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“And here, I am afraid I must end by saying that the difficulties are so great in the way of
forming anything like a comprehensive theory that we cannot even imagine a finger-post

pointing to a way that lead us towards the explanation. That is not putting it too strongly. I
can only say we cannot now imagine it. But this time next year,– this time ten years, - this
time one hundred years, – probably it will be just as easy as we think it is to understand that

glass of water, which seems now so plain and simple. I cannot doubt but that these things,
which now seem to us so mysterious, will be no mysteries at all; that the scales will fall from
our eyes; that we shall learn to look on things in a different way– when that which is now a

difficulty will be the only common-sense and intelligible way of looking at the subject.”

- William Thomson,

later known as Lord Kelvin, in his 1889 Presidential Address to the Institution of Electrical
Engineers on his failed vortex theory of the atom [1].
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RESUMEN

En 2002, Lorenzo Leal desarrolló las ecuaciones clásicas de movimiento para la teoŕıa de

Chern-Simons acoplada con part́ıculas de Wong [2]. En el contexto de la teoŕıa de nudos,

es evidente que al definir formas espećıficas para las corrientes de las part́ıculas en términos

de caminos cerrados en el espacio-tiempo, la acción “on-shell” se relaciona directamente con

un invariante de nudo. Sin embargo, la presencia de un sistema de ecuaciones no lineales

acopladas dificulta la derivación de una solución anaĺıtica. Al emplear un método perturbativo,

se tiene que a cada orden le corresponde un invariante de nudo distinto. El término a orden

cero corresponde al número de anudamiento de Gauss, mientras que el término a primer orden

determina el anudamiento de los anillos Borromeanos. Para aliviar la complejidad del análisis

perturbativo, se ha demostrado que estos términos también se pueden derivar partiendo desde

una teoŕıa de campos abeliana acoplada con las corrientes apropiadas [3]. Este trabajo adopta

una “metodoloǵıa de acción intermedia” para construir una expresión anaĺıtica para el enlace de

cuatro componentes.

Palabras clave: teoŕıa de Chern-Simons, teoŕıa de nudos, invariante de nudo, invariante

de enlace, número de anudamiento de Gauss, anillos Borromeanos, teoŕıa topológica de campos,

enlace de cuatro componentes, part́ıculas de Wong.
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ABSTRACT

In 2002, Lorenzo Leal developed the classical equations of motion within the Chern-Simons

theory coupled with Wong Particles [2]. In the realm of knot theory, it is apparent that by

defining specific forms of currents in terms of closed loops in space-time, the “on-shell” action

relates directly to a knot invariant. Yet, the presence of a system of coupled non-linear equations

hinders an analytical solution derivation. Employing perturbative methods reveals that each

order corresponds to a distinct knot invariant. The zeroth-order term corresponds to the Gauss

Linking number, while the first-order term quantifies the linking of Borromean rings. To alleviate

the potential complexity of perturbation, it has been demonstrated that these terms can also

be derived by initiating from an Abelian field theory coupled with appropriate currents [3].

This work adopts such an “intermediate action methodology” to construct an expression for the

four-components link.

Keywords: Chern-Simons theory, knot theory, knot invariant, link invariant, Gauss linking

number, Borromean rings, topological field theory, four-components link, Wong particles.
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Introduction

Chern-Simons theory is a topological quantum field theory, meaning that physical observables
are independent of the metric. In the late 1980s, Edward Witten demonstrated that the expected
values of non-local observables (Wilson loops) in Chern-Simons theory, which can be represented
by knots in three-dimensional space, correspond to knot invariants generalizing Jones polynomials
[4]. Since then, there have been significant advances in the study of the theory from both a
physical and mathematical perspective.

In 2002, a study was conducted by considering the classical equations of motion of Chern-
Simons theory coupled with particles carrying chromoelectric charge (non-AbelianWong particles)
[2]. The action of the Chern-Simons-Wong theory is given by:

S = SCS + Sint, (1)

SCS = −Λ−1
∫
d3xεµνρTr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
, (2)

Sint =

n∑
i=1

∫
γi

dτ Tr
(
Kig

−1
i (τ)Dτgi(τ)

)
, (3)

where SCS is the Chern-Simons action for SU(N), Sint corresponds to the field-particle interaction
of n Wong particles, Λ is a constant, εµνρ is the levi-civita symbol, Aµ is the electromagnetic
potential, gi(τ) are matrices associated with the internal degrees of freedom of the particles,
Dτgi(τ) is the covariant derivative of gi(τ) along the worldline of the ith particle, and Ki is a
constant element of the algebra related to the initial value of the chromo-electric charge Ii(τ)
defined by:

Ii(τ) ≡ gi(τ)Kig
−1
i (τ). (4)

In the context of knot theory, it is observed that for a particular form of the current in terms
of closed paths in space-time, the “on-shell” action corresponds to a link invariant. However,
because a system of coupled non-linear equations is obtained, it is not possible to find analytical
solutions. Therefore, a perturbative solution method was proposed [2]. In that work, the first two
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terms of the perturbative series were found. The zeroth-order term corresponds to the second
Milnor’s linking coefficient:

S(0) =
1

4

∑
i,j

Iai (0)I
a
j (0)L(i, j), (5)

where

L(i, j) ≡ 1

4π

∮
γi

dzµ
∮
γj

dyρ
(z − y)β

|z − y|3
ϵµνρ, (6)

corresponds to the Gauss linking number (GLN) of γi and γj . The first-order term of the
perturbative series is the third Milnor’s coefficient (TMC), which measures the linking of Borromean
rings and is given by:

S(1)(1, 2, 3) =− 1

2

∫
d3xϵµνρD1µ(x)D2ν(x)D3ρ(x)−

− 1

2

∫
d3x

∫
d3y

{
T

[µx,νy]
1 D2µ(x)D3ν(y)+

+ T
[µx,νy]
2 D3µ(x)D1ν(y)+

+T
[µx,νy]
3 D1µ(x)D2ν(y)

}
,

(7)

where the bilocal object Tµx,νyγi associated with the curve γi is introduced:

Tµx,νyγi ≡
∮
γi

dzµ
∫ z

0

dz′νδ3(x− z)δ3 (y − z′) , (8)

and we have used the definitions:

T [µx,νy]
γi ≡ 1

2

(
Tµx,νyγi − T νx,µyγi

)
, (9)

Diα(x) ≡
1

4π

∮
γi

dzγ
(x− z)β

|x− z|3
ϵαβγ . (10)

On the other hand, the Abelian Chern-Simons theory only reproduces the GLN. For this
reason, the question about if there exists an Abelian theory that can exactly reproduce, for
example, the TMC naturally arises. Thus, it seems feasible to study topological theories intermediate
between Abelian and non-Abelian Chern-Simons theories. In [3], an intermediate Abelian action
is proposed, which exactly reproduces the first term of the non-Abelian perturbative series of
Chern-Simons-Wong theory, and is given by

S =

∫
d3xεµνρ

{
4Aiµ(x)∂νaiρ(x) +

2

3
εijkaiµ(x)ajν(x)akρ(x)

}
− 2

∫
d3xTµxi Aiµ(x)+

+

∫
d3x

∫
d3yεijkTµx,νyi ajµ(x)akν(y),

(11)

where Aiu(x) and aiu(x) are two independent sets of Abelian gauge fields. In this work, we
propose to determine an Abelian intermediate action that reproduces the link invariant for the
four-components link, similar to the non-Abelian Chern-Simons-Wong theory [5].
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Chapter 1

Abelian Chern-Simons Theory

The Abelian Chern-Simons action is given by:

SCS[A] ≡
k

4π

∫
M

d3xεµνρAµ∂νAρ, (1.1)

where M is the (2 + 1)-dimensional Minkowski space, (µ, ν, ρ) ∈ {0, 1, 2}, Aµ(x) is a U(1) gauge
field, and k ∈ R is called the Chern - Simons level. We will show in the next section that Aµ is
an analogous to the photon field of electrodynamics. We will further investigate the properties of
this theory when coupled with a matter field, particularly under a double exchange of particles
to define an anyon. Additionally, we will explore its relationship with the GLN, highlighting its
topological invariance. This chapter is based on the work of D. Grabovsky [6].

1.1 Equations of motion for the classical theory

Note that if we make variations of (1.1) with respect to the field Aµ, we obtain:

δSCS = 0 ⇒ k

4π
εµνρFνρ = 0 ⇒ F = 0, Fµν = ∂µAν − ∂νAµ, (1.2)

trivial equations of motion, because there are no propagating local degrees of freedom. Note that
the object Fµν is formally equal to the Maxwell’s field strength tensor for electromagnetism. In
order to get non-trivial equations of motion we can couple the Chern-Simons action with a matter
term, e.g., a Dirac fermion ψ which produces a current:

S = SCS + Sψ + Sint, (1.3)
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Sψ =

∫
M

d3xψ̄(i/∂ −m)ψ, (1.4)

Sint = −
∫
M

d3xeAµψ̄γ
µψ =

∫
M

d3xAµJ
µ, (1.5)

where Sψ is the Dirac action, Sint is an interaction term, ψ is a spinor, ψ̄(x) = ψ(x)†γ0 is the
Dirac adjoint, /∂ = γµ∂µ, and γ

µ are the Dirac gamma matrices. Again, if we consider variations
of the action (1.3) with respect to the gauge field Aµ, we can write the equations of motion in
terms of the current Jµ as follows:

k

4π
εµνρFνρ =

k

2π
εµνρ∂νAρ = Jµ. (1.6)

1.2 Electric and magnetic fields

The field strength tensor Fµν in a (2 + 1)-dimensional Minkowski space is given by:

Fµν =

 0 E1 E2

−E1 0 B
−E2 −B 0

 , (1.7)

which is related with the electric Ei and magnetic B field as:

Ei ≡ F0i = −Fi0 = −∂iA0 + ∂0Ai,

B ≡ 1

2
εijFij = εij∂iAj ,

(1.8)

similar to Maxwell’s theory in two dimensions. If we write the current in the form Jµ = (ρ, J⃗), it
is easy to check that the temporal and spatial components of the equations of motion (1.6) are:

ρ =
k

2π
B, J i =

k

2π
εijEj , (1.9)

respectively. Note that in this theory B is produced by electric charges, and E⃗ is a consequence
of the electric currents. Thus, the sources of the electric and magnetic fields in Chern-Simons
theory have changed with respect to the electromagnetism. The physical situation is shown in
Figure 1.1.
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Figure 1.1: The moving charges over the plane generate the electric field E⃗, while the magnetic
field B for each particle points in an imaginary “z” direction. Actually, this scenario is physically
accurate in the quantum Hall effect: each source charge generates magnetic flux lines that pass
through the spatial manifold.

1.3 Double exchange of particles and anyons

Now, let us solve the CS equations (1.9) with sources ρ = δ(2) (⃗x− x⃗a(t)) and J⃗ = 0⃗. We will

work in Coulomb gauge, where ∇⃗ · A⃗ = ∂iA
i = 0. If we replace these sources into (1.9), write out

the E⃗ and B fields in terms of Aµ = (0, Ai) as in (1.8), and use the identity ∇2 log |⃗x| = 2πδ(2)(⃗x),
then the solution to (1.9) is given by

Ai(⃗x, t) =
1

k
εij
xj − xja(t)
|⃗x− x⃗a|2

= −1

k
∂iθ (⃗x− x⃗a(t)) , θ(⃗x) ≡ tan−1

(y
x

)
= arg(⃗x). (1.10)

Note that Ai is a total derivative, representing a pure gauge configuration that can vanish
through a gauge transformation adding the total derivative of ω(x) ≡

(
1
k

)
θ (⃗x− x⃗a(t)). Consequently,

A(x) ≡ 0, wich implies E⃗ = 0⃗ and B = 0. However, this gauge transformation also influences
the matter field ψ, which acted as the source charge by imparting a nontrivial Aharanov-Bohm
phase dependent on its angular position θ and on k,

ω =
1

k
θ =⇒

{
Ai(x) −→ A′(x) = Ai(x) + ∂iω(x) = 0
ψ(x) −→ ψ′(x) = eiω(x)ψ(x) = eiθ/kψ(x)

. (1.11)

Now, consider two charges where one remains stationary, while the other orbits the first
as shown in Figure 1.2. We conceptualize this process as a double exchange, where the moving
charge swaps positions with the stationary one twice, occurring once for each π rotation. According
to equation (1.11), the phase acquired by the moving particle is expressed as

∆θ = 2π =⇒ ψ(x) −→ exp

(
2πi

k

)
ψ(x) = exp

(
i

∮ θ=2π

θ=0

dxiAi

)
ψ(x) ̸= ψ(x). (1.12)
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If these particles were bosons or fermions, ψ would return to itself under double exchange.
However, as indicated by (1.12), by tuning k, we can assign ψ arbitrary statistics valued in U(1).
Consequently, these particles are anyons, capable of exhibiting any statistics.

Figure 1.2: Anyons.

1.4 Gauss linking number

In this section, we will explore the topological invariance of the Abelian Chern-Simons theory
and how a suitable current can lead us to obtain a link invariant. Recall that the sourced
Chern-Simons action is given by

S̃CS = SCS + Sint =

∫
M

d3x

(
k

4π
εµνρAµ∂νAρ +AµJ

µ

)
. (1.13)

It might seem that the interaction term breaks topological invariance, but consider a “point-
like” current density for two particles defined by

Jµ =

2∑
a=1

Jµa ≡
2∑
a=1

∮
γa

dxµaδ
(3) (x− xa(t)) , a ∈ {1, 2}. (1.14)

This current accommodates topological invariance because it transforms like a vector density.
Since the equations of motion (1.6) take the form of Ampere’s Law, then its solutions have to be
expressed as the Biot-Savart Law. Thus, the classical solution of Aµ(x) in terms of the current
density (1.14) is given by

Aµ(x) =
1

2k

∫
M

d3yεµνρ
∂νJρ(y)

|x− y|
=

1

2k

2∑
a=1

∮
γa

dxνaεµνρ
(x− xa)ρ

|x− xa|3
. (1.15)
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Next, we substitute the solution (1.15) into S̃CS (1.13) in order to obtain S̃CS on−shell. Since
it is quadratic in Aµ, the sourced action includes terms involving two integrals over the loops
γa. This characteristic captures the non-local aspect of interactions between the two localized
particles. However, the terms that involve double integration over the same loop are divergent,
depicting self-interactions. These terms persist even if J describes only a single particle. Thus,
the on-shell action is given by

S̃CS on−shell =
1

2k

∑
a,b

∮
γa

dxµa

∮
γb

dxνb εµνρ
(x1 − x2)ρ

|x1 − x2|3
. (1.16)

The last expression is related to the GLN, which is a link invariant that quantifies the number
of times one curve intersects the surface of another in an oriented way. We will demonstrate
this fact later in this work. Now, a question arises: do more complex link invariants than GLN
exist that can be obtained from the on-shell action of some topological theory? The answer is
affirmative, and in the next chapter we will work with the non-Abelian Chern-Simons theory
coupled with Wong particles, and we will explore the link invariants associated with it.
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Chapter 2

Non-Abelian Chern-Simons
Theory

As we saw in the previous chapter, the only link invariant that can be obtained through the
Abelian Chern-Simons theory is the GLN. Throughout this chapter, which is based on the work
of L. Leal [2] and E. Fuenmayor [5], we will delve into the generalities and link invariants that
can be derived from the non-Abelian Chern - Simons theory coupled with Wong particles, which
carry chromo-electric charge, analogous to those appearing in QCD. As we will demonstrate later,
interpreting the link invariant of the complete on-shell action is a nontrivial task. Therefore, we
propose a perturbative analysis, allowing us to obtain distinct contributions of link invariants at
different orders.

2.1 Generalities

The action of the Chern-Simons-Wong theory is given by:

S = SCS + Sint, (2.1)

SCS = −Λ−1
∫
d3xεµνρTr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
, (2.2)

Sint =

n∑
i=1

∫
γi

dτ Tr
(
Kig

−1
i (τ)Dτgi(τ)

)
, (2.3)

where SCS is the Chern-Simons action for SU(N), Sint corresponds to the field-particle interaction
of n Wong particles, γi corresponds to the worldline of the i-th particle with coordinates zi(τ),
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Λ is a constant, Aµ is a non-Abelian gauge field (analogous to the electromagnetic potential as
it was shown in the previous chapter), gi(τ) are matrices associated with the internal degrees of
freedom of the particles (elements of SU(N)), Dτgi(τ) is the covariant derivative of gi(τ) along
the worldline of the i-th particle, and Ki is a constant element in the algebra related to the initial
value of the chromoelectric charge Ii(τ) defined by

Ii(τ) ≡ gi(τ)Kig
−1
i (τ) = Iai T

a. (2.4)

In the previous expression Ki ≡ Ka
i T

a, where T a are the N2 − 1 generators of the group
algebra. Note that Ii(τ) is an element of SU(N). It is well known that the Chern-Simons action
is gauge invariant if the field Aµ transforms as follows

Aµ → AΩ
µ = Ω−1AµΩ+ Ω−1∂µΩ. (2.5)

The action Sint is gauge invariant if it satisfies

Ki → KΩ
i = Ki, (2.6)

gi → gΩi = Ω−1gi, (2.7)

IΩi = Ω−1IiΩ. (2.8)

We define the covariant derivative of gi(τ) as

Dτgi(τ) = ġi(τ) +Ai(τ)gi(τ). (2.9)

Note that the operator Dτ transforms as one would expect from a covariant derivative

(Dτgi)
Ω
= Ω−1Dτgi. (2.10)

In addition, we mention that we are using the conventions and notation

Tr
(
T aT b

)
= −1

2
δab, (2.11)

T aT b = fabcT c, (2.12)

Aµ = AaµT
a, (2.13)
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Ai = Aµ (zi(τ)) ż
µ
i (τ), (2.14)

where fabc is the structure constant of the algebra, δab is the Kronecker delta, Aaµ are Abelian
gauge fields, and żµi (τ) is the velocity of the i-th Wong particle.

