UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Intermediate action for the four-components link

Proyecto de investigaciéon

Marcelo Antonio Anda Chavarria

Director de tesis: Ernesto Contreras, Ph.D.

Maestria en Fisica

Trabajo de titulaciéon de posgrado presentado como requisito
para la obtencion del titulo de Magister en Fisica

Quito, Diciembre 2023



UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Hoja de calificacién de trabajo de titulacién

Intermediate action for the four-components link

Marcelo Antonio Anda Chavarria

Nombre del director de tesis: Ernesto Contreras, Ph.D

Calificacién:

Firma:

TeX online

Diciembre 2023



(© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leido todas las Politicas y Manuales de
la Universidad San Francisco de Quito USFQ, incluyendo la Politica de Propiedad Intelectual
USFQ), y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del

presente trabajo quedan sujetos a lo dispuesto en esas Politicas.

Asimismo, autorizo a la USFQ para que realice la digitalizacién y publicacién de este trabajo

en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgédnica de Educacién Superior

del Ecuador.

Nombres y apellidos: Marcelo Antonio Anda Chavarria
Cédigo: 00329960
Cédula de Identidad: 0956887939

Lugar y fecha: Quito, 15 de Diciembre de 2023



ACLARACION PARA PUBLICACION

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado
como una publicacién, incluso a pesar de estar disponible sin restricciones a través de un
repositorio institucional. Esta declaracion se alinea con las practicas y recomendaciones presentadas
por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion
document on best practice for issues around theses publishing, disponible en http://bit.ly/

COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito
USFQ institutional repository. Nonetheless, this project — in whole or in part — should not
be considered a publication. This statement follows the recommendations presented by the
Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document

on best practice for issues around theses publishing available on http://bit.1ly/COPETheses!


http://bit.ly/COPETheses
http://bit.ly/COPETheses
http://bit.ly/COPETheses

“And here, I am afraid I must end by saying that the difficulties are so great in the way of
forming anything like a comprehensive theory that we cannot even imagine a finger-post
pointing to a way that lead us towards the explanation. That is not putting it too strongly. 1
can only say we cannot now imagine it. But this time next year,— this time ten years, - this
time one hundred years, — probably it will be just as easy as we think it is to understand that
glass of water, which seems now so plain and simple. I cannot doubt but that these things,
which now seem to us so mysterious, will be no mysteries at all; that the scales will fall from
our eyes; that we shall learn to look on things in a different way— when that which is now a
difficulty will be the only common-sense and intelligible way of looking at the subject.”

- William Thomson,

later known as Lord Kelvin, in his 1889 Presidential Address to the Institution of Electrical
Engineers on his failed vortex theory of the atom [IJ.
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RESUMEN

En 2002, Lorenzo Leal desarrollé las ecuaciones clasicas de movimiento para la teoria de
Chern-Simons acoplada con particulas de Wong [2]. En el contexto de la teoria de nudos,
es evidente que al definir formas especificas para las corrientes de las particulas en términos
de caminos cerrados en el espacio-tiempo, la accién “on-shell” se relaciona directamente con
un invariante de nudo. Sin embargo, la presencia de un sistema de ecuaciones no lineales
acopladas dificulta la derivacién de una solucién analitica. Al emplear un método perturbativo,
se tiene que a cada orden le corresponde un invariante de nudo distinto. El término a orden
cero corresponde al nimero de anudamiento de Gauss, mientras que el término a primer orden
determina el anudamiento de los anillos Borromeanos. Para aliviar la complejidad del analisis
perturbativo, se ha demostrado que estos términos también se pueden derivar partiendo desde
una teoria de campos abeliana acoplada con las corrientes apropiadas [3]. Este trabajo adopta
una “metodologia de accién intermedia” para construir una expresién analitica para el enlace de

cuatro componentes.

Palabras clave: teoria de Chern-Simons, teoria de nudos, invariante de nudo, invariante
de enlace, nimero de anudamiento de Gauss, anillos Borromeanos, teoria topoldgica de campos,

enlace de cuatro componentes, particulas de Wong.



ABSTRACT

In 2002, Lorenzo Leal developed the classical equations of motion within the Chern-Simons
theory coupled with Wong Particles [2]. In the realm of knot theory, it is apparent that by
defining specific forms of currents in terms of closed loops in space-time, the “on-shell” action
relates directly to a knot invariant. Yet, the presence of a system of coupled non-linear equations
hinders an analytical solution derivation. Employing perturbative methods reveals that each
order corresponds to a distinct knot invariant. The zeroth-order term corresponds to the Gauss
Linking number, while the first-order term quantifies the linking of Borromean rings. To alleviate
the potential complexity of perturbation, it has been demonstrated that these terms can also
be derived by initiating from an Abelian field theory coupled with appropriate currents [3].
This work adopts such an “intermediate action methodology” to construct an expression for the

four-components link.

Keywords: Chern-Simons theory, knot theory, knot invariant, link invariant, Gauss linking

number, Borromean rings, topological field theory, four-components link, Wong particles.
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Introduction

Chern-Simons theory is a topological quantum field theory, meaning that physical observables
are independent of the metric. In the late 1980s, Edward Witten demonstrated that the expected
values of non-local observables (Wilson loops) in Chern-Simons theory, which can be represented
by knots in three-dimensional space, correspond to knot invariants generalizing Jones polynomials
[4]. Since then, there have been significant advances in the study of the theory from both a
physical and mathematical perspective.

In 2002, a study was conducted by considering the classical equations of motion of Chern-
Simons theory coupled with particles carrying chromoelectric charge (non-Abelian Wong particles)
[2]. The action of the Chern-Simons-Wong theory is given by:

S = Scs + Sint, (1)

S = —A"1 / Prehe Ty (A,La,A,, + §A,LA,A,,> : (2)

S =Y [ drTx (Kig7 ' (D.gi(7)). 3)
i=1v7i

where S¢g is the Chern-Simons action for SU(N), S;,: corresponds to the field-particle interaction
of n Wong particles, A is a constant, e## is the levi-civita symbol, A, is the electromagnetic
potential, g;(7) are matrices associated with the internal degrees of freedom of the particles,
D,g;(7) is the covariant derivative of g;(7) along the worldline of the i*" particle, and K is a
constant element of the algebra related to the initial value of the chromo-electric charge I;(7)
defined by:

Ii(7) = gi(1)Kig; ' (7). (4)

In the context of knot theory, it is observed that for a particular form of the current in terms
of closed paths in space-time, the “on-shell” action corresponds to a link invariant. However,
because a system of coupled non-linear equations is obtained, it is not possible to find analytical
solutions. Therefore, a perturbative solution method was proposed [2]. In that work, the first two
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terms of the perturbative series were found. The zeroth-order term corresponds to the second
Milnor’s linking coeflicient:

1 ..
S(O) = ZZIZCL(O)I?(O)L(%j)a (5)
i,j
where ( ),3
o 1 zZ—y
L(3, E—]{dz”j{dpie,,, 6
( .7) A7 o 2 Y |Z*y|3 Hvp ( )

corresponds to the Gauss linking number (GLN) of v; and v;. The first-order term of the
perturbative series is the third Milnor’s coefficient (TMC), which measures the linking of Borromean
rings and is given by:

SM(1,2,3) = — © / d®2e"? Dy, () Day () Day ()

+ T[lﬂ’ VU]D x)Dlu(y)+
Dy, 0D ).

where the bilocal object T/'*"¥ associated with the curve v; is introduced:

T,VY — z vs3 3
(s y:f{‘dz“/o d2"" 8% (x — 2)6° (y — '), (8)

and we have used the definitions:

rie =

(T =T, (9)

x — Z ﬁ
f |3 T3 CaBy- (10)

DN | =

On the other hand, the Abelian Chern-Simons theory only reproduces the GLN. For this
reason, the question about if there exists an Abelian theory that can exactly reproduce, for
example, the TMC naturally arises. Thus, it seems feasible to study topological theories intermediate
between Abelian and non-Abelian Chern-Simons theories. In [3], an intermediate Abelian action
is proposed, which exactly reproduces the first term of the non-Abelian perturbative series of
Chern-Simons-Wong theory, and is given by

4 2 4
5 / B {4AL<w)auaip<w) + 35%%(””)%’”(9”)“”(:”)} - 2/ P
(11)
+/d3:n/d3y6ijkT¢“z’”yay‘u(z)akv(y)’

where A?(x) and a/(x) are two independent sets of Abelian gauge fields. In this work, we
propose to determine an Abelian intermediate action that reproduces the link invariant for the
four-components link, similar to the non-Abelian Chern-Simons-Wong theory [5].
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Chapter 1

Abelian Chern-Simons Theory

The Abelian Chern-Simons action is given by:

ScslA] = LS / d*zetPA,0,A,, (1.1)
i Jur

where M is the (2 + 1)-dimensional Minkowski space, (1, v, p) € {0,1,2}, A,(z) is a U(1) gauge
field, and k € R is called the Chern - Simons level. We will show in the next section that A, is
an analogous to the photon field of electrodynamics. We will further investigate the properties of
this theory when coupled with a matter field, particularly under a double exchange of particles
to define an anyon. Additionally, we will explore its relationship with the GLN, highlighting its
topological invariance. This chapter is based on the work of D. Grabovsky [6].

1.1 Equations of motion for the classical theory

Note that if we make variations of (1.1) with respect to the field A, we obtain:
k
0Scs =0 = Es’“’”Fl,p =0 = F=0, F,=0,A4 —0A4,, (1.2)

trivial equations of motion, because there are no propagating local degrees of freedom. Note that
the object F},, is formally equal to the Maxwell’s field strength tensor for electromagnetism. In
order to get non-trivial equations of motion we can couple the Chern-Simons action with a matter
term, e.g., a Dirac fermion ¢ which produces a current:

S = Scs + Sy + Sint, (1.3)
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Sy = y d*xp (i — m)ab, (1.4)

Sint = —/ deeAH@'y“l/J:/ d>xA,J", (1.5)
M M

where S, is the Dirac action, S, is an interaction term, v is a spinor, ¥(z) = ()7 is the
Dirac adjoint, @ = v#0,, and v* are the Dirac gamma matrices. Again, if we consider variations
of the action with respect to the gauge field A,, we can write the equations of motion in
terms of the current J* as follows:

k k
P Fyy = -0, Ay = TP (1.6)

47

1.2 Electric and magnetic fields

The field strength tensor F),, in a (2 + 1)-dimensional Minkowski space is given by:

0 E B,
Fo=| -E. 0 B |, (1.7)
—Ey —-B 0

which is related with the electric F; and magnetic B field as:

E; = Fyy = —Fyo = —0; Ao + 00 Ay,

1 .. . 1.8
= §€ZJFZ']' = s”aiAj, ( )

-,

similar to Maxwell’s theory in two dimensions. If we write the current in the form J* = (p, J), it
is easy to check that the temporal and spatial components of the equations of motion (1.6]) are:

=_—B, J'=_—cYE,, 1.9

P=or 27 J (1.9)

respectively. Note that in this theory B is produced by electric charges, and Eisa consequence
of the electric currents. Thus, the sources of the electric and magnetic fields in Chern-Simons
theory have changed with respect to the electromagnetism. The physical situation is shown in

Figure [[.1]



x ~<
\/
—~
Ja S

Figure 1.1: The moving charges over the plane generate the electric field E, while the magnetic
field B for each particle points in an imaginary “z” direction. Actually, this scenario is physically
accurate in the quantum Hall effect: each source charge generates magnetic flux lines that pass

through the spatial manifold.

1.3 Double exchange of particles and anyons

Now, let us solve the CS equations with sources p = 62 ( — %,(t)) and J = 0. We will
work in Coulomb gauge, where V-A = §;A" = 0. If we replace these sources into , write out
the E and B fields in terms of A, =(0,4;)asin , and use the identity V2 log|%| = 270 (%),
then the solution to is given by

M@ty = 2o, o Loy @), 0) = tan-! (%) = arg(%). (1.10)

kY 12— %, k

Note that A; is a total derivative, representing a pure gauge configuration that can vanish

through a gauge transformation adding the total derivative of w(x) = (%) 0 (X — X,(t)). Consequently,

A(z) = 0, wich implies E=0and B = 0. However, this gauge transformation also influences
the matter field ¢, which acted as the source charge by imparting a nontrivial Aharanov-Bohm
phase dependent on its angular position 6 and on k,

Ai(z) — Al(x) = Ai(z) + Qw(x) =0

W(x) — P (2) = @ y(z) = e0/*y(z) (1.11)

1

Now, consider two charges where one remains stationary, while the other orbits the first
as shown in Figure [[.2] We conceptualize this process as a double exchange, where the moving
charge swaps positions with the stationary one twice, occurring once for each 7 rotation. According
to equation , the phase acquired by the moving particle is expressed as

. 0=2m
A =21 = p(x) — exp (2]1”) ¥(z) = exp (z}i dmiAi> Y(z) # Y(x). (1.12)

=0
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If these particles were bosons or fermions, ¢ would return to itself under double exchange.
However, as indicated by (1.12)), by tuning k, we can assign ¢ arbitrary statistics valued in U(1).
Consequently, these particles are anyons, capable of exhibiting any statistics.

[

Figure 1.2: Anyons.

