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Resumen

En esta tesis se presentan dos formas de modelar el comportamiento electromag-
nético de una partícula plasmónica tipo nano-shell, que son la aproximación cuasi-
estática y la teoría de Mie. Este análisis conduce a la discusión de la ruptura del
régimen cuasiestático debido al aumento del tamaño de la nanopartícula, la cantidad
de metal presente en la partícula y la ganancia inyectada en el sistema. Además, en
busca de homogeneizar diversas configuraciones resueltas con el mismo tratamiento
matemático, se formula un sistema modular para las ecuaciones dependientes del
tiempo. Para lograr esto, se define una matriz de coeficientes derivada de las condi-
ciones de contorno del sistema estudiado, de esta manera, sistemas tan distintos
como una esfera única en un medio de ganancia uniforme y una nano-shell pueden
deducirse a una ecuación diferencial lineal acoplada. Además, se extiende el modelo
de Baffou para los efectos de calentamiento en una nanopartícula metálica esférica
a una partícula tipo nano-shell. Se obtiene que mediante el uso de una nano-shell
en lugar de una nanoesfera es posible alcanzar temperaturas más altas utilizando
partículas del mismo tamaño. Para compensar las pérdidas por absorción, se añaden
especies activas al núcleo de la nanopartícula, las cuales son bombeadas con una
fuente externa. Permitiendo modular la cantidad deseada de calentamiento en la
nanopartícula. Por último, se presenta una aplicación directa en la eficiencia de una
trampa óptica, resultando que al inyectar ganancia en el sistema de trampa es posible
obtener pinzas ópticas más eficientes que aumentando la potencia láser.

Palabras clave: Plasmónica, nano-shell, aproximación cuasiestática, teoría de Mie,
comportamiento térmico, medio de ganancia, trampa óptica.
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Abstract

In this thesis are presented two ways of modeling the electromagnetic behavior of a
plasmonic nano-shell particle, which are the quasistatic approximation and the Mie
theory. This analysis leads to the discussion of the rupture of the quasistatic regime
by the increase of the size of the nanoparticle, the amount of metal that has the
particle and the gain pumped into the system. Furthermore, looking for homogenize
various configurations that are solved with the same mathematical treatment, it is
formulated a modular system for the time dependent equations. In order to do this,
it is defined a coefficients matrix derived from the boundary conditions of the studied
system,in this way, system as different as a single sphere in a uniform gain medium an
a nano-shell can be deduced to a linear coupled differential equation. Additionally, it
is extended the Baffou model for the heating effects in a spherical metal nanoparticle
to a nano-shell particle. Obtaining that by using a nano-shell particle instead of a
nanosphere it is possible to achieve higher temperatures using particles of the same
size. In order to compensate the absorption losses, there are added active species into
the core of the nanoparticle, which are pumped with an external source. Allowing to
modulate the desired amount of heating in the nanoparticle. Lastly, it is presented a
direct application in the efficiency of an optical trap, resulting that by pumping gain
into the trapping system it is possible to obtaining high efficient tweezers than by
increasing the laser power.

Keywords: Plasmonics, nano-shell particle, quasistatic approximation, Mie the-
ory, thermal behavior, gain medium, optical trap .
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Chapter 1

Introduction

1.1 Plasmonics

Plasmonics is the study of interactions between free electrons in metals and elec-

tromagnetic fields at the nanoscale [23]. This phenomenon has been harnessed by

humanity for centuries, predating the development of classical electromagnetic the-

ory [7], which provided a foundational understanding of its mechanisms.

However, it was only in the last century that it gained prominence as an emerging

field of research. This transformation was driven by the development of various new

nano-technological methods [7], allowing for the synthesis of custom nanoparticles

with nano-scale precision.
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Figure 1.1: Notre Dame Cathedral: stained-glass rose window

The capability to unveil the physical phenomena underlying its operation, cou-

pled with the ability to design and actualize desired nanostructures, has in fact ex-

panded the scope of plasmonics. Originally confined to the realization of vibrant

colors, it now finds applications across a broad spectrum, including areas such as

bio-sensing, photovoltaics, plasmon-enhanced spectroscopy, and cancer therapy [5].

Most of these applications hinge on the plasmon’s unique capacity to confine a con-

siderable light intensity at sizes much smaller than the wavelength.

In the realm of plasmonics, three interrelated yet distinct phenomena can be dis-

cussed: the 3D oscillation of electron density, recognized as bulk plasmons (BPs);

the 2D propagation of surface plasmon polaritons (SPPs) across surfaces or along

waveguides; and the electron oscillations occurring in illuminated metal nanoparti-

cles, termed localized surface plasmons (LSPs) [16]. This project will specifically
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leverage the latter phenomenon.

While a metal nanoparticle can independently support LSPs regardless of its ge-

ometry, we will concentrate on spherical nanoparticles due to their greater stability

and the clearer, though rich, electromagnetic phenomenology associated with them.

1.1.1 Localized Surface Plasmon Resonance

When the plasmon resonance of a LSP is activated, a superficial electron density

begins to oscillate through the skin of the particle creating a local field, manifest-

ing a resonance in frequency. This means that all the electromagnetic phenomena

produced in this structures are extremely dependent on the spectral region in which

they are studied. In principle, the center frequency of the Localized Surface Plas-

mon Resonance (LSPR) can appear in a wide spectral range between the deep violet

and the near infrared. This location in the spectrum depends on some geometrical

parameters such as the shape and the size of the nanoparticle and it is influenced

as well by the environment of the nanoparticle (e. g. the index of refraction of the

solvent hosting the nanoparticles).

To generate Localized Surface Plasmon Resonance (LSPR) within the visible

spectrum, the most suitable plasmonic metals are silver and gold, with no absolute

winner between the two due to their distinct advantages and drawbacks.

Silver, renowned for its low ohmic losses, emerges as a preferable choice for cre-

ating plasmonic emitters [4]. On the other hand, the natural biocompatibility of gold
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and its ease of functionalization with various molecules make nanoparticles made of

the latter more suitable for biological applications, such as bio-labeling and medical

therapy. Both metals demonstrate resilience against photo-damage and maintain ro-

bustness in terms of optical, chemical, and thermal stability. Notably, gold nanopar-

ticles exhibit higher absorption capabilities, making them more ideal for photother-

mal therapies [16].

1.2 Thermo-plasmonics

Recent years have seen a growing interest in using metal nanostructures to control

temperature at the nanoscale. Metal nanoparticles are an ideal nano-source of heat,

since when illuminated at its plasmonic resonance feature enhanced light absorption.

This process allows for remote control of temperature using light, establishing the

robust and adaptable photothermal mechanism that is the foundation of thermo-

plasmonics [6].

1.2.1 Plasmonic Photothermal Therapy

Plasmonic photothermal therapy (PPTT) is a therapeutic approach where gold nanopar-

ticles are introduced into cancerous cells through intravenous or intratumoral injec-

tion. Subsequently, these cells are exposed to near-infrared light, generating heat.

This minimally invasive therapeutic strategy helps to mitigate the risk of severe

infection-related complications often associated with surgery and bypasses the side
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effects caused by the use of toxic drugs in chemotherapy. This method has the poten-

tial to serve as a promising alternative to conventional treatments like chemotherapy,

radiotherapy, and surgery, particularly for localized tumors.

Preclinical investigations have demonstrated the considerable safety and effec-

tiveness of PPTT in addressing xenograft tumors in mice. In 2021, AuroLase ther-

apy, leveraging the photothermal effect of silica-gold nano-shells, underwent human

clinical trials with encouraging results (ClinicalTrials.gov Identifiers: NCT02580535).

Furthermore, gold nanorods have been employed in the treatment of spontaneously

developing tumors in both canine and feline patients. Cancer is a prevalent cause

of death in both cats and dogs, making this research directly relevant for veterinary

applications. Additionally, both species exhibit comparable forms of cancer, resem-

bling human cancer manifestations such as mammary gland tumors, which under-

scores the importance of this line of research for humans as well.