To take variations with respect to Aaµ(x), it is convenient to rewrite Sint as

Sint =

n∑
i=1

∫
γi

dτ żµi (τ)
(
tr
(
Kig

−1
i ∂µgi

)
+ tr

(
Kig

−1
i Aµ (zi) gi

))
=

n∑
i=1

∫
γi

dτ żµi (τ) tr
(
Kig

−1
i ∂µgi

)
+

∫
d3x

n∑
i=1

∫
γi

dτ żµi (τ)δ
3 (x− zi(τ) tr (Ii(τ)Aµ (zi(τ))) .

(2.15)

When applying the principle of least action to (2.1), we obtain the equation of motion for
the field

εµνρFνρ = ΛJµ, (2.16)

Jµ(x) =

n∑
i=1

∫
γi

dτ żµi (τ)Ii(τ)δ
3 (x− zi(τ)) , (2.17)

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , (2.18)

where Fµν is the field strength tensor, and Jµ is the current density. To vary the action (2.1)
with respect to the internal variables, we must proceed with caution, as they are matrices of
SU(N), whose matrix elements are not independent. We use the following parameterization

gi = gi (ξi) = eξ
a
i T

a

. (2.19)

The variation of Sint with respect to the N2−1 (multiplied by the number of Wong particles)
independent parameters ξai leads to the Euler-Lagrange equations:

∂L

∂ξai
− d

dτ

(
∂L

∂ξ̇ai

)
= 0, (2.20)

where

L ≡
n∑
i=1

tr
(
Kig

−1
i (τ)Dτgi(τ)

)
=

n∑
i=1

tr
(
Kig

−1
i (ġi +Aigi)

)
.

(2.21)
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Therefore, by replacing (2.21) into (2.20), the equation of motion for the chromo-electric
current of the i-th particle is given by:

DτIi ≡ İi + [Ai, Ii] = 0. (2.22)

It is possible to formally integrate this equation to obtain the general solution

Ii(τ) = Ui(τ)Ii(0)U
−1
i (τ), (2.23)

where

Ui(τ) = T exp

{
−
∫ τ

0

Ai (τ
′) dτ ′

}
. (2.24)

Indeed, note that

U̇i(τ) = lim
ϵ→0

(1−Ai(τ + ϵ)ϵ)Ui(τ)− Ui(τ)
ϵ

= lim
ϵ→0

(−Ai(τ + ϵ)Ui(τ)) = −Ai(τ)Ui(τ) ⇒ DτUi(τ) = 0,
(2.25)

from where
d

dτ

(
U−1i (τ)

)
= U−1i (τ)Ai(τ). (2.26)

The equations of motion for the field Aµ must satisfy the following consistency condition.
Note that by taking the covariant derivative of equation (2.16)

εµνρDµFνρ = ΛDµJ
µ, (2.27)

by using the Bianchi identities
εµνρDµFνρ = 0, (2.28)

we arrive at
DµJ

µ = 0. (2.29)

Now, the above condition can be written as∑
i

∫
dτ

(
∂

∂xµ
δ3 (x− zi(τ)) żµi (τ)Ii(τ) + δ3 (x− zi(τ)żµi (τ) [Aµ(x), Ii(τ)])

)
= 0. (2.30)

The first term of equation (2.30) is equivalent to

∑
i

(
−
∫ T

0

dτ
d

dτ

{
δ3 (x− zi(τ)) Ii(τ)

}
+

∫ T

0

dτδ3 (x− zi(0))

)
, (2.31)
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and, in turn, the first term of equation (2.31) is equivalent to:∑
i

(
−Ii(T )δ3 (x− zi(T )) + Ii(0)δ

3 (x− zi(0))
)
. (2.32)

If we demand that Ii(T ) = Ii(0) (remember that zi(T ) = zi(0)), then (2.32) vanishes.
Substituting (2.31) into (2.30), we have that DµJ

µ leads to:

∑
i

∫ T

0

dτδ3 (x− zi(τ))DτIi = 0. (2.33)

Thus, the previous equation is satisfied because DτIi = 0 (the equation of motion for the
chromo-electric current, produced by taking variations with respect to the internal variables ξai ).
Therefore, the Chern-Simons-Wong theory is consistent.

The action (2.1) is gauge invariant and independent of the metric, meaning it is a topological
action. This aspect will serve as the foundation for the perturbative scheme in order to obtain
link invariants, which will be discussed in the next section.

2.2 Perturbative approach

Now we will focus our attention on the perturbative development of the model. The equations
of motion (2.16) and (2.22) constitute a highly nonlinear system of equations for Aaµ and Iai , for
which we do not intend to obtain exact solutions. Nevertheless, let us assume that such solutions
exist and that under certain boundary conditions, we can derive the potential Aaµ as a functional
of the curves γi (already given, which are living on space-time) that constitute the current Jµ in
equation (2.16), namely

Aaµ = Aaµ [γi] . (2.34)

The equation to solve would then be

εµνρFνρ = Λ

n∑
i=1

∫
γi

dτ żµi (τ)Ii[A]δ
3 (x− zi(τ)) , (2.35)

and its solutions are expected to be functionals of the curves that underlie the currents, as implied
by equation (2.34). By substituting Aaµ [γi] into equation (2.1), we can then express the action
S as a functional of the curves γi, denoted as

S = S[γi], (2.36)

effectively eliminating all dependence on Aaµ. Given that the action is independent of the metric,
the action on the equations of motion S[γi] stands as a topological invariant. However, it is a
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topological invariant that hinges on a collection of curves, precisely characterizing it as a knot
invariant (or more accurately, a link invariant: a link being a collection of knots).

Hence, we have the opportunity to generate analytical expressions for link invariants through
the solutions of the classical Chern-Simons-Wong equations and the computation of the action
on the equations of motion (on-shell action). However, given the intricate nature of the equations
at hand, the aforementioned seems to be nothing more than a mere possibility, unless an
approximate solution scheme is embraced, such that we preserve the invariance under diffeomorphisms
of the problem. This scheme can be outlined as follows: equation (2.35) can be solved perturbatively,
expanding in powers of the parameter Λ. Substituting such a perturbative solution into the action
yields the on-shell action expressed as a series of powers in Λ:

Son− shell ([γ]; Λ) =

∞∑
p=0

ΛpS(p)[γ], (2.37)

where S(p)[γ] is the p-th coefficient of the expansion. Now, if Son−shell is a link invariant, then its
derivatives with respect to Λ must also be link invariants. Thus, it follows that the coefficients
S(p)[γ] are link invariants. A practical implication of this straightforward argument is that
obtaining the complete series (2.37) is not necessary to derive knot invariants.

Now, in order to calculate Son−shell, note that (here we omit the index i for convenience) if
we combine equations (2.4) and (2.23), we have

I(τ) = U(τ)g(0)Kg−1(0)U−1(τ)

= g(τ)Kg−1(τ).
(2.38)

Recall that g(τ) = U(τ)g(0) and using the equation (2.25):

Dτg(τ) = 0 ⇒ DτIi(τ) = 0, (2.39)

then
Sint |on-shell = 0. (2.40)

Therefore, it only remains to consider SCS |on-shell . Note that

İi + [Ai, Ii] = 0 ⇒ dIai (τ)

dτ
+ ΛRaci (τ)Ici (τ) = 0, (2.41)

where
Raci ≡ fabcż

µ
i a

b
µ (zi) , (2.42)

aµ ≡ Λ−1Aµ, (2.43)
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and the solution to equation (2.41) is

−→
Ii (τ) = T exp

[
−Λ

∫ τ

0

dτ ′Ri (τ
′)

]
−→
Ii (0), (2.44)

where I⃗i is the vector of N2 − 1 components Iai , and Ri is the matrix of (N2 − 1)2 elements Rabi
given in (2.42). By performing a Taylor series expansion, the equations of motion (2.16) for the
field Aµ can be written as

2εµνρ∂νa
a
ρ(x) =− Λεµνρfabcabν(x)a

c
ρ(x) +

n∑
i=1

∮
γi

dzµδ3(x− z)Iai (0)

− Λ

n∑
i=1

∮
γi

dzµ
∫ z

0

dzµ1

1 Raa1µ1
(z1) δ

3(x− z)Ia1i (0)

+ Λ2
n∑
i=1

∮
γi

dzµ
∫ z

0

dzµ1

1

∫ z1

0

dzµ2

2 Raa1µ1
(z1)R

a1a2
µ2

(z2)

δ3(x− z)Ia2i (0)

...

+ (−Λ)p
n∑
i=1

∮
γi

dzµ
∫ z

0

dzµ1

1 . . .

∫ zp−1

0

dzµp
p Raa1µ1

(z1)

. . . Rap−1ap
µp

(zp) δ
3(x− z)Iapi (0)

... .

(2.45)

If we introduce the power series

aaµ(x) =

∞∑
p=0

Λpa(p)aµ (x), (2.46)

from where the p-th order term reads

2εµνρ∂νa
(p)a
ρ (x) = −εµνρfabc

r+s=p−1∑
r,s=0

a(r)bν a(s)cρ +

+

p∑
r=1

(−1)r
n∑
i=1

∮
γi

dzµ
∫ z

0

dzµ1

1 . . .

∫ zr−1

0

dzµr
r

s1+...+sr=p−r∑
s1,...,sr=o

R(s1)aa1
µ1

(z1)×

×R(s2)a1a2
µ2

(z2) . . . R(sr)ar−1ar
µr

(zr) I
ar
i (0)δ3(x− z),

(2.47)

for p ≥ 1. If p = 0, the corresponding equation is

2εµνρ∂νa
(0)a
ρ =

n∑
i=1

∮
γi

dzµi δ
3 (x− zi) Iai (0). (2.48)
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Note that these equations have the form of Ampere’s Law

εµνρ∂νa
(p)a
ρ (x) = J (p)µa(x), (2.49)

so their solution is expressed as the Biot-Savart Law

a(p)a(x) = − 1

4π

∫
d3x′εαβγJ

(p)βa (x′)
(x− x′)γ

|x− x′|3
+ ∂αf

a(x), (2.50)

where fa(x) is arbitrary. Thus, the on-shell action will be written as

Son-shell = SCSon-shell

=
Λ

2

∫
d3xεµνρ

(
aaµ∂νa

a
ρ +

Λ

3
fabcaaµa

b
νa
c
ρ

)∣∣∣∣
on-shell

=
Λ

2

∞∑
p=0

S(p)Λp,

(2.51)

where

S(p) =

∫
d3xεµνρ

(
r+s=p∑
r,s

(
a(r)aµ ∂νa

(s)a
µ

)
+

1

3
fabc

r+s+q=p−1∑
r,s,q

(
a(r)aµ a(s)bν a(q)cρ

))
. (2.52)

Now, we are in a position to determine, in principle, the link invariants up to order p arising
from each term in the perturbative expansion of the on-shell action. In this study, we will
compute contributions up to order 0, 1, and 2, which correspond to analytical expressions that
characterize the GLN, the TMC (related to the Borromean rings), and the four-components link.
We will demonstrate these results in the chapter 4.

2.3 Zeroth-order contribution

At zeroth-order we have

S(0) =

∫
d3xεµνρa(0)aµ ∂νa

(0)a
ρ , (2.53)

a(0)aµ (x) =
1

2

n∑
i=1

Diµ(x)I
a
i (0), (2.54)

Diµ(x) ≡
1

4π

∮
γi

dzρ
(x− z)ν

|x− z|3
εµνρ. (2.55)

Note that the gradient that appears in equation (2.50) does not contribute to the on-shell
action, so we can discard it. By replacing (2.54) and (2.55) in (2.53), we have
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S(0) =
1

4

∑
i,j

Iai (0)I
a
j (0)L(i, j), (2.56)

where

L(i, j) ≡ 1

4π

∮
γi

dzµ
∮
γj

dyρ
(z − y)β

|z − y|3
εµνρ (2.57)

is the GLN, which also appears in (1.16). As was mentioned in the previous chapter, this link
invariant measures the number of times that a curve intersects the surface of another. In Figure
2.1 can be seen a pair of curves with a GLN equal to one, because the blue curve intersects the
surface of the red one once. Also, in Figure 2.2 we have a pair of curves with a GLN equal to
zero, because the blue curve intersects in one way and then in an opposite way the surface of the
red one.

Figure 2.1: Curves with GLN equal one.

Figure 2.2: Trivial link (Not linked).

2.4 First-order contribution

The first-order on-shell action is given by:

S(1) =

∫
d3xεµνρ

(
2a(0)aµ ∂νa

(1)a
ρ +

1

3
fabc

(
a(0)aµ a(0)bν a(0)cρ

))
. (2.58)

Note that to calculate this expression, it is not necessary to know the specific value of a
(1)a
ρ .
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It suffices to know its curl, which is given by

εµνρ∂νa
(1)
ρ (x) = −1

2
εµνρfabca(0)ν (x)a(0)ρ (x)

− 1

2

n∑
i=1

∮
γi

dzµ
∫ z

0

dzµ1

1 R(0)
µ1

aa1 (z1) δ
3(x− z)Ia1i (0).

(2.59)

By replacing (2.54) and (2.59) into (2.58), we have

S(1) = −1

4

∑
i,j,k

fabcIai (0)I
b
j (0)I

c
k(0)

{
1

3

∫
d3xεµνρDiµ(x)Djν(x)Dkρ(x)+

+

∮
γi

dzµ
∫ z

0

dyνDjµ(z)Dkν(y)

}
.

(2.60)

The factor fabcIai (0)I
b
j (0)I

c
k(0) in the above expression vanishes when the currents Iai (0),

Ibj (0), and I
c
k(0) are linearly dependent. As a consequence of this, S(1) is zero when the current

consists of only one or two Wong particles. To interpret the expression for S(1), let us consider the
(nontrivial) simplest case: gauge group SU(2) and three particles with orthonormal isovectors,
Iai (0) = δai . In this case

S(1)(1, 2, 3) =− 1

2

∫
d3xεµνρD1µ(x)D2ν(x)D3ρ(x)

− 1

2

∫
d3x

∫
d3y

{
T

[µx,νy]
1 D2µ(x)D3ν(y)+

+ T
[µx,νy]
2 D3µ(x)D1ν(y)+

+T
[µx,νy]
3 D1µ(x)D2ν(y)

}
,

(2.61)

where we have introduced the bilocal object Tµx,νyγi associated with the curve γi

Tµx,νyγi ≡
∮
γi

dzµ
∫ z

0

dz′νδ3(x− z)δ3 (y − z′) , (2.62)

and the definition

T [µx,νy]
γi ≡ 1

2

(
Tµx,νyγi − T νx,µyγi

)
. (2.63)

The expression (2.61) turns out to be, except for a factor, the TMC µ̄(1, 2, 3), which is
related to three linked curves in space-time, such that the GLN between them is always zero
(this condition will be necessary for the consistency of our theory). For example, this expression
detects the linking of the Borromean rings, which are shown in Figure 2.3. Note that the curve
γi (red) intersects the surface enclosed by the curves γj (blue) and γk (green), then intersects in
the opposite direction to the blue and green surfaces (ensuring that the GLN between (γi, γj)
and (γi, γk) is zero) to return to the initial point. A similar description of this process can be
given for each curve with respect to the other two. Therefore, it is evident that the GLN between
any pair of curves of the Borromean rings is always zero .
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Figure 2.3: Borromean Rings (Note that the GLN between any pair of curves is zero.)

Indeed, the TMC follows the GLN in an infinite sequence of link invariants discovered by
Milnor: the so-called “Higher-Order Linking Coefficients”. The n-th coefficient is defined if all
previous ones are zero. This result naturally emerges in our theory (as the consistency conditions
for this perturbative analysis) and will be demonstrated at the end of this chapter.

In order to continue our perturbative analysis and obtain the link invariant associated with
the on-shell action to second order, it is necessary to introduce certain conventions that allow us
to perform calculations more efficiently. In the next section, we will introduce the cycle space,
Loop coordinates, and a generalization of the Einstein summation convention for continuous
variables, which will be useful for simplifying calculations and providing an appropriate geometric
interpretation of the link invariants we will derive.

2.5 Loop coordinates and cycle space

We will denote the dependence of a tensorial function on a continuous variable by placing an
index indicating that variable as follows

Aµν...ρ(x, y, . . . , z) ≡ Aµx νy ... ρz. (2.64)

The aforementioned relation will allow us to establish a form of a generalized Einstein
convention applicable to discrete-continuous variables. In this context, tensorial functions are
integrated over the repeated continuous variable, while also, as usually, summing over the
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repeated discrete variables; for example,

AµxB
µx νy... ≡

∑
µ

∫
AµxB

µx νy···d3x =
∑
µ

∫
Aµ(x)B

µν···(x, y . . .)d3x. (2.65)

When repeated indices that are not integrated appear, we will place a “bar” above the letter
indicating that variable in the following way:

Aµx νȳB
µx νȳ ≡

∑
µ

∫
Aµx νȳB

µx νȳd3x. (2.66)

Many times it will be convenient, for an even greater simplification, to indicate the set of
“discrete-continuous” indices by a single index, which we will denote by a lowercase Latin letter,
as follows:

Aµx νy ... ρz ≡ Aab...c. (2.67)

At this point, it should be emphasized that the T -objects that appear in the equation (2.62)
are a particular case of an infinite family of objects given by

Tµ1x1µ2x2...µnxn

i ≡
∮
γi

dzµ1

∫ z

0

dzµ2

1

∫ z1

0

dzµ3

2 . . .