1.4 Gauss linking number

In this section, we will explore the topological invariance of the Abelian Chern-Simons theory
and how a suitable current can lead us to obtain a link invariant. Recall that the sourced
Chern-Simons action is given by

i k
Sos = Scs + Sint = /M &z (M&:"VPA“F)'VAP + AuJ“) . (1.13)

It might seem that the interaction term breaks topological invariance, but consider a “point-
like” current density for two particles defined by

JH = ZJ*‘ = Z dzt6® (z — x.(t)), ac{1,2}. (1.14)

a=1""Ya

This current accommodates topological invariance because it transforms like a vector density.
Since the equations of motion ([1.6]) take the form of Ampere’s Law, then its solutions have to be
expressed as the Biot-Savart Law. Thus, the classical solution of A, () in terms of the current

density (|1.14) is given by

. 1 3 6VJP C(Ja)p
Au(z) = ﬁ/M d yeunp pr— y| =% Z% dzy, EWP (1.15)

— a4/
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Next, we substitute the solution into SCS in order to obtain S'Cg on—shell- Since
it is quadratic in A, the sourced action includes terms involving two integrals over the loops
~Ya- This characteristic captures the non-local aspect of interactions between the two localized
particles. However, the terms that involve double integration over the same loop are divergent,
depicting self-interactions. These terms persist even if J describes only a single particle. Thus,
the on-shell action is given by

~ 1 1 — x9)”
SCS on—shell = ﬁ Z% dng dng/_tl/pu (116)
a,b v a Yo

|21 — 2f”

The last expression is related to the GLN, which is a link invariant that quantifies the number
of times one curve intersects the surface of another in an oriented way. We will demonstrate
this fact later in this work. Now, a question arises: do more complex link invariants than GLN
exist that can be obtained from the on-shell action of some topological theory? The answer is
affirmative, and in the next chapter we will work with the non-Abelian Chern-Simons theory
coupled with Wong particles, and we will explore the link invariants associated with it.
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Chapter 2

Non-Abelian Chern-Simons
Theory

As we saw in the previous chapter, the only link invariant that can be obtained through the
Abelian Chern-Simons theory is the GLN. Throughout this chapter, which is based on the work
of L. Leal [2] and E. Fuenmayor [5], we will delve into the generalities and link invariants that
can be derived from the non-Abelian Chern - Simons theory coupled with Wong particles, which
carry chromo-electric charge, analogous to those appearing in QCD. As we will demonstrate later,
interpreting the link invariant of the complete on-shell action is a nontrivial task. Therefore, we
propose a perturbative analysis, allowing us to obtain distinct contributions of link invariants at
different orders.

2.1 Generalities

The action of the Chern-Simons-Wong theory is given by:

S = SCS + Sinta (21)
SCS _ *A71 /d3x6MVP Tr (Ap.al/Ap —+ §AHAVAP> N (22)
S =3 [ dr T (Kigr ()Dg1(7). 23)

1Y

.
Il

where S¢g is the Chern-Simons action for SU(N), S;,: corresponds to the field-particle interaction
of n Wong particles, -y; corresponds to the worldline of the i-th particle with coordinates z;(7),
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A is a constant, A, is a non-Abelian gauge field (analogous to the electromagnetic potential as
it was shown in the previous chapter), g;(7) are matrices associated with the internal degrees of
freedom of the particles (elements of SU(N)), D,g;(7) is the covariant derivative of g;(7) along
the worldline of the i-th particle, and K is a constant element in the algebra related to the initial
value of the chromoelectric charge I;(7) defined by

Li(7) = gi(T)Kig; (1) = 1T (2.4)
In the previous expression K; = KT, where T® are the N? — 1 generators of the group

algebra. Note that I;(7) is an element of SU(N). It is well known that the Chern-Simons action
is gauge invariant if the field A, transforms as follows

Ay = AL =0""4,0+0710,0. (2.5)

The action S, is gauge invariant if it satisfies

K; - K=K, (2.6)
9i— g =g, (2.7)
I = 0. (2.8)

We define the covariant derivative of g;(7) as

Drgi(1) = ¢i(7) + Ai(7)gi(7)- (2.9)

Note that the operator D, transforms as one would expect from a covariant derivative

(D'rgi)ﬂ = Q_lD'rgi~ (210)

In addition, we mention that we are using the conventions and notation

Tr (T°T°) = —%

570, (2.11)

ToT® = fabere, (2.12)

A, = AT, (2.13)
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A=Ay (zi(7)) 2(7), (2.14)

K2

where f2¢ is the structure constant of the algebra, 6?° is the Kronecker delta, Aj, are Abelian
gauge fields, and z/(7) is the velocity of the i-th Wong particle.

To take variations with respect to AZ(QL‘)7 it is convenient to rewrite S;,: as

Sint _Z/ drzt(r) (tr (Kig; '0,9:) + tr (Kig; Ay (2:) 1))

HMs

/de ) tr (K;g; 16#91) (2.15)

+

—
=

x Z | drit(1)6° (x — 2 () tr (Li(T) Ay (2:(7))) -

When applying the principle of least action to (2.1]), we obtain the equation of motion for
the field
etPFE,, = AJH, (2.16)

n

/ drzl( 7)6% (x — 2(7)) , (2.17)

i=1 i

Fuy = 0,4, — 0,A, + [A, A, (2.18)

where F),, is the field strength tensor, and J/ is the current density. To vary the action (2.1)
with respect to the internal variables, we must proceed with caution, as they are matrices of
SU(N), whose matrix elements are not independent. We use the following parameterization

9i = Gi (fi) = 5T, (2-19)

The variation of S;,,; with respect to the N2 —1 (multiplied by the number of Wong particles)
independent parameters £ leads to the Euler-Lagrange equations:

oL d (0L
5E " dr <a§a> =0, (2.20)

L= Ztr K97 (1) Drgi(7))

where

(2.21)
= Ztr zg@ gz + Azgz)) .
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Therefore, by replacing (2.21]) into (2.20), the equation of motion for the chromo-electric

current of the i-th particle is given by:

It is possible to formally integrate this equation to obtain the general solution

where

Indeed, note that

(1=Ai(t+e)e)Us(r) — Ui(7)

0i(r) = iy :
= 21_% (—Ai(T + E)UZ(T)) = —AZ(T)UrL(T) = DTUZ<T) = 07

from where

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

The equations of motion for the field A, must satisfy the following consistency condition.

Note that by taking the covariant derivative of equation (2.16|)
e"?D,F,,=AD,J",

by using the Bianchi identities
e"?D,F,, =0,

we arrive at

D,J" = 0.

Now, the above condition can be written as

[ <aa 0% (2 = (7)) 2 (1)) + 6% (2 — ()24 () [Amc),fi(ﬂn) =0.

The first term of equation (2.30)) is equivalent to

$ (-/0 dr {5 (o — 2(r) ()} +/O i’ (z — zi(O))> ,

%

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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and, in turn, the first term of equation (2.31)) is equivalent to:

> (—L(T)6° (z — 2i(T)) + 1i(0)6° (x — 2(0))) . (2.32)

%

If we demand that I;(T) = I;(0) (remember that z;(T) = z(0)), then (2.32) vanishes.
Substituting (2.31)) into (2.30)), we have that D, J# leads to:

Z /OT dr6® (x — z(1)) D+ I; = 0. (2.33)

Thus, the previous equation is satisfied because D,I; = 0 (the equation of motion for the
chromo-electric current, produced by taking variations with respect to the internal variables £%).
Therefore, the Chern-Simons-Wong theory is consistent.

The action ([2.1]) is gauge invariant and independent of the metric, meaning it is a topological
action. This aspect will serve as the foundation for the perturbative scheme in order to obtain
link invariants, which will be discussed in the next section.

2.2 Perturbative approach

Now we will focus our attention on the perturbative development of the model. The equations
of motion (2.16)) and (2.22) constitute a highly nonlinear system of equations for Af and I, for
which we do not intend to obtain exact solutions. Nevertheless, let us assume that such solutions
exist and that under certain boundary conditions, we can derive the potential A7, as a functional
of the curves ~; (already given, which are living on space-time) that constitute the current J* in

equation ([2.16]), namely

Al = AL [l (2.34)
The equation to solve would then be
et PE,, = AZ/ drzl'(m)1; [A)63 (z — zi(7)), (2.35)
i=1 "%

and its solutions are expected to be functionals of the curves that underlie the currents, as implied
by equation (2.34). By substituting A, [v;] into equation (2.1, we can then express the action
S as a functional of the curves ;, denoted as

S = Shl (2.36)

effectively eliminating all dependence on Aj. Given that the action is independent of the metric,
the action on the equations of motion S[y;] stands as a topological invariant. However, it is a
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topological invariant that hinges on a collection of curves, precisely characterizing it as a knot
invariant (or more accurately, a link invariant: a link being a collection of knots).

Hence, we have the opportunity to generate analytical expressions for link invariants through
the solutions of the classical Chern-Simons-Wong equations and the computation of the action
on the equations of motion (on-shell action). However, given the intricate nature of the equations
at hand, the aforementioned seems to be nothing more than a mere possibility, unless an
approximate solution scheme is embraced, such that we preserve the invariance under diffeomorphisms
of the problem. This scheme can be outlined as follows: equation can be solved perturbatively,
expanding in powers of the parameter A. Substituting such a perturbative solution into the action
yields the on-shell action expressed as a series of powers in A:

Son— shell ([7];A) = ZAPS(p) (], (2.37)
p=0

where S®) [7] is the p-th coefficient of the expansion. Now, if Sy, —shen is a link invariant, then its
derivatives with respect to A must also be link invariants. Thus, it follows that the coefficients
S(®)[y] are link invariants. A practical implication of this straightforward argument is that
obtaining the complete series is not necessary to derive knot invariants.

Now, in order to calculate S,y —sheir, note that (here we omit the index ¢ for convenience) if

we combine equations (2.4]) and (2.23)), we have
I(1) =U(r)g(0)Kg~ 1 (0)U (1)

- (2.38)
=g(m)Kg (7).
Recall that g(7) = U(7)g(0) and using the equation ([2.25):
D;g(t) =0 = D.Ii(r) =0, (2.39)
then
Sint |on—shell =0. (240)
Therefore, it only remains to consider Scs|,, qen - Note that
. dI¢
L+[A,;]=0 = % + AR (T)I{ (1) =0, (2.41)
T
where
R} = f“bc,é'é‘az (2:), (2.42)

a,=AN"1A,, (2.43)
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and the solution to equation ([2.41)) is
T,(7) = Texp {—A / dr'R; (T’)} 7,(0), (2.44)
0

where I; is the vector of N2 — 1 components I%, and R; is the matrix of (N2 — 1)? elements R’
given in (2.42)). By performing a Taylor series expansion, the equations of motion (2.16)) for the
field A, can be written as

2600, a5 (x) = — AP f*al( +Z j[ dz"6*(z — 2)I7(0)
- AZ?{ dz“/ dz{" R} (21) §3(x — 2)I(0)
+ A2 Z]{ dz“/ dz{" / dzy® Ry (21) Ry (22)

83 (x — 2)I17%(0) (2.45)

If we introduce the power series

r) =Y APaP) (), (2.46)
p=0
from where the p-th order term reads
r+s=p—1
26Wﬂ@ya§)p)a(x) = _ghvp pabe Z (T)b (S)C
r,s=0
P n 2z Zr_1 s1+...+s,=p—r
+Z(—1)’“Z% dz“/ dz;“.../ dztr )" REDU (2) x (2.47)
r=1 i=1v"7i 0 0 S14e0ey8r=0
XM (29) e BT () I (0)0% @ - 2),

for p > 1. If p = 0, the corresponding equation is

2600,al"" =3 ¢ dzl's® (x — 2;) I1(0). (2.48)

i=177
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Note that these equations have the form of Ampere’s Law
P9, alP)(z) = JPH(z), (2.49)
so their solution is expressed as the Biot-Savart Law

(x —a')”

1
() = - [ e 10 ) 5+ 0a (@), (2.50)

i |z — 2|

where f®(z) is arbitrary. Thus, the on-shell action will be written as

CS
Son—shell = Son—shell

A A
=3 /d?’xs’“’” (az&,aﬁ + Sf“bca,‘iaﬁa;>

on-shell (2.51)
— /2\125(?)/\?,
where
r+s=p | rste=pol
s — /d3x5#l/p ( ; (a;(f)aﬁvaz(f)a> n gfabc Z:q (a,(f)“a(f)bafﬂ)c)) . (2.52)

Now, we are in a position to determine, in principle, the link invariants up to order p arising
from each term in the perturbative expansion of the on-shell action. In this study, we will
compute contributions up to order 0, 1, and 2, which correspond to analytical expressions that
characterize the GLN, the TMC (related to the Borromean rings), and the four-components link.
We will demonstrate these results in the chapter 4.

2.3 Zeroth-order contribution

At zeroth-order we have

§0) _ / Brera(0°0,a0e, (2.53)
a 1 - a
GLO) (z) = B ZDiu(x)Ii (0), (2.54)
i=1
1 (x — 2)Y
D;, = __ dzP—= . 2.55
u(x) i 74% z |x—z|3€l o (2.55)

Note that the gradient that appears in equation (2.50) does not contribute to the on-shell
action, so we can discard it. By replacing (2.54)) and (2.55) in (2.53)), we have
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1 .
SO = LY HOLO)L ), (256)
J
where ( v
. 1 Z—y
L(i,j) = —7{ dz“j{ dyf ——=—¢,, 2.57
( ) A7 . " ‘Z _ y|3 Hvp ( )

is the GLN, which also appears in . As was mentioned in the previous chapter, this link
invariant measures the number of times that a curve intersects the surface of another. In Figure
2.1| can be seen a pair of curves with a GLN equal to one, because the blue curve intersects the
surface of the red one once. Also, in Figure we have a pair of curves with a GLN equal to
zero, because the blue curve intersects in one way and then in an opposite way the surface of the
red one.

Figure 2.1: Curves with GLN equal one.

Figure 2.2: Trivial link (Not linked).