For the aforementioned reasons, several studies have investigated the treatment

of spontaneous mammary gland tumors in cats and dogs [2] [29] [19] [3] [1]. The

approach involved injecting gold nanorods directly into the solid tumors, followed

by near-infrared (NIR) irradiation. Posterior to three treatment sessions, all cases

showed significant tumor regression, with no instances of recurrence or metastasis.

Importantly, there were no observed toxic effects on the blood profile, and liver and

kidney functioning did not decrease after the treatment.

To summarize the advantages of Photothermal therapy, it is worth emphasizing

that it circumvents the systemic side effects linked to conventional cancer treatments

like chemotherapy. By focusing predominantly on localized solid tumors, PPTT
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has the capacity to specifically target them, thus minimizing harm to surrounding

healthy tissues. Additionally, because this method is a physical treatment and does

not rely on specific drugs, it is not limited to specific tumor types. This means that

PPTT has the potential to serve as a “universal” treatment for a wide range of cancer

types, overcoming issues related to drug resistance that often arise over time with

other therapies.

Moreover, recent advancements in the field underscore the promising potential

of PPTT not only in treating existing tumors but also in effectively preventing the

recurrence and spread of metastasis [22]. This encouraging development opens new

avenues for research and application, suggesting that PPTT could play a pivotal role

in addressing the challenges associated with metastatic cancer, a key aspect in ad-

vancing cancer therapeutics.

1.2.2 Optical trap efficiency

In an optical tweezer, the pressure exerted by radiation is a consequence of momen-

tum conservation during the absorption and scattering of photons. In addition to

the scattering force, electromagnetic fields induce polarization in dielectric materi-

als, resulting in a gradient force pointing towards high-intensity field regions. This

gradient force, originating from a single tightly focused laser beam, enables the trap-

ping of individual nano or micro-sized dielectric particles in three dimensions, giving

rise to what is now known as optical tweezers. This technique has found widespread

applications in biology, physics, chemistry, and materials science, offering the abil-

ity to apply well-defined forces and torques while non-invasively manipulating nano
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and microscale objects.

Optical tweezers designed for dielectric particles, primarily rely on the gradient

force. However, metallic nanoparticles strongly absorb and scatter light near their lo-

calized surface plasmon resonance (LSPR), which increases the contribution of the

scattering force and complicates stable trapping. Nevertheless, Svoboda and Block

demonstrated in 1994 that metallic nanoparticles can be stably trapped with suffi-

ciently off-resonant optical tweezers (using a focused laser with a wavelength not too

close to the LSPR of the trapped particle). These properties include electrical field

enhancement, increased fluorescence and Raman scattering, as well as local heating.

The delicate balance between gradient and scattering force near the LSPR allows for

precise manipulation of trapped particles. This combination of precise spatial con-

trol and plasmonic properties makes optical trapping and manipulation of plasmonic

particles crucial for a wide range of research fields, both fundamental and applied.

The absorption of radiation leads to heat generation through non-radiative de-

cay channels, involving electron–electron and electron–phonon interactions. Plas-

monic nanoparticles, known for their efficient nanoscale heating, are being increas-

ingly applied in cancer treatment. Due to their small volume, bubble formation is

suppressed, and local temperatures significantly exceeding the boiling point of the

surrounding medium can be achieved. Even under off-resonant excitation condi-

tions, as present in an optical trap, considerable temperature increases can be ob-

served.

Lastly, particle temperature can affect trap stability. Ohlinger et al. showed that

successive trapping of silver nanoparticles destabilized the trap if the red-shifted cou-
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pled plasmon resonance was close enough to the trapping laser wavelength. This was

attributed to two effects: firstly, the coupled plasmon resonance being closer to the

trapping laser wavelength shifts the force balance between gradient and scattering

force towards the scattering contribution; secondly, this also leads to more efficient

plasmonic heating. Both effects contribute to trap destabilization and particle release

[30] [33].
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Chapter 2

Choosing the right nanoparticle

While still keeping our analysis in the realm of spherically symmetric nanoparticles,

one can study more complicated configurations, such as coated spheres

Figure 2.1: Coated sphere.

depending on the ordering of the used

materials in these structures, one can

have core-shell and nano-shell particles.

The first configuration is when an in-

ternal metal core is coated by a dielec-

tric shell, while the second one is when

an internal dielectric core is coated with

metal. In this thesis, we will work on the

latter configuration for a number of rea-

sons, including the ability to modulate

the resonance frequency by varying the shell thickness (i. e., the ratio between the
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internal and the external radius) [9] and the fact that, in this configuration, it is easy

to include additional active species in the core of the nanoparticle, such as gain el-

ements (e.g., quantum dots, fluorescent dyes, etc.). Those active elements, when

pumped by an external source, can act as amplifiers for the electromagnetic fields at

a specific range of frequencies.

This allows the interplay between the quantum emission of the gain elements

to be maximized by overlapping their emission center frequency with the plasmon

resonance frequency. This coupling adds an additional dimension to the parame-

ter space of the problem, resulting in intense changes in the electromagnetic fields

around the structure, including extreme amplification and emissive regimes where

the resonant plasmonic field can be summoned by a non-resonant pump.

The result is a further, exponential increase in the already large variety of ap-

plications, allowing for targeted photothermal therapy, enhanced spectroscopy, and

spasing [26] [31] [32].

2.1 Gain enhanced nano-shell

2.1.1 The Gain assisted Medium

A gain medium can be modeled as a two-level system through the Optical Bloch

equations in the density matrix formalism. This is achieved by introducing a phe-

nomenological pump instead of the typical thermal bath used to model absorbing
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elements:

dρ12
dt

−
(
iω12 −

1

τ2

)
ρ12 =

iNµ · Ẽh

ℏ
(2.1)

dN

dt
+
N − Ñ

τ1
=

2i(ρ12 − ρ21)µ · Ẽh

ℏ
. (2.2)

Here, the electric field of the gain medium, Ẽh, interacts with a single gain element

of dipole moment µ. Also, ρij is the i, j element of the density matrix. The constants

describing phase and energy relaxation processes due to interaction with the thermal

bath are τ1, τ̃1 and τ2. Where

τ1 =
τ̃1

Wτ̃1 + 1
,

is the typical energy relaxation time. And

τ2 =
2

∆
(2.3)

correspond to the typical relaxation time of the phase.

The transition frequency between levels 1 and 2 is

ω12 =
E2 − E1

ℏ
,

N = ρ22 − ρ11 is the population inversion, and the corresponding value of N for the

thermal equilibrium of the reservoir is given by

Ñ =
Wτ1 − 1

Wτ1 + 1
, (2.4)

where W is the phenomenological pump rate.



25

The presence of Ñ as defined in Eq. 2.4 in Equation 2.2 means that, when the

right-hand term of the same equation is negligible, the population inversion is driven

to Ñ in a time of the order of τ1. By choosing Ñ > 0 here, we are effectively modeling

a pump that drives the active elements to its excited state.

In this framework, the polarization of the gain medium, arising from the collec-

tive behavior of the gain elements’ population, can be calculated as:

P̃h = ε0χbẼh +
n

4π

ˆ
Ω

ρ12µdΩ (2.5)

where χb is the susceptibility of the dielectric host in which the gain elements are

dispersed. The right side of Expression 2.5 accounts for the contribution of a pop-

ulation of gain elements with particle density n, assuming a random distribution for

the dipole moments µ which are activated by the element of the density matrix ρ12,

accounting for the probability of transition. This effect is then averaged over the solid

angle. Expression 2.5 shows that if the probability of transition were independent

of the field in the gain region, the right term would just be averaged out. However,

Equation 2.1 has a driving term on the right-hand side that favors the transition of

the gain elements whose dipole moment is parallel to the electric field Ẽh.

