Activation of the lytic phase in prophages for the elimination of pathogenic bacteria. Medical Hypotheses, 169, 110980. https://doi.org/10.1016/j.mehy.2022.110980

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. <u>https://doi.org/10.1038/nmeth.1923</u>

Lapierre, L., Cornejo, J., Zavala, S., Galarce, N., Sánchez, F., Benavides, M. B., Guzmán, M., & Sáenz, L. (2020). Phenotypic and Genotypic Characterization of Virulence Factors and Susceptibility to Antibiotics in Salmonella Infantis Strains Isolated from Chicken Meat: First Findings in Chile. Animals : An Open Access Journal from MDPI, 10(6), 1049. https://doi.org/10.3390/ani10061049

Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution, 38(10), 4647–4654. <u>https://doi.org/10.1093/molbev/msab199</u> McMillan, E. A., Jackson, C. R., & Frye, J. G. (2020). Transferable Plasmids of Salmonella enterica Associated With Antibiotic Resistance Genes. Frontiers in Microbiology, 11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.562181

Medeiros, M. A. N., Oliveira, D. C. N. D., Rodrigues, D. D. P., & Freitas, D. R. C. D. (2011). Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Revista Panamericana de Salud Pública, 30(6), 555–560. https://doi.org/10.1590/S1020-49892011001200010

Mejía, L., Medina, J. L., Bayas, R., Salazar, C. S., Villavicencio, F., Zapata, S., Matheu, J., Wagenaar, J. A., González-Candelas, F., & Vinueza-Burgos, C. (2020). Genomic Epidemiology of Salmonella Infantis in Ecuador: From Poultry Farms to Human Infections. Frontiers in Veterinary Science, 7. https://www.frontiersin.org/articles/10.3389/fvets.2020.547891

Mohammed, M., Casjens, S. R., Millard, A. D., Harrison, C., Gannon, L., & Chattaway, M. A. (2023). Genomic analysis of Anderson typing phages of Salmonella Typhimrium: Towards understanding the basis of bacteria-phage interaction. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-37307-6

Monteiro, R., Pires, D. P., Costa, A. R., & Azeredo, J. (2019). Phage Therapy: Going Temperate? Trends in Microbiology, 27(4), 368–378. https://doi.org/10.1016/j.tim.2018.10.008

Montoro-Dasi, L., Lorenzo-Rebenaque, L., Marco-Fuertes, A., Vega, S., & Marin, C. (2023). Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms, 11(7), Article 7. https://doi.org/10.3390/microorganisms11071765 Moreno Switt, A. (2013). Genomic Characterization Of Salmonella Free-Living Phages, Plasmids And Chromosomally Inserted Mobile Elements. https://hdl.handle.net/1813/33807

Moreno Switt, A. I., Orsi, R. H., den Bakker, H. C., Vongkamjan, K., Altier, C., & Wiedmann,
M. (2013). Genomic characterization provides new insight into Salmonella phage diversity.
BMC Genomics, 14(1), 481. <u>https://doi.org/10.1186/1471-2164-14-481</u>

Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., & Schäffer, A. A. (2008). Database indexing for production MegaBLAST searches. Bioinformatics (Oxford, England), 24(16), 1757–1764. <u>https://doi.org/10.1093/bioinformatics/btn322</u>

Mottawea, W., Duceppe, M.-O., Dupras, A. A., Usongo, V., Jeukens, J., Freschi, L., Emond-Rheault, J.-G., Hamel, J., Kukavica-Ibrulj, I., Boyle, B., Gill, A., Burnett, E., Franz, E., Arya, G., Weadge, J. T., Gruenheid, S., Wiedmann, M., Huang, H., Daigle, F., ... Ogunremi, D. (2018). Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Frontiers in Microbiology, 9, 836. https://doi.org/10.3389/fmicb.2018.00836

Moulana, Z., & Asgharpour, F. (2022). Prevalence and Antimicrobial Resistance of Salmonella Enterica Serovar Infantis Isolates from Poultry: A review. Poultry Science Journal, 10(1), 13– 26. <u>https://doi.org/10.22069/psj.2022.19783.1759</u>

Moura de Sousa, J. A., Pfeifer, E., Touchon, M., & Rocha, E. P. C. (2021). Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa. Molecular Biology and Evolution, 38(6), 2497–2512. https://doi.org/10.1093/molbev/msab044 Nayfach, S., Páez-Espino, D., Call, L., Low, S. J., Sberro, H., Ivanova, N. N., Proal, A. D., Fischbach, M. A., Bhatt, A. S., Hugenholtz, P., & Kyrpides, N. C. (2021). Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nature Microbiology, 6(7), Article 7. <u>https://doi.org/10.1038/s41564-021-00928-6</u>

Nishijima, S., Nagata, N., Kiguchi, Y., Kojima, Y., Miyoshi-Akiyama, T., Kimura, M., Ohsugi, M., Ueki, K., Oka, S., Mizokami, M., Itoi, T., Kawai, T., Uemura, N., & Hattori, M. (2022). Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-32832-w

Owen, S. V., Canals, R., Wenner, N., Hammarlöf, D. L., Kröger, C., & Hinton, J. C. D. (2020). A window into lysogeny: Revealing temperate phage biology with transcriptomics. Microbial Genomics, 6(2), e000330. https://doi.org/10.1099/mgen.0.000330

Owen, S. V., Wenner, N., Dulberger, C. L., Rodwell, E. V., Bowers-Barnard, A., Quinones-Olvera, N., Rigden, D. J., Rubin, E. J., Garner, E. C., Baym, M., & Hinton, J. C. D. (2021). Prophages encode phage-defense systems with cognate self-immunity. Cell Host & Microbe, 29(11), 1620-1633.e8. <u>https://doi.org/10.1016/j.chom.2021.09.002</u>

Parker, C. T., Huynh, S., Alexander, A., Oliver, A. S., & Cooper, K. K. (2021). Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products. Pathogens, 10(5), Article 5. <u>https://doi.org/10.3390/pathogens10050529</u>

Petrovska, L., Mather, A. E., AbuOun, M., Branchu, P., Harris, S. R., Connor, T., Hopkins, K. L., Underwood, A., Lettini, A. A., & Page, A. (2016). Microevolution of monophasic Salmonella typhimurium during epidemic, United Kingdom, 2005–2010. Emerging Infectious Diseases, 22(4), 617.

Pires, D. P., Costa, A. R., Pinto, G., Meneses, L., & Azeredo, J. (2020). Current challenges and future opportunities of phage therapy. FEMS Microbiology Reviews, 44(6), 684–700. https://doi.org/10.1093/femsre/fuaa017

Popa, G. L., & Papa, M. I. (2021). Salmonella spp. Infection—A continuous threat worldwide. Germs, 11(1), 88–96. <u>https://doi.org/10.18683/germs.2021.1244</u>

Pope, W. H., Jacobs-Sera, D., Russell, D. A., Peebles, C. L., Al-Atrache, Z., Alcoser, T. A., Alexander, L. M., Alfano, M. B., Alford, S. T., Amy, N. E., Anderson, M. D., Anderson, A. G., Ang, A. A. S., Ares, M., Barber, A. J., Barker, L. P., Barrett, J. M., Barshop, W. D., Bauerle, C. M., ... Hatfull, G. F. (2011). Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution. PLoS ONE, 6(1), e16329. https://doi.org/10.1371/journal.pone.0016329

Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102

Qi, Z., Meng, B., Wei, X., Li, X., Peng, H., Li, Y., Feng, Q., Huang, Y., Zhang, Q., Xu, X., Zhao, H., Yang, X., Wang, C., & Zhao, X. (2022). Identification and characterization of P2-like bacteriophages of Yersinia pestis. Virus Research, 322, 198934. https://doi.org/10.1016/j.virusres.2022.198934

Rusconi, B., Sanjar, F., Koenig, S. S. K., Mammel, M. K., Tarr, P. I., & Eppinger, M. (2016).
Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7
Outbreaks. Frontiers in Microbiology, 7.
https://www.frontiersin.org/articles/10.3389/fmicb.2016.00985

Sattar, S., Carbone, V., Basharat, Z., Bostan, N., Tariq, A., Javed, S., Ullah, I., Khanum, S., Yaqoob, A., Ahmed, I., Abbas, M. A., Shah, S. T. A., & Altermann, E. (2023). Isolation and

Molecular Characterization of a Novel Podo-virus BIS08P22 having a Unique Terminase Enzyme Representing a new Genus in Class Caudoviricetes (2023100094). Preprints. https://doi.org/10.20944/preprints202310.0094.v1

Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., ... Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. https://doi.org/10.1093/nar/gkab1112

Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., & Goesmann, A. (2021). Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microbial Genomics, 7(11), 000685. <u>https://doi.org/10.1099/mgen.0.000685</u>