2.4 First-order contribution

The first-order on-shell action is given by:

1
S = /d%s””p <2a&0)“8ua(pl)a + gfabc (aio)aa(yo)bago)c)> . (2.58)

Note that to calculate this expression, it is not necessary to know the specific value of aE}’“.
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It suffices to know its curl, which is given by

1
20,01 (@) =~ [0l (2)al (z)
1 n z (2.59)
-3 > f dz* /O dz{ RO (21) 6% (2 — 2)I7(0).
i=177
By replacing (2.54)) and ( into , we have
1 1
50 = -1 OO {5 [ a0 D)D) Do)+
ik (2.60)

n f{ Az /0 ) dyVDjM(Z)Dku(y)} :

The factor f“bcff(O)Ijl?(O)Ig(O) in the above expression vanishes when the currents I%(0),
1%(0), and I£(0) are linearly dependent. As a consequence of this, S(!) is zero when the current
consists of only one or two Wong particles. To interpret the expression for S™)| let us consider the

(nontrivial) simplest case: gauge group SU(2) and three particles with orthonormal isovectors,
I#(0) = 6¢. In this case

1
sM1,2,3)=— = / d3xe"P Dy, (x) Dy, (x) D3, ()

3 3 p,z,uy]
/d /d Dy, (z) D3y (y)+ (2.61)
+ Tl lwavil b, w() D1y (y)+

FTY D () Do (3) }

where we have introduced the bilocal object T}**¥ associated with the curve ;

T;w Yy — % dzli/ dZ’V53 (x — 2)53( —z ) (2.62)

and the definition

T,V —_ 1 T,V v
T = o (The — Tym) (2.63)

The expression turns out to be, except for a factor, the TMC f(1,2,3), which is
related to three linked curves in space-time, such that the GLN between them is always zero
(this condition will be necessary for the consistency of our theory). For example, this expression
detects the linking of the Borromean rings, which are shown in Figure 2.3] Note that the curve
v; (red) intersects the surface enclosed by the curves ; (blue) and ~y; (green), then intersects in
the opposite direction to the blue and green surfaces (ensuring that the GLN between (v;,7;)
and (7y;,7k) is zero) to return to the initial point. A similar description of this process can be
given for each curve with respect to the other two. Therefore, it is evident that the GLN between
any pair of curves of the Borromean rings is always zero .
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=

Figure 2.3: Borromean Rings (Note that the GLN between any pair of curves is zero.)

Indeed, the TMC follows the GLN in an infinite sequence of link invariants discovered by
Milnor: the so-called “Higher-Order Linking Coefficients”. The n-th coefficient is defined if all
previous ones are zero. This result naturally emerges in our theory (as the consistency conditions
for this perturbative analysis) and will be demonstrated at the end of this chapter.

In order to continue our perturbative analysis and obtain the link invariant associated with
the on-shell action to second order, it is necessary to introduce certain conventions that allow us
to perform calculations more efficiently. In the next section, we will introduce the cycle space,
Loop coordinates, and a generalization of the Einstein summation convention for continuous
variables, which will be useful for simplifying calculations and providing an appropriate geometric
interpretation of the link invariants we will derive.

2.5 Loop coordinates and cycle space

We will denote the dependence of a tensorial function on a continuous variable by placing an
index indicating that variable as follows

A oy, 2) = Apz vy .. pe- (2.64)

The aforementioned relation will allow us to establish a form of a generalized Einstein
convention applicable to discrete-continuous variables. In this context, tensorial functions are
integrated over the repeated continuous variable, while also, as usually, summing over the
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repeated discrete variables; for example,

Ay BRE VY = Z/AWB’” v Py = Z/A#(w)B’“’"'(w,y C)dB (2.65)
H Iz

When repeated indices that are not integrated appear, we will place a “bar” above the letter
indicating that variable in the following way:

Apa vy B" 7 =) / Auw vy B VAP, (2.66)
I

Many times it will be convenient, for an even greater simplification, to indicate the set of
“discrete-continuous” indices by a single index, which we will denote by a lowercase Latin letter,
as follows:

ARE VY P2 = fabec (2.67)

At this point, it should be emphasized that the T-objects that appear in the equation (2.62))
are a particular case of an infinite family of objects given by

z z1 Zn—2
g = g i [T [T 69 - 2)
i 0 0 0 (2.68)

G (29 — 21) x 6@ (23 — 23) ... 6@ (2, — 2p_1),

such objects are called loop coordinates, and where introduced in [7]. The above relation defines
the distributional T-objects, of rank n, also known as multi-tangents of cycles or multi-tangents
of paths. It is directly observed, from the definition , that the T' with one-index is nothing
more than the form factor or tangent distribution of the closed curve ~;,

117 = § a5~ y), (2.69)
Vi

and the one with two-indices is the same bi-local object defined in (2.62)). The multi-tangents
contain all the relevant information needed to determine any element in the extended cycle space.
Moreover, they possess the property of determining the Wilson line element,

Wal() = Tr [ 2]

for any connection. For these reasons, they can be considered as promising candidates for defining
geometric coordinates. However, they do not constitute independent variables; in fact, they obey
a set of constraints:

977 Ty — (2§ (2 — @) 4 6 (2 — wgq)) Ty IR TR (9.70)

K2

which is called the differential constraint [7]. The points xy and x,,4+1 correspond to the starting
values of the cycle or closed path, and the Dirac deltas are defined in the same dimension as the
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manifold where the paths “live”,

Ti{ﬂl“‘#k}#kJrl“'#n _ ZTiPk(Nl"'Nn) _ T;MWMTZHHl“'un’ (2.71)
Py,

which is called the algebraic constraint [7]. The sum is taken over all permutations of the variables
w that preserve the ordering of pq,--- , ur and pg41,-- - , by, among themselves.

Now, we will introduce the object g,z »y (Symmetric in its pairs of indices), and it is defined
as follows:
1 (z —y)’

Guz vy = *Ef‘:uup ‘l‘ — y|3 . (272)

This, together with g"* ¥¥, defined by,
gty =ePoyd(x —y), (2.73)

naturally appears in the solution of the differential constraint obeyed by the T-objects
and constitute a metric in the space of transverse rank-one vector densities. Note that these
conventions are useful and allow us to write known quantities in a compact way. For example,
the D-objects that appear when solving the equations of motion of the perturbative
analysis for the non-Abelian theory

Dﬂ(xa 7) = D1 pr — —Yux uyTiVy- (274)

Now, the GLN reads

o 1 z—y) . y
L(i, j) = E% dz'u% dyp(|z_y)36/wp =T gua vy T"". (2.75)
Vi 7.

)

Similarly, the Biot-Savart law of the non-Abelian theory

(x — )"

o — |

alPa(z) = 1

@ = = —JParyg . (2.76)

/deleuupJ(p)a v (l’l)

Finally, the equations of motion of the non-Abelian theory (formally the same as Ampere’s
Law) can be written as
g'" aln) = —ehg, e — _ j®)a e (2.77)

Note that the g-objects raise and lower indices, as one would expect from a metric tensor.

In order to further simplify our problem and interpret all our results later, we will consider
the simplest nontrivial case, which consists of restricting the gauge group to SU(2). Our general
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structure constants (which previously belonged to any arbitrary group) are, in this case, the
totally antisymmetric Levi-Civita symbols: f%¢ < ¢ We will denote with an “arrow”
(indicating that they are vectors) any quantity that has components within the internal space;
that is, iso-vectors will be indicated by “arrows”. Thus, for example, the field a,(lp )a(x) will be
written as a(p)( ), the currents 1%(0) will be written as I;, etc. Now, thanks to the conventions
and notation developed throughout this section, we are in a position to “straightforwardly”
calculate the second order on-shell action, which we will do in the following section.

2.6 Second-order contribution

Using the conventions introduced in the preceding section, the second-order on-shell action is
given by

5@ = e [a0,a2 70 + o, ) + ) - (a2 x a2)). 278)
where
25“”’)81165)21) = —2gh* Vyaz(/? - _ 25#1/055}) —»(0) Z The _’;lel % I
(0) o (2.79)
KT [41T1 (L2T2 — =

+ ZTi Ay X (awm X Ii) ,

1 1 -
etrg,alt) = JWre = _ngag‘;) x dlo) — 5 S omreral) x I, (2.80)
S(1) _ 1 aBy [ =(0) ~(0) + 1 Y 1z —(0) f (2 81
Qe = 5€ Apy X Oy ) Guz ay T 5 Zgl“” ayti Gy, < di) 81)

Now, our interest lies in expressing the equation 1} in terms of the fields a(o) Note that
the first term in the equation (2.78) is given by

Euupayc—igv) 5:522 — _ghvp (@'I(j%) « a( ) . "(0) ZTWC H1T1 (6:5}1)961 x [Z) "5212
(2.82)

H1x1 H2x2

1 x T1 HoT — | 7 N
+§Z:Ti# piT1 paws [a(o) % (a(o) % Iz)] _a/(g_
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If we replace the equation 1’ for the field EL’,(},Q into 1} we have

2€#Vpayc‘igg) . @'l(gg) - _euvpgaﬁ'ygpm ay [d’l(f;) X (d’(ﬁoy) X Ei(voy))} .d',(&)

=G TPV ) x (@), < T) ] )

1 « LT 41T (0 | 7 .
5 2 G T (@) < aQ) x 1) - )

(2.83)
1 N -
-3 ngml o I 1A 00 iz [(552)@ % Ij) % [i] .@'ELOI)
,J
oy e [0, (@, < )] -al).
The second and third term in (2.78)) can be written as
1
e0,all) - all) = _iguypgamgw oy (a'g(;) % C—ig;)) . (~giy> % 5%))
1 v o x | = i T
=5 2 T () x ) - (e, > T) (2.84)
1 . - . -
S T (2, <) (82,5 7).
(2]
1
crvral) - (@) x alD) = 2P g, oy (a5 x a9 - (A x a2
1 0y oy { =0 0 0 . (2.85)
4 3 ngjpg/m T} Y p1T1 (a(yx) X a;ﬂj)) . (agtl):cl X Ii) ,
If we use the following vector identities:
(@0 xa®) - (@) < ay) = - a9 x (af) < a)] -a,
(@ @) - (a0, x I) = = [a% x (a0, x I)] -a, (2.86)

(5(0) % E) . (5«)) % _fj) _ {(am) % fj.) % fi] o)

H1x1 H2T2 H2T2 117
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and replace (2.83)), (2.84)), (2.85) into (2.78)), the second-order on-shell action is given by

3 - 2(0) =
8(2) = 15“ pEaB'yng ay {al(gc) x (G’By X a”(Yoy))} ’ a(pgc)

2 : — N = 1
nvp 0 0 [ —(0 Tay Hix T;L T o
. € uz ay {aum) X (Clgu)zl X Z)} 'a‘(pm) ( i o 9 i o y)

1 ﬁ ) ) (2.87)
" 5 Zgur ayTjay H2T2 |:IZ X (EL'ELOQ)LEQ X Ij):| . aftol)ml (Eﬂlwl HT iTlﬂw M1$1>

4,J
g e i (2 2]

Now, using our new notation, we proceed to introduce the zeroth-order field EL’S)I) into the

previous equation (2.87) expressed in terms of the one-index T-object,
n

1 -
e"P0,al) = 3 > T, (2.88)

%
=1

so we will have S solely in terms of path coordinates and the metric. Thus, we obtain:

S — é Z ([E X (I; ka)} fl) Juz ay

VAL
§ uvp afy Tﬂlxl T#2$2TM313T#4564
gE ¢ Iva meiYpw nawa9By pawaJvy pswsti j k l
1
pnvp QY pi1Ti _ 1T oy H2X2 3 T3 e Ta .
+¢€ <Tj QTJ Jva pax29px pazsJpiz: M3$3Ti Tk Tl (2 89)

1
Yy U222 K11 BT KT (11 U334 Ty
- Tj (Tz - §Tz Guoms pzzsJpim M4I4Tk Tl

KT U1T1 U2T2 U3T3 4 Ta ey
+ Tj iy psesYuses pazaly Tk Tl }

Finally, to obtain an expression that is as simplified as possible, we proceed to decompose the

two-index T-objects into their symmetric and antisymmetric parts (Tiab = Ti(ab) + Tlat]

; ), and

use the fact that the symmetric part factorizes into two one-index T-objects Ti(ab) = TiaTib)

according to the algebraic constraint (2.71). When these form factors (T2, T?) are appropriately
combined with the present metrics (gqp), GLNs are formed as in equation (2.75]), which we will
discard as they must vanish for the physical theory to be consistent. Therefore, we obtain the



36

following more compact form of the second order on-shell action:

1 T T T T 3 "y
S =3 Z ([[z % (]j ~ [k)} .[l) {851 PPy, aGpz 498y b9y CTZ@T;’TISTld
i3,k

5 T S, ) 2.90
+§5M ij[ Y ]gvz b9px dgacTikaﬂd+§11][b y]Tz[ g ]gbcgadiTId ( )

“FT;“C “ bgacgdeicT]gﬂay} Iuzx ay

It can be proven that the above equation detects the linking of four closed curves in space-
time, such that the GLN and the TMC are always zero among them, as shown in Figure [2.4]
This proof will be carried out in the final chapter of this work, corresponding to the geometric
interpretation of the link invariants obtained so far.

Figure 2.4: Four-components link (note that the GLN and TMC between all the curves is 0.)

Finally, in the last section of this chapter, we will demonstrate that the consistency conditions
of the perturbative analysis lead to the GLN being zero for the action S, and that the GLN
along with the TMC are zero for the action S(®). As mentioned earlier, the advantage of the
introduced perturbative analysis is that, in general, we can stop at any order, and the remaining
contributions necessarily vanish due to the consistency conditions.

2.7 Consistency of the theory

2.7.1  S©: Gauss linking number

Now, let us check the consistency condition for the zeroth-order in our perturbative analysis.
Note that, if we take the divergence of the equation of motion 1} for the field aﬁ?, it follows

that
9, T =0, (2.91)
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since 70,0, 5:5,(3«) = 0, so equation 1) holds because of the differential constraint 1'
Thus, the theory at zeroth-order is consistent.