If we now define the active contribution to the polarization Π̃h as:

Π̃h =
n

4π

ˆ
Ω

ρ12µdΩ, (2.6)
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Expression 2.5 can be rewritten as:

P̃h = ε0χbẼh + Π̃h. (2.7)

Also, considering that it is possible to demonstrate that

ˆ
Ω

(µ · Ẽh)µdΩ =
4π

3
µ2Ẽh,

one can rewrite the system of equations 2.1-2.2 in terms of the time evolution of

the dynamic part of the polarization in the gain medium:

dΠ̃h

dt
−
(
iω21 −

1

τ2

)
Π̃h =

inµ2N

3ℏ
Ẽh, (2.8)

dN

dt
+
N − Ñ

τ1
=

2i

nℏ
(Π̃h − Π̃∗

h) · Ẽh. (2.9)

Now, applying the rotating wave approximation

Ẽh(t) =
1

2

[
Eh(t)e

−iωt + E∗
h(t)e

iωt
]
,

Π̃h(t) =
1

2
Πh(t)e

iωt,

P̃h(t) =
1

2

[
Ph(t)e

−iωt +P∗
h(t)e

iωt
]
,

where Eh(t), Πh(t) and Ph(t) represent slow dependency on time.

When averaged on fast variations in time, (2.8) and (2.9) becomes:

dΠh

dt
−

[
i(ω − ω21)−

1

τ2

]
Πh =

inµ2N

6ℏ
Eh, (2.10)
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dN

dt
+
N − Ñ

τ1
=

i

nℏ
(Eh ·Πh − E∗

h ·Π∗
h). (2.11)

Finally, noticing that the steady state permittivity can be written as:

εh(ω) = εb −
G∆

2(ω − ω21 + i∆
, (2.12)

where the parameter

G = −nµ
2τ2

3ℏε0
Ñ , (2.13)

gives an absolute measure of the gain quantity used in the system, one can rewrite

the system of equations 2.10-2.11 as:

dΠh

dt
−

[
i(ω − ω21)−

1

τ2

]
Πh = −iε0G

τ2

N

Ñ
Eh, (2.14)

dN

dt
+
N − Ñ

τ1
= − i

2nℏ
(Πh · E∗

h −Π∗
h · Eh), (2.15)

This new version of the system of equations allows us to explore the time evo-

lution in the gain-rich medium for different amounts of the gain quantity G. One

can easily see here that if G = 0 (no gain is used in the system) or when Ñ = 0

(there are gain elements but they are not externally pumped), the dynamic part of

the polarization Π0 remains null, and the polarization in this region reverts to the

passive one (see Expression 2.7).
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2.1.2 The Metal

To describe the time evolution of the polarization in the metal region of the nanopar-

ticle, produced by the electric field Em (i. e., the electric field in the metal region),

we use the Drude’s free electron model:

d2r

dt2
+ 2γ

dr

dt
=

e

me

Ẽm (2.16)

where r is the displacement of the electron cloud with respect to the equilibrium

position, me and e are the electron mass and charge respectively, and γ is the ionic

collisions friction coefficient. This charge dislocation produces a polarization along

r̂, which one can calculate as:

Π̃m = neer, (2.17)

where ne is the electron density in the metal. Substituting (2.17) into (2.16) , and

considering that the plasma frequency is given by

ω2
pl =

nee
2

ε0me

,

we can finally obtain the equation for the time evolution of Π̃m:

d2Π̃m

dt2
+ 2γ

dΠ̃m

dt
= ε0ω

2
plẼm. (2.18)

It is important to mention that Π̃m represents the dynamic part of the polarization in

the metal due to the electrons’ displacement. However, to be able to describe a more

realistic electromagnetic response for this material, one has to take into account the
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passive contribution due to the ionic lattice as well. The resulting polarization in the

metal will therefore be:

P̃m = ε0χ∞Ẽm + Π̃m. (2.19)

We will now use the rotating wave approximation, as we did in the previous sec-

tion for the gain medium. This means that the electric field and polarizations can be

written in the form:

Ẽm(t) =
1

2

[
Em(t)e

−iωt + E∗
m(t)e

iωt
]

(2.20)

Πm(t) =
1

2

[
Πm(t)e

−iωt +Π∗
m(t)e

iωt
]

(2.21)

P̃m(t) =
1

2

[
Pm(t)e

−iωt +P∗
m(t)e

iωt
]

(2.22)

where Em(t), Πm(t), and Pm(t) represent a slow dependency on time.

If we now substitute expressions 2.20-2.22 into equation 2.18 and average on

fast time variations, we can finally obtain the time evolution equation for the dynamic

part of the polarization in the metal region:

dΠm

dt
− ω2 + 2iγω

2(γ − iω)
Πm =

ε0ω
2
pl

2(γ − iω)
Em. (2.23)

It might be worth noting that the steady-state solution of equation 2.23 allows us

to obtain the steady-state Drude permittivity in its classical form:

εm(ω) = ε∞ −
ω2
pl

ω(ω + 2iγ)
. (2.24)
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Accounting for the Interband Transitions Losses

The expression 2.24 for Drude permittivity tends to underestimate losses arising

from interband transitions. This becomes crucial for some applications, as an exam-

ple, when assessing heat generation in a nanoparticle. To address these additional

losses, we calculate a frequency-dependent ε∞(ω) using the following expression:

ε∞(ω) = εJCm (ω) +
ω2
pl

ω(ω + 2iγ)
(2.25)

Here, εm(ω) is the dielectric permittivity of the metal, determined by interpolation

from the Johnson and Christy’s experimental data set [15] (however, it can be gen-

eralized to any experimental data set). The resulting ε∞(ω) is then used instead of

the static ε∞ in the Drude model formula (2.24) . The resulting metal permittivity

Figure 2.2: Complex permittivity for gold, calculated using a free electron model and
including additional losses trough the interpolation of the data measured by Johnson
and Christy.
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for gold is presented in Figure 2.2, where we presented the frequency dependence

in terms of energy per photon ℏω and presented in electronvolts.

2.1.3 The Solvent

Finally, it is important to mention that the nanoparticle is hosted in a passive solvent,

so the remaining component in the system is a simple dielectric, characterized by a

real constant and a linear electromagnetic response. If, for example, the nanopar-

ticle is dissolved in water, one has simply to consider εW = 1.7689 for the third

permittivity.

This complete the discussion on the constitutive model of the materials in play,

consequently, attention can now shift to the effects arising from nanoparticle geom-

etry. Due to the interface nature of the plasmons, these effects are as significant as

the material composition of the nanostructure. In the subsequent chapter, it will be

demonstrated that these shape effects can be effectively modeled as the boundary

conditions of a second-order partial differential equation problem.
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Chapter 3

Electromagnetic model

3.1 The coated sphere

Figure 3.1: A sphere of permittivity ε1, in

a shell of permittivity ε2 in a host of per-

mittivity ε3.

The nanoparticle in focus consists of

a nucleus with a radius of a1 and an

electric permittivity of ε1, which is en-

veloped by a shell with an external ra-

dius of a2 and an electric permittivity of

ε2, the whole structure is surrounded by

a solvent with an electric permittivity of

ε3 (see Figure 3.1).

The system is subjected to an optical

electric field E0, assumed to be a plane
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wave. To simplify calculations, we position the geometrical center of the nanoparticle

at the origin of the coordinate system.

3.2 Quasistatic Approximation

When the size of a nanoparticle is small compared to the wavelength λ of the incident

field (i. e., λ ≫ a2), we can apply the quasistatic approximation [31, 32, 9]. In this

regime, the exciting electric field can be considered uniform in the region of interest.