∫ zn−2

0

dzµn

n−1δ
(3) (x1 − z)×

δ(3) (x2 − z1)× δ(3) (x3 − z2) . . . δ(3) (xn − zn−1) ,
(2.68)

such objects are called loop coordinates, and where introduced in [7]. The above relation defines
the distributional T -objects, of rank n, also known as multi-tangents of cycles or multi-tangents
of paths. It is directly observed, from the definition (2.68), that the T with one-index is nothing
more than the form factor or tangent distribution of the closed curve γi,

Tµxi =

∮
γi

dyµδ(3)(x− y), (2.69)

and the one with two-indices is the same bi-local object defined in (2.62). The multi-tangents
contain all the relevant information needed to determine any element in the extended cycle space.
Moreover, they possess the property of determining the Wilson line element,

WA(γ) = Tr
[
e
∮
γ
Aady

a
]
,

for any connection. For these reasons, they can be considered as promising candidates for defining
geometric coordinates. However, they do not constitute independent variables; in fact, they obey
a set of constraints:

∂

∂xµi

i

Tµ1x1···µixi···µnxn

j = (−δ (xi − xi−1) + δ (xi − xi+1))T
µ1x1···µi−1xi−1µi+1xi+1···µnxn

j , (2.70)

which is called the differential constraint [7]. The points x0 and xn+1 correspond to the starting
values of the cycle or closed path, and the Dirac deltas are defined in the same dimension as the
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manifold where the paths “live”,

T
{µ1···µk}µk+1···µn

i =
∑
Pk

T
Pk(µ1···µn)
i = Tµ1···µk

i T
µk+1···µn

i , (2.71)

which is called the algebraic constraint [7]. The sum is taken over all permutations of the variables
µ that preserve the ordering of µ1, · · · , µk and µk+1, · · · , µn among themselves.

Now, we will introduce the object gµx νy (symmetric in its pairs of indices), and it is defined
as follows:

gµx νy ≡ −
1

4π
εµνρ

(x− y)ρ

|x− y|3
. (2.72)

This, together with gµx νy, defined by,

gµx νy ≡ εµνρ∂ρδ(x− y), (2.73)

naturally appears in the solution of the differential constraint (2.70) obeyed by the T -objects
and constitute a metric in the space of transverse rank-one vector densities. Note that these
conventions are useful and allow us to write known quantities in a compact way. For example,
the D-objects (2.55) that appear when solving the equations of motion of the perturbative
analysis for the non-Abelian theory

Dµ(x, γ) ≡ Di µx = −gµx νyT νyi . (2.74)

Now, the GLN reads

L(i, j) =
1

4π

∮
γi

dzµ
∮
γj

dyρ
(z − y)ν

|z − y|3
εµνρ = Tµxgµx νyT

νy. (2.75)

Similarly, the Biot-Savart law of the non-Abelian theory

a(p)aµ (x) =
1

4π

∫
d3x′εµνρJ

(p)a ν (x′)
(x− x′)ρ

|x− x′|3
= −J (p)a νygµx νy. (2.76)

Finally, the equations of motion of the non-Abelian theory (formally the same as Ampere’s
Law) can be written as

gµx νya(p)aνy = −εµνρ∂νa(p)aρ = −J (p)a µx. (2.77)

Note that the g-objects raise and lower indices, as one would expect from a metric tensor.

In order to further simplify our problem and interpret all our results later, we will consider
the simplest nontrivial case, which consists of restricting the gauge group to SU(2). Our general
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structure constants (which previously belonged to any arbitrary group) are, in this case, the
totally antisymmetric Levi-Civita symbols: fabc ↔ εabc. We will denote with an “arrow”
(indicating that they are vectors) any quantity that has components within the internal space;

that is, iso-vectors will be indicated by “arrows”. Thus, for example, the field a
(p)a
µ (x) will be

written as a⃗
(p)
µ (x), the currents Iai (0) will be written as I⃗i, etc. Now, thanks to the conventions

and notation developed throughout this section, we are in a position to “straightforwardly”
calculate the second order on-shell action, which we will do in the following section.

2.6 Second-order contribution

Using the conventions introduced in the preceding section, the second-order on-shell action is
given by

S(2) = εµνρ
[
2∂ν a⃗

(2)
ρx · a⃗(0)µx + ∂ν a⃗

(1)
ρx · a⃗(1)µx + a⃗(1)µx ·

(
a⃗(0)νx × a⃗(0)ρx

)]
, (2.78)

where

2εµνρ∂ν a⃗
(2)
ρx = −2gµx νya⃗(2)νy =− 2εµνρa⃗

(1)
νx̄ × a⃗

(0)
ρx̄ −

∑
i

Tµx µ1x1

i a⃗(1)µ1x1
× I⃗i

+
∑
i

Tµx µ1x1 µ2x2

i a⃗(0)µ1x1
×
(
a⃗(0)µ2x2

× I⃗i
)
,

(2.79)

εµνρ∂ν a⃗
(1)
ρx = J⃗ (1)µx = −1

2
εµνρa⃗(0)νx × a⃗(0)ρx −

1

2

∑
i

Tµx νyi a⃗(0)νy × I⃗i, (2.80)

a⃗(1)µx =
1

2
εαβγ

(
a⃗
(0)
βy × a⃗

(0)
γy

)
gµx αy +

1

2

∑
i

gµx αyT
αy µ1x1

i

(
a⃗(0)µ1x1

× I⃗i
)
. (2.81)

Now, our interest lies in expressing the equation (2.78) in terms of the fields a⃗
(0)
µx . Note that

the first term in the equation (2.78) is given by

εµνρ∂ν a⃗
(2)
ρx · a⃗(0)µx = −εµνρ

(
a⃗
(0)
νx̄ × a⃗

(1)
ρx̄

)
· a⃗(0)µx −

1

2

∑
i

Tµx µ1x1

i

(
a⃗(1)µ1x1

× I⃗i
)
· a⃗(0)µx

+
1

2

∑
i

Tµx µ1x1 µ2x2

i

[
a⃗(0)µ1x1

×
(
a⃗(0)µ2x2

× I⃗i
)]
· a⃗(0)µx .

(2.82)
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If we replace the equation (2.81) for the field a⃗
(1)
µx into (2.82), we have

2εµνρ∂ν a⃗
(2)
ρx · a⃗(0)µx = −εµνρεαβγgρx αy

[
a⃗(0)νx ×

(
a⃗
(0)
βy × a⃗

(0)
γy

)]
· a⃗(0)µx

−
∑
i

εµνρgρx αyT
αy µ1x1

i

[
a⃗(0)νx ×

(
a⃗(0)µ1x1

× I⃗i
)]
· a⃗(0)µx

− 1

2

∑
i

εαβγgµ1x1 αyT
µx µ1x1

i

[(
a⃗
(0)
βy × a⃗

(0)
γy

)
× I⃗i

]
· a⃗(0)µx

− 1

2

∑
i,j

gµ1x1 αyT
µx µ1x1

i Tαy µ2x2

j

[(
a⃗(0)µ2x2

× I⃗j
)
× I⃗i

]
· a⃗(0)µx

+
∑
i

Tµx µ1x1 µ2x2

i

[
a⃗(0)µ1x1

×
(
a⃗(0)µ2x2

× I⃗i
)]
· a⃗(0)µx .

(2.83)

The second and third term in (2.78) can be written as

εµνρ∂ν a⃗
(1)
ρx · a⃗(1)µx = −1

4
εµνρεαβγgµx αy

(
a⃗(0)νx × a⃗(0)ρx

)
·
(
a⃗
(0)
βy × a⃗

(0)
γy

)
− 1

2

∑
i

εµνρgµx αyT
αy µ1x1

(
a⃗(0)νx × a⃗(0)ρx

)
·
(
a⃗(0)µ1x1

× I⃗i
)

− 1

4

∑
i,j

gµx αyT
µx µ1x1

i Tαy µ2x2

j

(
a⃗(0)µ1x1

× I⃗i
)
·
(
a⃗(0)µ2x2

× I⃗j
)
,

(2.84)

εµνρa⃗(1)µx ·
(
a⃗(0)νx × a⃗(0)ρx

)
=

1

2
εµνρεαβγgµx αy

(
a⃗
(0)
βy × a⃗

(0)
γy

)
·
(
a⃗(0)νx × a⃗(0)ρx

)
+

1

2

∑
i

εµνρgµx αyT
αy µ1x1

i

(
a⃗(0)νx × a⃗(0)ρx

)
·
(
a⃗(0)µ1x1

× I⃗i
)
,

(2.85)

If we use the following vector identities:(
a⃗(0)νx × a⃗(0)ρx

)
·
(
a⃗
(0)
βy × a⃗

(0)
γy

)
= −

[
a⃗(0)νx ×

(
a⃗
(0)
βy × a⃗

(0)
γy

)]
· a⃗(0)ρx ,(

a⃗(0)νx × a⃗(0)ρx
)
·
(
a⃗(0)µ1x1

× I⃗i
)
= −

[
a⃗(0)νx ×

(
a⃗(0)µ1x1

× I⃗i
)]
· a⃗(0)ρx ,(

a⃗(0)µ1x1
× I⃗i

)
·
(
a⃗(0)µ2x2

× I⃗j
)
= −

[(
a⃗(0)µ2x2

× I⃗j
)
× I⃗i

]
· a⃗(0)µ1x1

,

(2.86)



35

and replace (2.83), (2.84), (2.85) into (2.78), the second-order on-shell action is given by

S(2) =
3

4
εµνρεαβγgµx αy

[
a⃗(0)νx ×

(
a⃗
(0)
βy × a⃗

(0)
γy

)]
· a⃗(0)ρx

+
∑
i

εµνρgµx αy

[
a⃗(0)νx ×

(
a⃗(0)µ1x1

× I⃗i
)]
· a⃗(0)ρx

(
Tαy µ1x1

i − 1

2
Tµ1x1 αy
i

)
+

1

2

∑
i,j

gµx αyT
αy µ2x2

j

[
I⃗i ×

(
a⃗(0)µ2x2

× I⃗j
)]
· a⃗(0)µ1x1

(
Tµ1x1 µx
i − 1

2
Tµx µ1x1

i

)
+
∑
i

Tµx µ1x1 µ2x2

i

[
a⃗(0)µ1x1

×
(
a⃗(0)µ2x2

× I⃗i
)]
· a⃗(0)µx .

(2.87)

Now, using our new notation, we proceed to introduce the zeroth-order field a⃗
(0)
µx into the

previous equation (2.87) expressed in terms of the one-index T -object,

εµνρ∂ν a⃗
(0)
ρx =

1

2

n∑
i=1

Tµxi I⃗i, (2.88)

so we will have S(2) solely in terms of path coordinates and the metric. Thus, we obtain:

S(2) =
1

8

∑
i,j,k,l

([
I⃗i ×

(
I⃗j × I⃗k

)]
· I⃗l
)
gµx αy{

3

8
εµνρεαβγgνx µ1x1

gρx µ4x4
gβy µ2x2

gγy µ3x3
Tµ1x1

i Tµ2x2

j Tµ3x3

k Tµ4x4

l

+ εµνρ
(
Tαy µ1x1

j − 1

2
Tµ1x1 αy
j

)
gνx µ2x2

gρx µ4x4
gµ1x1 µ3x3

Tµ2x2

i Tµ3x3

k Tµ4x4

l

− Tαy µ2x2

j

(
Tµ1x1 µx
i − 1

2
Tµx µ1x1

i

)
gµ2x2 µ3x3gµ1x1 µ4x4T

µ3x3

k Tµ4x4

l

+ Tµx µ1x1 µ2x2

j gµ1x1 µ3x3
gµ2x2 µ4x4

Tµ3x3

i Tµ4x4

k Tαyl

}
.

(2.89)

Finally, to obtain an expression that is as simplified as possible, we proceed to decompose the

two-index T -objects into their symmetric and antisymmetric parts
(
T abi = T

(ab)
i + T

[ab]
i

)
, and

use the fact that the symmetric part factorizes into two one-index T -objects
(
T

(ab)
i = T ai T

b
i

)
according to the algebraic constraint (2.71). When these form factors (T ai , T

b
i ) are appropriately

combined with the present metrics (gab), GLNs are formed as in equation (2.75), which we will
discard as they must vanish for the physical theory to be consistent. Therefore, we obtain the
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following more compact form of the second order on-shell action:

S(2) =
1

8

∑
i,j,k,l

([
I⃗i ×

(
I⃗j × I⃗k

)]
· I⃗l
){3

8
εµνρεαβγgνx agρx dgβy bgγy cT

a
i T

b
j T

c
kT

d
l

+
3

2
εµνρT

[αy a]
j gνx bgρx dgacT

b
i T

c
kT

d
l +

3

2
T

[b αy]
j T

[a µx]
i gbcgadT

c
kT

d
l

+Tµx a bj gacgbdT
c
i T

d
k T

αy
l

}
gµx αy

(2.90)

It can be proven that the above equation detects the linking of four closed curves in space-
time, such that the GLN and the TMC are always zero among them, as shown in Figure 2.4.
This proof will be carried out in the final chapter of this work, corresponding to the geometric
interpretation of the link invariants obtained so far.

Figure 2.4: Four-components link (note that the GLN and TMC between all the curves is 0.)

Finally, in the last section of this chapter, we will demonstrate that the consistency conditions
of the perturbative analysis lead to the GLN being zero for the action S(1), and that the GLN
along with the TMC are zero for the action S(2). As mentioned earlier, the advantage of the
introduced perturbative analysis is that, in general, we can stop at any order, and the remaining
contributions necessarily vanish due to the consistency conditions.

2.7 Consistency of the theory

2.7.1 S(0): Gauss linking number

Now, let us check the consistency condition for the zeroth-order in our perturbative analysis.

Note that, if we take the divergence of the equation of motion (2.88) for the field a⃗
(0)
µx , it follows

that
∂µT

µx
i = 0, (2.91)
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since εµνρ∂µ∂ν a⃗
(0)
ρx = 0, so equation (2.91) holds because of the differential constraint (2.70).

Thus, the theory at zeroth-order is consistent.

2.7.2 S(1): Milnor’s third linking coefficient

If we use the equation (2.47) we can write the first-order equation of motion as follows:

εµνρ∂ν a⃗
(1)
ρx = −1

2
εµνρ

(
a⃗
(0)
νx̄ × a⃗

(0)
ρx̄

)
− 1

2

n∑
i=1

Tµx µ1x1

i

(
a⃗(0)µ1x1

× I⃗i
)
. (2.92)

Taking the divergence of the equation (2.92), we have

0 = a⃗
(0)
µx̄ ×

(
εµνρ∂ν a⃗

(0)
ρx̄

)
− 1

2

n∑
i=1

∂µT
µx µ1x1

i

(
a⃗(0)µ1x1

× I⃗i
)
, (2.93)

since εµνρ∂µ∂ν a⃗
(1)
ρx = 0. Recall the general differential constraint (2.70), we can write it for the

T -object with two indices as

∂µT
µx µ1x1

i =
(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i . (2.94)

Replacing eqution (2.94) into (2.93), we obtain

1

2

n∑
j=1

δ3 (x− xj)Tµ1x1

j

(
a⃗(0)µ1x1

× I⃗j
)
= 0. (2.95)

The solution of the equation (2.88) can be written in terms of the metric (2.72) by using the
equation (2.74) as follows

a⃗(0)µx =
1

2

∑
i

Di µxI⃗i(0) = −
1

2

∑
i

T νyi gµx νy I⃗i(0). (2.96)

If we combine the equations (2.75), (2.96) and (2.95), the consistency condition for µ̄(1, 2, 3)
is given by

1

4

∑
i,j

δ3 (x− xj) (Ii × Ij)L(i, j) = 0. (2.97)

In general, the function of the currents does not always vanish, so it holds that:

L(i, j) = 0, (2.98)
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since S(1) describes a linking invariant of three curves such that the GLN between each other is
always zero as required.

2.7.3 S(2): Four-components link

Similarly, using the equation (2.47) we can write the second-order equation of motion as follows:

2εµνρ∂ν a⃗
(2)
ρx = −2εµνρa⃗(1)νx̄×a⃗

(0)
ρx̄−

n∑
i=1

Tµx µ1x1

i a⃗(1)µ1x1
×I⃗i+

n∑
i=1

Tµx µ1x1 µ2x2

i

[
a⃗(0)µ1x1

×
(
a⃗(0)µ2x2

× I⃗i
)]
,

(2.99)

If we take its divergence, we obtain

0 = −2εµνρ∂µa⃗(1)νx̄ × a⃗
(0)
ρx̄ − 2εµνρa⃗

(1)
νx̄ × ∂µa⃗

(0)
ρx̄ −

∑
i

∂µT
µx̄ µ1x1

i

[
a⃗(1)µ1x1

× I⃗i
]

+
∑
i

∂µT
µx̄ µ1x1 µ2x2

i

[
a⃗(0)µ1x1

×
(
a⃗(0)µ2x2

× I⃗i
)]
,

(2.100)

since εµνρ∂µ∂ν a⃗
(2)
ρx = 0. Now, by using the differential constraint (2.70), the equation of motion

(2.92), and introducing the vector identities

εµνρ
(
a⃗
(0)
µx̄ × a⃗

(0)
νx̄

)
× a⃗(0)ρx̄ = 0,(

a⃗
(0)
µx̄ × a⃗

(0)
νx̄

)
× a⃗(0)ρx̄ = a⃗

(0)
νx̄

(
a⃗
(0)
µx̄ · a⃗

(0)
ρx̄

)
− a⃗(0)µx̄

(
a⃗
(0)
νx̄ · a⃗

(0)
ρx̄

)
,

in the equation (2.100), we can write the consistency condition as follows∑
i

δ(3) (x− xi(0))
[
Tµ1x1

i a⃗(1)µ1x1
× I⃗i − Tµ1x1 µ2x2

i a⃗(0)µ1x1
×
(
a⃗(0)µ2x2

× I⃗i
)]

= 0. (2.101)

Thus, from the previous expression, it can be concluded that what is within the brackets
must vanish:

Tµ1x1

i a⃗(1)µ1x1
× I⃗i − Tµ1x1 µ2x2

i a⃗(0)µ1x1
×
(
a⃗(0)µ2x2

× I⃗i
)
= 0. (2.102)

If we replace (2.88) and the solution to the equation of motion (2.92) into (2.102), we have∑
j,k

[(
I⃗j × I⃗k

)
× I⃗i

]{1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + T ai T

cd
j T bkgcagdb

}
−
∑
j,k

[
I⃗j ×

(
I⃗k × I⃗i

)]
T aj T

cd
i T bkgcagdb = 0.