2.7.2  SM: Milnor’s third linking coefficient

If we use the equation ([2.47) we can write the first-order equation of motion as follows:

5”””8,,622 _ _%Euup ( (0) ) ZT/M 1T (—»(0) % I:) ) (2.92)

H1Z1

Taking the divergence of the equation ([2.92)), we have

nT H1x1

0= d,(O) 5 (g;wpay H526)) _ = Za/LT#I H1T1 (*(0) X [_;) , (293)

since 6“"")@8”&'22 = 0. Recall the general differential constraint 1D we can write it for the
T-object with two indices as

8uTilw pizy _ (_53 (l‘ _ xl) + 63 (Z‘ _ xl)) Timxl_ (2.94)

Replacing eqution (2.94) into , we obtain

Ly o (g r
3 Z 8 (x — ) TI" (ag)l)ml X Ij> =0. (2.95)
=1

The solution of the equation (2.88)) can be written in terms of the metric (2.72)) by using the
equation (2.74) as follows

o 1 12 7
) = ZDz pali(0) = —5 ZT Y gz vy 1 (0). (2.96)

If we combine the equations (2.75)), (2.96) and (2.95)), the consistency condition for (1,2, 3)
is given by

i SO0 (o — ) (I % 1)L (i, ) = 0. (2.97)

.9

In general, the function of the currents does not always vanish, so it holds that:

L(i,j) =0, (2.98)
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since S™) describes a linking invariant of three curves such that the GLN between each other is
always zero as required.

2.7.3 S®: Four-components link

Similarly, using the equation (2.47]) we can write the second-order equation of motion as follows:

n n
26179, 2) = ~2en Pl ) xal) — S T G, [k D T e (a0 x (a0, x ) |

H2T2
i=1 i=1
(2.99)
If we take its divergence, we obtain
0= —2em°9,al) x a2 — 2em70all) x 9,a — 3 9, T [af}ﬁwl x 12]
’ (2.100)

H1T1 H2T2

+ Z(%Ti”i pary fate {5(0) X (5(0) X f;):| ,

since 5“””8#8,,&’%) = 0. Now, by using the differential constraint 1} the equation of motion
(2.92)), and introducing the vector identities

ghve (EL’L%) X EL’%)) X a’f)%) =0,
(@) x al)) x aly) = al) (a) -al)) —aw) (@ -an)

in the equation (2.100f), we can write the consistency condition as follows

>0 (@ —wi(0)) [T a0, x G- T el x (a, < D)) =0, (2101)

H2T2

Thus, from the previous expression, it can be concluded that what is within the brackets
must vanish:
Trmig() e ez 0) o <d(0) X j;) = 0. (2.102)

H1T1 H1T1 H2T2

If we replace (2.88)) and the solution to the equation of motion (2.92)) into (2.102)), we have

Loy -1 (1
Z |:(I] X Ik) X Iz:| {2gltypnaijTlggua: a9vz b9pz ¢ + TiaTdeTlsgcagdb}
J:k (2.103)
S 1 ()] T .

Jik
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Here we used the Latin letter notation for discrete-continuous indices. At this moment,
the last equation constitutes our most basic result for the consistency condition, which we will
analyze immediately. Note that, if we take the dot product between the equation and
the vector 1:;-, and using the following vector identities

(55) < 1] =0

5 (= )] = (55) (-5 -

the consistency condition turns out to be

S|(5) (%) -

)

I,

2,5, 4
(Ij.fk),

I;

2,5 o
(Ij : Ik)] TOTETY eugan = O, (2.104)

which is symmetric between the indices j, k. Thus, by applying a symmetrization of the equation

(2.104) and using the algebraic constraint 1D for the symmetric part of the T-objects T(20) =
TT”, we arrive at

> TTT T geagar = Y, (T59eaTy) (TiganTR) =D LG, )L (i, k) = 0, (2.105)
g,k J,k 4.k

so L(i,7) = 0 as required. Now, let us go back to the equation (2.103]), where if we take the
vector product between this equation and I;, and consider the following vector identities

(L B) % B) < L= (Tox 1) (B 1) = (L < L) (B 1),

5 (i )] 1= () (),

the consistency condition is now given by

- - — 1 .
) [(Ik x Iz-> (Ii : 1j>] {26””pﬂa7§’T,§g#mgwbgpm n (Ti“T][°d]T,f - T;I;[Cd]T,f) gcagdb}
i,7,k

2,75

> o\ [ = 1 ¢
- Z |:<IJ x IZ) (I’L : Ik?):| {2guypanij]§guwagumbgpa:c + T;‘aT][ d]T]ggcagdb} =0.
.5,k
(2.106)

Here, we have appropriately antisymmetrized the term within braces, taking into account the
antisymmetry present in the coefficients of the iso-charges ((i, k) in the first sum and (i, j) in the
second). Interchanging the indices (j <> k) in the second term of the last equation, and using
to write the consistency condition in terms of the D-objects, we have

.5,k



40
where f; ;i = (f; X 1:;) (1:; . fj) and

o 17

M(%]a kj) = § |:5'u pDi ;LIDj VJ)DIC px
(2.108)

+ (Ti[w Uy}Dj pa Dk vy + TJ[W Vy]Di vy Dk pa + TIEM Vy]Di paDj Vy)} ’

Note that as the function of the iso-currents f; ;x in equation is not generally zero,
it implies that (7, j,k) = 0 as required. Therefore, S describes four closed loops linked in
the space-time (as we will show later), but not in the way of the GLN nor the third Milnor’s
coefficient.

Throughout this chapter, we derived the equations of motion for the Chern-Simons-Wong
theory. Subsequently, we stated that the fields A, = Af,[;] are functionals of the, already given,
closed trajectories of Wong particles in space-time. By substituting the solutions of the equations
of motion into the action, we obtained the on-shell action, which depends solely on closed curves
(all dependence on the Ay, fields disappears). Due to this, and the topological nature of the
action, the only topological invariant that can be described by an object depending on closed
curves is the way in which they are linked. Therefore, S,,_spe; must be a link invariant. As
analyzing the complete on-shell action proves to be a nontrivial task, a perturbative analysis
was developed, in which we obtained link invariants at different orders. As this procedure is
somewhat tedious, then the idea that there might exist some intermediate Abelian theory (a
cousin of the Abelian and non-Abelian Chern-Simons theories), which could describe a higher-
order link invariant arises naturally. This idea will be explored thoroughly in the next chapter.
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Chapter 3

Intermediate Theories

In Chapter [I] we saw how the Abelian Chern-Simons theory coupled with a suitable current
reproduced the GLN. On the other hand, in chapter 2] we derived various knot invariants through
a perturbative analysis of the non-Abelian Chern-Simons theory coupled with Wong particles.
Since the last method is highly nontrivial, one could ask if there exist an intermediate Abelian
theory that is capable of reproducing higher-order knot invariants, such as those obtained from
the non-Abelian Chern-Simons theory. Stated more precisely: “is there any topological field
theory, other than the Abelian Chern-Simons theory that yields exact analytical expressions
for link invariants, other than the GLN?”. This idea will be explored throughout this chapter.
The first section is based on the work of Leal and Pineda [3], which consists of an intermediate
Abelian theory that exactly reproduces the TMC. Meanwhile, the second section encompasses
the original development of an intermediate Abelian theory that describes a four-components
link.

3.1 Intermediate action for the third Milnor’s coefficient
n(1,2,3)

The intermediate Abelian action, proposed in [3], is given by

S :/d?’xs‘“’p {4AL($)8yaip(x) + ;gijkaw(;v)aj,,(x)akp(x)}

(3.1)
—2/d3xTi“xAL(x)—|—/dSJJ/d3y€ijkax’”yajM(m)akl,(y),

where Al (z) and @ (x) represent two independent sets of Abelian gauge fields, denoted by Latin

letters running from 1 to 3 (we are using the Einstein summation convention for these “internal”

indices. It is important to note that we do not employ its generalization since the integration

of continuous variables appears explicitly). The first two terms correspond to the topological
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theory with a non-semisimple gauge group of symmetry as introduced in reference [g].

Performing variations of the action (65 = 0) with respect to the fields (Al al,) yields
-
eMPO,a,, = iTj‘ ) (3.2)
nrpg Ai _ _1 uvp ijk 1 d3 ijkT[#vay] 3.3
€ v p(x) - 55 € CL]V(.’E)CLkp(Z') + 5 ye j aku(y)' ( : )

These equations are just the zeroth and first-order contributions to the SU(2) Chern-Simons-
Wong equations of motion that were studied in chapter

By taking the divergence of the equation , we get
9, T =0, (3.4)
since e*"*0,,0,a;, = 0. This reflects the gauge invariance of the action under the transformations
Ay, — A+ 9N, (3.5)

where A’ = A%(z) is an arbitrary function. The consistency condition for the equation (3.3))
involves more intricate calculations. If we take its divergence, we have

3 g I
0 = 2e"Pe"%9), (aj,(v)ay,(z)) — 7" /d?’yaku(y)a?Tj[“ vl (3.6)

Using the differential constraint (2.70), and the equation of motion (3.2) for the field af,(x)
into the equation (3.6|), it follows

£k §% (x — (0)) jf_dx” ﬁ dZﬁ&yaﬁ(z:j: = £k §3 (x — 2;(0)) L(j, k) = 0, (3.7)

so the GLN must vanish as required, L(i,j) = 0, V4, j. From this result, we deduce that the theory
maintains consistency as long as the curves are not linked according to the GLN. However, this
does not imply that the curves are equivalent to the trivial link (the unlink). For example, the
Borromean Rings are a well-known set of three curves with vanishing GLN between them, even
though they are entangled.

The consistency condition (3.7 is also related to a gauge symmetry of the theory. A direct
calculation shows that the action (3.1]) is invariant under the transformations

Ay — Ay, + 8HQ'£7 (38)
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provided that the consistency condition (3.7)) is fulfilled. Note that Q; = Q;(z) is an arbitrary
function. Hence, it is evident that both sets of fields A; and a; must be Abelian gauge fields for
the theory to maintain consistency.

There is no need to introduce a metric on the manifold to construct the action, as can be
easily verified. Therefore, the theory is metric-independent. Given its general covariance, it
qualifies as a topological field theory, just like its cousins the Abelian and non-Abelian Chern-
Simons theories. Consequently, we infer that the on-shell action Son—sheu Of the theory should
exclusively depend on the topological features of the curves involved in the action; in other words,
it should be a link invariant. Let us examine how this unfolds. The solution to the equation of
motion 1) for the field aL(x) is given by

() = — <;> % f{ dzﬂgﬂupm. (3.9)

Note that the equation (3.3)) can also be integrated as easily as the former one, but in order
to calculate Syn_shen it sufﬁces to substitute the left hand side of and the equation (3
into (3.1). Thus, the on-shell action becomes

5(1,2,3) = ! / dPxe'Pay, (z)az, (v)as,(x)

~ 5 [ & [y (2, @an )+ (3.10)

FTY Y ag (@)ar () + T M ay, (@)az )

Equation corresponds to an analytical expression for Milnor’s Linking Coefficient
i(1,2,3), and it corresponds exactly to equation obtained in chapter So, an intermediate
Abelian theory has been developed to describe a higher-order link, such as the TMC. Now,
following this intermediate action methodology, in the next section we will develop an Abelian
theory that describes the four-components link corresponding to the on-shell action S of the
non-Abelian Chern-Simons-Wong theory.
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3.2 Intermediate action for the four-components link

As an intermediate Abelian action for the four-components link we propose
) R , R 1 n .
Sy= —6 / Bz K, - lsﬂ POy pa — 52@# I
3 3 3, ~Hvp_afy Y Y Y Y
+Z B [)‘mx (AByX/\vy” Aoz
3 n
+ 2 Z/d3x/d3y/d3xl S ayTi[ay el [/\”x x (Amxl X Iiﬂ Ao
i=1
3 T x a T 7 i 7 v
+ iZ/de/dBy/d?)xl/dsx? Gy ayTi[Ml 1 ]TJ[ Y powa] |:Iz x ()‘uzwz X IJ)} '/\Mll‘l
()
+Z/d3m/d3xl /d3x2 Ty e e [Xmocl X (Xuzwz x I_;)] 'X’“”
i=1

(3.11)

where X;m and Kw are two sets of independent Abelian gauge fields, labeled by Latin letters

running from 1 to 3, as well as the current f;—, corresponding to the i-th particle. Here we are
using vector notation for internal indices, i.e., the fields can be seen as (Aj,, Afj,), and the
current as I{*. These objects are “living” in the internal space.

Now, using the notation for “discrete-continuous” indices, the intermediate action for the
four-components link is written in a contracted way as

- 1 — -
M0y N — 5 > T

i

Sy = —6A,,-

—

3 - - -
+ Ze““”eaﬂ”g#m oy {)\m X (Agy X )\w)] Ty

3 " v « x Y 3 - N
+ QZEM ? Gua ayTz‘[ v sl [)‘wv X ()‘mm X IZ)} “Apz (3.12)
=1
3 x x « x = 3 =4 g
3 2 e g T AT Lo (R, % B )| R,
,J
+ Z]ﬂlﬂz H1T1 P22 |:X,Utlx1 % (lexr& X ]_;)} .;\‘“x.
=1

If we perform variations of the action (653, = 0) with respect to the field K;m we obtain:

n

- 1 -
PO Npe = 5 D TV, (3.13)

K2
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whose solution is given by:

1 - - -

Variations with respect to X leads to:

26MP0, K py = — "MV g,5 o [X’”_” x (Xﬁy x Xw)]

- ZEMUpgpa_: ayTz‘[ay el [X”"f x (Xmml x flﬂ
i=1

1 = a UT 1Ty v Y 7
D) 25 P gy ayTi[l el [(Aﬁy x )"yy> x Il}
i=1

1 xT x « T 3 g =
_ §Zguwl ayTi[# M1 1]T][ Y K2 2] {()‘uzwz X Ij) % Ii:|
0,J
+ ZTZ_QME p1z1] pow2) P\'uﬂl « (XH2ZD2 « ]_;)} :
i=1
where

T‘([Iw H1T1] paw2)

% (T[Mw p1z1] paz2 j’i[ﬂlivl patsa) Wﬂ)

)

T-[W /tlrl] H2x2 — 1 (T.“I H1Z1 p2T2 THll‘l HT szz)
% 2 ) i :

Equation (3.15)) can be rewritten as
n

v N vp = Y [pz prza] >
2e"POL N py = — 2eMPAyz X Apz — E T; Apraqy X 1
i=1

+ ZT;[W p1z1] powa) [Xlnwl (Xuzaiz % I_;)} :
1=1

similar to the second-order equation of motion for the non-Abelian theory, where

. Lowsry (v U7 1~ oy e [ -
e = §€ By ()‘By X Aw) Juz ay + §ZT2'[ Y p1e] (/\mwl « Ii) Gy ay-
i=1

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Contracting the previous equation with the inverse metric tensor and defining I;, = d;%, we

have ) )
MOy a,,(z) = —55“”%”’“)\]»1,(30))\1@,,(36) + E/d?’yEijkT][“gC Vy])\k,,(y),

(3.20)

which is exactly the equation of motion for intermediate theory shown in the last section and
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developed in [3]. Substituting (3.13) and (3.14)) into (3.12)), the on-shell action is written as

1 L e o\ o
SM on—shell = 3 Z ((Iz X (Ij X Ik)) -Iz) Guz ay

1,5kl

3
2 cnvp afy H1T1 2 T2 3 T3 4T
{86 € Gua pua1 9By powe vy paweIpw pawa Ly L7 L7

3
+ 76”VPTJ[ay mml]gl’m Hzngulfm #3963ng u4f64TilL2x2T:313Tlﬂ4x4 <3.21)

2
3 luw iz play paws)
+§Tz 1111j 22

KT (H1T1 H2T2 H3X3 4T rpQly
+ T] Gpiz1 pszsGuozs #4I4Ti Tk Tl }a

H3T3 4T 4
g/J2$2 Hsfsgﬂlm #4I4Tk Tl

which coincides with (2.90)), as expected.