In our calculations, we consider the exciting field as a plane wave propagating

alongside the x-axis with polarization in the z-direction. In the quasi-static approx-

imation, the propagating part of the plane wave, ekx (where k is the wave-number),

tends to 1 as λ → ∞ (i. e., k → 0). Consequently, we express the incident electric

field as:

Ei = E0k̂e
−iωt, (3.1)

where E0 is the amplitude of the electric field, k̂ is the unit vector of the z-axis defin-

ing the polarization of the wave, and ω is the angular frequency. The correspond-

ing magnetic field, Hi(t), is negligible in this approximation. By continuity at the

boundary, this condition extends inside the nanoparticle, resulting in H(r, t) ∼ 0

everywhere. Consequently, the magnetic induction field B(r, t) is also negligible,

leading to the following expression:

∇× E(r, t) = 0. (3.2)
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Equation 3.2 implies that it should exist a scalar function Φ(r, t) such that:

E(r, t) = −∇Φ(r, t). (3.3)

If we now consider the Maxwell equation for the Gauss’ law in a material

∇ ·D(r, t) = 0, (3.4)

where D(r, t) is the displacement vector which is related to the electric field through

D(r, t) = ε0ε(r, ω)E(r, t), where ε(r, ω) is the relative dielectric permittivity of the

material. Therefore,

∇ ·D(r, t) = ε0ε(r, ω)∇ · E(r, t) + ε0∇ε(r, ω) · E(r, t) = 0.

which gives the following expression for the divergence of the electric field:

∇ · E(r, t) =
[
∇ϵ(r, ω)
ε(r, ω)

]
· E(r, t). (3.5)

If we can consider all of the materials we model as homogeneous mediums, we have

ε(r, ω) = ε(ω), which means
∇ϵ(r, ω)
ε(r, ω)

∼ 0. (3.6)

and therefore, (3.5) becomes

∇ · E(r, t) = 0. (3.7)

This means that, providing that condition 3.6 is satisfied, one can substitute (3.3) in
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(3.7) , obtaining the Laplace equation for Φ(r, t)

∇2Φ(r, t) = 0, (3.8)

whose general solution, in spherical coordinates, is given by

Φ(r, t) =
∞∑
0

[
Alr

l +
Bl

rl+1

]
Pl(cos θ), (3.9)

where Pl(cos θ) are the Legendre polynomials and θ is the polar angle in spherical

coordinates.

The solution (3.9) should be applicable in three regions: the nucleus (i. e., re-

gion 1), the shell (i. e., region 2), and outside the nanoparticle (i. e., region 3) (see

Figure 3.1).

In region 1, which includes r = 0, to avoid singularities, it is necessary to set

B
(1)
l = 0 for all l. In region 3, as r → ∞, the field must connect with the incident

field Ei(t) given by (3.1) . This corresponds to the potential:

Φ∞(t) = −E0ze
−iωt = −E0r cos θe

−iωt = −E0r
1P1(cos θ)e

−iωt. (3.10)

To achieve this connection and ensure

lim
r→∞

Φ3(r, t) = Φ∞(t),

it is necessary to set A(2)
1 = −E0e

−iωt and A(2)
l = 0 for all l ̸= 1.
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Hence, the potential in all of the space is given by the following equations

Φ1(r, t) =
∞∑

l=0

A
(1)
l rlPl(cos θ), (3.11)

Φ2(r, t) =
∞∑

l=0

[
A

(2)
l rl +

B
(2)
l

rl+1

]
Pl(cos θ), (3.12)

Φ3(r, t) =
∞∑

l=0

[
−δl1E0e

−iωtrl +
B

(3)
l

rl+1

]
Pl(cos θ). (3.13)

The constantsA(1)
l ,A(2)

l ,B(2)
l andB(3)

l can be found by applying the radial continuity

boundary conditions

Φ1(a1r̂(θ, φ), t) = Φ2(a1r̂(θ, φ), t), (3.14)

Φ2(a2r̂(θ, φ), t) = Φ3(a2r̂(θ, φ), t); (3.15)

and the tangential continuity boundary conditions

ε1E
r
1a1r̂(θ, φ), t) = ε2E

r
2a1r̂(θ, φ), t), (3.16)

ε2E
r
2a2r̂(θ, φ), t) = ε3E

r
3a2r̂(θ, φ), t). (3.17)
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Finally, by propagating the Kronecker delta δ1ℓ we obtain

A
(1)
1 =

B
(2)
1

a31
+ A

(2)
1 (3.18)

A
(2)
1 =

B
(3)
1 −B

(2)
1

a32
− E0, (3.19)

B
(2)
1 =

a31(ε1 − ε2)E0 − ρ3(ε1 − ε2)B
(3)
1

ε1 − ρ3(ε1 − ε2) + 2ε2
, (3.20)

B
(3)
1 = a32

(ε2 − ε3)(ε1 + 2ε2) + ρ3(ε1 − ε2)(ε3 + 2ε2)

(ε2 + 2ε3)(ε1 + 2ε2) + 2ρ3(ε2 − ε3)(ε1 − ε2)
E0, (3.21)

where we also introduced the ratio between radius ρ =
a1
a2

.

We will now utilize the obtained results to determine the polarizability, denoted

as α, of the nanoparticle. This physical property is connected to all the optical char-

acteristics of a nano-object and is defined as the complex constant relating the dipole

moment of the nanoparticle to the incident field:

p = α(ω)E0. (3.22)

Here, the frequency dependence of α(ω) is inherited from the frequency-dependent

permittivities of the metal and gain medium. It’s also important to note that the

dipole moment p is associated with the external region (region 3).

The potential of a dipolar field can be written as:

Φdip(r, θ) =
r̂ · p
4πεr2

=
p cos(θ)

4πεr2
, (3.23)
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comparing it with the expression for Φ3(r, t), two terms can be identified:

B
(3)
1 cos(θ)

r2
=
p cos(θ)

4πε3r2
. (3.24)

If we now solve equation 3.24 for p, and given that α =
p

E
, we obtain:

α =
B

(3)
1 (4πε3)

E0

, (3.25)

which, using expression 3.21 for B(3)
1 finally gives:

α = 4πε3a
3
2

(ε2 − ε3)(ε1 + 2ε2) + ρ3(ε1 − ε2)(ε3 + 2ε2)

(ε2 + 2ε3)(ε1 + 2ε2) + 2ρ3(ε2 − ε3)(ε1 − ε2)
(3.26)

It is worth mentioning here that this also means that the scattered field of a coated

sphere in the quasistatic approximation is equivalent to an ideal dipolar field of dipo-

lar moment αE0.

3.2.1 Cross Sections

From an optical perspective, the intriguing feature of a frequency-dependent polar-

ization α(ω), showcasing a resonant maximum at a specific frequency ωsp, lies in its

ability to significantly enhance the efficiency of light scattering and absorption by a

metal nanoparticle around that resonant frequency [20].

This enhancement is attributed to the close relationship between the polarizabil-

ity and the corresponding cross sections for scattering, absorption, and extinction.
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These cross sections can be calculated using the Pointing vector, as outlined in [8].

The resulting scattering cross section, quantifying the amount of dispersed light, is

Csca =
k4

6π
|α|2, (3.27)

while the absorption cross section, quantifying the amount of luminous energy ab-

sorbed by the nanoparticle, is

Cabs = k Im{α} − k4

6π
|α|2, (3.28)

and the extinction cross section (the sum of the previous two), quantifying the amount

of radiation extinguished by the nanoparticle, is

Cext = k Im{α}. (3.29)

Equation (3.29) holds true when scattering is significantly smaller than absorption.

Absorption tends to be more pronounced than scattering in the case of small par-

ticles. This phenomenon is exemplified by the alteration of white light as it traverses

a collection of minute particles, leading to a reddish hue. A simple demonstration

involves introducing a few drops of milk into a container of clear water: a focused

beam of white light exhibits a reddish tint upon passing through this suspension. This

color change occurs because shorter-wavelength blue light is more effectively ab-

sorbed than longer-wavelength red light. The heightened extinction with decreasing

wavelengths is a general attribute of nonabsorbing particles that are small compared

to the wavelength of light. Familiar instances of such effects include the captivating
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red and orange tones observed in sunset skies, influenced in part by molecular scat-

tering. Small particles have the capacity to intensify the reddish appearance during

sunset [8].