(2.103)
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Here we used the Latin letter notation for discrete-continuous indices. At this moment,
the last equation constitutes our most basic result for the consistency condition, which we will
analyze immediately. Note that, if we take the dot product between the equation (2.103) and

the vector I⃗i, and using the following vector identities[(
I⃗j × I⃗k

)
× I⃗i

]
· I⃗i = 0,

[
I⃗j ×

(
I⃗k × I⃗i

)]
· I⃗i =

(
I⃗i · I⃗j

)(
I⃗i · I⃗k

)
−
∣∣∣I⃗i∣∣∣2 (I⃗j · I⃗k) ,

the consistency condition turns out to be∑
j,k

[(
I⃗i · I⃗j

)(−→
Ii · I⃗k

)
−
∣∣∣I⃗i∣∣∣2 (I⃗j · I⃗k)]T aj T cdi T bkgcagdb = 0, (2.104)

which is symmetric between the indices j, k. Thus, by applying a symmetrization of the equation
(2.104) and using the algebraic constraint (2.71) for the symmetric part of the T -objects T (ab) =
T aT b, we arrive at∑

j,k

T aj T
c
i T

d
i T

b
kgcagdb =

∑
j,k

(
T aj gcaT

c
i

) (
T di gdbT

b
k

)
=
∑
j,k

L(i, j)L(i, k) = 0, (2.105)

so L(i, j) = 0 as required. Now, let us go back to the equation (2.103), where if we take the

vector product between this equation and I⃗i, and consider the following vector identities[(
I⃗j × I⃗k

)
× I⃗i

]
× I⃗i =

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

)
−
(
I⃗j × I⃗i

)(
I⃗i · I⃗k

)
,[

I⃗j ×
(
I⃗k × I⃗i

)]
× I⃗i =

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

)
,

the consistency condition is now given by∑
i,j,k

[(
I⃗k × I⃗i

)(−→
Ii ·
−→
Ij

)]{1

2
εµνρT ai T

b
j T

c
kgµxagνxbgρxc +

(
T ai T

[cd]
j T bk − T aj T

[cd]
i T bk

)
gcagdb

}

−
∑
i,j,k

[(
I⃗j × I⃗i

)(
I⃗i ·
−→
Ik

)]{1

2
εµνρT ai T

b
j T

c
kgµxagνxbgρxc + T ai T

[cd]
j T bkgcagdb

}
= 0.

(2.106)

Here, we have appropriately antisymmetrized the term within braces, taking into account the
antisymmetry present in the coefficients of the iso-charges ((i, k) in the first sum and (i, j) in the
second). Interchanging the indices (j ↔ k) in the second term of the last equation, and using
(2.74) to write the consistency condition in terms of the D-objects, we have∑

i,j,k

2fi,j,kµ̄(i, j, k) = 0, (2.107)
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where fi,j,k =
(
I⃗k × I⃗i

)(
I⃗i · I⃗j

)
and

µ̄(i, j, k) =− 1

2

[
εµνρDi µxDj νxDk ρx

+
(
T

[µx νy]
i Dj µxDk νy + T

[µx νy]
j Di νyDk µx + T

[µx νy]
k Di µxDj νy

)]
.

(2.108)

Note that as the function of the iso-currents fi,j,k in equation (2.107) is not generally zero,
it implies that µ̄(i, j, k) = 0 as required. Therefore, S(2) describes four closed loops linked in
the space-time (as we will show later), but not in the way of the GLN nor the third Milnor’s
coefficient.

Throughout this chapter, we derived the equations of motion for the Chern-Simons-Wong
theory. Subsequently, we stated that the fields Aaµ = Aaµ[γi] are functionals of the, already given,
closed trajectories of Wong particles in space-time. By substituting the solutions of the equations
of motion into the action, we obtained the on-shell action, which depends solely on closed curves
(all dependence on the Aaµ fields disappears). Due to this, and the topological nature of the
action, the only topological invariant that can be described by an object depending on closed
curves is the way in which they are linked. Therefore, Son−shell must be a link invariant. As
analyzing the complete on-shell action proves to be a nontrivial task, a perturbative analysis
was developed, in which we obtained link invariants at different orders. As this procedure is
somewhat tedious, then the idea that there might exist some intermediate Abelian theory (a
cousin of the Abelian and non-Abelian Chern-Simons theories), which could describe a higher-
order link invariant arises naturally. This idea will be explored thoroughly in the next chapter.
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Chapter 3

Intermediate Theories

In Chapter 1, we saw how the Abelian Chern-Simons theory coupled with a suitable current
reproduced the GLN. On the other hand, in chapter 2, we derived various knot invariants through
a perturbative analysis of the non-Abelian Chern-Simons theory coupled with Wong particles.
Since the last method is highly nontrivial, one could ask if there exist an intermediate Abelian
theory that is capable of reproducing higher-order knot invariants, such as those obtained from
the non-Abelian Chern-Simons theory. Stated more precisely: “is there any topological field
theory, other than the Abelian Chern-Simons theory that yields exact analytical expressions
for link invariants, other than the GLN?”. This idea will be explored throughout this chapter.
The first section is based on the work of Leal and Pineda [3], which consists of an intermediate
Abelian theory that exactly reproduces the TMC. Meanwhile, the second section encompasses
the original development of an intermediate Abelian theory that describes a four-components
link.

3.1 Intermediate action for the third Milnor’s coefficient
µ(1, 2, 3)

The intermediate Abelian action, proposed in [3], is given by

S̃ =

∫
d3xεµνρ

{
4Aiµ(x)∂νaiρ(x) +

2

3
εijkaiµ(x)ajν(x)akρ(x)

}
− 2

∫
d3xTµxi Aiµ(x) +

∫
d3x

∫
d3yεijkTµx,νyi ajµ(x)akν(y),

(3.1)

where Aµi (x) and a
µ
i (x) represent two independent sets of Abelian gauge fields, denoted by Latin

letters running from 1 to 3 (we are using the Einstein summation convention for these “internal”
indices. It is important to note that we do not employ its generalization since the integration
of continuous variables appears explicitly). The first two terms correspond to the topological
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theory with a non-semisimple gauge group of symmetry as introduced in reference [8].

Performing variations of the action (δS̃ = 0) with respect to the fields (Aiµx, a
i
µx) yields

εµνρ∂νaiρ =
1

2
Tµxi , (3.2)

εµνρ∂νA
i
ρ(x) = −

1

2
εµνρεijkajν(x)akρ(x) +

1

2

∫
d3yεijkT

[µx,νy]
j akν(y). (3.3)

These equations are just the zeroth and first-order contributions to the SU(2) Chern-Simons-
Wong equations of motion that were studied in chapter 2.

By taking the divergence of the equation (3.2), we get

∂µT
µx
i = 0, (3.4)

since εµνρ∂µ∂νaiρ = 0. This reflects the gauge invariance of the action under the transformations

Aiµ −→ Aiµ + ∂µΛ
i, (3.5)

where Λi = Λi(x) is an arbitrary function. The consistency condition for the equation (3.3)
involves more intricate calculations. If we take its divergence, we have

0 = 2εµνρεijk∂µ (ajν(x)akρ(x))− εijk
∫
d3yakν(y)

∂

∂xµ
T

[µx,νy]
j . (3.6)

Using the differential constraint (2.70), and the equation of motion (3.2) for the field aiµ(x)
into the equation (3.6), it follows

εijkδ3 (x− xj(0))
∮
j

dxν
∮
k

dzβεναβ
(x− z)α

|x− z|3
= εijkδ3 (x− xj(0))L(j, k) = 0, (3.7)

so the GLN must vanish as required, L(i, j) = 0,∀i, j. From this result, we deduce that the theory
maintains consistency as long as the curves are not linked according to the GLN. However, this
does not imply that the curves are equivalent to the trivial link (the unlink). For example, the
Borromean Rings are a well-known set of three curves with vanishing GLN between them, even
though they are entangled.

The consistency condition (3.7) is also related to a gauge symmetry of the theory. A direct
calculation shows that the action (3.1) is invariant under the transformations

aiµ → aiµ + ∂µΩi, (3.8)
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provided that the consistency condition (3.7) is fulfilled. Note that Ωi = Ωi(x) is an arbitrary
function. Hence, it is evident that both sets of fields Ai and ai must be Abelian gauge fields for
the theory to maintain consistency.

There is no need to introduce a metric on the manifold to construct the action, as can be
easily verified. Therefore, the theory is metric-independent. Given its general covariance, it
qualifies as a topological field theory, just like its cousins the Abelian and non-Abelian Chern-
Simons theories. Consequently, we infer that the on-shell action S̃on−shell of the theory should
exclusively depend on the topological features of the curves involved in the action; in other words,
it should be a link invariant. Let us examine how this unfolds. The solution to the equation of
motion (3.2) for the field aiµ(x) is given by

aiµ(x) = −
(
1

2

)
1

4π

∮
γi

dzρεµνρ
(x− z)ν

|x− z|3
. (3.9)

Note that the equation (3.3) can also be integrated as easily as the former one, but in order
to calculate S̃on−shell it suffices to substitute the left hand side of (3.3) and the equation (3.9)
into (3.1). Thus, the on-shell action becomes

S̃(1, 2, 3) =− 1

2

∫
d3xεµνρa1µ(x)a2ν(x)a3ρ(x)

− 1

2

∫
d3x

∫
d3y

(
T

[µx,νy]
1 a2µ(x)a3ν(y)+

+T
[µx,νy]
2 a3µ(x)a1ν(y) + T

[µx,νy]
3 a1µ(x)a2ν(y)

)
.

(3.10)

Equation (3.10) corresponds to an analytical expression for Milnor’s Linking Coefficient
µ̄(1, 2, 3), and it corresponds exactly to equation (2.61) obtained in chapter 2. So, an intermediate
Abelian theory has been developed to describe a higher-order link, such as the TMC. Now,
following this intermediate action methodology, in the next section we will develop an Abelian
theory that describes the four-components link corresponding to the on-shell action S(2) of the
non-Abelian Chern-Simons-Wong theory.
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3.2 Intermediate action for the four-components link

As an intermediate Abelian action for the four-components link we propose

SM = − 6

∫
d3x Λ⃗µx ·

[
εµνρ∂ν λ⃗ρx −

1

2

n∑
i

Tµxi I⃗i

]

+
3

4

∫
d3x

∫
d3y εµνρεαβγgµx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
· λ⃗ρx

+
3

2

n∑
i=1

∫
d3x

∫
d3y

∫
d3x1 εµνρgµx αyT

[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1 × I⃗i

)]
· λ⃗ρx

+
3

4

∑
i,j

∫
d3x

∫
d3y

∫
d3x1

∫
d3x2 gµx αyT

[µ1x1 µx]
i T

[αy µ2x2]
j

[
I⃗i ×

(
λ⃗µ2x2

× I⃗j
)]
· λ⃗µ1x1

+

n∑
i=1

∫
d3x

∫
d3x1

∫
d3x2 Tµx µ1x1 µ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
· λ⃗µx,

(3.11)

where λ⃗µx and Λ⃗µx are two sets of independent Abelian gauge fields, labeled by Latin letters

running from 1 to 3, as well as the current I⃗i, corresponding to the i-th particle. Here we are
using vector notation for internal indices, i.e., the fields can be seen as (λaµx, Λaµx), and the
current as Iai . These objects are “living” in the internal space.

Now, using the notation for “discrete-continuous” indices, the intermediate action for the
four-components link is written in a contracted way as

SM = − 6Λ⃗µx ·

[
εµνρ∂ν λ⃗ρx −

1

2

n∑
i

Tµxi I⃗i

]

+
3

4
εµνρεαβγgµx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
· λ⃗ρx

+
3

2

n∑
i=1

εµνρgµx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1

× I⃗i
)]
· λ⃗ρx

+
3

4

∑
i,j

gµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j

[
I⃗i ×

(
λ⃗µ2x2

× I⃗j
)]
· λ⃗µ1x1

+

n∑
i=1

Tµx µ1x1 µ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
· λ⃗µx.

(3.12)

If we perform variations of the action (δSM = 0) with respect to the field Λ⃗µx, we obtain:

εµνρ∂ν λ⃗ρx =
1

2

n∑
i

Tµxi I⃗i, (3.13)
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whose solution is given by:

λ⃗µx =
1

2

∑
i

Di µxI⃗i = −
1

2

∑
i

gµx νyT
νy
i I⃗i = −

1

2

∑
i

1

4π

∮
γi

dzγ
(x− z)β

|x− z|3
εµβγ I⃗i. (3.14)

Variations with respect to λ⃗ leads to:

2εµνρ∂νΛ⃗ρx =− εµνρεαβγgρx̄ αy
[
λ⃗νx̄ ×

(
λ⃗βy × λ⃗γy

)]
−

n∑
i=1

εµνρgρx̄ αyT
[αy µ1x1]
i

[
λ⃗νx̄ ×

(
λ⃗µ1x1

× I⃗i
)]

− 1

2

n∑
i=1

εαβγgµ1x1 αyT
[µx µ1x1]
i

[(
λ⃗βy × λ⃗γy

)
× I⃗i

]
− 1

2

∑
i,j

gµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j

[(
λ⃗µ2x2

× I⃗j
)
× I⃗i

]
+

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
,

(3.15)

where

T
⟨[µx µ1x1] µ2x2⟩
i =

2

3

(
T

[µx µ1x1] µ2x2

i − T [µ1x1 µ2x2] µx
i

)
, (3.16)

T
[µx µ1x1] µ2x2

i =
1

2
(Tµx µ1x1 µ2x2

i − Tµ1x1 µx µ2x2

i ) . (3.17)

Equation (3.15) can be rewritten as

2εµνρ∂νΛ⃗ρx =− 2εµνρa⃗νx̄ × λ⃗ρx̄ −
n∑
i=1

T
[µx µ1x1]
i a⃗µ1x1

× I⃗i

+

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
,

(3.18)

similar to the second-order equation of motion for the non-Abelian theory, where

a⃗µx =
1

2
εαβγ

(
λ⃗βy × λ⃗γy

)
gµx αy +

1

2

n∑
i=1

T
[αy µ1x1]
i

(
λ⃗µ1x1 × I⃗i

)
gµx αy. (3.19)

Contracting the previous equation with the inverse metric tensor and defining Ilk = δlk, we
have

εµνρ∂νaiρ(x) = −
1

2
εµνρεijkλjν(x)λkρ(x) +

1

2

∫
d3yεijkT

[µx νy]
j λkν(y), (3.20)

which is exactly the equation of motion for intermediate theory shown in the last section and
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developed in [3]. Substituting (3.13) and (3.14) into (3.12), the on-shell action is written as

SM on−shell =
1

8

∑
i,j,k,l

((
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗l
)
gµx αy{

3

8
εµνρεαβγgνx µ1x1gβy µ2x2gγy µ3x3gρx µ4x4T

µ1x1

i Tµ2x2

j Tµ3x3

k Tµ4x4

l

+
3

2
εµνρT

[αy µ1x1]
j gνx µ2x2

gµ1x1 µ3x3
gρx µ4x4

Tµ2x2

i Tµ3x3

k Tµ4x4

l

+
3

2
T

[µx µ1x1]
i T

[αy µ2x2]
j gµ2x2 µ3x3gµ1x1 µ4x4T

µ3x3

k Tµ4x4

l

+ Tµx µ1x1 µ2x2

j gµ1x1 µ3x3
gµ2x2 µ4x4

Tµ3x3

i Tµ4x4

k Tαyl

}
,

(3.21)

which coincides with (2.90), as expected.

As discussed previously, both the GLN and the TMC must be zero for consistency in order
to have a well defined four-components link invariant. Indeed, this is what occurs here and we
will demonstrate this in what follows. Taking the divergence of equation (3.13), we arrive at

∂µT
µx
i = 0, (3.22)

which coincides with the differential constraint of the equation (2.70). Taking the divergence of
(3.20)

1

4

∑
i,j

δ3 (x− xj) (Ii × Ij)L(i, j) = 0, (3.23)

where L(i, j) is the GLN, as defined in (2.75). Then, taking the divergence of (3.15), we arrive
at ∑

i,j,k

2fi,j,kµ̄(i, j, k) = 0, (3.24)

where fi,j,k =
(
I⃗k × I⃗i

)(
I⃗i · I⃗j

)
and

µ̄(i, j, k) =− 1

2

[
ϵµνρDi µxDj νxDk ρx

+
(
T

[µx νy]
i Dj µxDk νy + T

[µx νy]
j Di νyDk µx + T

[µx νy]
k Di µxDj νy

)]
,

(3.25)

withDi a = Di µx as in equation (2.74). Note that (3.25) corresponds to the TMC, as demonstrated
in [2]. It is worth emphasizing that equations (3.23) and (3.24) imply that L(i, j) = 0 and
µ̄(i, j, k) = 0, respectively, as required. Thus, we have constructed an intermediate Abelian
theory, such that describes four closed curves linked in space-time, but not in the way of the
GLN nor the TMC, and it corresponds exactly to the expression for S(2) that we constructed in
chapter 2. If you wish to see the calculations concerning to this section in more detail, you can
refer to Appendix A.
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Throughout this work, we have calculated, through two different methods (perturbative
analysis and intermediate action methodology) the analytical expressions for the following link
invariants: GLN, TMC, and the four-components link. Now, we must verify that these expressions
are indeed related to these link invariants. To do so, two forms of geometric interpretation will
be introduced in the next chapter, providing a clear demonstration of this relationship.
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Chapter 4

Geometrical Meaning

In this chapter, we will demonstrate that the analytical expressions (2.53), (2.61), and (2.90)
detect the link invariants related to the GLN, the TMC, and the four-component link, respectively.
To achieve this, we will introduce two ways of geometric interpretation. The first one was
developed in [5], and involves drawing open paths diagrams (coming from infinity and ending
at the edges of the closed curves under study), which are related to the Seifert surfaces of these
curves. Thus, it is possible to determine the required knot invariant by observing the relationships
that the tangent vectors of the curves and the open paths have with each other. The second
method involves rewriting these analytical expressions as surface integrals and determining the
relationships that the normal vectors to the surfaces enclosed by these curves satisfy.