As discussed previously, both the GLN and the TMC must be zero for consistency in order
to have a well defined four-components link invariant. Indeed, this is what occurs here and we
will demonstrate this in what follows. Taking the divergence of equation (3.13)), we arrive at

9T =0, (3.22)

which coincides with the differential constraint of the equation (2.70)). Taking the divergence of
(13.20)

1
1253 (x—xj) (Iz X [J)L(’L,j) =0, (323)
4,J
where L(i,7) is the GLN, as defined in (2.75). Then, taking the divergence of (3.15]), we arrive
at

> 2 k(i g, k) =0, (3.24)

.5,k

where f; jx = (I_;C X I_;) (I_; . I_;) and

o 17 .,
[_L(Z,],k) = 5 |:€M pDi [LIDj V:ka pT

(3.25)
+ (Ti[/tz vyl Dj #sz vy + Tj[um vy] D; Vka iz + T]E/Lm vy] D; ;m:-Dj Vy)} 7

with D; = D; 4 as in equation . Note that (3.25) corresponds to the TMC, as demonstrated
in [2]. Tt is worth emphasizing that equations (3.23|) and imply that L(i,7) = 0 and
i(i,7,k) = 0, respectively, as required. Thus, we have constructed an intermediate Abelian
theory, such that describes four closed curves linked in space-time, but not in the way of the
GLN nor the TMC, and it corresponds exactly to the expression for S(?) that we constructed in
chapter 2| If you wish to see the calculations concerning to this section in more detail, you can
refer to Appendix [A]
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Throughout this work, we have calculated, through two different methods (perturbative
analysis and intermediate action methodology) the analytical expressions for the following link
invariants: GLN, TMC, and the four-components link. Now, we must verify that these expressions
are indeed related to these link invariants. To do so, two forms of geometric interpretation will
be introduced in the next chapter, providing a clear demonstration of this relationship.
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Chapter 4

Geometrical Meaning

In this chapter, we will demonstrate that the analytical expressions (2.53)), (2.61)), and (2.90)
detect the link invariants related to the GLN, the TMC, and the four-component link, respectively.
To achieve this, we will introduce two ways of geometric interpretation. The first one was
developed in [B], and involves drawing open paths diagrams (coming from infinity and ending
at the edges of the closed curves under study), which are related to the Seifert surfaces of these
curves. Thus, it is possible to determine the required knot invariant by observing the relationships
that the tangent vectors of the curves and the open paths have with each other. The second
method involves rewriting these analytical expressions as surface integrals and determining the
relationships that the normal vectors to the surfaces enclosed by these curves satisfy.

4.1 Open paths interpretation

4.1.1 Gauss linking number

First, we start with the simplest of the three link invariants we have obtained, the GLN. All the
tools developed in this subsection will be very useful for interpreting higher-order link invariants.
Consider the kernel of the GLN, which is given by the following expression:

T P k) 1aﬂ( ! ) (4.1)

:E|x—z|3 C4m |z — z|

Taking its divergence, note that

1 1
T — 2 — 503 _
Ok = \Y ( ) 0 (x — 2). (4.2)

|z — 2|
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We define the form factor for an open curve «#, coming from infinity and ending at the point
z, as follows

W) = [ s ) (43)

Figure 4.1: Tangent vector of a curve at a point.

The form factor (4.3)) can be interpreted as an object that takes the tangent vector of a curve
at a given point, as shown Figure Taking its divergence, we have

Dph? = / dy? 9,0 (x — ) = 6P (x - 2). (4.4)

Since objects k” and h” have the same divergence, then they differ by the curl of a vector
field. This allows us to make the change k¥ — hP. So, we can perform a gauge transformation
on the object h”(z), where the open path ¥* is parallel transported along the closed curve to
which it ends, creating a diagram of open strands parallel to each other (analogous to Seifert
surfaces). Therefore, the GLN could be written as

L(i,j) = 7{ dat jf Ay e, / AP (x = 2). (4.5)
J i 7] Sy

T

LT
i

Figure 4.2: Open strands diagram for the GLN. Figure 4.3: Trivial Link (not linked according
to the open strands diagram).
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The expression in tells us that the mixed product between the tangent vectors to the
open paths ¥ and the closed curves ; (blue) and ~; (red) must be non-degenerate, as depicted
in Figure [4.2] with GLN equal to one. Otherwise, there is no linking between the curves, and we
obtain the trivial link as shown in Figure [£:3] Similarly, employing the tools developed thus far,
we will interpret geometrically the analytical expression for the TMC in the following subsection.

4.1.2 Borromean rings

Using the conventions and notation developed in section[2.5] it is possible to write the expression
(2.61) for S™) in terms of the metric and the T-objects as follows

1 = T T v T x T
S(l) == 5 Z |:<IZ X IJ) Ik:| [€N pTiﬂl ITJH2 2T153 SQWE prz1 Gz pazo9pr psws

.5,k

X UV €T xr xr UV X xr 4.6
+ Ti[u y]T]I'“ 1T£2 2glm N1w1gvy H2T2 + TJ[H y]Tlgl 1TZH2 2glﬂl lelgl/y H2x2 ( )
+Tl£lw Uy]TimxlTJ#QIzg#f #136197/1/ Mzwz]] .
Let us define the object H,,, (x,~) for general open curves
Hyw(,y) = / dy’ ey (& — y), (4.7)

Y

which could be related to the form factor as H,,(z,v*) = €ah*(z,77). Also, the metric in
(2.72) could be written in terms of the kernel for the GLN as g,z vy = —€upk”(z, 2). By the
same argument in the last section, since h” and k” differ by the curl of a vector field, we can
change — g,z vy — Hyw (x, 'yﬂ). Thus, the first term of the equation can be written in terms
of H,, as follows

PUprpp1 T 2 T2 i3 T3
€ TZ Tj Tk Guz prz19ve poze9pr pszs —

—Eu”p/d?’m]{ dz‘f‘f szﬁ]{ dzl Hya (x,’yz_{) H,z (xﬁz_g) H,, (x,vz_g)

¥i ¥ Vi

= —5‘“’”% dzf‘?{ dzgj{ dzg/ dy‘f/ dyg‘ /_> dYS € pasEvprEpre X
Yi &7 Y ~F ~73 kL

x 6@ (y2 — 1) 5 (y3 — 1) -

(4.8)
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Figure 4.4: Open paths diagram for the Borromean rings.

Equation indicates the number of times the surfaces generated by the open paths v,
~?2 and 7%, which end on the closed trajectories ~;, 74, and vy respectively of the particles,
intersect at the same point. Now, if we consider (as we are doing) that the bundles associated
with all closed trajectories of the particles are parallel, this term will be always zero, as shown
in Figure The second term of the equation can be written in terms of H,, as follows

HT VY11 22
T T3 T Gpe pawer Guy pows —

w [T o 8 = B
dz; dz; dzg dzy Hyo (zl,'y 3) H,p (ZQ,'y 4)
i 0 Vi Tk (4.9)

21
= ?{ dz’f/ dzgf dzg ¢ dzlepn, /H Ayt (y1 — 21) €upa /H dy36® (yo — 2y) .
i 0 Vi Vk v v

z3 z4
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%

% :
T !‘1 l
(1?: / ~> 'l l

Figure 4.5: Open paths diagram for a deformation of the Borromean rings.

Note that we use the complete T-object and not just its anti-symmetric part to simplify the
analysis. Equation measures the oriented number of times a trajectory (for example, ;)
intersects ﬁrst_) the open paths attached to the second closed trajectory (such as 7;) and then the
open paths v* terminating on the third trajectory (for example, ;). Such an example can be
seen in Figure Additionally, each intersection between the tangent vectors of the particle
trajectories dz and the tangent vectors of the open paths dy is nonzero only if the vectors form
a non-degenerate volume, and the orientation of the curves fixes the direction of the tangent
vectors, allowing us to distinguish the intersections as either entry or exit points on the surface
generated by the “rain” of open paths. Note that there is no need to analyze the remaining
terms in equation , as the terms following the second one are permutations of the indices
(4, , k) that label the particles.

We can always assume that the tangent vectors to the parallel open paths are in a fixed
direction, for example, the 3-direction. In this case, each time a tangent vector from these open
paths dy® appears, it would indicate a vector in the dy? direction. It is clear that we can think
of the set of parallel open paths terminating on a closed trajectory as a particular Seifert surface
(a “kind” of cylinder without a top). Now, we are ready to provide a geometric interpretation of
the second order on-shell action S and show that it is associated with the 4-component link.
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4.1.3 Four-components link

Just like in the previous subsection, we will change the metric g by the H-object as follows
~Guz vy — Huw (m,wg). Thus, the third term of the equation 1' is given by

3
Tb O‘yTa ne gbcgadeledgux ay T

e —
dz4" / dzb? j{ / dzl* 7{ dzi“f dz§°H,,, s z;;,’yz_g Hy e (21,7°) Hygpy (22,77
7 / o (29 B (1) B (2277
j{ dz4" / dzh? j{ / dz)* ?{ dz5"j{ dz§° 5u3u5a1/ Ay 6B (yy — z3) x
Vj Yk " Y5

X Eprpsas / dygzé(g) (yQ - Zl) Epspaas /ﬂ dya36 ®) ( Yys — 22) .
6 yF4

(4.10)

Figure 4.6: Open strands diagram for the 4-component link.

From this expression, we can argue that to have a contribution, it must happen that the
closed trajectory «y; crosses orderly first the open paths ~z, ending on the curve ;. Then, it
must intersect at some point with the open paths belonging to 7z, terminating on the curve
associated with particle [. Also, to demonstrate a non-zero contribution, we must have the curve
; intersecting at some point with the open paths 7z, associated with the trajectory v, as shown

in Figure

Similarly, it is possible to determine the contributions of the other terms of the analytical
expression for the four-components link, but since this method is somewhat cumbersome when
analyzing higher-order link invariants, the remaining terms will be examined using the new
geometric interpretation to be developed in the following section.
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4.2 Surface integral interpretation

4.2.1 Gauss linking number

Throughout this section, we will develop a new method of geometric interpretation based on
surface integrals. Similar to what was done in the previous section, we will start by constructing
it from the GLN,

(4.11)

We want to express the internal closed path integral as a surface integral. For this, we need
Stokes’ theorem

?{ﬁ.df: / A% - (V x &) — fFad:ca = /dE“s“bcﬁch. (4.12)
Y ¢ v g
Replacing the last equation into (4.11]), we can write the GLN as

1 1
L(i,j) = dat / d%4e%% 0, ( €.4pe0° | =—
dw Sl 71 |7 =4
1 1
dm“/ d% e ey,,.0, <8C [ — )
T Sl |7 — ]
1 1
dx"/ d¥q(6%5¢ — 596%)0, (ac _ 4D 4.13
4’/T ’ng?j] ( . : |£L' - y| ( )

1 1
dz / d%, V2 { 4}
47T Yi S[v;,9] |£L' o |

o[ ama (s []).
Cdr Slv; 7] |7 — 9]

Note that the last term in the above equation must vanish, since we have a line integral over
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a closed curve of a total differential,

L(i, ) ]{ dm“/ d%,0°% (% — 1)
'YJ7'U

0 (4.14)
— i dZJC% dac“ 8 < P —— )
 staag S |7~ 7]
Therefore, the GLN can be alternatively written as follows
L(i,§) :j[ dx”’/ ds, 0% (7 — 7). (4.15)
i S[v;.4]

Figure 4.9: A pair of curves with GLN equal to

two.
Figure 4.7: Gauss linking number (+)

Figure 4.10: Trivial link (intersections cancel
Figure 4.8: Gauss linking number (-). each other out).
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Figure 4.12: Trivial link (intersection at 90°).

Figure 4.11: Deformation of a pair of curves
with GLN equal to one.

Note that equation tells us that curve v; (red) intersects with at least one point of the
surface enclosed by curve 7; (blue). We define situations where the two vectors have an angle
between them less than 90° with a sign (+) as shown in Figure[4.7] and for a pair of vectors with
an angle greater than 90° with a sign (-) as shown in Figure this way, it is possible to sum
over all the oriented intersections between the curve «; and the surface enclosed by the curve 7;,
then take the absolute value of the result, and this number will correspond to the GLN between
these curves. For example, two negative intersections will give us a GLN equal to two as shown
in Figure[d.9] If the red curve intersects the blue surface more than one time, all the intersection
must have the same orientation, otherwise we get the trivial link (if the intersections cancel each
other out ) as shown in Figure or a deformation of a pair of curves with a GLN less than
the number of intersections as we show in Figure Additionally, the tangent vector to curve
v; must form an angle different from 90° with respect to curve -;, otherwise the curves are not
linked as depicted in Figure

When comparing equations (2.74)), (2.75)), and (4.15]), note that we can write

1 (x — 2)¥
Diye=— ¢ dzfe e s 0% (2 —7), 4.16
o 47T7£j ZEHP|‘T_Z|3 S[v; 9] wI{E—) ( )

which will allow us to carry out the geometric interpretation of the analytical expressions for the
TMC and the four-components link.
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4.2.2 Borromean rings

If we use (4.16) into the first term of the equation (2.61)), which represents the analytical
expression for fi(1,2,3), we can write it in terms of surface integrals as follows

Sgl) = /deElw[’Dl H93D2 waS px

= /d3$€ ve / dzz// dzpég (i: - ) 53 (:E - 772) 63 (f - g3) .
J S[y2,72] S[v3,7s]

Figure 4.13: Borromean rings, contribution of the first term.