3.3 Mie Theory

When the size of a spherical nanoparticle is comparable to the wavelength of the in-

cident field, the approximation λ ≫ a2 is no longer applicable. In this scenario, the

spatial dependency of the incident field, governed by the propagation of the wave,

becomes significant, and the quasistatic approximation breaks down. To describe

scattering in this regime, we employ Mie theory, formulated by Gustav Mie in 1908.

This approach offers a robust and mathematically rigorous framework for describ-

ing the scattering and absorption of light by spherical particles. Mie theory facili-

tates a comprehensive analysis of the interaction between electromagnetic waves and

nanoparticles, considering various parameters such as particle size, refractive index,

and wavelength.

In this section, we adopt the formalism presented in [8] as a reference for Mie

theory. Additionally, all subsequent calculations are performed in the optical approx-

imation, (i. e., µr = 1), and assume a sufficiently homogeneous material, ensuring

that condition 3.6 is still satisfied.

Utilizing the time-oscillating solutions of the wave equation for the electromag-
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netic field

Ẽ(r, t) =
1

2

[
E(r)e−iωt + E(r)eiωt

]
, (3.30)

H̃(r, t) =
1

2

[
H(r)e−iωt +H(r)eiωt

]
; (3.31)

the spatial dependence of the complex envelopes E(r) and H(r) is determined by

the Helmholtz equations

∇2E(r)− ω2

c2
ε(ω)E(r) = 0, (3.32)

∇2H(r)− ω2

c2
ε(ω)H(r) = 0. (3.33)

Taking into account the dispersion relation k =
ω2

c2
ε(ω), these can be rearranged as

∇2E+ k2E = 0, (3.34)

∇2H+ k2H = 0. (3.35)

We also observe that employing expressions 3.30 and 3.31 for Ẽ and H̃ reduces the

relevant Maxwell’s equations to:

∇× E = iωµH, (3.36)

∇×H = −iωεE. (3.37)

This implies that the vector functions forming the basis for projecting the solution of

our scattering problem must simultaneously satisfy the systems of equations 3.34-

3.35 and 3.36-3.37.
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To construct this basis, we define the vector function M(r) using a scalar spatial

functionψ(r) (referred to as the generating function) and an arbitrary constant vector

c (defined as the guiding or pilot vector) as follows:

M(r) = ∇× [cψ(r)]. (3.38)

Utilizing the differential properties of ∇ and a few vector identities, it can be

demonstrated that M(r) satisfies the equation:

∇2M(r) + k2M(r) = ∇× {c[∇2ψ(r) + k2ψ(r)]}, (3.39)

which means that M(r) satisfies the Helmholtz vector equation if ψ(r) is a solution

to the following scalar Helmholtz equation.

∇2ψ(r) + k2ψ(r) = 0. (3.40)

consequently, by using a appropriate scalar function ψ(r), the correspondent vector

function will satisfy equations 3.34 and 3.35.

To complete our basis, we need a second function which will allow our solutions

to satisfy equations 3.36 and 3.37. This means that the new function has to comply

with a similar relation with M(r), so we construct it as:

N(r) = ∇× [dχ(r)]. (3.41)
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It is easy to show that N(r) also satisfies the vector Helmholtz equation:

∇2N(r) + k2N(r) = 0, (3.42)

and has the property:

∇×N(r) = kM(r). (3.43)

In summary, M(r) and N(r) fulfill all the necessary properties to constitute a

basis of vector functions for projecting the solutions of our electromagnetic problem,

provided that the generating functionψ(r) solves the scalar Helmholtz equation. The

problem we are addressing exhibits spherical symmetry, requiring the generating

function ψ(r) to satisfy the Helmholtz equation in spherical coordinates:

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0, (3.44)

Through the technique of separation of variables, wherein we seek a solution in the

form ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), we obtain the following set of separated equations:

d2Φ

dφ2
+m2Φ = 0, (3.45)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
n(n+ 1)− m2

sin2 θ

]
Θ = 0, (3.46)

d

dr

(
r2
dR2

dr

)
+
[
k2r2 − n(n+ 1)

]
R = 0, (3.47)

where the separation constants m and n are determined by the supplementary con-

ditions that ψ must satisfy.
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The linear independent solutions of (3.45) are

Φe = cos(mφ), (3.48)

Φo = sin(mφ), (3.49)

where e and o denote even and odd.

Also, we require ψ to be a single valued function of the azimuthal angle φ

lim
ν→2π

ψ(φ+ ν) = ψ(φ), (3.50)

for all φ except, possibly, at the points on the boundary between regions with differ-

ent properties. However, we are only interested in solutions to the scalar Helmholtz

equation at interior points of homogeneous regions. Therefore, (3.50) requires

m ∈ Z, where the positive values of m are sufficient to generate all the linearly inde-

pendent solutions of (3.45) .

The solutions to (3.46) are finite at θ = 0 and θ = π, which are associated

Legendre functions of the first kind Pm
n (cos θ) of degree n and order m, where n =

m,m+ 1, ...

Note that, these functions are orthogonal

ˆ 1

−1

Pm
n (cos θ)Pm

n′ (cos θ)d cos θ = δnn′
2

2n+ 1

(n+m)!

(n−m)!
. (3.51)

Now, if we introduce the dimensionless variable ρ = kr and define the function
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Z = R
√
ρ, (3.47) becomes

ρ
d

dρ

(
ρ
dZ

dρ

)
+

[
ρ2 −

(
n+

1

2

)2
]
Z = 0, (3.52)

which independent solutions are the Bessel functions of first and second kind Jν and

Yν , where the order ν = n +
1

2
is half-integral. Therefore, the linearly independent

solutions to (3.47) are the spherical Bessel functions:

jn(ρ) =

√
π

2ρ
Jn+ 1

2
(ρ), (3.53)

yn(ρ) =

√
π

2ρ
Yn+ 1

2
(ρ), (3.54)

where the constant factor
√

π
2

is introduced for convenience. The spherical Bessel

functions satisfy the recurrence relations

zn−1(ρ) + zn+1(ρ) =
2n+ 1

ρ
zn(ρ) (3.55)

(2n+ 1)
d

dρ
zn(ρ) = nzn−1(ρ)− (n+ 1)zn+1(ρ) (3.56)

where zn is either jn or yn.

All the linear combinations of jn and yn is also a solution of (3.47) . Therefore,

we can take as fundamental solutions of (3.47) any two linearly independent com-

binations. In this case, we choose the spherical Bessel functions of the third kind or



46

Hankel functions:

h(1)n (ρ) = jn(ρ) + iyn(ρ) (3.57)

h(2)n (ρ) = jn(ρ)− iyn(ρ) (3.58)

By recombining the separated solution, we can now construct a complete basis

for the generating functions that satisfy the scalar Helmholtz equation in spherical

coordinates:

ϕemn = cos(mϕ)Pm
n (cos θ)zn(kr), (3.59)

ϕomn = sin(mφ)Pm
n (cos θ)zn(kr), (3.60)

where zn is any of the spherical Bessel functions jn, yn, h(1)n or h(2)n . It is important to

note here that, because of the completeness of the involved functions, any generating

function ψ(r) that satisfies the scalar Helmholtz equations in spherical coordinates

can be projected the basis 3.59-3.60.

Using the spatial variable r as the pilot vector, and projecting the generating func-

tion on the basis that solves the Helmholtz equation in spherical coordinates, we can



47

finally obtain the vector function basis which solves our problem:

Memn = ∇× (rψemn), (3.61)

Nemn =
∇×Memn

k
, (3.62)

Momn = ∇× (rψomn), (3.63)

Nomn =
∇×M0mn

k
. (3.64)

Function 3.61-3.64 are known as Mie Vector Spherical Harmonics.