Segall, A. M., Roach, D. R., & Strathdee, S. A. (2019). Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Current Opinion in Microbiology, 51, 46–50. https://doi.org/10.1016/j.mib.2019.03.005

Shah, D. H., Paul, N. C., Sischo, W. C., Crespo, R., & Guard, J. (2017). Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Science, 96(3), 687–702. <u>https://doi.org/10.3382/ps/pew342</u>

Shin, H., Lee, J.-H., Yoon, H., Kang, D.-H., & Ryu, S. (2014). Genomic Investigation of Lysogen Formation and Host Lysis Systems of the Salmonella Temperate Bacteriophage SPN9CC. Applied and Environmental Microbiology, 80(1), 374–384. https://doi.org/10.1128/AEM.02279-13

Shridhar, P. B., Worley, J. N., Gao, X., Yang, X., Noll, L. W., Shi, X., Bai, J., Meng, J., & Nagaraja, T. G. (2019). Analysis of virulence potential of Escherichia coli O145 isolated from

cattle feces and hide samples based on whole genome sequencing. PLOS ONE, 14(11), e0225057. <u>https://doi.org/10.1371/journal.pone.0225057</u>

Silva, C., Calva, E., Puente, J. L., Zaidi, M. B., & Vinuesa, P. (2016). Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO2 (Sequence Type 302) Isolated from an Asymptomatic Child in Mexico. Genome Announcements, 4(2), 10.1128/genomea.00253-16. <u>https://doi.org/10.1128/genomea.00253-16</u>

Svahn, A. J., Suster, C. J. E., Chang, S. L., Rockett, R. J., Sim, E. M., Cliff, O. M., Wang, Q.,
Arnott, A., Ramsperger, M., Sorrell, T. C., Sintchenko, V., & Prokopenko, M. (2023).
Pangenome Analysis of a Salmonella Enteritidis Population Links a Major Outbreak to a Gifsy1-Like Prophage Containing Anti-Inflammatory Gene gogB. Microbiology Spectrum, 11(2),
e02791-22. <u>https://doi.org/10.1128/spectrum.02791-22</u>

Switt, A. I. M., Sulakvelidze, A., Wiedmann, M., Kropinski, A. M., Wishart, D. S., Poppe, C.,
& Liang, Y. (2015). Salmonella Phages and Prophages: Genomics, Taxonomy, and Applied
Aspects. In H. Schatten & A. Eisenstark (Eds.), Salmonella (Vol. 1225, pp. 237–287). Springer
New York. https://doi.org/10.1007/978-1-4939-1625-2_15

Tisza, M. J., & Buck, C. B. (2021). A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proceedings of the National Academy of Sciences, 118(23), e2023202118. <u>https://doi.org/10.1073/pnas.2023202118</u>

Trofeit, L., Sattler, E., Künz, J., & Hilbert, F. (2023). Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction. Antibiotics, 12(3), Article 3. https://doi.org/10.3390/antibiotics12030595

Turner, D., Kropinski, A. M., & Adriaenssens, E. M. (2021). A Roadmap for Genome-Based Phage Taxonomy. Viruses, 13(3), 506. <u>https://doi.org/10.3390/v13030506</u>

Turner, D., Shkoporov, A. N., Lood, C., Millard, A. D., Dutilh, B. E., Alfenas-Zerbini, P., van Zyl, L. J., Aziz, R. K., Oksanen, H. M., Poranen, M. M., Kropinski, A. M., Barylski, J., Brister, J. R., Chanisvili, N., Edwards, R. A., Enault, F., Gillis, A., Knezevic, P., Krupovic, M., ... Adriaenssens, E. M. (2023). Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Archives of Virology, 168(2), 74. <u>https://doi.org/10.1007/s00705-022-05694-2</u>

Vallejos-Sánchez, K., Tataje-Lavanda, L., Villanueva-Pérez, D., Bendezú, J., Montalván, Á., Zimic-Peralta, M., Fernández-Sánchez, M., & Fernández-Díaz, M. (2019). Whole-Genome Sequencing of a Salmonella enterica subsp. Enterica Serovar Infantis Strain Isolated from Broiler Chicken in Peru. Microbiology Resource Announcements, 8(43), 10.1128/mra.00826-19. https://doi.org/10.1128/mra.00826-19

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.

Vinueza-Burgos, C. V. (2017). Salmonella and Campylobacter in broilers at slaughter age: A possible source for carcasses contamination in Ecuador. Ghent University.

Vinueza-Burgos, C., Baquero, M., Medina, J., & De Zutter, L. (2019). Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. International Journal of Food Microbiology, 299, 1–7. https://doi.org/10.1016/j.ijfoodmicro.2019.03.014

Voss-Rech, D., Vaz, C. S. L., Alves, L., Coldebella, A., Leão, J. A., Rodrigues, D. P., & Back,
A. (2015). A temporal study of Salmonella enterica serotypes from broiler farms in Brazil.
Poultry Science, 94(3), 433–441. <u>https://doi.org/10.3382/ps/peu081</u>

Wahl, A., Battesti, A., & Ansaldi, M. (2019). Prophages in Salmonella enterica: A driving force in reshaping the genome and physiology of their bacterial host? Molecular Microbiology, 111(2), 303–316. <u>https://doi.org/10.1111/mmi.14167</u>

Walker, P. J., Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., Adriaenssens, E. M., Dempsey,
D. M., Dutilh, B. E., Harrach, B., Harrison, R. L., Hendrickson, R. C., Junglen, S., Knowles,
N. J., Kropinski, A. M., Krupovic, M., Kuhn, J. H., Nibert, M., Orton, R. J., Rubino, L.,
Sabanadzovic, S., ... Davison, A. J. (2020). Changes to virus taxonomy and the Statutes ratified
by the International Committee on Taxonomy of Viruses (2020). Archives of Virology,
165(11), 2737–2748. https://doi.org/10.1007/s00705-020-04752-x

Wangchuk, J., Chatterjee, A., Patil, S., Madugula, S. K., & Kondabagil, K. (2021). The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology, 564, 13–25. https://doi.org/10.1016/j.virol.2021.09.004

Weissman, J. L., Holmes, R., Barrangou, R., Moineau, S., Fagan, W. F., Levin, B., & Johnson,
P. L. F. (2018). Immune loss as a driver of coexistence during host-phage coevolution. The ISME Journal, 12(2), Article 2. <u>https://doi.org/10.1038/ismej.2017.194</u>

Wendling, C. C. (2023). Prophage mediated control of higher order interactions—Insights from multi-level approaches. Current Opinion in Systems Biology, 35, 100469. https://doi.org/10.1016/j.coisb.2023.100469

WHO. (2017). Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis (p. 87). World Health Organization. <u>https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12</u>

WHO. (2015, December 3). WHO's first ever global estimates of foodborne diseases find children under 5 account for almost one third of deaths. WHO's First Ever Global Estimates of

Foodborne Diseases Find Children under 5 Account for Almost One Third of Deaths. <u>https://www.who.int/news/item/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-</u>diseases-find-children-under-5-account-for-almost-one-third-of-deaths

WHO. (2023, November 21). Antimicrobial resistance. <u>https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance</u>

Yu, P., Mathieu, J., Yang, Y., & Alvarez, P. J. J. (2017). Suppression of Enteric Bacteria by Bacteriophages: Importance of Phage Polyvalence in the Presence of Soil Bacteria. Environmental Science & Technology, 51(9), 5270–5278. https://doi.org/10.1021/acs.est.7b00529

Żbikowska, K., Michalczuk, M., & Dolka, B. (2020). The use of bacteriophages in the poultry industry. Animals, 10(5), 872.