4.1 Open paths interpretation

4.1.1 Gauss linking number

First, we start with the simplest of the three link invariants we have obtained, the GLN. All the
tools developed in this subsection will be very useful for interpreting higher-order link invariants.
Consider the kernel of the GLN, which is given by the following expression:

kρ(x, z) =
1

4π

(x− z)ρ

|x− z|3
= − 1

4π
∂ρ
(

1

|x− z|

)
. (4.1)

Taking its divergence, note that

∂xρk
ρ = − 1

4π
∇2

(
1

|x− z|

)
= δ(3)(x− z). (4.2)
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We define the form factor for an open curve γz, coming from infinity and ending at the point
z, as follows

hρ(x, γz) =

∫
γz

dyρδ(3)(x− y). (4.3)

Figure 4.1: Tangent vector of a curve at a point.

The form factor (4.3) can be interpreted as an object that takes the tangent vector of a curve
at a given point, as shown Figure 4.1. Taking its divergence, we have

∂ρh
ρ =

∫
γz

dyρ∂ρ(δ
(3)(x− y)) = δ(3)(x− z). (4.4)

Since objects kρ and hρ have the same divergence, then they differ by the curl of a vector
field. This allows us to make the change kρ → hρ. So, we can perform a gauge transformation
on the object hρ(x), where the open path γz is parallel transported along the closed curve to
which it ends, creating a diagram of open strands parallel to each other (analogous to Seifert
surfaces). Therefore, the GLN could be written as

L(i, j) =

∮
γi

dxµ
∮
γj

dyνεµνρ

∫
γy

dzρδ(3)(x− z). (4.5)

Figure 4.2: Open strands diagram for the GLN. Figure 4.3: Trivial Link (not linked according
to the open strands diagram).
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The expression in (4.5) tells us that the mixed product between the tangent vectors to the
open paths γy and the closed curves γj (blue) and γi (red) must be non-degenerate, as depicted
in Figure 4.2, with GLN equal to one. Otherwise, there is no linking between the curves, and we
obtain the trivial link as shown in Figure 4.3. Similarly, employing the tools developed thus far,
we will interpret geometrically the analytical expression for the TMC in the following subsection.

4.1.2 Borromean rings

Using the conventions and notation developed in section 2.5, it is possible to write the expression
(2.61) for S(1) in terms of the metric and the T -objects as follows

S(1) =− 1

2

∑
i,j,k

[(
I⃗i × I⃗j

)
· I⃗k
] [
εµνρTµ1x1

i Tµ2x2

j Tµ3x3

k gµx µ1x1
gνx µ2x2

gρx µ3x3

+ T
[µx νy]
i Tµ1x1

j Tµ2x2

k gµx µ1x1
gνy µ2x2

+ T
[µx νy]
j Tµ1x1

k Tµ2x2

i gµx µ1x1
gνy µ2x2

+T
[µx νy]
k Tµ1x1

i Tµ2x2

j gµx µ1x1
gνy µ2x2]

]
.

(4.6)

Let us define the object Hµν(x, γ) for general open curves

Hµν(x, γ) ≡
∫
γ

dyρεµνρδ
(3)(x− y), (4.7)

which could be related to the form factor as Hµν(x, γ
z) = εµνλh

λ(x, γz). Also, the metric in
(2.72) could be written in terms of the kernel for the GLN as gµx νy = −εµνρkρ(x, z). By the
same argument in the last section, since hρ and kρ differ by the curl of a vector field, we can
change −gµx νy → Hµν

(
x, γy⃗

)
. Thus, the first term of the equation (4.6) can be written in terms

of Hµν as follows

εµνρTµ1x1

i Tµ2x2

j Tµ3x3

k gµx µ1x1
gνx µ2x2

gρx µ3x3
−→

− εµνρ
∫
d3x

∮
γi

dzα1

∮
γj

dzβ2

∮
γk

dzγ3Hµα

(
x, γ
−→z1
)
Hνβ

(
x, γ
−→z2
)
Hργ

(
x, γ
−→z3
)

= −εµνρ
∮
γi

dzα1

∮
γj

dzβ2

∮
γk

dzγ3

∫
γ
−→z1
dyδ1

∫
γ
−→z2
dyλ2

∫
γ
−→
3 3

dyσ3 εµαδενβλεργσ ×

× δ(3) (y2 − y1) δ(3) (y3 − y1) .

(4.8)
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Figure 4.4: Open paths diagram for the Borromean rings.

Equation (4.8) indicates the number of times the surfaces generated by the open paths γz⃗1 ,
γz⃗2 , and γz⃗3 , which end on the closed trajectories γi, γj , and γk respectively of the particles,
intersect at the same point. Now, if we consider (as we are doing) that the bundles associated
with all closed trajectories of the particles are parallel, this term will be always zero, as shown
in Figure 4.4. The second term of the equation (4.6) can be written in terms of Hµν as follows

Tµx νyi Tµ1x1

j Tµ2x2

k gµx µ1x1
gνy µ2x2

−→∮
γi

dzµ1

∫ z1

0

dzν2

∮
γj

dzα3

∮
γk

dzβ4Hµα

(
z1, γ

−→z3
)
Hνβ

(
z2, γ

−→z4
)

=

∮
γi

dzµ1

∫ z1

0

dzν2

∮
γj

dzα3

∮
γk

dzβ4 εµαρ

∫
γ
−→z3
dyρ1δ

(3) (y1 − z1) ενβλ
∫
γ
−→z4
dyλ2 δ

(3) (y2 − z2) .

(4.9)
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Figure 4.5: Open paths diagram for a deformation of the Borromean rings.

Note that we use the complete T -object and not just its anti-symmetric part to simplify the
analysis. Equation (4.9) measures the oriented number of times a trajectory (for example, γi)
intersects first the open paths attached to the second closed trajectory (such as γk) and then the
open paths γ

−→z3 terminating on the third trajectory (for example, γj). Such an example can be
seen in Figure 4.5. Additionally, each intersection between the tangent vectors of the particle
trajectories dz and the tangent vectors of the open paths dy is nonzero only if the vectors form
a non-degenerate volume, and the orientation of the curves fixes the direction of the tangent
vectors, allowing us to distinguish the intersections as either entry or exit points on the surface
generated by the “rain” of open paths. Note that there is no need to analyze the remaining
terms in equation (4.6), as the terms following the second one are permutations of the indices
(i, j, k) that label the particles.

We can always assume that the tangent vectors to the parallel open paths are in a fixed
direction, for example, the 3-direction. In this case, each time a tangent vector from these open
paths dyα appears, it would indicate a vector in the dy3 direction. It is clear that we can think
of the set of parallel open paths terminating on a closed trajectory as a particular Seifert surface
(a “kind” of cylinder without a top). Now, we are ready to provide a geometric interpretation of
the second order on-shell action S(2) and show that it is associated with the 4-component link.
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4.1.3 Four-components link

Just like in the previous subsection, we will change the metric g by the H-object as follows
−gµx νy → Hµν

(
x, γy⃗

)
. Thus, the third term of the equation(2.90) is given by

3

2
T b αyj T a µxi gbcgadT

c
kT

d
l gµx αy −→

3

2

∮
γi

dzµ1

1

∫ z1

0

dzµ2

2

∮
γj

dzµ3

3

∫ z3

0

dzµ4

4

∮
γk

dzµ5

5

∮
γl

dzµ6

6 Hµ3µ5

(
z3, γ

−→z5
)
Hµ1µ6

(
z1, γ

−→
b6
)
Hµ2µ4

(
z2, γ

−→z4
)

=
3

2

∮
γi

dzµ1

1

∫ z1

0

dzµ2

2

∮
γj

dzµ3

3

∫ z3

0

dzµ4

4

∮
γk

dzµ5

5

∮
γl

dzµ6

6 εµ3µ5α1

∫
γz5

dyα1
1 δ(3) (y1 − z3)×

× εµ1µ6α2

∫
γz6

dyα2
2 δ(3) (y2 − z1) εµ2µ4α3

∫
γz⃗4

dyα3
3 δ(3) (y3 − z2) .

(4.10)

Figure 4.6: Open strands diagram for the 4-component link.

From this expression, we can argue that to have a contribution, it must happen that the
closed trajectory γi crosses orderly first the open paths γz⃗4 ending on the curve γj . Then, it
must intersect at some point with the open paths belonging to γz⃗6 terminating on the curve
associated with particle l. Also, to demonstrate a non-zero contribution, we must have the curve
γj intersecting at some point with the open paths γz⃗5 associated with the trajectory γk, as shown
in Figure 4.6.

Similarly, it is possible to determine the contributions of the other terms of the analytical
expression for the four-components link, but since this method is somewhat cumbersome when
analyzing higher-order link invariants, the remaining terms will be examined using the new
geometric interpretation to be developed in the following section.



54

4.2 Surface integral interpretation

4.2.1 Gauss linking number

Throughout this section, we will develop a new method of geometric interpretation based on
surface integrals. Similar to what was done in the previous section, we will start by constructing
it from the GLN,

L(i, j) =
1

4π

∮
γi

dxµ
∮
γj

dzbεµbc
(x− z)c

|x− z|3

= − 1

4π

∮
γi

dxµ
∮
γj

dzbεµbc∂
c

(
1

|x− z|

)
.

(4.11)

We want to express the internal closed path integral as a surface integral. For this, we need
Stokes’ theorem

∮
γ

F⃗ · d⃗l =
∫
ϕ

dΣ⃗ · (∇⃗ × x⃗) −→
∮
γ

F adxa =

∫
δ

dΣaεabc∂bF c. (4.12)

Replacing the last equation into (4.11), we can write the GLN as

L(i, j) = − 1

4π

∮
γi

dxµ
∫
S[γj ,y⃗]

dΣdε
deb∂e

(
εµbc∂

c

[
1

|x⃗− y⃗|

])
=

1

4π

∮
γj

dxµ
∫
S[γi,y⃗]

dΣdε
bdeεbµc∂e

(
∂c
[

1

|x⃗− y⃗|

])
=

1

4π

∮
γi

dxµ
∫
S[γj ,y⃗]

dΣd(δ
d
µδ
e
c − δdc δeµ)∂e

(
∂c
[

1

|x⃗− y⃗|

])
=

1

4π

∮
γi

dxµ
∫
S[γj ,y⃗]

dΣµ∇2

[
1

|x⃗− y⃗|

]
− 1

4π

∮
γi

dxµ
∫
S[γj ,y⃗]

dΣc∂µ

(
∂c
[

1

|x⃗− y⃗|

])
.

(4.13)

Note that the last term in the above equation must vanish, since we have a line integral over
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a closed curve of a total differential,

L(i, j) =

∮
γi

dxµ
∫
S[γj ,y⃗]

dΣµδ
3(x⃗− y⃗)

− 1

4π

∫
S[γj ,y⃗]

dΣc

��������������:0∮
γi

dxµ
(
∂µ

(
∂c
[

1

|x⃗− y⃗|

]))
.

(4.14)

Therefore, the GLN can be alternatively written as follows

L(i, j) =

∮
γi

dxµ
∫
S[γj ,y⃗]

dΣµδ
3(x⃗− y⃗). (4.15)

Figure 4.7: Gauss linking number (+)

Figure 4.8: Gauss linking number (-).

Figure 4.9: A pair of curves with GLN equal to
two.

Figure 4.10: Trivial link (intersections cancel
each other out).
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Figure 4.11: Deformation of a pair of curves
with GLN equal to one.

Figure 4.12: Trivial link (intersection at 90°).

Note that equation (4.15) tells us that curve γi (red) intersects with at least one point of the
surface enclosed by curve γj (blue). We define situations where the two vectors have an angle
between them less than 90° with a sign (+) as shown in Figure 4.7, and for a pair of vectors with
an angle greater than 90° with a sign (-) as shown in Figure 4.8. In this way, it is possible to sum
over all the oriented intersections between the curve γi and the surface enclosed by the curve γj ,
then take the absolute value of the result, and this number will correspond to the GLN between
these curves. For example, two negative intersections will give us a GLN equal to two as shown
in Figure 4.9. If the red curve intersects the blue surface more than one time, all the intersection
must have the same orientation, otherwise we get the trivial link (if the intersections cancel each
other out ) as shown in Figure 4.10 or a deformation of a pair of curves with a GLN less than
the number of intersections as we show in Figure 4.11. Additionally, the tangent vector to curve
γi must form an angle different from 90° with respect to curve γj , otherwise the curves are not
linked as depicted in Figure 4.12.

When comparing equations (2.74), (2.75), and (4.15), note that we can write

Dj µx =
1

4π

∮
γj

dzρεµνρ
(x− z)ν

|x− z|3
↔

∫
S[γj ,y⃗]

dΣµδ
3(x⃗− y⃗), (4.16)

which will allow us to carry out the geometric interpretation of the analytical expressions for the
TMC and the four-components link.
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4.2.2 Borromean rings

If we use (4.16) into the first term of the equation (2.61), which represents the analytical
expression for µ̄(1, 2, 3), we can write it in terms of surface integrals as follows

S
(1)
A =

∫
d3xεµνρD1 µxD2 νxD3 ρx

=

∫
d3xεµνρ

∫
S[γ1,y⃗1]

dΣµ

∫
S[γ2,y⃗2]

dΣν

∫
S[γ3,y⃗3]

dΣρδ
3 (x⃗− y⃗1) δ3 (x⃗− y⃗2) δ3 (x⃗− y⃗3) .

(4.17)

Figure 4.13: Borromean rings, contribution of the first term.

Equation (4.17) states that the three surfaces enclosed by the curves γ1 (green), γ2 (red),
and γ3 (blue) share a common point as shown in Figure 4.13. Furthermore, at this point, the
vectors normal to these surfaces must have a nonzero mixed product, indicating that they are
not coplanar vectors.

Similarly, the second, third, and fourth term of (2.61) take the form of the following expression,

S
(1)
B =

∫
d3x

∫
d3yTµx νyi Dj µxDk νy

=

∮
γi

dzµ1

∫ z1

0

dzν2

∫
S[γj ,z⃗3]

dΣµ

∫
S[γk,z⃗4]

dΣνδ
3 (z⃗1 − z⃗3) δ3 (z⃗2 − z⃗4)

(4.18)
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Figure 4.14: Borromean rings, contribution of the second, third, and fourth term.

Expression (4.18) states that curve γi (green) intersects at one point on the surface enclosed
by curve γk (blue), and the surface enclosed by curve γj (red), in that order. Note that the
outermost integral (in green) is a closed line integral, so curve γi must return to the point where
it started. However, the innermost integral (in green) is an open line integral that advances ahead
of the outermost integral. Therefore, before returning, curve γi must cut the surface enclosed by
both curves γk and γj , both in the opposite direction, thus closing the line integral as depicted in
Figure 4.14. If we view the surfaces enclosed by the curves γk (blue) and γj (red) as two fabrics
and the curve γi (green) as a thread, then equation (4.18) is telling us how to use the thread to
sew these fabrics, in other words, it shows us how the curves γi, γj , and γk are linked.

4.2.3 Four-components link

Note that S(2) (2.90) can be written in terms of the D-objects using equation (2.74), and
integrating with respect to the contracted variables, as

S(2) =
1

8

∑
i,j,k,l

((
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗l
)
gµx αy{

3

8

∫
d3x

∫
d3yεµνρεαβγDi νxDj βyDk γyDl ρx

− 3

2

∫
d3x

∫
d3y

∫
d3x1ε

µνρT
[αy µ1x1]
j Di νxDk µ1x1

Dl ρx

+
3

2

∫
d3x

∫
d3y

∫
d3x1

∫
d3x2T

[µx µ1x1]
i T

[αy µ2x2]
j Dk µ2x2

Dl µ1x1

+

∫
d3x

∫
d3y

∫
d3x1

∫
d3x2T

µx µ1x1 µ2x2

j Di µ1x1
Dk µ2x2

Tαyl

}
.

(4.19)
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Observe that in equation (4.19), there is a metric g that could not be contracted with a T -
object of one-index to form a D-object. Such a metric can be replaced by −gµx νy → Hµν

(
x, γy⃗

)
,

as in the open paths interpretation, but the difference lies in that for this new interpretation, the
open paths have a much more intuitive geometric meaning than in the method of the previous
section. Here, the open paths represent the crossing of one surface over another (like a kind of
“twist”), as will be seen later when we analyze each contribution from (4.19). For this reason,
this particular case is special because it is a combination of everything we have seen before.

The first term of (4.19) is given by

S
(2)
A =

∫
d3x

∫
d3yεµνρεαβγgµx αyDi νxDj βyDk γyDl ρx

= −
∫
γx⃗2

dzρ
∫
S[γi,x⃗1]

dΣν

∫
S[γj ,x⃗2]

dΣβ

∫
S[γk,x⃗3]

dΣγ

∫
S[γl,x⃗4]

dΣρε
νβγδ3(z⃗ − x⃗1)δ3(x⃗2 − x⃗3)δ3(z⃗ − x⃗4)

+

∫
γx⃗2

dzν
∫
S[γi,x⃗1]

dΣν

∫
S[γj ,x⃗2]

dΣβ

∫
S[γk,x⃗3]

dΣγ

∫
S[γl,x⃗4]

dΣρε
ρβγδ3(z⃗ − x⃗1)δ3(x⃗2 − x⃗3)δ3(z⃗ − x⃗4).

(4.20)

Figure 4.15: Four-components link, first term contribution.

Note that equation (4.20) states that the surfaces enclosed by the curves γj (blue) and γk
(green) have points in common, meaning they intersect each other. Additionally, the contraction
of the Levi-Civita symbol with the normal vectors to the surfaces enclosed by the γi (red), γj
(blue), and γk (green) curves must form a non-degenerate volume, as shown in Figure 4.15.
Finally, the line integral of open paths, which come from infinity and end at the edge of the
blue curve γj (shown as violet × in Figure 4.15), represents crossings of the surfaces enclosed by
the γi (red) and γl (black) curves over the γj (blue). In other words, the violet parallel paths
(perpendicular to the screen) cut through the red and black surfaces because they must pass
through them to end at the edge of the blue surface. If the red and black surfaces did not cross
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over the blue surface, then these open paths would never cut through them, and the curves would
not be knotted. Note that because the indices of the curves γi, γj , γk, γl are just labels, and in
equation (4.19) we sum over all indices, these conditions must be satisfied for each of the curves.
In this way, it is possible to ensure that they are linked.