Next step is to project a plane x-polarized wave:

Ei = E0e
−iρ cos θ[sin θ cosφr̂(θ, φ) + cos θ cosφθ̂(θ, φ)− sinφφ̂(φ)] (3.65)

on this basis:

Ei =
∞∑

m=0

∞∑
n=m

[BemnMemn +BomnMomn + AemnNemn + AomnNomn] . (3.66)

Utilizing an equivalent of Fourier’s trick and capitalizing on the orthogonality of

the spherical harmonics, we can express Bemn as follows:

Bemn =

´ 2π
0

´ π
0
Ei ·Memn sin θdθdφ´ 2π

0

´ π

0
|Memn|2 sin θdθdφ

. (3.67)

The expressions for Bomn, Aemn, and Aomn can be derived in a similar way. The

orthogonality of the functions implies that Bemn = Aomn = 0 for all m and n. Addi-

tionally, the remaining coefficients vanish except when m = 1, for the same reason.
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The incident field is finite at the origin, which requires that jn(kr) is the appro-

priate spherical Bessel function in the generating functions ψo1n and ψe1n. Now, we

shall append (1) to vector spherical harmonics for which the radial dependence of

the generating functions is specified as jn. Therefore, the expansion for Ei is of the

form

Ei =
∞∑
n=1

(
Bo1nM

(1)
o1n + Ae1nN

(1)
e1n

)
(3.68)

Now, considering that Bo1n and Ae1n can be expressed as

Bo1n =inE0
2n+ 1

n(n+ 1)
, (3.69)

Ae1n =− iE0i
n 2n+ 1

n(n+ 1)
. (3.70)

Thus, the expansion of a plane wave in spherical harmonics is given by

Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)

(
M

(1)
o1n −N

(1)
e1n

)
, (3.71)

and its corresponding incident magnetic fields is

Hi = − k

ωµ
E0

∞∑
n=1

in
2n+ 1

n(n+ 1)

(
M

(1)
e1n + iN

(1)
o1n

)
. (3.72)

The fields in each region of the coated sphere still satisfy the vector Helmholtz

equation. Consequently, each of them can be expressed as a projection onto Mie

Vector Spherical Harmonics.
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The expansion of the field in the nucleus (E1,H1) can thus be written as:

E1 =
∞∑
n=1

En

(
cnM

(1)
o1n − idnN

(1)
e1n

)
, (3.73)

H1 = − k1
ωµ1

∞∑
n=1

En

(
dnM

(1)
e1n + icnN

(1)
o1n

)
, (3.74)

where En = inE0
2n+ 1

n(n− 1)
and µ1 is the permeability of the nucleus.

The scattered field (Es,Hs) is given by

Es =
∞∑
n=1

En

(
ianN

(3)
e1n − bnM

(3)
o1n

)
, (3.75)

Hs =
k

ωµ

∞∑
n=1

En

(
ibnN

(3)
o1n + anM

(3)
e1n

)
, (3.76)

here we append (3) to the vector spherical harmonics for which the radial depen-

dence of generating functions is specified as h(1)n .

Now, considering that in the shell both spherical Bessel functions jn and yn are

finite, the expansion of the field (E2,H2) in this region is

E2 =
∞∑
n=1

En

(
fnM

(1)
o1n − ignN

(1)
e1n + vnM

(2)
o1n − iwnN

(2)
e1n

)
, (3.77)

H2 = − k2
ωµ2

∞∑
n=1

En

(
gnM

(1)
e1n + ifnN

(1)
o1n +wnM

(2)
e1n + ivnN

(2)
o1n

)
, (3.78)

here we append (2) to the vector harmonics in which the radial dependence is spec-

ified as yn.

The coefficients of the vector harmonics of these fields are not independent, and
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their relations can be determined by applying the boundary conditions:

(E2 − E1)|r=a1 × r̂(θ, φ) = 0, (3.79)

(H2 −H1)|r=a1 × r̂(θ, φ) = 0, (3.80)

(Es + E1 − E2)|r=a2 × r̂(θ, φ) = 0, (3.81)

(Hs +H1 −H2)|r=a2 × r̂(θ, φ) = 0. (3.82)

(3.83)

In the optical approximation we have that µ1 = µ2 = µ3 = 1 so the scattering

coefficients an and bn can be written as:

an =
ψn(y) [ψ

′
n(m2y)− Anχ

′
n(m2y)]−m2ψ

′
n(y) [ψn(m2y)− Anχn(m2y)]

ξn(y) [ψ′
n(m2y)− Anχ′

n(m2y)]−m2ξ′n(y) [ψn(m2y)− Anχn(m2y)]
, (3.84)

bn =
ψn(y) [ψ

′
n(m2y)−Bnχ

′
n(m2y)]−m2ψ

′
n(y) [ψn(m2y)−Bnχn(m2y)]

m2ξn(y) [ψ′
n(m2y)−Bnχ′

n(m2y)]− ξ′n(y) [ψn(m2y)−Bnχn(m2y)]
, (3.85)

where

An =
m2ψn(m2x)ψ

′
n(m1x)−m1ψ

′
n(m2x)ψn(m1x)

m2χn(m2x)ψ′
n(m1x)−m1χ′

n(m2x)ψn(m1x)
, (3.86)

Bn =
m2ψn(m1x)ψ

′
n(m2x)−m1ψn(m2x)ψ

′
n(m1x)

m2χ′
n(m2x)ψn(m1x)−m1ψ′

n(m2x)χn(m1x)
, (3.87)

m1 and m2 are the relative refractive index of the nucleus and the shell related to the

surrounding medium defined as m1 =
n1

n3

and m2 =
n2

n3

, x = ka1 and y = ka2, while

the Riccati-Bessel function χ is definde as χn(z) = −zyn(z).

The solutions for the fields obtained through Mie theory seamlessly connect with

the results of the quasistatic approximation when calculated for very small particles,
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limiting the Mie expansion only to the first term a1, which corresponds to the dipolar

mode. In this region of the parameter space, the polarizability of the nanoparticle

can be expressed as:

α = 6πi
a1
k3

(3.88)

This can be analytically demonstrated by computing the scattered field using ex-

pression 3.75 and retaining only the scattering coefficient a1 while setting all others

to zero. The resulting field takes the form of a dipolar field whose dipole moment is

given by αEi, where the polarizability α is defined as in expression 3.88.

3.3.1 Cross Sections

It is possible to relate the cross section of the nanoparticle to the scattering coefficients

of Mie theory. A detailed derivation can be found in [8], yielding the result:

Cext =
2π

k2

∑
n=1

(2n+ 1)Re{an + bn} (3.89)

Csca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (3.90)

Cabs = Cext − Csca (3.91)

With these formulas, along with their counterparts calculated in the previous

chapter, we now possess all the necessary tools to address the scattering problem,

encompassing scenarios with both small and large particles relative to the wavelength

of the incident field.
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3.4 Rupture of the quasistatic limit

For small particles, the results obtained through Mie theory converge to those cal-

culated in the quasistatic limit. However, for larger particles, the two methods yield

divergent results. This discrepancy arises due to significant phase changes induced by

the incident field throughout the particle volume, giving rise to higher-order modes.

Consequently, the quasistatic regime breaks down, as it is incapable of capturing the

effects of an inhomogeneous field. Therefore, when dealing with larger particles, a

rigorous electromagnetic approach such as Mie theory becomes essential to accu-

rately describe the scattering phenomenon.
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Figure 3.2: Absorption Cross Section for a nano-shell particle with ρ = 0.8 and
G = 0, in which λ = 590[nm] is fixed.
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The breakdown of the quasistatic limit becomes evident when examining the

cross sections for larger particles as in Figure 3.2. In the quasistatic limit applied

to larger particles, a notable outcome is a negative absorption cross section. This im-

plies that the scattering cross section surpasses the extinction cross section, suggesting

that the nanoparticle scatters more light than it receives.