Equation states that the three surfaces enclosed by the curves v; (green), v (red),
and ~v3 (blue) share a common point as shown in Figure Furthermore, at this point, the
vectors normal to these surfaces must have a nonzero mixed product, indicating that they are
not coplanar vectors.

Similarly, the second, third, and fourth term of (2.61]) take the form of the following expression,

S = / P / dPYT* " Dy e Di 1y
/S[v

(4.18)
dz,,,/ d5,0% (71— 23) 63 (5, — )
3] S[vk,Z4]
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Figure 4.14: Borromean rings, contribution of the second, third, and fourth term.

Expression states that curve 7; (green) intersects at one point on the surface enclosed
by curve vy, (blue), and the surface enclosed by curve v; (red), in that order. Note that the
outermost integral (in green) is a closed line integral, so curve 7; must return to the point where
it started. However, the innermost integral (in green) is an open line integral that advances ahead
of the outermost integral. Therefore, before returning, curve ; must cut the surface enclosed by
both curves «y; and -y;, both in the opposite direction, thus closing the line integral as depicted in
Figure If we view the surfaces enclosed by the curves 7 (blue) and ; (red) as two fabrics
and the curve v; (green) as a thread, then equation is telling us how to use the thread to
sew these fabrics, in other words, it shows us how the curves v;, ;, and ;, are linked.

4.2.3 Four-components link

Note that S (2.90) can be written in terms of the D-objects using equation (2.74)), and
integrating with respect to the contracted variables, as

5@ é 3 ((I_;-x (fj xfk)) 'E)guway

,4,k,
3
{8 / dx / ByetPe*PID; 1w Dj 5y Dy ~y Dl pe
_§ 3 3 3 pvprplay pizi] o (4.19)
2 d xr d y d CC1€ T] D’L l/:Dijp,lalel px

3 xr xr « xr
—|—§/d3x/d3y/d3m1/d3x2Ti[” 1531 1]Tj[ Y p2 Q]Dk szle i

M /d3x / dgy/d3m1 /deQTJHI e #ZIZ‘DZ' #1I1Dk #212Tlay}.
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Observe that in equation , there is a metric g that could not be contracted with a T-
object of one-index to form a D-object. Such a metric can be replaced by —g,.5 vy — Hy (a:, 7-’7),
as in the open paths interpretation, but the difference lies in that for this new interpretation, the
open paths have a much more intuitive geometric meaning than in the method of the previous
section. Here, the open paths represent the crossing of one surface over another (like a kind of
“twist”), as will be seen later when we analyze each contribution from . For this reason,
this particular case is special because it is a combination of everything we have seen before.

The first term of (4.19) is given by

S = /d3:c/d3y€“”paa679uz ayDi vaDj gy Dk 4y D pa

= —/‘ dz”/ dZ,,/ dZB/ //LA/ dea”ﬁ" 53(5— f1)63(a‘c‘2 — ,7;;)(53(5— Z4)
y*2 Slvi, @] S[v;,23] J Slvk,%3) Slvi,44]

+/ dz”/ le,/ dzﬁ/ (/x-/ d%,ePP1 637 — )83 (T — 15)8%(Z — a4).
~T2 S[vi,21] S[’yj,:fé] J S[vk, 23] S[vi,24]
(4.20)

g
?‘/
&

Figure 4.15: Four-components link, first term contribution.

Note that equation states that the surfaces enclosed by the curves ; (blue) and -y
(green) have points in common, meaning they intersect each other. Additionally, the contraction
of the Levi-Civita symbol with the normal vectors to the surfaces enclosed by the ; (red), ~;
(blue), and v (green) curves must form a non-degenerate volume, as shown in Figure
Finally, the line integral of open paths, which come from infinity and end at the edge of the
blue curve v; (shown as violet x in Figure , represents crossings of the surfaces enclosed by
the v; (red) and 7; (black) curves over the v; (blue). In other words, the violet parallel paths
(perpendicular to the screen) cut through the red and black surfaces because they must pass
through them to end at the edge of the blue surface. If the red and black surfaces did not cross
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over the blue surface, then these open paths would never cut through them, and the curves would
not be knotted. Note that because the indices of the curves v;, v;, vk, v are just labels, and in
equation we sum over all indices, these conditions must be satisfied for each of the curves.
In this way, it is possible to ensure that they are linked.

Now, the second term is given by

S(BZ) = /de/dgy/delguypg,um ozyTjay #lmlDi uka ;lelDl pT

= 7/ dzp]{ dz¥ / dzgl/ s, / %, / d%,6%(Z — 72)6% (% — 14)0°(2 — &)
. '\/Zl Vi /L I'Z] - '\[*s" "”»] S['\/lale]

—|—/ dz”% dzy / dz‘“/ / d¥,., / d,6%(Z — T2)63 (2o — 13)0° (2 — Za).
771 Vi V5] S[n,7a]

Figure 4.16: Four-components link, second term contribution.

Equation states that the blue curve 7; must intersect the surface enclosed by the curve
vk (green) in one direction and then intersect it in the opposite direction before completely closing
the path integral. Once again, terms with path integrals of open paths appear, representing
crossings of the surfaces enclosed by the ~; (red) and ; (black) curves over the blue one v;
(similar to the previous case), as shown in Figure m
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The third term is given by
5(6'2) - /deE / dgy./dsxl \/d?)lég'uz O‘ZL/T'L'HI ulmlTjay H2x2Dk #2I2Dl H1T1

/ dz* 7{ dzl/ dzé“f dz3/ dzy? / dX 1€ pan X (4.22)
73 Yi Slvi,Z6]

x 63(7 — 21)6%(2) — Zg

Figure 4.17: Four-components link, third term contribution.

Equation states that the blue curve 7; intersects the surface enclosed by the curve

x (green) in one direction and then intersects it in the opposite direction to close the path
integral. Similarly, with the red curve +;, which it intersects the surface enclosed by the curve
; (black) in one direction and then re-intersects in the opposite direction to close the path
integral. Note that we also have a line integral of open paths ending on the blue curve 7;,
which cuts through the red curve +;, representing the crossing of the red curve over the blue one
(because otherwise, they are not linked). Finally, the tangent vectors to the curves ; (red), ;
(blue), and the violet open paths must form a non-degenerate volume. Note that the tangent
vectors to the open strands enter the screen and are represented by x, as depicted in Figure 4.17]

Finally, the fourth term is given by
Sg) - /d?’m / d3y/d3x1 /dngTJW R D, prwy D uzmTlayglw ay

= }{ dzt / 24 / b2 / s, / %, % (4.23)
Vi J S[vi,24] S[v1i,26]

X (53 Zl — 26)6 (2:2 — 24)(53(23 — )
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Figure 4.18: Four-components link, fourth term contribution.

Equation states that the blue curve 7; must intersect the surfaces enclosed by the
curves 7 (green), ; (red), and ~; (black), as shown by the blue integrals, from the innermost
integral to the outermost one. Now, since the outermost integral is a closed path integral, it
must return to the initial point. To achieve this, it must intersect the green surface again in the
opposite direction. However, as the two subsequent inner integrals (in blue) are open integrals
that precede the closed path integral, the blue curve «; must first intersect in the opposite
direction to the surfaces enclosed by the curves +; (black) and v; (red) before reaching the initial
point, thus closing the path integral as shown in Figure Note that this particular term can
be seen as a thread crossing over three fabrics of different colors; in other words, the integral in
tells us how to weave the blue curve over the other three surfaces.
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Conclusions

Throughout this work, we have delved into the study of topological classical field theories,
focusing on the Chern-Simons-Wong theory. By solving the classical equations of motion, we
obtained analytical expressions for various link invariants, including the Gauss linking number,
the third Milnor’s coefficient, and the four-components link.

One key aspect of our analysis involved perturbative methods to obtain these link invariants.
At zeroth order, the Gauss linking number was identified, while at the first order, the third
Milnor’s coefficient was revealed, capturing the entanglement of Borromean rings. This perturbative
approach, although non-trivial, provided insight into the intricate link structures associated with
the Chern-Simons-Wong theory.

Additionally, we explored the possibility of intermediate Abelian theories that could reproduce
higher-order link invariants, akin to those obtained from the non-Abelian Chern-Simons theory.
Two sections were dedicated to this exploration: one based on the work of Leal and Pineda [3],
which focused on an Abelian theory reproducing the TMC, and another introducing an original
Abelian theory detecting the 4-component link.

Moreover, we developed a geometric interpretation for the link invariants using surface
integrals. This approximation allowed us to have a more intuitive understanding than the
interpretation provided by the open paths diagram, because the knot invariants were expressed
through the relationships that the normal vectors to the involved surfaces satisfied among
themselves. In conclusion, our work contributes to the broader understanding of topological
classical field theories, showcasing the rich link invariants that arise from the Chern-Simons-
Wong theory and its interpretations.

This work leaves the door open for future interesting research. For example, it is thought
that the action S could be related to the Whitehead link when restricted to two particles
with independent iso-charges [9], which can be analyzed using the new interpretation of surface
integrals. Additionally, a more intriguing question would be whether a Feynman-like diagrammatic
approach could be developed to obtain analytical expressions for higher-order link invariants
without having to calculate each perturbative term of the on-shell action S®).
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Appendix A

Intermediate action for the
four-components link

A.1 Intermediate action and equations of motion

The intermediate action for the four-components link in contracted notation is given by:

— - 1 n g
Sat = — 6K, g/‘””a,,)\pw—QZTi“wfi(O)]

3 - - - -
+ Zguupgaﬁvgw ay [/\m: X ()\By X )\WH - Apa
3 " v o 121 Y N T Y
+ 5 ZE” pgy,z ayT‘i[ s } |:)\V£E X (Aﬂlzl X IZ):| . )\Pf (Al)
i=1

3 T x a T r v r v
+ 1 Zg/“’ OfyTi[ul H ]Tj[ v pavz] |:Ii x (AN21‘2 X IJ)} 'Altliﬁ
i.J

n
nT p1Ty pere |y Y r Y
+ ZT% [/\uwl X (/\szz X I'i)} : /\uwa

i=1
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where we have used the convention of generalized Einstein summation for “discrete-continuous”
indices. Transitioning from vector notation to index notation for the fields A and A, we get:

1 n
S = —6AL, |eP0,N5, — 5 > o TreIe o)

a

3
puvp oy abc cde b e
+oqerele Gz oy, )‘Bu Yy oz

vp _abc cde oy p1z1] \b d eya
+ = Z ghvPg Gz oy T Ao A L IENs (A.2)
+° Z Eabc cde T[#lxl MCE]T[O‘?J #212]11))\22302[]6)\21301

H1T1” (U227

n
T E abc cdeTMl H1T1 p2T2 )\b )\d Ie)\a
i=1

If we make variations of the action (§Sp; = 0) with respect to the field A%, we trivially

obtain:

HT?
1 n
PN, = 5 D T I0), (A.3)

which is the zeroth-order equation of motion for the Chern-Simons-Wong theory, as in [5]. When
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performing variations of the action with respect to the field A}, , note that:

3Sa = —6HPA% D, (6XL,)

3
+ Zs””psaﬁ%“bcsa’legw oy (Mﬁ’,z) )\%y S — (b a) (v p)

3
Lozt celeg 0 (5M,) X5, N - (d 6 0)" (@ 1) (p) 5 (af)

3 v, (03 aoc € € a
+ ZE“ peabrgabegedeg OéyA?/z)‘%y (6X5,) Aoy = (e 4 a) (@ < ) (urp) < (af7)

3 b d b \d
+ ng/pgaﬂ"/ga cC egl“: Oéy)\uz)\ﬂy ’eyy (6)‘255)

3 < oy me
+ 3 Zs“”peabcec”legw ayT»[ v mai] (JAl;x) /\lellz’e/\Zx — (b a) (v p)

%
=1

3 L, ay pe
+ 3 ZE“ peabcac‘i‘)‘gw OéyTi[ v I]Agw ((5)\d ) If)\gw +— (d + a)(pz1 < px)

H1Z1
i=1

3 - vp _abc _cde [a z1]y\b yd e a
5 D e G o T TN N I (0M,)

vr’ 11
i=1

3 xr T « xT
+ Zzgabcgcdeguz ozyTi[Ml 1 ]Tj[ Y p2 2][? (5)\d )Iq)\a “ (d(—) a)/\(,ung o lel)

H2T2 J 7 1T
4,
3
abc _cde [piw1 px]play peze] pbyd e a
+ Z ZE & Gua ayTi Tj Ii )\H2w2lj (6)\#01901)
1)

+ ZE“bCECdeTZ—W Tz (§X0 L VN TN (b4 )" (@ < pa)

H1T1 H2T271
=1

H1T1 H2T2

+ ZE“bchdeTi”w paty piara \b ((Md ) IENG, + (d < a)” (g <> )
i=1

H121” H2X27 1224

+ Zgabcscdejviﬂz HiZy patz \b A e (5)\a ) .
=1

(A.4)
Also, note that
0
(boundary term) — 0, (AZZOAT ) = Aj, 0, (5)\Zz) + (3,,Afw) OApes
= A7,0y (5)\21) =— (6,,Afm) Py (A.5)
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SO we can write
68y = 667 (D,A5,) 6AG, + (1 <> p)

= —€

3
+ Z6#/)1/Eaﬁ"‘/gbacgcde o oy (5)\11 ) g fyy>‘b (EMW — _EHVP)/\ (Ebac _ abc)

3

+ stgaﬂvsdbcewegw pa Ay (O AE AL — (v 4 p)" (b d)" (e <> )
3 v, (0% € C caa a e

+ eI gy i Ny N (0N5) XS = (b 4 d)
3

+ ZE“””EQBWEGbCECdegM ay)\b Aﬁy Sy (5)\230)

3w ay e
+ 5 z:(c:,upu(‘,_:bact,_:cdeguac ayTi[ Yy pizi] (5}\21) )\d Ie)\b (g,upu — _g,uup)/\ (gbac _ _Eabc)/\ (‘u N ,0)

H1T17
=1

3 ay pa)
+ 5 Z et Edbcgcaeg“wl o‘yTi[ v Vﬂil (6)\(1 ) Ie)\2111 ('u AN P)
=1

v’ 1T Z

3w ay e
+ 52:Z.:MVp&jabc{_:cdegwC ayT[ Y H1 1]>\b )\d (5)\(1 ) — (/J o ,0)

3 dbc cae [paze px]nla z1] b a end
_1_125 € Tﬂz 2 M T Y p1 1[ (6)\ )I)\ (Hl.]fl(-)/,l/.]f)

H1T1 J 7 H2T2

42 Z abc cde G ayT[#lel #I]T[Ofy u2r2]Ib)\d T (5)\(1 ) . (/14155'1 o ,ux)

H2T27] H1T1

+ Z&_bacgcdeT_uﬂm BT p2T2 (6)\11 ) )\d Ie)\b (Ebac — _Eabc)
i pa

H2T27T " 1T

4 § : dbe caeTHsz pnix1 [L:L’)\
i=1

+ i abc cdele i@y p2x2 zb o Nd e (5/\a ) .