SUPPLEMENTARY MATERIAL INDEX

 Supplementary Table 1. Details for all Salmonella enterica genomes assembled, their quality

 control statistics and indicators______58

 Supplementary Table 2. Details of the 160 prophage genomes used for the custom database

 using information from Switt et al. (2015) and Gao et al. (2020), and curated using ICTV

 taxonomy release database______63

Supplementary Table 3. Details for all *Salmonella enteric*a prophages identified with their respective detected size, prophage reference ID, identity percentage, reference genome size and completeness level_____67

Supplementary Figure 1. Box plots illustrating the difference between the prior study by Mejía et al. (2020) (depicted in red) and the current work (depicted in blue), focusing on various assembly and quality control statistics. A) Differences in the number of reads obtained after quality control for raw reads. B) Differences in the number of contigs/scaffolds obtained. C) Differences in N50 measured in fragment size. D) Differences in L50 measured in number of contigs/scaffolds \geq N50. E) Differences in genome size obtained. F) Differences in file size obtained______75

Supplementary Figure 2. Phylogenetic relationships using the complete prophage genome. Reference sequences are written in green and found sequences in red. 3 clusters were observed: Cluster A (yellow) with *Peduovirus*-like sequences, ClusterB (cyan) with *Gifsy*-like sequences, and Cluster C with *Lederbergvirus*-like sequences. Maximum likelihood tree constructed with IQ-TREE2 with a fast bootstrap of 1000 iterations using a general time reversible model with gamma distribution (GTR+G) predicted with MEGAX_____76

Commla	NCDI		File Siz	e before ng (MB)	fore File Size after MB) trimming (MB) Assembly summary: abyss-fac							BUSCO	Assembly: SPAdes					
sample name	Code	Serovar	Forward	Reverse	Forward	Reverse	n	n:500	L50	min	N75	N50	N25	E-size	max	sum	Genome Complete (%)	Assembled File Size (MB)
Se_Q_001	CSG217	S. Infantis	103	105	73	74	157	62	5	515	138387	266844	470431	451299	1195276	4982149	98,4	5,1
Se_Q_002	CSG232	S. Typhimurium	92	93	65	66	69	28	4	545	229450	478958	647238	499866	978044	4698564	98,4	4,8
Se_Q_003	CSG252	S. Typhimurium	69	70	49	49	80	33	5	545	171440	406336	478270	427904	977752	4697863	98,4	4,8
Se_Q_004	CSG177	S. Infantis	58	60	41	42	178	79	8	523	149779	259203	340779	233524	376736	4925717	98,4	5,1
Se_Q_005	CSG175	S. Infantis	59	60	42	43	151	63	8	501	111884	194191	385887	228439	525933	4706473	98,4	4,8
Se_Q_006	CSG132	S. Infantis	63	64	44	45	157	72	9	503	111845	181160	226718	253770	719507	4914638	98,4	5
Se_Q_007	U113s	S. Typhimurium	57	58	40	41	178	89	10	537	83215	178330	266195	179917	333658	4955233	99,2	5,1
Se_Q_008	U114s	S. Enteritidis	56	57	39	40	79	39	6	542	153089	291342	375907	302264	647270	4632449	98,4	4,8
Se_Q_009	U120s	S. Infantis	116	118	81	82	176	77	8	515	89905	150188	474554	335336	1029493	5083069	100,0	5,2
Se_Q_010	U121s	S. Infantis	54	55	38	39	153	78	9	523	103540	183601	323905	222476	554236	4871727	98,4	5
Se_Q_011	U123s	S. Infantis	49	50	35	36	137	78	11	523	58371	129590	183859	123842	225091	3686054	90,3	3,8
Se_Q_012	U127s	S. Infantis	55	56	38	39	143	72	8	617	105437	192292	333656	237973	617933	4782068	100,0	4,9
Se_Q_013	U128s	S. Infantis	78	80	54	55	163	66	6	515	115018	201642	371030	417143	1195275	4962512	98,4	5,1
Se_Q_014	U129s	S. Infantis	94	96	68	69	156	72	8	515	112205	165469	438969	262897	604074	5082850	100,0	5,2
Se_Q_015	U219s	S. Infantis	76	78	55	55	167	75	9	515	111806	180235	324280	228602	590272	5077223	100,0	5,2
Se_Q_016	U634s	S. Infantis	49	50	35	36	129	63	10	515	105545	183598	237218	191325	492353	4597871	96,8	4,7
Se_Q_017	U638s	S. Infantis	73	74	52	53	159	71	6	502	114987	183947	525590	429418	1195182	4973292	100,0	5,1
Se_Q_018	U639s	S. Infantis	74	75	53	53	152	71	8	515	114952	183598	370826	250527	589934	4955057	98,4	5,1
Se_Q_019	U652s	S. Infantis	73	74	52	53	148	67	6	515	103469	201608	370969	411990	1195009	5001213	100,0	5,1
Se_Q_020			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	0
Se_Q_021	U664s	S. Infantis	97	98	68	69	147	132	14	542	56723	113808	187395	123342	313697	4887325	100,0	5
Se_Q_022	U666s	S. Infantis	62	63	44	44	166	75	8	503	111806	194184	324230	256584	719600	4949368	100,0	5,1
Se_Q_023	U669s	S. Infantis	64	65	46	46	152	68	6	503	103482	194191	525799	377336	1028952	4943934	100,0	5,1
Se_Q_024	U672s	S. Infantis	72	73	51	52	165	71	7	552	94393	183600	525862	278981	719785	4972344	100,0	5,1
Se_Q_025	U676s	S. Infantis	59	60	42	43	173	69	8	515	105321	180609	525731	288308	824615	4919924	100,0	5
Se_Q_026	U679s	S. Infantis	106	108	75	76	149	67	5	515	105545	183599	525922	439834	1192981	4941018	99,2	5,1
Se_Q_027	U682s	S. Infantis	88	89	62	62	156	66	6	515	124631	183687	469482	370959	1029473	4966517	100,0	5,1
Se_Q_028	U684s	S. Infantis	72	73	51	51	160	73	8	501	93967	183687	438783	252912	589935	4938821	99,2	5,1
Se_Q_029	U689s	S. Infantis	73	74	52	52	155	64	7	552	111884	183947	525921	362993	1029044	4963870	99,2	5,1
Se_Q_030	U692s	S. Infantis	79	81	55	56	162	67	6	512	105437	194416	525918	380846	1044953	4962358	98,4	5,1
Se_Q_031	U706s	S. Infantis	65	66	46	46	152	76	9	515	96311	181513	324225	208948	521940	4898829	100,0	5

Supplementary Table 1. Details for all Salmonella enterica genomes assembled, their quality control statistics and indicators

Se_Q_032	U707s	S. Infantis	77	79	55	56	170	75	9	515	93966	180521	368507	214594	522039	4956781	100,0	5,1
Se_Q_033	U708s	S. Infantis	73	74	51	52	149	60	7	501	111884	194278	438876	273065	590544	4969235	100,0	5,1
Se_Q_034	U711s	S. Infantis	55	56	39	39	150	77	9	515	105321	183859	268385	206387	471316	4936538	100,0	5,1
Se_Q_035	U712s	S. Infantis	96	97	68	69	153	68	6	515	96310	201656	371360	414389	1195275	4971725	98,4	5,1
Se_Q_036	U715s	S. Infantis	141	144	99	101	165	63	5	515	127845	203919	469779	444181	1195182	4975527	99,2	5,1
Se_Q_037	U718s	S. Infantis	24	24	16	16	29	4	2	1137	1601	1750	3653	2488	3653	8141	0,0	15,0 kB
Se_Q_038	U719s	S. Infantis	198	200	134	136	158	65	6	515	105545	183688	444040	419315	1179805	4953029	98,4	5,1
Se_Q_039	U723s	S. Infantis	120	123	78	80	169	70	6	515	105321	183687	470132	371174	1029473	4966517	100,0	5,1
Se_Q_040			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	0
Se_Q_041	U728s	S. Infantis	179	182	122	124	168	66	5	507	105545	203918	525853	448781	1188867	4972216	100,0	5,1
Se_Q_042	U729s	S. Infantis	105	107	74	75	163	67	6	515	105321	183600	525862	381778	1029474	4965114	99,2	5,1
Se_Q_043	U758s	S. Infantis	92	94	64	65	161	71	8	515	103520	183600	370969	254967	604576	4947710	99,2	5,1
Se_Q_044	U759s	S. Infantis	97	99	67	68	155	63	6	515	148183	201638	443813	432023	1195275	4973905	99,2	5,1
Se_Q_045	U762s	S. Infantis	115	117	70	71	156	63	6	515	111885	203916	470180	423071	1195182	4967830	99,2	5,1
Se_Q_046	U769s	S. Infantis	94	95	66	67	137	64	6	515	105438	201620	444101	426266	1195275	4974672	99,2	5,1
Se_Q_047	U773s	S. Infantis	89	90	63	64	156	67	8	515	93967	183599	371597	253888	649759	4970622	98,4	5,1
Se_Q_048	U801s	S. Infantis	161	164	110	111	152	61	5	515	114988	203915	525921	451228	1187838	4956900	98,4	5,1
Se_Q_049	U804s	S. Infantis	142	144	99	101	171	67	5	504	105545	203915	470256	446519	1195089	4942619	98,4	5,1
Se_Q_050	U806s	S. Infantis	101	102	71	72	161	62	6	504	148183	201623	444039	435349	1200177	4970943	100,0	5,1
Se_Q_051	U814s	S. Infantis	192	195	131	133	147	65	5	515	105429	203915	525858	446007	1195273	4973872	98,4	5,1
Se_Q_052	U815s	S. Infantis	95	96	66	67	177	65	6	515	93904	183597	470263	370584	1044861	4925562	99,2	5,1
Se_Q_053	U818s	S. Infantis	114	116	81	82	168	66	6	515	89905	201627	444040	417117	1195271	4974881	99,2	5,1
Se_Q_054	U855s	S. Infantis	104	106	49	49	146	65	7	515	105321	183687	525901	361229	1029084	4931517	99,2	5,1
Se_Q_055	U857s	S. Infantis	101	103	71	72	159	66	6	515	105545	201626	371299	417759	1195089	4971699	100,0	5,1
Se_Q_056	U860s	S. Infantis	75	76	53	54	137	63	7	515	124631	203916	371597	284253	676384	4916076	98,4	5
Se_Q_057	U863s	S. Infantis	1,2 GB	1,2 GB	820	829	153	60	5	515	127741	203920	525828	454696	1195275	4971725	100,0	5,1
Se_Q_058	U865s	S. Infantis	148	151	105	106	166	69	6	515	92521	183687	470134	395552	1099117	4973961	99,2	5,1
Se_Q_059	U866s	S. Infantis	75	76	53	54	156	70	6	502	103519	201621	444101	423020	1195097	4976315	98,4	5,1
Se_Q_060	U869s	S. Infantis	146	148	14	14	27	5	2	543	869	2112	3543	2400	3543	7684	0,0	14,6 kB
Se_Q_061	U871s	S. Infantis	71	72	51	51	183	76	8	502	103515	183859	371030	311801	942896	4959522	100,0	5,1
Se_Q_062	U873s	S. Infantis	112	114	78	80	163	67	6	515	127731	201644	444101	420547	1191517	4976344	97,6	5,1
Se_Q_063	U875s	S. Enteritidis	147	150	104	106	76	30	3	618	185781	406400	1455556	672327	1455556	4773271	98,4	4,9
Se_Q_064	U878s	S. Infantis	82	84	58	58	169	69	7	515	96311	181222	525954	358858	1029772	4977338	99,2	5,1
Se_Q_065	U880s	S. Infantis	104	106	75	76	160	63	5	515	105545	203916	525868	451211	1195275	5016594	100,0	5,1
Se_Q_066	U883s	S. Infantis	80	82	57	58	156	63	5	515	114968	203919	525791	444421	1194908	4971129	99,2	5,1
Se_Q_067	U885s	S. Infantis	78	80	55	56	141	68	7	515	105545	201635	370969	328926	960342	4961154	100,0	5,1
Se_Q_068	U888s	S. Infantis	204	207	145	147	167	67	6	515	92521	183600	470196	418552	1145098	4973494	98,4	5,1