While such a result is not entirely implausible when dealing with nanoparticles

incorporating gain elements, it still lacks physical coherence when the gain quantity

falls below the emission threshold. In this regime, the nanoparticle should sill be-

have as an absorber. This becomes particularly evident when there is no gain added

to the system, as in the case illustrated in Figure 3.3. Consequently, this outcome

underscores the limitation of the quasistatic approximation in accurately describing

the behavior of larger particles. Furthermore, the emergence of a negative absorp-

tion cross section (below the emission threshold) serves as a critical indicator that the

quasistatic limit is not a suitable model for the case under consideration.

The system discussed in this thesis, a nanoshell, adds an extra layer of complexity

to the parameter space, making the applicability of the quasistatic limit more chal-

lenging. A nanoshell consists of a coated sphere with a dielectric core containing gain

elements and a metal shell. This introduces additional factors that can influence the

quasistatic limit’s validity. The thickness of the shell, which affects the amount of

metal and the level of gain in the system, becomes just as crucial as the particle size

in determining the effectiveness of the quasistatic approach.

In specific terms: a nano-shell characterized by a thick shell (i. e., a small ρ)

contains a higher amount of metal. Consequently, it surpasses the range of validity
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for the quasistatic limit at a smaller size compared to a nano-shell with a thin shell

(i. e., a larger ρ).

Figure 3.3: Absorption Cross Section for a nano-shell particle with external radius
of 40 [nm] and ρ = 0.8, in which λ = 626[nm] is fixed and G is below the emission
threshold.

Furthermore, the introduction of gain into the system can lead to a negative ab-

sorption cross-section, even below the emission threshold when calculated using the

quasistatic approximation. On the contrary, the absorption cross-section calculated

using Mie Theory only becomes negative above the emission threshold. This indi-

cates that the quasistatic approximation breaks down for particles of a size at which

a passive nanoshell could be accurately described within the quasistatic limit.

This phenomenon occurs because the inclusion of active elements enhances the
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electromagnetic field around the nanoshell, causing it to behave as if it were a larger

nanoparticle from an electromagnetic perspective.
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Chapter 4

Time dependent model

In the search for applications like SPASER and amplification effects, the simplest

system to study involves a single spherical metal nanoparticle that is significantly

smaller than the resonant optical field wavelength, placed within an infinitely am-

plifying medium [31]. However, this setup faced an issue of non-uniformity in the

amplified field [32] when the gain exceeded the emission threshold. This behavior

is reminiscent of the Spatial Hole Burning phenomenon observed in Laser Physics.

The non-uniformity in the amplified field arises from the non-homogeneous dis-

tribution of field intensity within the gain medium. The gain medium is in fact lo-

cated in the solvent surrounding the plasmonic nanoparticle, and the plasmonic field

there has a dipolar nature. This non-uniformity leads to an uneven consumption of

the population inversion in the gain medium, resulting in non-uniform field ampli-

fication and an undesirable cascade of modes.
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However, in the spherical nano-shell configuration, which is the primary focus

of this thesis, the gain elements are located within the core of the nano-shell. Con-

sequently, especially in the quasi-static limit, the field within the core remains uni-

form. As a result, the depletion of population inversion induced by the field in the

gain medium is also uniform.

This section introduces a hybrid (quantum and classical) quasi-static model that

utilizes dynamic constitutive equations, similar to those described in [32]. However,

in this model, these equations are interconnected through boundary conditions that

are specific to the spherical nano-shell geometry. This approach takes advantage

of the field’s uniformity in the gain region, providing a comprehensive spectral de-

scription of the electromagnetic response of these systems that extends beyond the

emission threshold.

To achieve this, we will consider the time evolution equations for the gain medium

and the metal introduced in Section 2. These equations are as follows:

dΠh

dt
−

[
i(ω − ω21)−

1

τ2

]
Πh = −iε0G

τ2

N

Ñ
Eh, (4.1)

dN

dt
+
N − Ñ

τ1
= − i

2nℏ
(Πh · E∗

h −Π∗
h · Eh), (4.2)

dΠm

dt
− ω(ω + 2iγ)

2(γ − iω)
Πm =

ε0ω
2
pl

2(γ − iω)
Em. (4.3)

We will model this system by applying the quasistatic approximation and considering

the radial and tangential boundary conditions for the potential. This will allow us to

obtain the following expressions for the associated potentials of the electric field and
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polarizations, denoted as Φ and Ψ respectively:

Φh(r, θ, t) =

(
p̃2
ρ3a32

+
p3 − p̃2
a32

− E0

)
r cos(θ) (4.4)

Φm(r, θ, t) =

(
p3 − p̃2
a32

− E0

)
r cos(θ) + p̃2

cos(θ)

r2
(4.5)

Φs(r, θ, t) = −E0r cos(θ) + p3
cos(θ)

r2
(4.6)

Ψh(r, θ, t) = q0r cos(θ) (4.7)

Ψm(r, θ, t) = q1r cos(θ) + q2
cos(θ)

r2
(4.8)

To solve the equation system (4.1) -(4.3) we need to find the radial components for

the electric field and polarizations in all of the regions.

Er
h = −∂Φ(r, θ)

∂r
=

(
E0 −

p̃2
ρ3a32

− p3 − p̃2
a32

)
cos(θ) (4.9)

Er
m = −∂Φm(r, θ)

∂r
=

[
E0 cos(θ)−

p3 − p̃2
a32

]
cos(θ) + 2ρ3

cos(θ)

r3
(4.10)

Er
s = −∂Φh(r, θ)

∂r
= E0 cos(θ) + 2p3

cos(θ)

r3
(4.11)

Πr
h = −∂Ψh(r, θ)

∂r
= −q0 cos(θ) (4.12)

Πr
m = −∂Ψm(r, θ)

∂r
= −q1 cos(θ) + 2q2

cos(θ)

r3
(4.13)
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Replacing in the equation system (4.1) -(4.3) we can rewrite it as

dq0
dt

−
[
i(ω − ω21)−

1

τ2

]
q0 =

iGN

τ2Ñ

(
E0 −

p̃2
ρ3a32

− p3 − p̃2
a32

)
(4.14)

dq1
dt

− ω(ω + 2iγ)

2(γ − iω)
q1 =

1

2(γ − iω)

(
p3 − p̃2
a32

− E0

)
(4.15)

dq2
dt

− ω(ω + 2iγ)

2(γ − iω)
q2 =

1

2(γ − iω)
p̃2 (4.16)

To simplify the system we define the following parameters

ΩH = i(ω − ω21)−
1

τ2
(4.17)

ΩP =
ω(ω + 2iγ)

2(γ − iω)
(4.18)

ΓP =
1

2(γ − iω)
(4.19)

G̃ = −iG
τ2

(4.20)

Defining p2 =
p̃2
ρ3

and q̃2 =
q2
ρ3

, hence when normalizing by a2 we get a system of

equations determining the time evolution of the coefficients q0,1,2:

dq0
dt

− ΩHq0 = G̃p0 (4.21)

dq1
dt

− ΩP q1 = ΓPp1 (4.22)

dq2
dt

− ΩP = ΓPp2 (4.23)
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where

p1 =p3 − ρ3p2 − E0; (4.24)

p0 =p1 + p2. (4.25)

Note that, the time evolution population inversionN in equation 4.21 is determined

by:
dN

dt
+
N − Ñ

τ1
=

Im {q0p∗0}
nℏ

, (4.26)

Relations 4.21-4.23 represent a linear system whose solutions for p0, p1, p2 and p3

are linear combinations of q0, q1, q2 and E0, namely:

p0 =p00q0 + p01q1 + p02q2 + p03E0, (4.27)

p1 =p10q0 + p11q1 + p12q2 + p13E0, (4.28)

p2 =p20q0 + p21q1 + p22q2 + p23E0, (4.29)

p3 =p30q0 + p31q1 + p32q2 + p33E0. (4.30)