H1T1 " " H2T27 0

H1T1 (5)\Z )IGAZ%W
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Upon making the respective changes in each line (note that we can combine the terms from
lines six and eight), so we obtain
0Sn = 6K (8,,Aaz) 0Ny = (e7H = —elP)
+ ie"””same“bc C”legwmy (5)\Z )Aﬁy ﬂ/y)\b
+ z6“p”saﬁ75edcscabgayux/\gy (6X2,) )\f;y)\f’,z
+ ieuupgaﬂwgedc Cbagozylmt)‘ﬁy ° (5}\0, )

3
+ Zf_:P«VPEOzB’Yf_:abcz_:cdeg'uzoéy)\b /\,By <y (5}\11 )

+3 Z Eﬂvugabcgcdegpw ayTi[ay p1z1] )\b )\d (6)\(1 )

vr® U1y Z

i=1
+ gia””“lsdbcsmegpml OtyT[o‘y ‘””]A’;zl ((5)\;1 ) Ie)\ﬁlzl (ay < M121)/\ (x1 < y)/\ (pru1 < afy)
i=1
+ %stbcemgml ay T ey mel b (5xa Y IEXd e (i )" (ay ¢ o) (b 4 €)
,J
+ % ZEGbCECdegmzl ayTi[w mxl]T][ay /tzxz]lb)\zﬂzlje (5)\(1 )
i,j
o zn:gabcgc‘ieTi“lIl BT pows (6)‘Z ) )‘zzwzlf)‘Zwl
i=1
Z dbc caeTuzzg H1T1 MI)‘mzl (5)‘Z )Ie)‘fmmz
i=1
+ i abce CdeTILI H1T1 M2I2>\er1>\ﬁ2r2 ¢ (5}\(1 ) .
- (A7)
If we define the following object
qlse men] paer _ % (The mios naza _ s p pavsy (A.8)

note that we can add up the terms from lines two to five of equation (A.7]), and using the



70

definition in (A.8]), we have

3Sa = — 6477 (9,A%,) 6A%,

+ Zehvpeobrgabegedey aykf,z)\%y ¢y (0X2,) < (n < p)

+ 326””“5“b656degpz ayTi[ay malyb yd e (Mfm) — (ePVF = —ghvP)
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% H2T2
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H1Z17 pH2T271
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(A.9)
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3Sa = — 6477 (9,A%, ) 6A%,

— BghvpgaPrgabegedey ay)\ﬁm)\%y)\fw (6A%2)

-3 Z ghvpgabegedeg ayTi[o‘y mwlyb yd e €2

vr’pu1r1
i=1

- Yoy (6/\ZJC)
3 - b_cd [ 1l l7byd (1)
_ 5 Zgac e egulml ayTi# 121 T] Y m2ma] by 13 (5)\395)

T 227 ]

3 n
- 5 Z gaﬁvacbdsacegulxl ayT,i[uw M1w1})\% )\d I
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H1Z17 pH2T271

492 i EabcEcdeTi[#l’ 1] #2902)\1; )\d J¢ (6)‘Zr>
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H1T171 T 2T 2

n
+ Z €dbcé_caerlvi#2£1?2 HiTi #a?)\b I_e)\d (5}\21) )
=1

The last equation can be expressed using the vector notation as
68 == 6 (9,8, ) - (9,0

— 3" PPV g oy P\'W; X (ng X Xw)} : (5Xuz)

_ 3zsuupgpm ayTi[ay piwe) [S\’W « (Xﬂlxl < I‘;)} . ((ﬂ’ﬂz)
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) Zgaﬁwgmxl OtyTi[N el [()‘By X Aw) X Ii] ' (5>‘W€)
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(A.12)
3 x x @ x Y T T Y
T2 D Gy gL T 12 [(A"m x Ij) X I’} ' (5)‘“95)
1,7
+ 221—;[#1 p11] pozs [)‘#11’1 % (Xuzwz X f;):| . (5)\%70)
i=1
+2Tiﬂ2z2 H1T1 P |:(X,U«11E1 % Xﬂ2x2) X _l_';:| . <5X,um> ,
i=1
and observe that the last term could be rewritten as follows
Tiltzl’z pam e [(xﬂlzl X Xﬂzrz) X E} = _Tiu2m2 e [I_; X <X#1$1 X Xﬂ212>:| ) (A13)

using the Jacobi identity, we have

Ti/lzzz U1T1 BT |:<X#1I1 « X“2I2> % f;} _ TH2w2 g1 pT {X;ng « (j—; « Xﬂﬁn)} - (N21’2 o lfflxl)
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TZ.ILQCEQ H1T1 BT [(Xﬂﬂﬁl % X,quQ) X f;} — THT1L p2T2 pT [Xﬂlxl X (E X X’LLQIQ)}
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and using the definition in (A.8]), we have

Tz'mm H1T1 pT |:<XM1$1 « /‘\’sz) > I_;} _ _2T[#1r1 poxa] pr |:XH1$1 X (XWM X ]_;)} . (A.17)

Replacing equation (A.17)) into (A.12]),
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If we define the object

K2 K2
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so we can write the variation of the action as
§Sas = — 6ehP (a,sz) : (5X,w)
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Finally, by the least action principle (653, = 0), we get the equation of motion for the A field:
25“”"81,/{,,3? =— s“”pe"‘ﬁ“’gpf oy [Xui X (ng X Xw)]
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which is analogous to the second-order equation of motion for the Chern-Simons-Wong theory
[E]. This is evident when grouping terms one-two and three-four in the above equation. Thus,
we obtain:

g Y 1 N N 1 - « T N =
2e"POL N py = — 2eMP Nz X <25a57 ()‘By x )‘“/y) 9oz ay T D) ZTJ vl ()\mzl X Ii) 9oz ay>

i=1

n n
TUT 1 « N N 1 ~ = - .
_ ZTi[u p1z1] 55 By ()\By X /\"/y> Juray ay + 3 ZT][ Y pexa] (/\uzzz « Ij) .
=1

j=1

# T R x (R x )]

i=1
(A.23)
If we define the object
e = Leom (3, % LSsqlewmanl (5, . A2
Qpz = 5€ By X Ayy gﬂmay+2z i pizr X i) Gz ay, (A.24)
i=1
then equation (A.22)) can be written as
n
2P0, K py = — 2P Nz X pr — BTG, X
=t (A.25)

+ éﬂ([#l’ p1we] p2xs) |:XH1551 « (XMIZ « I:)} 7

and changing the indices (v > p) in the first term on the right-hand side of the above equation,
and considering (e"?¥ = —e¥?), we have

=

n
v N vp = Y [nz piz1] =
2eMPO, N py = — 26MPLg X Apz — E T; Apyzy X 1
i=1

) (4.26)
+ ZTZK[HI H1T1] p2z2) {X,ulxl « (Xu2x2 % I_;)} 7
1=1

which is formally equal to the second-order equation of motion shown in [5]. Note that the object
@2 is an analogue to the first-order field in the Chern-Simons-Wong theory, which has naturally
appeared in this intermediate Abelian theory. In fact, by multiplying equation (A.24) by the

inverse of the metric g"**¥ and using g"* "Yd,, = —e""?0,d,, with g'* **g,, ,, = 07, note
that:
wrpg =2 L o (3 Y BN [pz przi] (3 7
& ayapx = 756 )\y_ri X Apf — 5 ZTZ )\/Llfl X I,L . (A27)
i=1

If we remove the vector notation, perform the variable change (u1z1 <> vy) in the second
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term on the right-hand side, and revert the Einstein summation convention, we obtain
nuvp 1 uvp _ijk 1 3 - ijkmpluz vyl A
Py aip(w) = — 5" EVEN (1) A (1) — 5 [ d Yy T Njv () Ik, (A.28)
=1

and considering a set of orthonormal iso-currents Ij = d;, we have

1 g 1 o
eMPd,a;, (1) = —=eMPeIR N ()N, (2) — = d3y5”kT[” y])\-l, y), (A.29)
P 9 J P 9 k J

changing the indices (j <> k) in the second term on the right-hand side of the previous equation
and considering that (€;5; = —€*), we obtain:

PO, aip(z) = fis”ypez]k)\ju(x))\kp(x) + B /dsye”kT}“ y])\ky(y), (A.30)

which is the equation of motion for the A field of the intermediate theory proposed in [3] and,
in turn, analogous to the first-order equation of motion of the Chern-Simons-Wong theory [5].
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A.2 On-shell action:

By replacing (A.3)) and ( into
3 N N d —
SM On—Shell = ZEW%amguz ay |:)\yw X ()\By X )‘wy)} Aoz

3 - v [e% x Y T = - . .
+ 52511 ? i ayTi[ UNCESY {)\W X ()‘mzl X ]lﬂ Kz — (i e )

3 [ . /o N7 - (A.31)
p1w1 pw] oy peae]
+ Z ngz ayTi Tj |:IZ X ()‘szz X IJ)} ’ )‘lel
1,J
n
HT P11 p2T2 |y N T N . :
+ 3 e i e [AMI x ()\um x I)} s (i ),
=1
3 prp oy 1 T T T H1T1 U2 T2 3 T3 4T
SM On—Shell = ZE > uzx ay% Z <Ii X (Ij X Ik)) Ilgvz u1z1 9By poxo9vy pszs9pz M4I4T T T T
1,7,k,l

3 11 -
— 5 ZE“VPQMZ ayTJ[ay pae] g Z ( i X (IJ X Ik)) Ilgl/z poxoduizy psrzJpx u4z4TH212TH313TH414
j i,k,l

1 L. -
1 Zg”” T W]T ol 4 > ( (Ij x Ik)) DGpswy pswsGurer paws T2 T/
i Kl

1 - - - N
- ZT]HI e #2I2§ Z (Ii x (Ij X Ik)) “Digproy pswsJuows pazaGue ayTy > S TEATY

j=1 ikl
(A.32)
L I; 3 I, I 3 uvp by H1T1 PE2T2 PR3 T3 4T
SM On—Shetl = 3 Z ((IZ X (Ij X Ik)) .Iz) §E €7 Gua pro1 98y powa Gy wszs oz pazaly T} T2" T
i,5,k,l

3

+ §EMV/JTJ_[ay Hlxl]gym piawg Qpiyay paws Jp u4z4Tu212Tu313TM4m4
3

+ iTz‘[Hg; Mlzl]TJ[ay M212]gu2z2 psws Jur ey u4z4T£313TlH4z4

HT []1T] H2T2 H3T3 4T oy
+ Tj Guier pzwsGpozs paza T4 }guz ay;

(A.33)

which is exactly the same as the second-order “on-shell” term of the action for the Chern-Simons-
Wong model [5].
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A.3 Consistency of the theory:

Taking the divergence of equation (A.3]), note that

- 1 -
PO N = I = o > T, (A.34)

0 m

. 1 .
(divergence of the curl) — W: Ot = 3 Z (0,TH) I, (A.35)

2

Recall that in general the function of the currents is not zero, we have

9,T!"" =0 — consistent by the differential constraint. (A.36)

Taking the divergence of equation (A.27):

0

1 - s 1o - 1 < gz (¥ -
aﬂ ghre l,apg;) = _5 (5‘:”’//)6;4)\1/;5) X )\pi _5 )‘Va_? X (Euypau)‘lm_?) _5 ZaP«T’z[M paeal ()‘ulzl X Iz) .
i=1

(pev) N (prp) (nerv)

(A.37)

0= _é (70, %) x Ay~ %A x (09,5, - %iaﬂ}w ) (Ko < 1) (A38)

i=1

Combining similar terms

Y 7 N BN T p1z N r
0= Ko x (70,355) = 5 ;am“ M (S < I1) (A.39)
Observe that
[pz piw1] 1 Mw pazy L U1T1 UT

(—(53 (x —x1) + 6% (x — xl)) T

N | =

( 53(33—.1‘1)4-6 (x_xl))Timm_

2
( 83 (x — a;) + 6° (x—xl))Ti“l‘”l.
(A.40)
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Replacing the previous result and the equation of motion for the A field, we have

L=z (v o7\, e o (v -\ L o (v =
0= 5> 1" (AM x Il-)+§z($3 (x — z;) T (Aﬂm x IZ->—§Z§3 (z — 21) TH™ (Aml x L-) ,
=1 =1 i=1

(A.41)
integrate with respect to x; in the third term, and changing the indices (u1 <> p), (i <> j):

I~ s (= = 1 - N =
0=3> T{Nax IZ-) 5 =) T (AWI X IZ-) — 3 TR I) (A.42)
i=1 i=1 =
1o < =
= 5> @—ay) T (,\Wl x Ij) =0. (A.43)
j=1
Recall that A,z = —gue vyJ"Y, and replacing it with the expression for current density

1o N 1o R R
= 5 Z 5 (:L' - xj) le:“ ' ((2 Zgﬂlml #2I2Ti#2 211) X I]) =0, (A44)
j=1 i=1

1 411 L2
4 253 (.Z‘ - xj) (Il X I])TJI " Jura: H2372FF; =0 (,LL1£131 AN /LQQ:Q)) (A45)
,J
]‘ xT xT
i D 8% (@ = 25) (L} LT guyay s T127 =0, (A.46)
1,J
1 ..
1253 (z — x;) (I; x I;)L(i,5) = 0. (A.47)
]

In general, the function of the currents does not always vanish, so it holds that:
L(i,j) =0, (A.48)

which would be our first important result for the consistency of this theory, since if the proposed
action describes a higher-order link invariant, then the Gauss linking number must be zero.