Se_Q_069	U889s	S. Infantis	59	60	42	42	149	63	10	515	114982	183687	226203	202617	510646	4723271	98,4	4,9
Se_Q_070	U890s	S. Infantis	79	81	56	57	170	69	8	515	113153	183687	371360	300266	915601	4972832	100,0	5,1
Se_Q_071	U895s	S. Infantis	61	62	43	44	142	66	7	515	124631	203915	525920	298640	743739	4928924	100,0	5
Se_Q_072	U897s	S. Infantis	56	57	40	40	147	65	8	515	111884	194406	438876	239230	510645	4869524	100,0	5
Se_Q_073	U899s	S. Infantis	73	74	15	15	28	5	2	561	869	2130	2574	1868	2574	6751	0,0	13,4 kB
Se_Q_074	U969s	S. Infantis	70	71	49	49	160	68	8	515	103470	183687	277902	270230	807038	4927197	99,2	5
Se_Q_075	U972s	S. Infantis	88	90	63	64	159	66	7	504	92095	183600	371658	345249	1029138	4972348	98,4	5,1
Se_Q_076	U973s	S. Infantis	66	67	33	33	112	52	7	523	89700	183599	224894	164281	298879	3144061	87,1	3,3
Se_Q_077	U976s	S. Infantis	43	44	31	31	111	42	6	509	102704	183598	224481	177563	324332	2634265	75,8	2,8
Se_Q_078	U979s	S. Infantis	73	74	52	53	148	61	6	502	127843	203917	525795	372931	1028771	4830648	98,4	5
Se_Q_079	U980s	S. Infantis	72	73	51	51	145	71	8	515	114902	183687	525908	271306	719606	4968981	99,2	5,1
Se_Q_080	U983s	S. Infantis	87	88	62	63	158	68	7	503	115007	183860	438969	256380	604576	4950623	99,2	5,1
Se_Q_081	U986s	S. Infantis	89	90	63	64	166	69	7	515	145663	194156	444101	282854	590383	4971259	100,0	5,1
Se_Q_082	U998s	S. Infantis	58	59	41	41	169	74	7	515	103500	180946	470149	319161	897909	4930452	99,2	5,1
Se_Q_083	U1000s	S. Infantis	151	154	107	109	170	65	5	515	96310	203916	470191	434277	1177679	4958205	98,4	5,1
Se_Q_084	U1003s	S. Infantis	65	66	46	47	169	68	6	515	145663	194285	525919	349482	949950	4962491	99,2	5,1
Se_Q_085	U1006s	S. Infantis	60	61	43	43	170	78	9	503	114985	180829	324316	215536	510820	4928362	99,2	5,1
Se_Q_086	U1010s	S. Infantis	217	222	147	150	157	63	5	515	127966	203919	525767	453608	1195274	4970923	100,0	5,1
Se_Q_087	U1019s	S. Infantis	175	180	121	123	152	60	5	515	127835	203831	470164	440745	1195276	5003523	100,0	5,1
Se_Q_088	U1051s	S. Infantis	142	145	96	98	157	58	5	515	105429	203919	525920	452315	1193237	4976698	98,4	5,1
Se_Q_089	U1052s	S. Infantis	147	149	100	101	153	55	5	515	114978	218061	525850	459568	1195276	4910636	98,4	5
Se_Q_090	U1056s	S. Infantis	138	141	96	98	155	64	5	515	105545	203916	470195	438765	1195275	4974139	100,0	5,1
Se_Q_091	U1057s	S. Infantis	1,3 GB	1,3 GB	444	452	157	57	5	515	127741	203922	525792	455204	1195276	4958329	98,4	5,1
Se_Q_092	U1059s	S. Infantis	186	190	129	131	156	63	6	515	115806	183687	469954	428704	1195269	4979617	98,4	5,1
Se_Q_093	U1066s	S. Infantis	235	239	157	160	175	67	7	515	115806	183687	328299	411906	1195275	4978508	98,4	5,1
Se_Q_094	U1068s	S. Infantis	139	141	91	92	185	75	8	515	75953	194484	371300	236424	605857	4969036	99,2	5,1
Se_Q_095	U1071s	S. Infantis	246	252	170	173	160	66	6	515	105653	181631	470589	439083	1195276	4973584	98,4	5,1
Se_Q_096	U1092s	S. Infantis	281	287	74	76	173	76	7	515	92032	183599	371360	362990	1096372	4945769	98,4	5,1
Se_Q_097	U1095s	S. Infantis	301	308	208	212	168	61	6	504	105653	217634	444101	426654	1195274	4942761	98,4	5,1
Se_Q_098	U1111s	S. Infantis	169	172	119	121	171	62	5	515	105545	217656	470238	454390	1200266	4983958	100,0	5,1
Se_Q_099	U1114s	S. Infantis	206	210	146	148	145	59	4	515	116776	332783	525930	463678	1195276	4970958	98,4	5,1
Se_Q_100	U1119s	S. Infantis	95	97	65	66	161	66	7	515	105429	183687	333629	409911	1195079	4958535	99,2	5,1
Se_Q_101	U1121s	S. Infantis	153	155	108	110	174	64	5	515	96310	203919	470590	441553	1195275	4975149	99,2	5,1
Se_Q_102	U1125s	S. Infantis	173	176	124	126	173	65	6	515	105429	183647	470176	431332	1195275	4971014	99,2	5,1
Se_Q_103	U1128s	S. Infantis	134	137	95	96	133	49	5	515	127734	217930	525798	462431	1195275	4918610	98,4	5
Se_Q_104	U1132s	S. Infantis	135	137	95	96	182	64	6	515	92095	183687	525921	427536	1195272	4964167	98,4	5,1
Se_Q_105	U1133s	S. Infantis	147	150	103	105	166	64	5	515	94331	203916	525876	439913	1200267	5017389	100,0	5,1