Now, the second term is given by

S
(2)
B =

∫
d3x

∫
d3y

∫
d3x1ε

µνρgµx αyT
αy µ1x1

j Di νxDk µ1x1
Dl ρx

= −
∫
γz⃗1

dzρ
∮
γj

dzν1

∫ z1

0

dzµ1

2

∫
S[γi,x⃗2]

dΣν

∫
S[γk,x⃗3]

dΣµ1

∫
S[γl,x⃗4]

dΣρδ
3(z⃗ − x⃗2)δ3(z⃗2 − x⃗3)δ3(z⃗ − x⃗4)

+

∫
γz⃗1

dzν
∮
γj

dzρ1

∫ z1

0

dzµ1

2

∫
S[γi,x⃗2]

dΣν

∫
S[γk,x⃗3]

dΣµ1

∫
S[γl,x⃗4]

dΣρδ
3(z⃗ − x⃗2)δ3(z⃗2 − x⃗3)δ3(z⃗ − x⃗4).

(4.21)

Figure 4.16: Four-components link, second term contribution.

Equation (4.21) states that the blue curve γj must intersect the surface enclosed by the curve
γk (green) in one direction and then intersect it in the opposite direction before completely closing
the path integral. Once again, terms with path integrals of open paths appear, representing
crossings of the surfaces enclosed by the γi (red) and γl (black) curves over the blue one γj
(similar to the previous case), as shown in Figure 4.16.
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The third term is given by

S
(2)
C =

∫
d3x

∫
d3y

∫
d3x1

∫
d3x2gµx αyT

µx µ1x1

i Tαy µ2x2

j Dk µ2x2
Dl µ1x1

=

∫
γz⃗3

dzλ
∮
γi

dzµ1

∫ z1

0

dzµ1

2

∮
γj

dzα3

∫ z3

0

dzµ2

4

∫
S[γk,z⃗5]

dΣµ2

∫
S[γl,z⃗6]

dΣµ1εµαλ×

× δ3(z⃗ − z⃗1)δ3(z⃗4 − z⃗5)δ3(z⃗2 − z⃗6).

(4.22)

Figure 4.17: Four-components link, third term contribution.

Equation (4.22) states that the blue curve γj intersects the surface enclosed by the curve
γk (green) in one direction and then intersects it in the opposite direction to close the path
integral. Similarly, with the red curve γi, which it intersects the surface enclosed by the curve
γl (black) in one direction and then re-intersects in the opposite direction to close the path
integral. Note that we also have a line integral of open paths ending on the blue curve γj ,
which cuts through the red curve γi, representing the crossing of the red curve over the blue one
(because otherwise, they are not linked). Finally, the tangent vectors to the curves γi (red), γj
(blue), and the violet open paths must form a non-degenerate volume. Note that the tangent
vectors to the open strands enter the screen and are represented by ×, as depicted in Figure 4.17.

Finally, the fourth term is given by

S
(2)
D =

∫
d3x

∫
d3y

∫
d3x1

∫
d3x2T

µx µ1x1 µ2x2

j Di µ1x1
Dk µ2x2

Tαyl gµx αy

= −
∮
γj

dzµ1

∫ z1

0

dzµ1

2

∫ z2

0

dzµ2

3

∫
S[γi,z⃗4]

dΣµ1

∫
S[γk,z⃗5]

dΣµ2

∫
S[γl,z⃗6]

dΣµ×

× δ3(z⃗1 − z⃗6)δ3(z⃗2 − z⃗4)δ3(z⃗3 − z⃗5).

(4.23)
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Figure 4.18: Four-components link, fourth term contribution.

Equation (4.23) states that the blue curve γj must intersect the surfaces enclosed by the
curves γk (green), γi (red), and γl (black), as shown by the blue integrals, from the innermost
integral to the outermost one. Now, since the outermost integral is a closed path integral, it
must return to the initial point. To achieve this, it must intersect the green surface again in the
opposite direction. However, as the two subsequent inner integrals (in blue) are open integrals
that precede the closed path integral, the blue curve γj must first intersect in the opposite
direction to the surfaces enclosed by the curves γl (black) and γi (red) before reaching the initial
point, thus closing the path integral as shown in Figure 4.18. Note that this particular term can
be seen as a thread crossing over three fabrics of different colors; in other words, the integral in
(4.23) tells us how to weave the blue curve over the other three surfaces.
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Conclusions

Throughout this work, we have delved into the study of topological classical field theories,
focusing on the Chern-Simons-Wong theory. By solving the classical equations of motion, we
obtained analytical expressions for various link invariants, including the Gauss linking number,
the third Milnor’s coefficient, and the four-components link.

One key aspect of our analysis involved perturbative methods to obtain these link invariants.
At zeroth order, the Gauss linking number was identified, while at the first order, the third
Milnor’s coefficient was revealed, capturing the entanglement of Borromean rings. This perturbative
approach, although non-trivial, provided insight into the intricate link structures associated with
the Chern-Simons-Wong theory.

Additionally, we explored the possibility of intermediate Abelian theories that could reproduce
higher-order link invariants, akin to those obtained from the non-Abelian Chern-Simons theory.
Two sections were dedicated to this exploration: one based on the work of Leal and Pineda [3],
which focused on an Abelian theory reproducing the TMC, and another introducing an original
Abelian theory detecting the 4-component link.

Moreover, we developed a geometric interpretation for the link invariants using surface
integrals. This approximation allowed us to have a more intuitive understanding than the
interpretation provided by the open paths diagram, because the knot invariants were expressed
through the relationships that the normal vectors to the involved surfaces satisfied among
themselves. In conclusion, our work contributes to the broader understanding of topological
classical field theories, showcasing the rich link invariants that arise from the Chern-Simons-
Wong theory and its interpretations.

This work leaves the door open for future interesting research. For example, it is thought
that the action S(2) could be related to the Whitehead link when restricted to two particles
with independent iso-charges [9], which can be analyzed using the new interpretation of surface
integrals. Additionally, a more intriguing question would be whether a Feynman-like diagrammatic
approach could be developed to obtain analytical expressions for higher-order link invariants
without having to calculate each perturbative term of the on-shell action S(p).
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Appendix A

Intermediate action for the
four-components link

A.1 Intermediate action and equations of motion

The intermediate action for the four-components link in contracted notation is given by:

SM = − 6Λ⃗µx

[
εµνρ∂ν λ⃗ρx −

1

2

n∑
i

Tµxi I⃗i(0)

]

+
3

4
εµνρεαβγgµx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
· λ⃗ρx

+
3

2

n∑
i=1

εµνρgµx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1 × I⃗i

)]
· λ⃗ρx

+
3

4

∑
i,j

gµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j

[
I⃗i ×

(
λ⃗µ2x2 × I⃗j

)]
· λ⃗µ1x1

+

n∑
i=1

Tµx µ1x1 µ2x2

i

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
· λ⃗µx,

(A.1)
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where we have used the convention of generalized Einstein summation for “discrete-continuous”
indices. Transitioning from vector notation to index notation for the fields Λ and λ, we get:

SM = − 6Λaµx

[
εµνρ∂νλ

a
ρx −

1

2

n∑
i

Tµxi Iai (0)

]

+
3

4
εµνρεαβγεabcεcdegµx αyλ

b
νxλ

d
βyλ

e
γyλ

a
ρx

+
3

2

n∑
i=1

εµνρεabcεcdegµx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei λ
a
ρx

+
3

4

∑
i,j

εabcεcdegµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej λ
a
µ1x1

+

n∑
i=1

εabcεcdeTµx µ1x1 µ2x2

i λbµ1x1
λdµ2x2

Iei λ
a
µx.

(A.2)

If we make variations of the action (δSM = 0) with respect to the field Λaµx, we trivially
obtain:

εµνρ∂νλ
a
ρx =

1

2

n∑
i

Tµxi Iai (0), (A.3)

which is the zeroth-order equation of motion for the Chern-Simons-Wong theory, as in [5]. When
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performing variations of the action with respect to the field λaµx, note that:

δSM = − 6εµνρΛaµx∂ν
(
δλaρx

)
+

3

4
εµνρεαβγεabcεcdegµx αy

(
δλbνx

)
λdβyλ

e
γyλ

a
ρx ← (b↔ a)∧(ν ↔ ρ)

+
3

4
εµνρεαβγεabcεcdegµx αyλ

b
νx

(
δλdβy

)
λeγyλ

a
ρx ← (d↔ a)∧(x↔ y)∧(µνρ)↔ (αβγ)

+
3

4
εµνρεαβγεabcεcdegµx αyλ

b
νxλ

d
βy

(
δλeγy

)
λaρx ← (e↔ a)∧(x↔ y)∧(µνρ)↔ (αβγ)

+
3

4
εµνρεαβγεabcεcdegµx αyλ

b
νxλ

d
βyλ

e
γy

(
δλaρx

)
+

3

2

n∑
i=1

εµνρεabcεcdegµx αyT
[αy µ1x1]
i

(
δλbνx

)
λdµ1x1

Iei λ
a
ρx ← (b↔ a)∧(ν ↔ ρ)

+
3

2

n∑
i=1

εµνρεabcεcdegµx αyT
[αy µ1x1]
i λbνx

(
δλdµ1x1

)
Iei λ

a
ρx ← (d↔ a)∧(µ1x1 ↔ ρx)

+
3

2

n∑
i=1

εµνρεabcεcdegµx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei
(
δλaρx

)
+

3

4

∑
i,j

εabcεcdegµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j Ibi

(
δλdµ2x2

)
Iej λ

a
µ1x1

← (d↔ a)∧(µ2x2 ↔ µ1x1)

+
3

4

∑
i,j

εabcεcdegµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej
(
δλaµ1x1

)
+

n∑
i=1

εabcεcdeTµx µ1x1 µ2x2

i

(
δλbµ1x1

)
λdµ2x2

Iei λ
a
µx ← (b↔ a)∧ (µ1x1 ↔ µx)

+

n∑
i=1

εabcεcdeTµx µ1x1 µ2x2

i λbµ1x1

(
δλdµ2x2

)
Iei λ

a
µx ← (d↔ a)∧ (µ2x2 ↔ µx)

+

n∑
i=1

εabcεcdeTµx µ1x1 µ2x2

i λbµ1x1
λdµ2x2

Iei
(
δλaµx

)
.

(A.4)

Also, note that

(boundary term)→
�������:0
∂ν
(
Λaµxδλ

a
ρx

)
= Λaµx∂ν

(
δλaρx

)
+
(
∂νΛ

a
µx

)
δλaρx,

⇒ Λaµx∂ν
(
δλaρx

)
= −

(
∂νΛ

a
µx

)
δλaρx, (A.5)
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so we can write

δSM = 6εµνρ
(
∂νΛ

a
µx

)
δλaρx ← (µ↔ ρ)

+
3

4
εµρνεαβγεbacεcdegµx αy

(
δλaρx

)
λdβyλ

e
γyλ

b
νx ← (εµρν = −εµνρ)∧

(
εbac = −εabc

)
+

3

4
εµνρεαβγεdbcεcaegαy µxλ

b
βy (δλ

a
νx)λ

e
ρxλ

d
γy ← (ν ↔ ρ)

∧
(b↔ d)

∧
(e↔ b)

+
3

4
εµνρεαβγεebcεcdagαy µxλ

b
βyλ

d
νx

(
δλaρx

)
λeγy ← (b↔ d)

+
3

4
εµνρεαβγεabcεcdegµx αyλ

b
νxλ

d
βyλ

e
γy

(
δλaρx

)
+

3

2

n∑
i=1

εµρνεbacεcdegµx αyT
[αy µ1x1]
i

(
δλaρx

)
λdµ1x1

Iei λ
b
νx ← (εµρν = −εµνρ)∧

(
εbac = −εabc

)∧
(µ↔ ρ)

+
3

2

n∑
i=1

εµνµ1εdbcεcaegµx1 αyT
[αy ρx]
i λbνx1

(
δλaρx

)
Iei λ

d
µ1x1

← (µ↔ ρ)

+
3

2

n∑
i=1

εµνρεabcεcdegµx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei
(
δλaρx

)
← (µ↔ ρ)

+
3

4

∑
i,j

εdbcεcaegµx αyT
[µ2x2 µx]
i T

[αy µ1x1]
j Ibi

(
δλaµ1x1

)
Iej λ

d
µ2x2

← (µ1x1 ↔ µx)

+
3

4

∑
i,j

εabcεcdegµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej
(
δλaµ1x1

)
← (µ1x1 ↔ µx)

+

n∑
i=1

εbacεcdeTµ1x1 µx µ2x2

i

(
δλaµx

)
λdµ2x2

Iei λ
b
µ1x1

←
(
εbac = −εabc

)
+

n∑
i=1

εdbcεcaeTµ2x2 µ1x1 µx
i λbµ1x1

(
δλaµx

)
Iei λ

d
µ2x2

+

n∑
i=1

εabcεcdeTµx µ1x1 µ2x2

i λbµ1x1
λdµ2x2

Iei
(
δλaµx

)
.

(A.6)
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Upon making the respective changes in each line (note that we can combine the terms from
lines six and eight), so we obtain

δSM = 6ερνµ
(
∂νΛ

a
ρx

)
δλaµx ← (ερνµ = −εµνρ)

+
3

4
εµνρεαβγεabcεcdegµxαy

(
δλaρx

)
λdβyλ

e
γyλ

b
νx

+
3

4
εµρνεαβγεedcεcabgαyµxλ

d
βy

(
δλaρx

)
λeγyλ

b
νx

+
3

4
εµνρεαβγεedcεcbagαyµxλ

d
βyλ

e
γy

(
δλaρx

)
λbνx

+
3

4
εµνρεαβγεabcεcdegµxαyλ

b
νxλ

d
βyλ

e
γy

(
δλaρx

)
+ 3

n∑
i=1

ερνµεabcεcdegρx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei
(
δλaµx

)
+

3

2

n∑
i=1

ερνµ1εdbcεcaegρx1 αyT
[αy µx]
i λbνx1

(
δλaµx

)
Iei λ

d
µ1x1

← (αy ↔ µ1z1)
∧
(x1 ↔ y)

∧
(ρνµ1 ↔ αβγ)

+
3

4

∑
i,j

εdbcεcaegµ1x1 αyT
[µ2x2 µ1x1]
i T

[αy µx]
j Ibi

(
δλaµx

)
Iej λ

d
µ2x2

← (i↔ j)∧ (αy ↔ µ1x1)
∧
(b↔ e)

+
3

4

∑
i,j

εabcεcdegµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej
(
δλaµx

)
−

n∑
i=1

εabcεcdeTµ1x1 µx µ2x2

i

(
δλaµx

)
λdµ2x2

Iei λ
b
µ1x1

+

n∑
i=1

εdbcεcaeTµ2x2 µ1x1 µx
i λbµ1x1

(
δλaµx

)
Iei λ

d
µ2x2

+

n∑
i=1

εabcεcdeTµx µ1x1 µ2x2

i λbµ1x1
λdµ2x2

Iei
(
δλaµx

)
.

(A.7)

If we define the following object

T
[µx µ1x1] µ2x2

i =
1

2
(Tµx µ1x1 µ2x2

i − Tµ1x1 µx µ2x2

i ) , (A.8)

note that we can add up the terms from lines two to five of equation (A.7), and using the
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definition in (A.8), we have

δSM =− 6εµνρ
(
∂νΛ

a
ρx

)
δλaµx

+ 3εµνρεαβγεabcεcdegµx αyλ
b
νxλ

d
βyλ

e
γy

(
δλaρx

)
← (µ↔ ρ)

+ 3

n∑
i=1

ερνµεabcεcdegρx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei
(
δλaµx

)
← (ερνµ = −εµνρ)

+
3

2

n∑
i=1

εαβγεcbdεacegαy µ1z1T
[µ1z1 µx]
i λbβyλ

d
γyI

e
i

(
δλaµx

)
←
(
T

[µ1z1 µx]
i = −T [µx µ1z1]

i

)∧
(z1 ↔ x1)

+
3

4

∑
i,j

εdecεcabgµ1x1 αyT
[µ1x1 µx]1
i T

[µ2x2 αy]
j Iej I

b
i λ

d
µ2x2

(
δλaµx

)
←
(
T

[µ1x1 µx]
i = −T [µx µ1x1]

i

)
+

3

4

∑
i,j

εabcεcdegµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej
(
δλaµx

)
+ 2

n∑
i=1

εabcεcdeT
[µx µ1x1] µ2x2

i λbµ1x1
λdµ2x2

Iei
(
δλaµx

)
+

n∑
i=1

εdbcεcaeTµ2x2 µ1x1 µx
i λbµ1x1

Iei λ
d
µ2x2

(
δλaµx

)
,

(A.9)

δSM =− 6εµνρ
(
∂νΛ

a
ρx

)
δλaµx

+ 3ερνµεαβγεabcεcdegρx αyλ
b
νxλ

d
βyλ

e
γy

(
δλaµx

)
← (ερνµ = −εµνρ)

− 3

n∑
i=1

εµνρεabcεcdegρx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei
(
δλaµx

)
− 3

2

n∑
i=1

εαβγεcbdεacegµ1x1 αyT
[µx µ1x1]
i λbβyλ

d
γyI

e
i

(
δλaµx

)
+

3

2

∑
i,j

εabcεcdegµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej
(
δλaµx

)
← (εabc = −εacb)

+ 2

n∑
i=1

εabcεcdeT
[µx µ1x1] µ2x2

i λbµ1x1
λdµ2x2

Iei
(
δλaµx

)
+

n∑
i=1

εdbcεcaeTµ2x2 µ1x1 µx
i λbµ1x1

Iei λ
d
µ2x2

(
δλaµx

)
,

(A.10)
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δSM =− 6εµνρ
(
∂νΛ

a
ρx

)
δλaµx

− 3εµνρεαβγεabcεcdegρx αyλ
b
νxλ

d
βyλ

e
γy

(
δλaµx

)
− 3

n∑
i=1

εµνρεabcεcdegρx αyT
[αy µ1x1]
i λbνxλ

d
µ1x1

Iei
(
δλaµx

)
− 3

2

n∑
i=1

εαβγεcbdεacegµ1x1 αyT
[µx µ1x1]
i λbβyλ

d
γyI

e
i

(
δλaµx

)
− 3

2

∑
i,j

εacbεcdegµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j Ibi λ

d
µ2x2

Iej
(
δλaµx

)
+ 2

n∑
i=1

εabcεcdeT
[µx µ1x1] µ2x2

i λbµ1x1
λdµ2x2

Iei
(
δλaµx

)
+

n∑
i=1

εdbcεcaeTµ2x2 µ1x1 µx
i λbµ1x1

Iei λ
d
µ2x2

(
δλaµx

)
.