Now, we take the divergence of equation (A.25]):

0 A B
- i 0, T Tz, X f)
i H1T1 2 (A49)
i=1

n D

+ Z (8“T‘<[‘”” iz 2$2>) {mel X (Xmm X I_;)} .

=1
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Note that

B = —2e"P X5 X (8ulips) = —2Npz X (EMP8,d,:)  (u > v)
= 2N,z X (M0, ,z) = 2N,z X (€"P8,d,5) + Replacing (A.27)

— _Eﬂupxl@ % ( e X )\pz> ZT[#I #1%1])\ (XMNM « f;)

(nrp) (H1z143vY)

= —g””uxpi X ( v X )‘uw) ZTZ’” vl X Auz X (ny X I_;)

=ehvP (Xﬂi’ X Xui) x pr + ZTZ‘[M " (X”y % f;) x X”j’
i=1

C = a#Ti[u prza] _ 5(9#Tiu mz _ §5uTim L
(=8° (2 0) o+ 8 (0 = 0)) T = 5 (=0° (@ =) + 6° (@ — ) TV

=8 (x — a;) + 6% (2 — 1)) T/,

(A.50)

(A.51)

(A.52)



>

— 8MT~L<[MZ piz1] powa) _ % (aﬂTi[MI piz1] pawe a,u,Ti[lel pox2] MCE)
_2/(1 pw oy pawy L przy po pgwg L prz1 pows po | L H2T2 p1T] pT
=3 (28MT-L 28#Ti 28uTz' + 23#Ti
1
3 ((—53 (x — @) + 6 (z — m1)) TIHo1 #272 — (—63 (x —x1) + 0° (= 1’2)) e etz
(—/gx/xz+ 6% (& — x ) THE 22 4 (5% (2 — a1) + 6 (z — ) TS2"2 Wcl)
1 3 3 H1T1 H2T2 3 3 H2T2 H1T]
=3 (—5 (x—xzi))+ 4 (x—:m))Ti - (—5 (x—x:)+ 9 (m—ml))Ti
+ (- 8 (x—ai) +6° (z — x1)) T/ “212)

W =

(2 (_53 (J} _ mz) + 63 (.T _ 331)) Ti[ulzl pawa] + (_53 (QZ _ 331) 4 (53 (Ll’ _ -Tl)) Tip,lxl u2x2>

TH1TL K22 _pleier powe] | p(pier poaws)
i i i

=3 (3 (0% (@ — 2:) + 6° (z — z1)) e w2zl g (=0% (z — ) +6° (x — 21)) T “2”2))

T_(u111 u212):T_#1w1 TH2e2

W =

1

= (=0° (& — 2;) + 8° (z — 11)) Tl merl g 2 3 (=6% (z — 1) + 6° (z — a1)) TV T2,

Replace (A.50), (A.51)), (A.52)), and (A.53) into (A.49)), we have

n n
0=— Zﬂui (I_; X 6Mj) + ghvp (Xuj X Xy:i) X ij; + ZTZ[F@ vy] (ny X I:) X Xﬂi
@ =1

- Z (=0° (x — ;) + 6% (x — 1)) T/ ™ (&',“zl X E)
+ Z 53 (z — ;) + 53 (x — 351)) Tluizs paro) [Xﬂlxl % (Xﬂzrz % ]_;)}

1 & - o -
3D (<8 (@ =)+ 8 (@ — ) T T {)‘mm x ()\Hm x Iiﬂ :
=1
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(A.53)

(A.54)
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and integrate with respect to z; the terms containing 63 (z — z1), so we have
n B n B
0=- ZT[‘I (Ii x am’c) +etP ()‘uzz X Aw’c) X Apz + ZTi[W v (/\Vg X Ii) X Auz
i=1 i=1

#300 @m) T (Gue x 1) = T (10 1)
i=1

i=1
(H14>p)

- 253 (@ — @) TlHws vavs] {mel X (Xﬂzxz X E)} + ZT[ME e {me % (X“m 8 E)]

i=1 i=1

(p1p) " (paz2+—vy)

1 o . - - - 1 < , - - -

-3 253 (x — z;) T/ TH2"2 [Amxl X <)‘u2:c2 X IZ)] + 3 ZTiﬂwﬂuzm [/\mj X (/\WC2 X Ii)],
i=1 i=1
(p1 =) (p2m2—vy)
(A.55)

=1 3
# 2 =) T (B, 1) + LT
i=1 =1

_ i 83 (x — ;) Tlnws wawe] [Xulm X (

=1
1 — - - - 1o~ s - - "
_ 5263 (z — @) THor 12" [/\#m X ()\#212 X I’H + §ZTzWTiyy {)\M X (Al,y X IZ)} )
i=1 i=1

If we Simplify and organize terms, note that:

O :51“1;) (Xﬂi X Xyi) X Xp;y; + 253 (.r - 1‘1) {Tlfulzl (a;tlxl X I_;) - T[,u1131 #212] |:Xu1x1 X (XMZQL'g X I:):|}
i=1

1 = x Lo X Y Y T 1 . T v Y T Y
_ g;p (x _wi)Tim 1TZ-’2 2 [)\mxl X ()\Mm X Iz>] — ggTiN T; Yy [()\Vy X IZ-> X )‘Ni:| .

(A.57)

Due to the total anti-symmetry of eé#*? note that:

ghvp (XME X ij) X ij = E’prl,j (XME . Xpa_:) —EHVPXM (ij . ij) = 0, (A58)
———

symmetric in (up) symmetric in (vp)
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so we obtain

0= 263 (x — ;) {Ti"””1 (&'mzl X f;) — Tlne paw] [Xmml X (X,Qm X I:)} } .

i=1

1 - T T Y Y r 1 = T v Y 7
— g Z(;S (17 — .CEZ) T#1 1T'u2 2 {/\p,lzl X </\/L29c2 X L)} - g ZTZ# TZ Y [(Auy X Ii) X A/tf:| .
i=1 i=1
(A.59)

Observe that
_ . N . B 1 n . 1 n B .
U [/\M x ()\Vy % I’)} =TT (2 Zgl@ “WlT’?lwlIk) . 2 ZgVy pszpzlj x I
= Jj=1
4 Z )guz w1 Gy pZTﬂﬂcTVyTpZTH1$1

" f f NGuz pas nﬂi(nyyguy pzTgPZ)Tl?m

- Z )g#m o L LG, T = 0.
(A.60)
Similarly,
T T {mel X (Xuzfrz x I:)} Ty Ty ngml e wIk) %Zgltzﬂﬂz VyTJVny
j=1
= f f f DT gy TE) T Gpas VyTJI'jy)

4

-

{Z(fk (5 x TG KL, ) =
7.k
(A.61)

Replace (A.60) and (A.61) into (A.59), we get

253 (2= a) {7 (G x ) =007 2720 (X, (R x ) f =0, (A62)

which implies that:
Tiylzrl (5#1961 % ]_';) _T[Mla:l HoT2] |:X,Uf1$1 X (X#2m2 X _I:):| =0. (A63)

XIZ‘
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Note that

Timzl (‘—imxl X fz) =- (fz X ‘—imﬂcl) Timm
1 1 —
=—|1Ix 55#1//3 ()\Vz X )\ﬂr) e a1 ~ 5 ZTJ[MJ vz] (Auz « Ij) Gy pyes THo
i=1

1 - /e - 1& - e -
- 755‘“}"[2‘ B (sz X )‘Pz) Gz pray T} + 2 ZTJ[M/ UZ]Ii x ()\Vz X Ij) Iy pro Tf!
=1

1 . e - 1
= 71 Z [Ii X (Ij X Ik)] (5€#UPT1H111T]H212T1?3139u1 prz19ve paza9pz pzes
gk

+Ti”1z1T][“y UZ]T,QLNZQMM ny9pzzo VZ) )
(A.64)

s el [Xulxl x (XWQE? x E)} - Z [I_; x (I_;“ X I_;)} T;LﬂlTi[uy VZ]TIélzmgmw py9uows vz-

(A.65)

Replacing (A.64) and (A.65) into (A.63),

Z - - - 1 o
[(Ij X Ik) x Il} {2E#VpﬂtlxlTjuzszlgdxdgﬂz M1$1gV$ M2$29P$ H3T3 + TiulxlTj[uw Vy]TIéL2x2gME Mlﬂhgl/y M2$2}
J:k

o Z {I_; % (I_;~C ~ I_;)} TJmmTi[M Vy]Tlgznguw i1 Guy pazs = 0

Jik
(A.66)
and using the Latin index notation for discrete-continuous indices (a = py1x1), we have:
T r r lyvpabc arpnled] b
Z [(I] X Ik) X Iz:| 55 ,Tz Tkag/wc a9vz b9px c + Tz’ Tj Tk;gcagdb
Ik (A.67)

- Z {I_; x (I_;C % E>:| T]qTi[Cd]TIggcagdb = 0.
7,k

By taking the cross product of the previous equation with the current I; and summing over
the index 4, we can write

- - - - (1 "
Z |:(Ij X ]k) X Izi| X Il {2guypﬂaijT]§gua: a9vz b9pzx ¢ + TiaTj[ d]Tlggcagdb}

7 (A.68)
5[5 () ¢ {1 e} <o
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Observe that

If we use these vector identities in the consistency equation (A.68)), we have:

- - > o 1 "
Z (Ik X Iz) (Il . I_]) {QEHVPE(IT;‘)T]?QM;E a9vx b9pz ¢ + TiaTj[ d]Tlsgcagdb}
ik
roTN(T . T 1;1,l/pabc apled] b
=S (L% B) (T I) § 58 T TV T e o o950 0 + TET T geagan (A.69)

; Z (_;“ . :) (I_; I_;) {T]qTi[Cd]Tngcagdb} =0,

— 7 7 7 1 C C
Z ( kX i) (I’L : Ij) {2€HVpTiaijTI§guw a9vz b9px ¢ + (TiaTJ[ d]TkI;) - T;‘IT;[ d]T]g)gcagdb}

X

r r T T 1 v a c arpled
- ( J Il) (Iz : Ik) {25H pTi T]kagux a9vz b9px ¢ + 772 T][ ]Tlggcagdb} = 0,

(A.70)

and changing the indices (j <> k) in the second term

- - - - 1 v a c a cd a cd
Z (Ik X Ii) (Ii : Ij) {26# pTi TJkajglsz a9vz b9px ¢ T (Tz TJ[ ]T/? - T] Ti[ ]Tlg)gcagdb}

7,k
T T r T 1 vprpaqbrc arpled] b
- Z (Ik X IZ> (Il : I]) §EM pTi Tij 9uz a9z bY9px ¢ + T; Tk ergcagdb =0.
i,5,k
(A1)
Observe that
suypTiaTlSchgux a9vzx b9px ¢ = 5HVpEaT]?chg,uz aQva b9px ¢ (b e C)
= M PTETETY Gz aGve cGpo b < (V>
w17 Gpz aGve cGpz b < (V < p) (A72)

b
= " TPTET] Gue adpz cGua v+ (M7 —ehvP)

= _EMVpTiaTJleggu:v a9vz b9pzx c-
If we combine this result with equation (A.71)), we can write
d d d
Z fi,j,k |:5MVpTiaTJbT]gguxagvmbgpzc + (TiaT][C ]T]? - 7}@7‘;[0 ]TIS - TiaTic ]T]b) gcagdb:| = 07

1,5,k
(A.73)
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and use the expression D; , = —Tibgab:

cd]

Z figk | =€""Di jaDj va Dy pe + _Ti[Cd]Dj D a + T]'[Cd]Di D a —T;E D; .Djq|| =0,
7 N—————
Ak (cerd)

(A.74)

Z figk {—EW’JDi peDj ve Dy po + (-ﬂ[Cd]Dj eDia+ Tj[dc]Di aDi ¢ — TILCd]Di Dj d)} =0,
ik

S fugk [~ Dt aDs vaDi o+ (~TVD; Dy a = T Dy a D . — T i D )] =0,
N
(A.76)

which can be rewritten using Latin letters for “discrete-continuous” indices, ¢ = px y d = vy:

Z fi,j,k |: - €#VpDi MIDj va Dy px
ok (A7)
_ (Ti[/m Vy]Dj Nka vy + TJ[WE vyl D; Dy uz + Tk[:um vyl D; uij m/)} —0,

.4,k
where
(i, i LT e
M(Zvjvk) = - §|:5 D; ,u,:rDj va Dk px

(A.79)
+ (Tl[“z Vy]D] uka vy + Tj[“m Vy]D'L Vka J7%3 + TILM Vy]D'L [L:L’Dj Vy)i| )

is the TMC, which describes the linking of Borromean rings, and also vanishes. Therefore, we
have demonstrated that our theory is consistent.
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