Se_Q_106	U1135s	S. Infantis	1010	1,1 GB	480	487	142	59	5	515	145663	203922	525921	458314	1195275	4972749	99,2	5,1
Se_Q_107	U1143s	S. Infantis	91	92	64	65	143	63	5	515	124634	203920	526047	451960	1190461	4973014	99,2	5,1
Se_Q_108	U1145s	S. Infantis	86	87	61	62	160	65	6	502	105429	183687	525971	371372	1029604	5001339	100,0	5,1
Se_Q_109	U1175s	S. Infantis	66	67	47	47	150	72	9	502	115034	201639	280583	207648	438873	4953178	98,4	5,1
Se_Q_110	U1178s	S. Infantis	151	154	105	107	152	70	6	515	105437	203888	525922	327898	824584	4973125	98,4	5,1
Se_Q_111	U1181s	S. Infantis	86	89	60	61	133	57	7	515	148183	201627	370742	357697	1028877	4916214	98,4	5
Se_Q_112	U1187s	S. Infantis	72	74	50	51	174	72	8	515	103538	180947	525800	328857	951266	5012740	99,2	5,1
Se_Q_113	U1192s	S. Infantis	73	74	51	52	156	68	7	515	93967	183687	438876	266279	590274	4955045	98,4	5,1
Se_Q_114	U1193s	S. Enteritidis	88	90	63	63	73	26	4	618	400868	478531	694896	528125	978047	4698575	98,4	4,8
Se_Q_115	U1196s	S. Infantis	134	136	93	94	168	64	6	515	115007	183687	470195	433446	1195276	4971350	98,4	5,1
Se_Q_116	U1401	S. Infantis	67	69	48	48	163	70	8	515	105429	183687	269563	260207	753860	4969119	100,0	5,1
Se_Q_117	U1405s	S. Infantis	89	92	62	63	148	63	6	502	148183	201620	444101	430796	1195276	4973634	98,4	5,1
Se_Q_118	U1407s	S. Infantis	141	143	98	99	172	75	6	504	105429	201632	444101	422133	1195182	4981059	100,0	5,1
Se_Q_119	U1410s	S. Infantis	56	58	39	40	138	56	8	515	137723	194184	324237	227470	443813	4662115	99,2	4,8
Se_Q_120	U1411s	S. Infantis	66	67	46	47	151	65	8	586	138005	194184	383560	229155	444101	4831418	98,4	5
Se_Q_121	U1412s	S. Infantis	59	61	42	43	333	133	16	508	59252	103944	171465	112579	224615	4710491	100,0	4,9
Se_Q_122	U1418s	S. Infantis	98	100	68	69	170	78	6	515	105545	201629	371360	414892	1195276	4988717	98,4	5,1
Se_Q_123	U1424s	S. Infantis	79	81	55	56	172	75	8	515	93976	181340	324484	321795	1004693	4943578	100,0	5,1
Se_Q_124	U1431s	S. Infantis	59	60	41	42	150	71	10	515	114985	201626	239404	198987	439942	4880964	100,0	5
Se_Q_125	U1432s	S. Infantis	57	58	40	40	150	73	9	586	105321	194285	232171	206695	511727	4858079	98,4	5
Se_Q_126	U1436s	S. Infantis	57	58	40	41	127	67	8	515	105321	194175	444101	240905	521906	4872597	100,0	5
Se_Q_127	U1437s	S. Infantis	85	87	59	60	144	64	6	515	145663	194191	525799	380438	1029076	4968250	98,4	5,1
Se_Q_128	U1447s	S. Infantis	85	87	60	61	152	58	7	515	138104	194184	438969	274360	590383	4912998	98,4	5
Se_Q_129	U1459s	S. Infantis	92	94	64	65	180	80	8	515	103482	180526	324266	334060	1045248	4979507	100,0	5,1
Se_Q_130	U1467s	S. Infantis	53	54	37	38	219	93	9	524	47492	122678	209274	155807	437028	3334242	82,3	3,5
Se_Q_131	U1470s	S. Infantis	58	60	40	41	147	72	8	523	105429	194184	278475	253896	653954	4911304	100,0	5
Se_Q_132	U1473s	S. Infantis	47	48	33	33	134	56	8	552	87822	160941	225182	199285	505523	3804469	91,9	4
Se_Q_133	U1483s	S. Infantis	98	100	68	70	176	75	7	515	124227	201649	438969	290447	756072	4975275	98,4	5,1
Se_Q_134	U1489s	S. Infantis	33	34	23	23	69	10	1	544	1862	15179	15179	9533	15179	25781	0,0	39,5 kB
Se_Q_135	U1493s	S. Infantis	71	72	49	50	168	76	11	515	82933	149868	270578	211586	669891	4996844	99,2	5,1
Se_Q_136	U1495s	S. Infantis	84	85	58	59	179	73	8	515	90033	166870	324680	326000	1029381	4971687	98,4	5,1
Se_Q_137			59	60	42	42	67	31	4	564	225385	341534	1266045	541359	1266045	4989379	99,2	5,1
Se_Q_138	U1505s	S. Infantis	88	90	63	64	163	76	7	515	107976	183687	336225	340933	1029044	4946285	100,0	5,1
Se_Q_139	U1506s	S. Infantis	61	63	42	43	147	68	8	515	145663	192205	324412	302782	915788	4906403	99,2	5
Se_Q_140	U1508s	S. Infantis	145	148	102	104	138	60	5	515	105545	203917	525920	452305	1195275	4975692	99,2	5,1
Se_Q_141	U1519s	S. Infantis	244	248	171	173	297	109	8	509	105653	204075	375192	234190	490266	4996052	99,2	5,1
Se_Q_142			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	0

Se_Q_143	U1671s	S. Infantis	137	139	96	98	160	67	5	515	145663	203920	525920	454465	1195089	4974094	100,0	5,1
Se_Q_144	U1672s	S. Infantis	123	125	87	88	178	69	5	515	105545	203916	525896	441228	1195182	4979276	100,0	5,1
Se_Q_145	U1673s	S. Infantis	80	81	56	57	166	67	7	502	114905	183947	443813	361724	1044874	5018874	100,0	5,1
Se_Q_146	U1678s	S. Infantis	89	91	64	64	161	62	7	502	127731	183687	525737	294937	719599	4962469	98,4	5,1
Se_Q_147	U1680s	S. Infantis	89	90	61	62	148	53	6	515	124631	194757	525863	389544	1029137	4915668	99,2	5
Se_Q_148	U1682s	S. Infantis	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	0
Se_Q_148 Se_Q_149	U1682s U1683s	S. Infantis S. Infantis	D 120	D 122	D 85	D 86	D 152	D 62	D 6	D 515	D 145663	D 201624	D 444101	D 429267	D 1195100	D 4965818	D 99,2	0 5,1
Se_Q_148 Se_Q_149 Se_Q_150	U1682s U1683s U1686s	S. Infantis S. Infantis S. Infantis	D 120 141	D 122 143	D 85 100	D 86 101	D 152 163	D 62 62	D 6 4	D 515 515	D 145663 152221	D 201624 398405	D 444101 525799	D 429267 480844	D 1195100 1195275	D 4965818 5024068	D 99,2 99,2	0 5,1 5,1
Se_Q_148 Se_Q_149 Se_Q_150 Se_Q_151	U1682s U1683s U1686s U1688s	S. Infantis S. Infantis S. Infantis S. Infantis	D 120 141 125	D 122 143 127	D 85 100 88	D 86 101 89	D 152 163 187	D 62 62 67	D 6 4 6	D 515 515 515	D 145663 152221 105545	D 201624 398405 183600	D 444101 525799 525879	D 429267 480844 379183	D 1195100 1195275 1027435	D 4965818 5024068 4973991	D 99,2 99,2 99,2	0 5,1 5,1 5,1 5,1

Supplementary Table 2. Details of the 160 prophage genomes used for the custom database using information from Switt et al. (2015) and Gao et al. (2020), and curated using ICTV taxonomy release database