(A.11)

The last equation can be expressed using the vector notation as

δSM =− 6εµνρ
(
∂νΛ⃗ρx

)
·
(
δλ⃗µx

)
− 3εµνρεαβγgρx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
·
(
δλ⃗µx

)
− 3

n∑
i=1

εµνρgρx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1

× I⃗i
)]
·
(
δλ⃗µx

)
− 3

2

n∑
i=1

εαβγgµ1x1 αyT
[µx µ1x1]
i

[(
λ⃗βy × λ⃗γy

)
× I⃗i

]
·
(
δλ⃗µx

)
− 3

2

∑
i,j

gµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j

[(
λ⃗µ2x2

× I⃗j
)
× I⃗i

]
·
(
δλ⃗µx

)
+ 2

n∑
i=1

T
[µx µ1x1] µ2x2

i

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
·
(
δλ⃗µx

)
+

n∑
i=1

Tµ2x2 µ1x1 µx
i

[(
λ⃗µ1x1 × λ⃗µ2x2

)
× I⃗i

]
·
(
δλ⃗µx

)
,

(A.12)

and observe that the last term could be rewritten as follows

Tµ2x2 µ1x1 µx
i

[(
λ⃗µ1x1 × λ⃗µ2x2

)
× I⃗i

]
= −Tµ2x2 µ1x1 µx

i

[
I⃗i ×

(
λ⃗µ1x1 × λ⃗µ2x2

)]
, (A.13)

using the Jacobi identity, we have

Tµ2x2 µ1x1 µx
i

[(
λ⃗µ1x1

× λ⃗µ2x2

)
× I⃗i

]
= Tµ2x2 µ1x1 µx

[
λ⃗µ2x2

×
(
I⃗i × λ⃗µ1x1

)]
← (µ2x2 ↔ µ1x1)

+ Tµ2x2 µ1x1 µx
[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
,

(A.14)
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Tµ2x2 µ1x1 µx
i

[(
λ⃗µ1x1 × λ⃗µ2x2

)
× I⃗i

]
= Tµ1x1 µ2x2 µx

[
λ⃗µ1x1 ×

(
I⃗i × λ⃗µ2x2

)]
+ Tµ2x2 µ1x1 µx

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
,

(A.15)

Tµ2x2 µ1x1 µx
i

[(
λ⃗µ1x1 × λ⃗µ2x2

)
× I⃗i

]
= − Tµ1x1 µ2x2 µx

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
+ Tµ2x2 µ1x1 µx

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
,

(A.16)

and using the definition in (A.8), we have

Tµ2x2 µ1x1 µx
i

[(
λ⃗µ1x1

× λ⃗µ2x2

)
× I⃗i

]
= −2T [µ1x1 µ2x2] µx

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
. (A.17)

Replacing equation (A.17) into (A.12),

δSM =− 6εµνρ
(
∂νΛ⃗ρx

)
·
(
δλ⃗µx

)
− 3εµνρεαβγgρx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
·
(
δλ⃗µx

)
− 3

n∑
i=1

εµνρgρx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1 × I⃗i

)]
·
(
δλ⃗µx

)
− 3

2

n∑
i=1

εαβγgµ1x1 αyT
[µx µ1x1]
i

[(
λ⃗βy × λ⃗γy

)
× I⃗i

]
·
(
δλ⃗µx

)
− 3

2

∑
i,j

gµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j

[(
λ⃗µ2x2 × I⃗j

)
× I⃗i

]
·
(
δλ⃗µx

)
+ 2

n∑
i=1

T
[µx µ1x1] µ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
·
(
δλ⃗µx

)
− 2

n∑
i=1

T
[µ1x1 µ2x2] µx
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
·
(
δλ⃗µx

)
.

(A.18)

If we define the object

T
⟨[µx µ1x1] µ2x2⟩
i =

2

3

(
T

[µx µ1x1] µ2x2

i − T [µ1x1 µ2x2] µx
i

)
, (A.19)
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so we can write the variation of the action as

δSM =− 6εµνρ
(
∂νΛ⃗ρx

)
·
(
δλ⃗µx

)
− 3εµνρεαβγgρx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
·
(
δλ⃗µx

)
− 3

n∑
i=1

εµνρgρx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1 × I⃗i

)]
·
(
δλ⃗µx

)
− 3

2

n∑
i=1

εαβγgµ1x1 αyT
[µx µ1x1]
i

[(
λ⃗βy × λ⃗γy

)
× I⃗i

]
·
(
δλ⃗µx

)
− 3

2

∑
i,j

gµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j

[(
λ⃗µ2x2

× I⃗j
)
× I⃗i

]
·
(
δλ⃗µx

)
+ 3

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
·
(
δλ⃗µx

)
,

(A.20)

δSM =− 3

{
2εµνρ∂νΛ⃗ρx

+ εµνρεαβγgρx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
+

n∑
i=1

εµνρgρx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1

× I⃗i
)]

+
1

2

n∑
i=1

εαβγgµ1x1 αyT
[µx µ1x1]
i

[(
λ⃗βy × λ⃗γy

)
× I⃗i

]
+

1

2

∑
i,j

gµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j

[(
λ⃗µ2x2

× I⃗j
)
× I⃗i

]

−
n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]}

·
(
δλ⃗µx

)
.

(A.21)

Finally, by the least action principle (δSM = 0), we get the equation of motion for the Λ field:

2εµνρ∂νΛ⃗ρx =− εµνρεαβγgρx̄ αy
[
λ⃗νx̄ ×

(
λ⃗βy × λ⃗γy

)]
−

n∑
i=1

εµνρgρx̄ αyT
[αy µ1x1]
i

[
λ⃗νx̄ ×

(
λ⃗µ1x1 × I⃗i

)]
− 1

2

n∑
i=1

εαβγgµ1x1 αyT
[µx µ1x1]
i

[(
λ⃗βy × λ⃗γy

)
× I⃗i

]
− 1

2

∑
i,j

gµ1x1 αyT
[µx µ1x1]
i T

[αy µ2x2]
j

[(
λ⃗µ2x2

× I⃗j
)
× I⃗i

]
+

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
,

(A.22)
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which is analogous to the second-order equation of motion for the Chern-Simons-Wong theory
[5]. This is evident when grouping terms one-two and three-four in the above equation. Thus,
we obtain:

2εµνρ∂νΛ⃗ρx =− 2εµνρλ⃗νx̄ ×

(
1

2
εαβγ

(
λ⃗βy × λ⃗γy

)
gρx̄ αy +

1

2

n∑
i=1

T
[αy µ1x1]
i

(
λ⃗µ1x1 × I⃗i

)
gρx̄ αy

)

−
n∑
i=1

T
[µxµ1x1]
i

1

2
εαβγ

(
λ⃗βy × λ⃗γy

)
gµ1x1 αy +

1

2

n∑
j=1

T
[αy µ2x2]
j

(
λ⃗µ2x2

× I⃗j
)
gµ1x1 αy

× I⃗i
+

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
,

(A.23)

If we define the object

a⃗µx =
1

2
εαβγ

(
λ⃗βy × λ⃗γy

)
gµx αy +

1

2

n∑
i=1

T
[αy µ1x1]
i

(
λ⃗µ1x1

× I⃗i
)
gµx αy, (A.24)

then equation (A.22) can be written as

2εµνρ∂νΛ⃗ρx =− 2εµνρλ⃗νx̄ × a⃗ρx̄ −
n∑
i=1

T
[µx µ1x1]
i a⃗µ1x1

× I⃗i

+

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
,

(A.25)

and changing the indices (ν ↔ ρ) in the first term on the right-hand side of the above equation,
and considering (ϵµρν = −ϵµνρ), we have

2εµνρ∂νΛ⃗ρx =− 2εµνρa⃗νx̄ × λ⃗ρx̄ −
n∑
i=1

T
[µx µ1x1]
i a⃗µ1x1

× I⃗i

+

n∑
i=1

T
⟨[µx µ1x1] µ2x2⟩
i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
,

(A.26)

which is formally equal to the second-order equation of motion shown in [5]. Note that the object
a⃗µx is an analogue to the first-order field in the Chern-Simons-Wong theory, which has naturally
appeared in this intermediate Abelian theory. In fact, by multiplying equation (A.24) by the
inverse of the metric gµx νy and using gµx νya⃗νy = −εµνρ∂ν a⃗ρx with gµx αzgαz νy = δµxνy, note
that:

εµνρ∂ν a⃗ρx = −1

2
εµνρ

(
λ⃗νx̄ × λ⃗ρx̄

)
− 1

2

n∑
i=1

T
[µx µ1x1]
i

(
λ⃗µ1x1

× I⃗i
)
. (A.27)

If we remove the vector notation, perform the variable change (µ1x1 ↔ νy) in the second
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term on the right-hand side, and revert the Einstein summation convention, we obtain

εµνρ∂νaiρ(x) = −
1

2
εµνρεijkλjν(x)λkρ(x)−

1

2

∫
d3y

n∑
l=1

εijkT
[µx νy]
l λjν(y)Ilk, (A.28)

and considering a set of orthonormal iso-currents Ilk = δlk, we have

εµνρ∂νaiρ(x) = −
1

2
εµνρεijkλjν(x)λkρ(x)−

1

2

∫
d3yεijkT

[µx νy]
k λjν(y), (A.29)

changing the indices (j ↔ k) in the second term on the right-hand side of the previous equation
and considering that (ϵikj = −ϵijk), we obtain:

εµνρ∂νaiρ(x) = −
1

2
εµνρεijkλjν(x)λkρ(x) +

1

2

∫
d3yεijkT

[µx νy]
j λkν(y), (A.30)

which is the equation of motion for the A field of the intermediate theory proposed in [3] and,
in turn, analogous to the first-order equation of motion of the Chern-Simons-Wong theory [5].
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A.2 On-shell action:

By replacing (A.3) and (A.22) into (A.1):

SM On−Shell =
3

4
εµνρεαβγgµx αy

[
λ⃗νx ×

(
λ⃗βy × λ⃗γy

)]
· λ⃗ρx

+
3

2

n∑
i=1

εµνρgµx αyT
[αy µ1x1]
i

[
λ⃗νx ×

(
λ⃗µ1x1 × I⃗i

)]
· λ⃗ρx ← (i↔ j)

+
3

4

∑
i,j

gµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j

[
I⃗i ×

(
λ⃗µ2x2 × I⃗j

)]
· λ⃗µ1x1

+

n∑
i=1

Tµx µ1x1 µ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
· λ⃗µx ← (i↔ j),

(A.31)

SM On−Shell =
3

4
εµνρεαβγgµx αy

1

16

∑
i,j,k,l

(
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗lgνx µ1x1gβy µ2x2

gγy µ3x3gρx µ4x4T
µ1x1
i Tµ2x2

j Tµ3x3
κ Tµ4x4

l

−
3

2

n∑
j=1

εµνρgµx αyT
[αy µ1x1]
j

1

8

∑
i,k,l

(
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗lgνx µ2x2gµ1x1 µ3x3gρx µ4x4T

µ2x2
i Tµ3x3

k Tµ4x4
l

−
3

4

∑
i,j

gµx αyT
[µ1x1 µx]
i T

[αy µ2x2]
j

1

4

∑
k,l

(
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗lgµ2x2 µ3x3gµ1x1 µ4x4T

µ3x3
k Tµ4x4

l

−
n∑

j=1

Tµx µ1x1 µ2x2
j

1

8

∑
i,k,l

(
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗lgµ1x1 µ3x3gµ2x2 µ4x4gµx αyT

µ3x3
i Tµ4x4

k Tαy
l

(A.32)

SM On−Shell =
1

8

∑
i,j,k,l

((
I⃗i ×

(
I⃗j × I⃗k

))
· I⃗l

){
3

8
εµνρεαβγgνx µ1x1gβy µ2x2gγy µ3x3gρx µ4x4T

µ1x1
i Tµ2x2

j Tµ3x3
κ Tµ4x4

l

+
3

2
εµνρT

[αy µ1x1]
j gνx µ2x2gµ1x1 µ3x3gρx µ4x4T

µ2x2
i Tµ3x3

k Tµ4x4
l

+
3

2
T

[µx µ1x1]
i T

[αy µ2x2]
j gµ2x2 µ3x3gµ1x1 µ4x4T

µ3x3
k Tµ4x4

l

+ Tµx µ1x1 µ2x2
j gµ1x1 µ3x3gµ2x2 µ4x4T

µ3x3
i Tµ4x4

k Tαy
l

}
gµx αy,

(A.33)

which is exactly the same as the second-order “on-shell” term of the action for the Chern-Simons-
Wong model [5].
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A.3 Consistency of the theory:

Taking the divergence of equation (A.3), note that

εµνρ∂ν λ⃗ρx = Jµx =
1

2

n∑
i=1

Tµxi I⃗i, (A.34)

(divergence of the curl)→
��������:0
∂µ

(
εµνρ∂ν λ⃗ρx

)
= ∂µJ

µx =
1

2

m∑
i

(∂µT
µx
i ) I⃗i, (A.35)

Recall that in general the function of the currents is not zero, we have

∂µT
µx
i = 0 → consistent by the differential constraint. (A.36)

Taking the divergence of equation (A.27):

�������:0
∂µ (ε

µνρ∂ν a⃗ρx) = −
1

2

(
εµνρ∂µλ⃗νx̄

)
× λ⃗ρx̄︸ ︷︷ ︸

(µ↔ν)∧(ρ↔µ)

−1

2
λ⃗νx̄ ×

(
εµνρ∂µλ⃗ρx̄

)
︸ ︷︷ ︸

(µ↔ν)

−1

2

n∑
i=1

∂µT
[µx µ1x1]
i

(
λ⃗µ1x1 × I⃗i

)
.

(A.37)

0 = −1

2

(
ενρµ∂ν λ⃗ρx̄

)
× λ⃗µx̄ −

1

2
λ⃗µx̄ ×

(
ενµρ∂ν λ⃗ρx̄

)
− 1

2

n∑
i=1

∂µT
[µx µ1x1]
i

(
λ⃗µ1x1

× I⃗i
)
. (A.38)

Combining similar terms

0 = λ⃗µx̄ ×
(
εµνρ∂ν λ⃗ρx̄

)
− 1

2

n∑
i=1

∂µT
[µx µ1x1]
i

(
λ⃗µ1x1

× I⃗i
)
. (A.39)

Observe that

∂µT
[µx µ1x1]
i =

1

2
∂µT

µx µ1x1

i − 1

2
∂µT

µ1x1 µx
i

=
1

2

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i − 1

2

(
−δ3 (x− x1) + δ3 (x− xi)

)
Tµ1x1

i

=
(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i .

(A.40)
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Replacing the previous result and the equation of motion for the λ field, we have

0 =
1

2

n∑
i=1

Tµx̄i

(
λ⃗µx̄ × I⃗i

)
+
1

2

n∑
i=1

δ3 (x− xi)Tµ1x1

i

(
λ⃗µ1x1

× I⃗i
)
−1

2

n∑
i=1

δ3 (x− x1)Tµ1x1

i

(
λ⃗µ1x1

× I⃗i
)
,

(A.41)
integrate with respect to x1 in the third term, and changing the indices (µ1 ↔ µ), (i↔ j):

0 =
����������1

2

n∑
i=1

Tµx̄i

(
λ⃗µx̄ × I⃗i

)
+

1

2

n∑
i=1

δ3 (x− xi)Tµ1x1

i

(
λ⃗µ1x1

× I⃗i
)
−
����������1

2

n∑
i=1

Tµx̄i

(
λ⃗µx̄ × I⃗i

)
, (A.42)

⇒ 1

2

n∑
j=1

δ3 (x− xj)Tµ1x1

j

(
λ⃗µ1x1

× I⃗j
)
= 0. (A.43)

Recall that λµx = −gµx νyJνy, and replacing it with the expression for current density

⇒ 1

2

n∑
j=1

δ3 (x− xj)Tµ1x1

j

((
1

2

n∑
i=1

gµ1x1 µ2x2
Tµ2x2

i I⃗i

)
× I⃗j

)
= 0, (A.44)

1

4

∑
i,j

δ3 (x− xj) (Ii × Ij)Tµ1x1

j gµ1x1 µ2x2
Tµ2x2

i = 0 ← (µ1x1 ↔ µ2x2), (A.45)

1

4

∑
i,j

δ3 (x− xj) (Ii × Ij)Tµ1x1

i gµ1x1 µ2x2
Tµ2x2

j = 0, (A.46)

1

4

∑
i,j

δ3 (x− xj) (Ii × Ij)L(i, j) = 0. (A.47)

In general, the function of the currents does not always vanish, so it holds that:

L(i, j) = 0, (A.48)

which would be our first important result for the consistency of this theory, since if the proposed
action describes a higher-order link invariant, then the Gauss linking number must be zero.

Now, we take the divergence of equation (A.25):

���������:0
2∂µ

(
εµνρ∂νΛ⃗ρx

)
=
�����������:A

−2εµνρ
(
∂µλ⃗νx̄

)
× a⃗ρx̄ −

����������:B

2εµνρλ⃗νx̄ × (∂µa⃗ρx̄)

−
n∑
i=1

��������:C(
∂µT

[µx µ1x1]
i

)(
a⃗µ1x1

× I⃗i
)

+

n∑
i=1�

���������:D(
∂µT

⟨[µx µ1x1] µ2x2⟩
i

) [
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
.