NCBI Accession number	Phage name	Genome Size (bp)	Virus Type	Host
NC_006552.1	Hollowayvirus F116	65195	dsDNA	Pseudomonas aeruginosa
NC_005357.1	Rauchvirus BPP1	42493	dsDNA	Bordetella bronchiseptica
NC_005887.1	Ryyoungvirus bcepC6B	42415	dsDNA	Burkholderia cepacia
NC_015266.1	Kayeltresvirus KL3	40555	dsDNA	Burkholderia ambifaria
NC_025115.1	Arsyunavirus RSY1	40002	dsDNA	Ralstonia solanacearum
NC_015273.1	Kisquattuordecimvirus KS14	32317	dsDNA	Burkholderia cenocepacia
NC_009237.1	Bcepmuvirus E255	37446	dsDNA	Burkholderia thailandensis
NC_005882.1	Bcepmuvirus bcepMu	36748	dsDNA	Burkholderia cenocepacia
NC_005178.1	Casadabanvirus D3112	37611	dsDNA	Pseudomonas aeruginosa
NC_008717.1	Casadabanvirus DMS3	36415	dsDNA	Pseudomonas aeruginosa
NC_011976.1	Salmonella phage epsilon34	43016	dsDNA	Salmonella enterica
NC_030919.1	Salmonella phage 118970_sal4	42418	dsDNA	Salmonella enterica
NC_031019.1	Enterobacteria phage UAB_Phi20	41809	dsDNA	Salmonella enterica
NC_005841.1	Enterobacteria phage ST104	41391	dsDNA	Salmonella enterica
NC_028696.2	Salmonella phage SEN22	41338	dsDNA	Salmonella enterica
NC_014900.1	Salmonella phage ST160	40986	dsDNA	Salmonella enterica
NC_013059.1	Salmonella phage g341c	40975	dsDNA	Salmonella enterica
NC_004348.1	Lederbergvirus ST64T	40679	dsDNA	Salmonella enterica
NC_031946.1	Salmonella Phage 103203_sal5	40443	dsDNA	Salmonella enterica
NC_017985.1	Salmonella phage SPN9CC	40128	dsDNA	Salmonella enterica
NC_018275.1	Salmonella phage vB_SemP_Emek	39783	dsDNA	Salmonella enterica
NC_019501.1	Enterobacteria phage IME10	39646	dsDNA	Escherichia coli
NC_005344.1	Lederbergvirus Sf6	39043	dsDNA	Shigella flexneri
NC_027398.1	Enterobacteria phage Sf101	38742	dsDNA	Escherichia coli
NC_002730.1	Lederbergvirus HK620	38297	dsDNA	Escherichia coli
NC_019445.1	Escherichia phage TL-2011b	44784	dsDNA	Escherichia coli
NC_031077.1	Enterobacter phage Tyrion	41760	dsDNA	Salmonella enterica
NC_004775.2	Uetakevirus epsilon15	39672	dsDNA	Salmonella enterica
NC_016761.1	Uetakevirus SPN1S	38684	dsDNA	Salmonella enterica
NC_028656.1	Oslovirus PA2	65955	dsDNA	Escherichia coli
NC_010237.1	Traversvirus min27	63395	dsDNA	Escherichia coli
NC_028685.1	Oslovirus VASD	62851	dsDNA	Escherichia coli
NC_025434.1	Diegovirus POCJ13	62699	dsDNA	Shigella sonnei
NC_000924.1	Traversvirus tv933W	61670	dsDNA	Escherichia coli
NC_000902.1	Traversvirus II	60942	dsDNA	Escherichia coli
NC_018846.1	Oslovirus ov191	60894	dsDNA	Escherichia coli
NC_029120.1	Diegovirus dv7502Stx	60875	dsDNA	Shigella sonnei
NC_008464.1	Traversvirus tv86	60238	dsDNA	Escherichia coli
NC_004813.1	Marienburgvirus BP4795	57930	dsDNA	Escherichia coli
NC_011356.1	Pankowvirus YYZ2008	54896	dsDNA	Escherichia coli
NC_011357.1	Pankowvirus pv1717	62147	dsDNA	Escherichia coli
NC_018279.1	Salmonella phage vB_SosS_Oslo	49116	dsDNA	Salmonella enterica

				_
NC_006949.1	Enterobacteria phage ES18	46900	dsDNA	Salmonella enterica
NC_019721.1	Enterobacterial phage mEp390	40029	dsDNA	Escherichia coli
NC_019705.1	Shamshuipovirus mEpX2	38759	dsDNA	Escherichia coli
NC_016160.1	Saikungvirus HK75	36661	dsDNA	Escherichia coli
NC_019709.1	Cuauhtlivirus mEpX1	41567	dsDNA	Escherichia coli
NC_019719.1	Saikungvirus HK633	41528	dsDNA	Escherichia coli
NC_019714.1	Kwaitsingvirus HK446	39026	dsDNA	Escherichia coli
NC_019708.1	Nochtlivirus mEp235	37595	dsDNA	Escherichia coli
NC_002166.1	Shamshuipovirus HK022	40751	dsDNA	Escherichia coli
NC_002167.1	Byrnievirus HK97	39732	dsDNA	Escherichia coli
NC_019768.1	Wanchaivirus HK106	41468	dsDNA	Escherichia coli
NC_021190.1	Enterobacteria phage phi80	46150	dsDNA	Escherichia coli
NC_019717.1	Enterobacteria phage HK225	45366	dsDNA	Escherichia coli
NC_019704.1	Enterobacteria phage mEp237	44375	dsDNA	Escherichia coli
NC_019706.1	Aguilavirus mEp043	42780	dsDNA	Escherichia coli
NC_031940.1	Salmonella phage 118970_sal3	77375	dsDNA	Salmonella enterica
NC_003356.1	Enterobacteria phage phiP27	42575	dsDNA	Escherichia coli
NC_021857.1	Shigella phage SfII	41475	dsDNA	Shigella flexneri
NC_004313.1	Salmonella phage ST64B	40149	dsDNA	Salmonella enterica
NC_022749.1	Shigella phage SfIV	39758	dsDNA	Shigella flexneri
NC_003444.1	Enterobacteria phage SfV	37074	dsDNA	Shigella flexneri
NC_001895.1	Peduovirus magyaro (p2)	33593	dsDNA	Escherichia coli
NC_004745.1	Peduovirus L413-C	30728	dsDNA	Yersinia pestis
NC_005340.1	Eganvirus PsP3	30636	dsDNA	Salmonella enterica
NC_001317.1	Eganvirus ev186	30624	dsDNA	Salmonella enterica
NC_005056.1	Peduovirus WPhi	32684	dsDNA	Escherichia coli
NC_022750.1	Peduovirus fiAA91-ss	33628	dsDNA	Escherichia coli
NC_028701.2	Senquatrovirus SEN4	33509	dsDNA	Salmonella enterica
NC_021774.1	Stockinghallvirus FSL SP004	29742	dsDNA	Salmonella enterica
NC_029003.2	Eganvirus SEN1	29733	dsDNA	Salmonella enterica
NC_028943.1	Peduovirus pro483	29237	dsDNA	Escherichia coli
NC_019488.1	Felsduovirus RE2010	34117	dsDNA	Salmonella enterica
NC_010463.1	Enterobacteria phage Fels-2	33693	dsDNA	Salmonella enterica
NC_026014.1	Xuanwuvirus P88	35814	dsDNA	Escherichia coli
NC_019932.1	Entnonagintavirus ENT90	29564	dsDNA	Erwinia amylovora
NC_010393.1	Phage Gifsy-2	45840	unclassified	Salmonella enterica
NC_010392.1	Phage Gifsy-1	48491	unclassified	Salmonella enterica
NC_001416.1	Lambdavirus lambda	48502	dsDNA	Escherichia coli
NC_020845.1	Eurybiavirus MED4213	180977	dsDNA	Prochlorococcus marinus
NC_023693.1	Justusliebigvirus phi92	148612	dsDNA	Escherichia coli
NC_009904.1	Kochikohdavirus EF24C	142072	dsDNA	Enterococcus faecalis
NC_001697.1	Hpunavirus HP1	32355	dsDNA	Haemophilus influenzae
NC_003315.1	Hpunavirus HP2	31508	dsDNA	Haemophilus influenzae
NC_005856.1	Punavirus P1	94800	dsDNA	Escherichia coli
NC_031129.1	Punavirus SJ46	103445	dsDNA	Escherichia coli
NC_010495.1	Macdonaldcampvirus ViIIE1	45051	dsDNA	Salmonella enterica
NC_031924.1	Shuimuvirus IME207	47564	dsDNA	Salmonella enterica
NC_005284.1	Stanholtvirus sv1026b	54865	dsDNA	Burkholderia pseudomallei

			•	
NC_024365.1	Pseudomonas phage phiPSA1	51090	dsDNA	Pseudomonas syringae
NC_031091.1	Pseudomonas phage MD8	43277	dsDNA	Pseudomonas aeruginosa
NC_005859.1	Tequintavirus T5	121750	dsDNA	Escherichia coli
NC_028748.2	Waukeshavirus BMBtp3	51366	dsDNA	Bacillus thuringiensis
NC_028841.1	Lilyvirus lily	44952	dsDNA	Paenibacillus larvae
NC_019401.1	Mimasvirus GAP32	358663	dsDNA	Cronobacter sakazakii
NC_009821.1	Krischvirus georgiaone	164270	dsDNA	Escherichia coli
NC_020079.1	Escherichia virus phAPEC8	147737	dsDNA	Escherichia coli
NC 004827 1	Protonionhano Arnhi22	42022		Actinobacillus
NC_010034.1	Cronobactar phaga ENT30118	30012	deDNA	Cronobactor sakazakii
NC_013504.1	Cronobacter phage EN139118	37012	deDNA	Escherichia coli
NC_010455_1	Haemophilus phage SuMu	37233	deDNA	Haemonkilus narasuis
NC_019455.1	Paylominus hull27AD1	25764	deDNA	Mannhaimia haomolytica
NC_028896.1	Baylorvirus DV112/AF1	22675	deDNA	Facherichia coli
NC_0220390.1	Language duinus K120	22106	deDNA	Escherichia coli
NC_003313.1	Longwoodvirus K139	49454	dsDNA d-DNA	Vibrio cholerae
NC_019522.1	Pectobacterium phage ZF40	48454		Pectobacterium carotovorum
NC_019927.1	Cronobacter phage EN147070	4/611	dsDNA	
NC_015295.1	Erwinia phage phiEt88	47279	dsDNA	Escherichia coli
NC_025458.1	Shewanella sp. phage 1_41	43510	dsDNA	no hit found
NC_026611.1	Gofduovirus GF2	43129	dsDNA	Escherichia coli
NC_027995.1	Jilinvirus CVM10	41666	dsDNA	Escherichia coli
NC_028699.1	Brunovirus SEN34	40740	dsDNA	Salmonella enterica
NC_027339.1	Enterobacteria phage Sfl	38389	dsDNA	Shigella flexneri
NC_024369.2	Vibrio phage X29	41569	dsDNA	Vibrio cholerae
NC_019514.1	Waedenswilvirus S6	74669	dsDNA	Erwinia amylovora
NC_025445.1	Bonnellvirus J865	40981	dsDNA	Pantoea agglomerans
NC_025443.1	Nonanavirus nv9NA	52869	dsDNA	Salmonella enterica
NC_011551.1	Sendosyvirus APSE2	39867	dsDNA	Candidatus Hamiltonella defensa
NC_000935.1	Sendosyvirus APSE1	36524	dsDNA	Candidatus Hamiltonella defensa
NC_009514.1	Phage cdtI DNA	47021	dsDNA	Escherichia coli
NC_031264.1	Brucella phage BiPBO1	46877	dsDNA	Brucella abortus
NC_001901.1	Ravinvirus N15	46375	dsDNA	Escherichia coli
NC_005069.1	Yersinia phage PY54	46339	dsDNA	Yersinia enterocolitica
NC_019716.1	Enterobacteria phage mEp460	44510	dsDNA	Escherichia coli
NC_018843.1	Salmonella phage SSU5	103299	dsDNA	Salmonella enterica
NC_029028.1	Nonagvirus JenP1	60754	dsDNA	Escherichia coli
NC_028776.1	Seuratvirus cajan	59670	dsDNA	Escherichia coli
NC_019545.1	Salmonella phage SPN3UB	47355	dsDNA	Salmonella enterica
NC_005857.1	Klebsiella phage phiKO2	51601	dsDNA	Klebsiella oxytoca
NC_016158.1	Escherichia phage HK639	49576	dsDNA	Escherichia coli
NC_009552.2	Geobacillus virus E2	40863	dsDNA	Bacillus anthracis
NC_018454.1	Cronobacter phage phiES15	39974	dsDNA	Cronobacter sakazakii
NC_015296.1	Kuttervirus ViI	157061	dsDNA	Salmonella enterica
NC_001609.1	Enterobacteria phage P4	11624	dsDNA	Escherichia coli
NC_023575.1	Pseudomonas phage vB_PaeP_Tr60_Ab31	45550	dsDNA	Pseudomonas aeruginosa
NC_020850.1	Vibrio phage VBM1 genomic sequence	38374	dsDNA	Vibrio parahaemolyticus
NC_010391.1	Salmonella phage Fels-1	42723	unclassified	Salmonella enterica

NC_001954.1	Infulavirus If1	8454	ssDNA	Escherichia coli
NC_006294.1	Capistrivirus KSF1	7107	ssDNA	Vibrio cholerae
NC_001332.1	Enterobacteria phage I2-2	6744	ssDNA	Escherichia coli
NC_025824.1	Inovirus M13	6408	ssDNA	Escherichia coli
NC_002371.2	Lederbergvirus p22	41724	dsDNA	Salmonella enterica
NC_049461.1	Peduovirus R18C	31834	dsDNA	Escherichia coli
NC_073747.1	Peduovirus STYP1	28946	ssDNA	Salmonella enterica
NC_020414.2	Zindervirus UAB78	43984	ssDNA	Salmonella enterica
NC_011802.1	Lederbergvirus SE1Spa	41941	ssDNA	Salmonella enterica
NC_016073.1	Kuttervirus SFP10	157950	Circular DNA	Salmonella enterica
NC_019910.1	Agtrevirus SKML39	159624	ssDNA	Salmonella enterica
NC_005282.1	Felixounavirus felixO1	86155	ssDNA	Salmonella enterica
NC_016071.1	Seunavirus PVPSE1	145964	ssDNA	Salmonella enterica
NC_020416.1	Gelderlandvirus s16	160221	ssDNA	Salmonella enterica
NC_015269.1	Tequintavirus SPC35	118351	ssDNA	Salmonella enterica
NC_010583.1	Epseptimavirus EPS7	111382	ssDNA	Salmonella enterica
NC_021777.1	Jerseyvirus jersey	43447	ssDNA	Salmonella enterica
NC_016763.1	Jerseyvirus SE2	43221	ssDNA	Salmonella enterica
NC_009232.2	Jerseyvirus SETP3	42572	ssDNA	Salmonella enterica
NC_006940.2	Jerseyvirus SS3e	40793	ssDNA	Salmonella enterica
NC_019417.1	Chivirus SPN19	59203	Circular DNA	Salmonella enterica
NC_004831.2	Zindervirus SP6	43769	ssDNA	Salmonella enterica
NC_010807.1	Teetrevirus SGJL2	38815	ssDNA	Salmonella enterica

Sample name	NCBI Code	Number of phages detected	Phage Size (pB)	Phage ID	% ID	Reference phage size (pB)	Phage Completeness
S- 0.001	CSC217	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_001	CSG217	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
S- 0.002	CEC222	2	15325	Salmonella phage ST64B	98,016	40149	38,17%
Se_Q_002	CSG232	2	6091	Phage Gifsy-2	98,375	45840	13,29%
S- 0.002	CSC252	2	15325	Salmonella phage ST64B	98,016	40149	38,17%
se_Q_003	CSG252	2	6091	Phage Gifsy-2	98,375	45840	20,40%
			13543	Salmonella phage 118970 sal3	99,801	77375	17,50%
S- 0 004	CSC177	4	6087	Shigella phage SfII	97,601	41475	14,68%
Se_Q_004	CSGI//	4	22005	Phage Gifsy-1	99,973	48491	45,38 %
			6429	Phage Gifsy-2	99,684	45840	13,29%
Sa O 005	CSC175	2	12887	Peduovirus pro483	97,54	29237	44,07%
se_Q_005	CSG175	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0.006	CSC122	3	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_000	CS0152	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			38150	Enterobacteria phage ST104	99,971	41391	95,02 %
Se_Q_007	U113s	3	25721	Salmonella phage 118970 sal3	99,642	77375	33,24%
			31512	Phage Gifsy-2	99,743	45840	68,71 %
Se_Q_008	U114s	1	15325	Salmonella phage ST64B	98,016	40149	38,17%
So 0 000	U120s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_009	01208	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 010	U121a	3	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_010	01218	2	6853	Peduovirus Wphi	97,344	32684	20,97%
Se_Q_011	U123s	1	22122	Peduovirus fiAA91ss	95,257	33628	65,78%
So 0 012	11127s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_012	01278	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So O 013	U128c	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_015	01288	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So O 014	U120s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_014	01298	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So O 015	U210s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
3e_Q_013	02198	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se 0 016	U634s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
SC_Q_010	00348	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%

Supplementary Table 3. Details for all *Salmonella enterica* prophages identified with their respective detected size, prophage reference ID, identity percentage, reference genome size and completeness level