(A.49)
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Note that

A = −2
(
εµνρ∂µλ⃗νx̄

)
× a⃗ρx̄ = −2

(
ενµρ∂ν λ⃗µx̄

)
× a⃗ρx̄ ← (µ↔ ν)

= −2
(
ενρµ∂ν λ⃗ρx̄

)
× a⃗µx̄ ← (µ↔ ρ)

= −2
(
εµνρ∂ν λ⃗ρx̄

)
× a⃗µx̄

= −2

(
1

2

n∑
i=1

Tµx̄i I⃗i

)
× a⃗µx̄

= −
n∑
i=1

Tµx̄i

(
I⃗i × a⃗µx̄

)
,

(A.50)

B = −2εµνρλ⃗νx̄ × (∂µa⃗ρx̄) = −2λ⃗νx̄ × (εµνρ∂µa⃗ρx̄) ← (µ↔ ν)

= −2λ⃗µx̄ × (ενµρ∂ν a⃗ρx̄) = 2λ⃗µx̄ × (εµνρ∂ν a⃗ρx̄) ← Replacing (A.27)

= − εµνρλ⃗µx̄ ×
(
λ⃗νx̄ × λ⃗ρx̄

)
︸ ︷︷ ︸

(µ↔ρ)

−
n∑
i=1

T
[µx̄ µ1x1]
i λ⃗µx̄ ×

(
λ⃗µ1x1

× I⃗i
)

︸ ︷︷ ︸
(µ1x1↔νy)

= −ερνµλ⃗ρx̄ ×
(
λ⃗νx̄ × λ⃗µx̄

)
−

n∑
i=1

T
[µx̄ νy]
i λ⃗µx̄ ×

(
λ⃗νy × I⃗i

)
= εµνρ

(
λ⃗µx̄ × λ⃗νx̄

)
× λ⃗ρx̄ +

n∑
i=1

T
[µx̄ νy]
i

(
λ⃗νy × I⃗i

)
× λ⃗µx̄,

(A.51)

C = ∂µT
[µx µ1x1]
i =

1

2
∂µT

µx µ1x1

i − 1

2
∂µT

µ1x1 µx
i

=
1

2

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i − 1

2

(
−δ3 (x− x1) + δ3 (x− xi)

)
Tµ1x1

i

=
(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i ,

(A.52)



80

D = ∂µT
⟨[µx µ1x1] µ2x2⟩
i =

2

3

(
∂µT

[µx µ1x1] µ2x2
i − ∂µT

[µ1x1 µ2x2] µx
i

)
=

2

3

(
1

2
∂µT

µx µ1x1 µ2x2
i − 1

2
∂µT

µ1x1 µx µ2x2
i − 1

2
∂µT

µ1x1 µ2x2 µx
i +

1

2
∂µT

µ2x2 µ1x1 µx
i

)
=

1

3

((
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1 µ2x2
i −

(
−δ3 (x− x1) +�����

δ3 (x− x2)
)
Tµ1x1 µ2x2
i

−
(
−�����
δ3 (x− x2) + δ3 (x− xi)

)
Tµ1x1 µ2x2
i +

(
−δ3 (x− x1) + δ3 (x− xi)

)
Tµ2x2 µ1x1
i

)
=

1

3

((
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1 µ2x2
i −

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ2x2 µ1x1
i

+
(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1 µ2x2
i

)
=

1

3

(
2
(
−δ3 (x− xi) + δ3 (x− x1)

)
T

[µ1x1 µ2x2]
i +

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1 µ2x2
i︸ ︷︷ ︸

T
µ1x1 µ2x2
i =T

[µ1x1 µ2x2]
i +T

(µ1x1 µ2x2)
i

)

=
1

3

(
3
(
−δ3 (x− xi) + δ3 (x− x1)

)
T

[µ1x1 µ2x2]
i +

(
−δ3 (x− xi) + δ3 (x− x1)

)
T

(µ1x1 µ2x2)
i︸ ︷︷ ︸

T
(µ1x1 µ2x2)
i =T

µ1x1
i T

µ2x2
i

)

=
(
−δ3 (x− xi) + δ3 (x− x1)

)
T

[µ1x1 µ2x2]
i +

1

3

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1
i Tµ2x2

i .

(A.53)

Replace (A.50), (A.51), (A.52), and (A.53) into (A.49), we have

0 =−
n∑
i=1

Tµx̄i

(
I⃗i × a⃗µx̄

)
+ εµνρ

(
λ⃗µx̄ × λ⃗νx̄

)
× λ⃗ρx̄ +

n∑
i=1

T
[µx̄ νy]
i

(
λ⃗νy × I⃗i

)
× λ⃗µx̄

−
n∑
i=1

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i

(
a⃗µ1x1

× I⃗i
)

+

n∑
i=1

(
−δ3 (x− xi) + δ3 (x− x1)

)
T [µ1x1 µ2x2]

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
+

1

3

n∑
i=1

(
−δ3 (x− xi) + δ3 (x− x1)

)
Tµ1x1

i Tµ2x2

i

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
,

(A.54)
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and integrate with respect to x1 the terms containing δ3 (x− x1), so we have

0 =−
n∑
i=1

Tµx̄i

(
I⃗i × a⃗µx̄

)
+ εµνρ

(
λ⃗µx̄ × λ⃗νx̄

)
× λ⃗ρx̄ +

n∑
i=1

T
[µx̄ νy]
i

(
λ⃗νy × I⃗i

)
× λ⃗µx̄

+

n∑
i=1

δ3 (x− xi)Tµ1x1

i

(
a⃗µ1x1 × I⃗i

)
−

n∑
i=1

Tµ1x̄
i

(
a⃗µ1x̄ × I⃗i

)
︸ ︷︷ ︸

(µ1↔µ)

−
n∑
i=1

δ3 (x− xi)T [µ1x1 µ2x2]
[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]

+

n∑
i=1

T [µ1x̄ µ2x2]
[
λ⃗µ1x̄ ×

(
λ⃗µ2x2

× I⃗i
)]

︸ ︷︷ ︸
(µ1↔µ)∧(µ2x2←→νy)

− 1

3

n∑
i=1

δ3 (x− xi)Tµ1x1

i Tµ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]

+
1

3

n∑
i=1

Tµ1x̄
i Tµ2x2

i

[
λ⃗µ1x̄ ×

(
λ⃗µ2x2

× I⃗i
)]

︸ ︷︷ ︸
(µ1↔µ)∧(µ2x2←→νy)

,

(A.55)

0 =−
���������n∑
i=1

Tµx̄i

(
I⃗i × a⃗µx̄

)
+ εµνρ

(
λ⃗µx̄ × λ⃗νx̄

)
× λ⃗ρx̄ +

�������������n∑
i=1

T
[µx̄ νy]
i

(
λ⃗νy × I⃗i

)
× λ⃗µx̄

+

n∑
i=1

δ3 (x− xi)Tµ1x1

i

(
a⃗µ1x1 × I⃗i

)
+
���������n∑
i=1

Tµx̄i

(
I⃗i × a⃗µx̄

)

−
n∑
i=1

δ3 (x− xi)T [µ1x1 µ2x2]
[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
−
��������������n∑
i=1

T
[µx̄ νy]
i

[(
λ⃗νy × I⃗i

)
× λ⃗µx̄

]
− 1

3

n∑
i=1

δ3 (x− xi)Tµ1x1

i Tµ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]

+
1

3

n∑
i=1

Tµx̄i T νyi

[
λ⃗µx̄ ×

(
λ⃗νy × I⃗i

)]
.

(A.56)

If we Simplify and organize terms, note that:

0 =εµνρ
(
λ⃗µx̄ × λ⃗νx̄

)
× λ⃗ρx̄ +

n∑
i=1

δ3 (x− xi)
{
Tµ1x1

i

(
a⃗µ1x1

× I⃗i
)
− T [µ1x1 µ2x2]

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]}

− 1

3

n∑
i=1

δ3 (x− xi)Tµ1x1

i Tµ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
− 1

3

n∑
i=1

Tµx̄i T νyi

[(
λ⃗νy × I⃗i

)
× λ⃗µx̄

]
.

(A.57)

Due to the total anti-symmetry of εµνρ, note that:

εµνρ
(
λ⃗µx̄ × λ⃗νx̄

)
× λ⃗ρx̄ = εµνρλ⃗νx̄

(
λ⃗µx̄ · λ⃗ρx̄

)
︸ ︷︷ ︸

symmetric in (µρ)

−εµνρλ⃗µx̄
(
λ⃗νx̄ · λ⃗ρx̄

)
︸ ︷︷ ︸

symmetric in (νρ)

= 0, (A.58)
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so we obtain

0 =

n∑
i=1

δ3 (x− xi)
{
Tµ1x1

i

(
a⃗µ1x1 × I⃗i

)
− T [µ1x1 µ2x2]

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]}
.

− 1

3

n∑
i=1

δ3 (x− xi)Tµ1x1

i Tµ2x2

i

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]
− 1

3

n∑
i=1

Tµx̄i T νyi

[(
λ⃗νy × I⃗i

)
× λ⃗µx̄

]
.

(A.59)

Observe that

Tµx̄i T νyi

[
λ⃗µx̄ ×

(
λ⃗νy × I⃗i

)]
= Tµx̄i T νyi

(1

2

n∑
k=1

gµx̄ µ1x1
Tµ1x1

k I⃗k

)
×

1

2

n∑
j=1

gνy ρzT
ρz
j I⃗j

× I⃗i


=
1

4

∑
j,k

(I⃗k × (I⃗j × I⃗i))gµx̄ µ1x1gνy ρzT
µx̄
i T νyi T ρzj Tµ1x1

k

=
1

4

∑
j,k

(I⃗k × (I⃗j × I⃗i))gµx̄ µ1x1
Tµx̄i (T νyi gνy ρzT

ρz
j )Tµ1x1

k

=
1

4

∑
j,k

(I⃗k × (I⃗j × I⃗i))gµx̄ µ1x1T
µx̄
i L(i, j)Tµ1x1

k = 0.

(A.60)

Similarly,

Tµ1x1

i Tµ2x2

i

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
= Tµ1x1

i Tµ2x2

i

(1

2

n∑
k=1

gµ1x1 µxT
µx
k I⃗k

)
×

1

2

n∑
j=1

gµ2x2 νyT
νy
j I⃗j

× I⃗i


=
1

4

∑
j,k

(I⃗k × (I⃗j × I⃗i))(Tµ1x1

i gµ1x1 µxT
µx
k )(Tµ2x2

i gµ2x2 νyT
νy
j )

=
1

4

∑
j,k

(I⃗k × (I⃗j × I⃗i))L(i, k)L(i, j) = 0.

(A.61)

Replace (A.60) and (A.61) into (A.59), we get

n∑
i=1

δ3 (x− xi)
{
Tµ1x1

i

(
a⃗µ1x1 × I⃗i

)
− T [µ1x1 µ2x2]

[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]}
= 0, (A.62)

which implies that:

Tµ1x1

i

(
a⃗µ1x1

× I⃗i
)
− T [µ1x1 µ2x2]

[
λ⃗µ1x1

×
(
λ⃗µ2x2

× I⃗i
)]

= 0. (A.63)
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Note that

Tµ1x1
i

(
a⃗µ1x1 × I⃗i

)
= −

(
I⃗i × a⃗µ1x1

)
Tµ1x1
i

= −

I⃗i ×

1

2
εµνρ

(
λ⃗νx × λ⃗ρx

)
gµx µ1x1 −

1

2

n∑
j=1

T
[µy νz]
j

(
λ⃗νz × I⃗j

)
gµy µ1x1

Tµ1x1
i

= −
1

2
εµνρI⃗i ×

(
λ⃗νx × λ⃗ρx

)
gµx µ1x1T

µ1x1
i +

1

2

n∑
j=1

T
[µy νz]
j I⃗i ×

(
λ⃗νz × I⃗j

)
gµy µ1x1T

µ1x1
i

= −
1

4

∑
j,k

[
I⃗i ×

(
I⃗j × I⃗k

)](1

2
ϵµνρTµ1x1

i Tµ2x2
j Tµ3x3

k gµx µ1x1gνx µ2x2gρx µ3x3

+Tµ1x1
i T

[µy νz]
j Tµ2x2

k gµ1x1 µygµ2x2 νz

)
,

(A.64)

−T [µ1x1 µ2x2]
[
λ⃗µ1x1 ×

(
λ⃗µ2x2 × I⃗i

)]
= −1

4

∑
j,k

[
I⃗j ×

(
I⃗k × I⃗i

)]
Tµ1x1

j T
[µy νz]
i Tµ2x2

k gµ1x1 µygµ2x2 νz.

(A.65)

Replacing (A.64) and (A.65) into (A.63),∑
j,k

[(
I⃗j × I⃗k

)
× I⃗i

]{1

2
εµνρTµ1x1

i Tµ2x2

j Tµ3x3

k gµx µ1x1
gνx µ2x2

gρx µ3x3
+ Tµ1x1

i T
[µx νy]
j Tµ2x2

k gµx µ1x1
gνy µ2x2

}
−
∑
j,k

[
I⃗j ×

(
I⃗k × I⃗i

)]
Tµ1x1

j T
[µx νy]
i Tµ2x2

k gµx µ1x1
gνy µ2x2

= 0,

(A.66)

and using the Latin index notation for discrete-continuous indices (a ≡ µ1x1), we have:∑
j,k

[(
I⃗j × I⃗k

)
× I⃗i

]{1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + T ai T

[cd]
j T bkgcagdb

}
−
∑
j,k

[
I⃗j ×

(
I⃗k × I⃗i

)]
T aj T

[cd]
i T bkgcagdb = 0.

(A.67)

By taking the cross product of the previous equation with the current I⃗i and summing over
the index i, we can write∑

i,j,k

[(
I⃗j × I⃗k

)
× I⃗i

]
× I⃗i

{
1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + T ai T

[cd]
j T bkgcagdb

}
−
∑
j,k

[
I⃗j ×

(
I⃗k × I⃗i

)]
× I⃗i

{
T aj T

[cd]
i T bkgcagdb

}
= 0.

(A.68)



84

Observe that[(
I⃗j × I⃗k

)
× I⃗i

]
× I⃗i =

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

)
−
(
I⃗j × I⃗i

)(
I⃗i · I⃗k

)
,[

I⃗j ×
(
I⃗k × I⃗i

)]
× I⃗i =

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

) .

If we use these vector identities in the consistency equation (A.68), we have:∑
i,j,k

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

){1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + T ai T

[cd]
j T bkgcagdb

}

−
∑
i,j,k

(
I⃗j × I⃗i

)(
I⃗i · I⃗k

){1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + T ai T

[cd]
j T bkgcagdb

}
−
∑
j,k

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

){
T aj T

[cd]
i T bkgcagdb

}
= 0,

(A.69)

∑
i,j,k

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

){1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + (T ai T

[cd]
j T bk − T aj T

[cd]
i T bk)gcagdb

}

−
∑
i,j,k

(
I⃗j × I⃗i

)(
I⃗i · I⃗k

){1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + T ai T

[cd]
j T bkgcagdb

}
= 0,

(A.70)

and changing the indices (j ↔ k) in the second term∑
i,j,k

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

){1

2
εµνρT ai T

b
j T

c
kgµx agνx bgρx c + (T ai T

[cd]
j T bk − T aj T

[cd]
i T bk)gcagdb

}

−
∑
i,j,k

(
I⃗k × I⃗i

)(
I⃗i · I⃗j

){1

2
εµνρT ai T

b
kT

c
j gµx agνx bgρx c + T ai T

[cd]
k T bj gcagdb

}
= 0.

(A.71)

Observe that

εµνρT ai T
b
kT

c
j gµx agνx bgρx c = εµνρT ai T

b
kT

c
j gµx agνx bgρx c ← (b↔ c)

= εµνρT ai T
c
kT

b
j gµx agνx cgρx b ← (ν ↔ ρ)

= εµρνT ai T
c
kT

b
j gµx agρx cgνx b ← (εµρν ↔ −εµνρ)

= −εµνρT ai T bj T ckgµx agνx bgρx c.

(A.72)

If we combine this result with equation (A.71), we can write∑
i,j,k

fi,j,k

[
εµνρT ai T

b
j T

c
kgµxagνxbgρxc +

(
T ai T

[cd]
j T bk − T aj T

[cd]
i T bk − T ai T

[cd]
k T bj

)
gcagdb

]
= 0,

(A.73)
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and use the expression Di a = −T bi gab:

∑
i,j,k

fi,j,k

−εµνρDi µxDj νxDk ρx +

−T [cd]
i Dj cDk d + T

[cd]
j Di cDk d︸ ︷︷ ︸

(c↔d)

−T [cd]
k Di cDj d


 = 0,

(A.74)

∑
i,j,k

fi,j,k

[
−εµνρDi µxDj νxDk ρx +

(
−T [cd]

i Dj cDk d + T
[dc]
j Di dDk c − T [cd]

k Di cDj d

)]
= 0,

(A.75)

∑
i,j,k

fi,j,k

[
−εµνρDi µxDj νxDk ρx +

(
−T [cd]

i Dj cDk d − T [cd]
j Di dDk c − T [cd]

k Di cDj d

)]
= 0,

(A.76)
which can be rewritten using Latin letters for “discrete-continuous” indices, c = µx y d = νy:∑

i,j,k

fi,j,k

[
− εµνρDi µxDj νxDk ρx

−
(
T

[µx νy]
i Dj µxDk νy + T

[µx νy]
j Di νyDk µx + T

[µx νy]
k Di µxDj νy

)]
= 0,

(A.77)

∑
i,j,k

2fi,j,kµ̄(i, j, k) = 0 ⇒ µ̄(i, j, k) = 0, (A.78)

where

µ̄(i, j, k) =− 1

2

[
εµνρDi µxDj νxDk ρx

+
(
T

[µx νy]
i Dj µxDk νy + T

[µx νy]
j Di νyDk µx + T

[µx νy]
k Di µxDj νy

)]
,

(A.79)

is the TMC, which describes the linking of Borromean rings, and also vanishes. Therefore, we
have demonstrated that our theory is consistent.
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