So 0 017	11629	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_017	00388	Z	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 019		2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_018	00398	Z	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
S- 0 010	LIC52	2	22230	Peduovirus pro483	97,54	29237	76,03 %
Se_Q_019	06528	Z	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			16347	Lambdavirus lambda	96,525	48502	33,70%
Se_Q_021	U664s	3	14114	Enterobacteria phage mEp460	98,838	44510	31,71%
			10031	Shigella phage SfII	96,999	41475	24,18%
So 0 022	U666a	2	22230	Peduovirus pro483	97,54	29237	76,03 %
Se_Q_022	00008	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 023	U660a	2	12887	Peduovirus pro483	97,532	29237	44,07%
Se_Q_023	00098		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 024	U672a	2	12887	Peduovirus pro483	97,532	29237	44,07%
024	00728		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 025	U676s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
SC_Q_025	00708	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se 0 026	U670s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
020	00798	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 027	U682s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
	00828	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 028	U684s	2	12887	Peduovirus pro483	97,532	29237	44,07%
020	00848	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se 0 029	U689s	2	22230	Peduovirus pro483	97,532	29237	76,03 %
	00073	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 030	U692s	2	22183	Peduovirus pro483	97,532	29237	75,87 %
050	00723		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 031	U706s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
50_Q_001	07005		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 032	U707s	2	12887	Peduovirus pro483	97,54	29237	44,07%
50_Q_032	01013	2	6853	Peduovirus Wphi	97,344	32684	20,97%
Se O 033	U708s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
50_Q_000	07005		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 034	U711s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
50_2_004	07115		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 035	U712s	2	12945	Peduovirus pro483	97,458	29237	44,27%
50_Q_033	07123	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%

5- 0.026	11715-	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_036	07158	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_037	U718s	0					
Se_Q_038	U719s	1	12887	Peduovirus pro483	97,532	29237	44,07%
S. O. 020	11702	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_039	07238	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_040							
Se_Q_041	U728s	1	12887	Peduovirus pro483	97,532	29237	44,07%
Se_Q_042	U729s	1	12887	Peduovirus pro483	97,532	29237	44,07%
So 0 042	11750	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_043	07588	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
S- 0.044	11750-	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_044	07398	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
S- 0.045		2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_045	U7628	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0.046	U760a	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_040	07698	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_047	U773s	1	12887	Peduovirus pro483	97,532	29237	44,07%
So 0 049	11901	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_048	08015	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_049	U804s	1	12887	Peduovirus pro483	97,532	29237	44,07%
Sa 0 050	11904	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_030	U800s	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_051	U814s	1	12887	Peduovirus pro483	97,532	29237	44,07%
			12887	Peduovirus pro483	97,532	29237	44,07%
Se_Q_052	U815s	3	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			6853	Peduovirus Wphi	97,344	32684	20,97%
			12887	Peduovirus pro483	97,532	29237	44,07%
Se_Q_053	U818s	3	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			6853	Peduovirus Wphi	97,344	32684	20,97%
			12887	Peduovirus pro483	97,532	29237	44,07%
Se_Q_054	U855s	3	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			6853	Peduovirus Wphi	97,344	32684	20,97%
			12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_055	U857s	3	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			6853	Peduovirus Wphi	97,344	32684	20,97%
Se_Q_056	U860s	2	22183	Peduovirus pro483	97,54	29237	75,87 %

			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_057	U863s	2	12945	Peduovirus pro483	97,458	29237	44,27%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_058	U865s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_059	U866s	2	22230	Peduovirus pro483	95,182	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_060	U869s	0					
Se_Q_061	U871s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_062	U873s	1	22183	Peduovirus pro483	97,54	29237	75,87 %
	U875s	3	15325	Salmonella phage ST64B	98,16	40149	38,17%
Se_Q_063			6091	Phage Gifsy-2	98,375	45840	13,29%
			12914	Peduovirus pro483	96,856	29237	44,17%
Se_Q_064	U878s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 065	U880s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_065			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0.066	U883s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_000			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0.067	U885s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_007			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
52 0 068	U888s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_068			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 060	U889s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
se_Q_069			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_070	U890s)s 2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_071	U895s	3 2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 072	U897s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
se_Q_0/2			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_073	U899s	0					
Se_Q_074	U969s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_075	U972s	72s 2	12945	Peduovirus pro483	97,458	29237	44,27%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%

Se_Q_076	U973s	1	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_077	U976s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_078	U979s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_079	U980s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_080	U983s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 081	U986s	2	22230	Peduovirus pro483	95,182	29237	76,03 %
Se_Q_081			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
5- 0.022	U998s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_082			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_083	U1000s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 084	L1002	2	22230	Peduovirus pro483	95,182	29237	76,03 %
Se_Q_084	010038	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 085	U1006s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_085			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 086	U1010s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_080			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 087	U1019s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
007			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Sa O 088	U1051s	2	12887	Peduovirus pro483	97,54	29237	44,07%
000			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 089	U1052s	3 2	12887	Peduovirus pro483	97,54	29237	44,07%
SC_Q_007			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_090	U1056s	2	12945	Peduovirus pro483	97,458	29237	44,27%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_091	U1057s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_092	U1059s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_093	U1066s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_094	U1068s	s 2	22230	Peduovirus pro483	95,182	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%

Se_Q_095	U1071s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_096	U1092s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_097	U1095s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_098	U1111s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_099	U1114s	2	12945	Peduovirus pro483	97,458	29237	44,27%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 100	U1119s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_100			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So O 101	111101	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_101	011218	2	6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 102	U1125s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_102			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 102	U1128a	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_105	011288		6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 104	U1132s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_104			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 105	U1133s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_105			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 106	U1135s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_100			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 107	U1143s	2	22230	Peduovirus pro483	95,182	29237	76,03 %
Se_Q_107			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_108	U1145s	45s 2	22230	Peduovirus pro483	95,182	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_109	U1175s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_110	U1178s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_111	U1181s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_112	U1187s	1187s 2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_113	U1192s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
----------	--------	---	-------	-----------------------------	--------	--------	---------
Se_Q_114	U1193s	2	15325	Salmonella phage ST64B	98,016	40149	38,17%
			6091	Phage Gifsy-2	98,375	45840	13,29%
Se_Q_115	U1196s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_116	U1401	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_117	U1405s	2	22183	Peduovirus pro483	97,54		
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_118	U1407s	2	12887	Peduovirus pro483	97,532	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_119	U1410s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_120	U1411s	2	22230	Peduovirus pro483	95,182	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
S- 0 121	U1412a	2	13532	Enterobacteria phage mEp460	98,928	44510	30,40%
	014128		10031	Shigella phage SfII	96,999	41475	24,18%
So 0 122	U1418s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 123	U1424s	2	22183	Peduovirus pro483	97,54		
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 124	U1431s	2	22230	Peduovirus pro483	97,54	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_125	U1432s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_126	U1436s	2	12887	Peduovirus pro483	97,532	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_127	U1437s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_128	U1447s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_129	U1459s	2	22230	Peduovirus pro483	95,182	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_130	U1467s	1	10688	Punavirus SJ46	98,765	103445	10,33%
Se_Q_131	U1470s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_132	U1473s	2	22230	Peduovirus pro483	97,54	29237	76,03 %

			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_133	U1483s	2	22230	Peduovirus pro483	97,54	29237	76,03 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_134	U1489s	0					
Se_Q_135	U1493s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_136	U1495s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_137		0					
Se_Q_138	U1505s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_139	U1506s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
	U1508s	3	12887	Peduovirus pro483	97,532	29237	44,07%
Se_Q_140			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			6853	Peduovirus Wphi	97,344	32684	20,97%
Se_Q_141	U1519s	3	12887	Peduovirus pro483	97,532	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
			6853	Peduovirus Wphi	97,344	32684	20,97%
Se_Q_142							
So 0 142	U1671s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
Se_Q_145			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
So 0 144	U1672s	2	12887	Peduovirus pro483	97,54	29237	44,07%
Se_Q_144			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se O 145	U1673s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
3C_Q_143			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_146	U1678s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_147	U1680s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_148	U1682s	0					
Se_Q_149	U1683s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_150	U1686s	2	22183	Peduovirus pro483	97,54	29237	75,87 %
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%
Se_Q_151	U1688s	2	12887	Peduovirus pro483	97,54	29237	44,07%
			6055	Stockinghallvirus FSL SP004	95,574	29742	20,36%

Supplementary Figure 1. Box plots illustrating the difference between the prior study by Mejía et al. (2020) (depicted in red) and the current work (depicted in blue), focusing on various assembly and quality control statistics. A) Differences in the number of reads obtained after quality control for raw reads. B) Differences in the number of contigs/scaffolds obtained. C) Differences in N50 measured in fragment size. D) Differences in L50 measured in number of contigs/scaffolds \geq N50. E) Differences in genome size obtained. F) Differences in file size obtained.

Supplementary Figure 2. Phylogenetic relationships using the complete prophage genome. Reference sequences are written in green and found sequences in red. 3 clusters were observed: Cluster A (yellow) with *Peduovirus*-like sequences, ClusterB (cyan) with *Gifsy*-like sequences, and Cluster C with *Lederbergvirus*-like sequences. Maximum likelihood tree constructed with IQ-TREE2 with a fast bootstrap of 1000 iterations using a general time reversible model with gamma distribution (GTR+G) predicted with MEGAX.