Therefore, we need to find the parameters p0, p1 and p2. Which will be done by

applying the boundary conditions for the polarizations

Ph = εbEh +Πh (4.31)

Pm = ε∞Em +Πm (4.32)

Ps = εsEs (4.33)
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Which are:

[εbE
r
h +Πr

h]|ρ=a1 = [ε∞E
r
m +Πr

m]|ρ=a1 (4.34)

[ε∞E
r
m +Πr

m]|ρ=a2 = [εsE
r
s ]|ρ=a2 . (4.35)

Obtaining

p00 = −(ε∞ + 2ϵs) + 2ρ3(ε∞ − εs)

D1

(4.36)

p01 = −2(1− ρ3)
ε∞ − εs
D1

(4.37)

p02 = −2(1− ρ3)
ε∞ + 2εs
D1

(4.38)

p03 = −9
εsε∞
D1

(4.39)

p10 = 2ρ3
εs − ε∞
D1

(4.40)

p11 = −ρ
3(εb + 2εs) + (1− ρ3)(εb + 2ε∞)

D1

(4.41)

p12 = 2ρ3
εb + 2εs
D1

(4.42)

p13 = −3
εs(εb + 2ε∞)

D1

(4.43)

(4.44)
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p20 = −ε∞ + 2εs
D1

(4.45)

p21 =
εb + 2εs
D1

(4.46)

p22 = −2
(ε∞ + 2εs) + ρ3(εb − ε∞)

D1

(4.47)

p23 = 3
εs(εb − ε∞)

D1

(4.48)

where

D1 = (ε∞ + 2εs)(εb + 2ε∞) + 2ρ3(εb − ε∞)(ε∞ − εs) (4.49)

As evidence of the solidity of this model, one can use it to calculate the steady

state solutions for quantities q0, q1 and q2; substitute them into 4.30 and find that the

normalized polarizability α/(4πεsa3) = p3/E0 converges to the classical steady-state

formula:
(εm − εs)(εh + 2εm) + ρ3(εh − εm)(εs + 2εm)

(εm + 2εs)(εh + 2εm) + 2ρ3(εm − εs)(εh − εm)
, (4.50)

here εm is the Drude’s metal permittivity 2.24 while εh is defined by expression 2.12.

This result couples with what we discussed in the previous section about the per-

mittivities of the materials. It means that as long as steady-state

dqi
dt

= 0 for i = 0, 1, 2 (4.51)

can be reached, the use the equation 4.50 for the polarizability of a nano shell, in-

cluding the appropriate steady state formula for the permittivities of metal and di-
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electric is perfectly legit even when gain is added to the system.

However, in the following we will show that condition 4.51 breaks whenG ≥ Gth

which is when the nanoparticle enters its emissive regime and a richer phenomenol-

ogy arise. Nevertheless, even when the emissive regime is reached, the homogeneity

of the field in the nano-shell’s core gives us the tactical advantage of preventing any

Spatial Hole Burning mode-cascade, this way allowing to find complete numerical

solutions for system compose of 4.21, 4.22, 4.23 and 4.26.

Afterwards, can use the coefficients pij to define the matrix A:

A =


G̃Np00 + ΩH G̃Np01 G̃Np02

ΓPp10 ΩP + ΓPp11 ΓPp12

ΓPp20 ΓPp21 ΩP + ΓPp22 :

 , (4.52)

and the vector b:

b = (G̃p03,ΓPp13,ΓPp23)E0. (4.53)

Using A and b and reorganizing the coefficients qi in the vector q̃:

q̃ = (q0, q1, q2), (4.54)

system of equations 4.21-4.23 can be rewritten in the form:

dq̃

dt
= Aq̃+ b, (4.55)

dN

dt
+
N − Ñ

τ1
=

Im {q0p∗0}
nℏ

. (4.56)
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Solutions of the system of equations 4.55-4.56 present inherent time depen-

dence, because of the selected initial conditions. In this case, we considered a non-

excited system as initial condition, i.e q(0) = (0, 0, 0)), where t = 0 corresponds to

the moment when the exciting probe field Ẽ0 is activated.

In the upcoming sections, we will investigate the system’s dynamic characteristics

both below and above the emission threshold. It’s important to highlight that, due

to the resonant nature of these systems, the time evolution of this parameter shows

considerable sensitivity to the chosen frequency. Therefore, we computed this tem-

poral behavior for ω = 2.811 eV, a value close to but not exactly equal to the singular

resonance frequency ωsp.

4.1 Below the Emission Threshold

We initiated our calculations with the pump switched off. As illustrated in figure 4.1,

the solutions for q0, q1 and q2 swiftly approaches a non-pumped steady state within

a few picoseconds. At t = 10 [ps], upon activating the pump (i. e. setting a G value

higher than zero), the system subsequently achieves its pumped steady state (again in

under 10 ps). It is clear from the results that the value of q0 is two orders of magnitude

less than that of q1 and q2. This indicates that the dynamic aspect of the polarization

in the gain-enriched silica core is much smaller compared to its counterpart in the

silver shell.

It is crucial to note that in this regime, the analytical and numerical solutions

exhibit complete alignment. This is because the field intensity in the gain-rich re-
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gion stays low enough, preventing the activation of the saturation term (which is not

considered in the linear analytical solution).

To validate the solutions illustrated in Figure 4.1, it is important to highlight that

when these solutions are inserted into Equation 4.30, they enable the computation of

a time-varying polarizability, denoted as α(t)/(4πεsa3) and defined as p3(t)/E0. The

temporal evolution of this quantity is shown in Figure 4.2(a), allowing for a compar-

ison with the spectrum of the pumped steady state of the same parameter calculated

using Equation 4.50 and presented in Figure 4.2(b). To facilitate the comparison,

the frequency utilized for the time evolution calculation is marked by a vertical blue

line. The time-dependent polarizability rapidly converges to the steady state com-

puted using the well-established steady-state formula. This suggests that, under the

emission threshold (and within the small-signal range), it is entirely valid to repre-

sent the impact of gain by replacing in the expression for the permittivity of the gain

medium into the steady-state formula for polarizability.

4.2 Above the Emission Threshold

The scenario undergoes a significant change with even a slight increased in the in-

troduced gain beyond the threshold Gth. In the computation depicted in Figure 4.3,

for instance, we utilized a gain value of merely 1.01Gth; nevertheless, the resulting

amplification is orders of magnitude higher. It is noteworthy that the duration for the

system to reach saturation is considerably prolonged compared to the typical times

required in the sub-emissive scenario to converge to a steady state. This is attributed
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to the specific parameters chosen, particularly the deliberately low amplitude E0 of

the stimulating field, selected to keep the system within the small-signal regime. In

the variable set used for the calculation presented in Figure 4.3, saturation occurs

between 250 and 300 picoseconds. This timeframe also signifies when the numerical

solution of the system (considering saturation) diverges from the analytical solution

(which disregards saturation). Beyond this point, non-saturated time-dynamic mod-

els, such as the ones presented in [31] and [27], become ineffective.

It is crucial to emphasize that neither the analytical nor the numerical solutions

achieve a genuine steady state; they seem to persistently oscillate at a constant fre-

quency indefinitely. This suggests that when solved for a level of gain surpassing the

emission threshold, the solution of system 4.55 (following an initial transient) takes

on the following structure:

q̃(t) = Q̃e−iΩt, (4.57)

Where Q̃ is a constant, complex vector amplitude and Ω the oscillation frequency.

This pattern can be attributed to the saturation term relying on the intensity of the

field in the gain region rather than its amplitude. Consequently, it guarantees a stable

state exclusively for the intensity of the fields and polarizations, not their amplitudes.

It is essential to recall that in this context, q̃(t) already represents a complex, slowly

varying amplitude. Consequently, solutions in this form are physically valid only

in the scenario where Ω ≪ ω. Through our simulations, we determined Ω using

Fourier analysis for each of our numerical solutions. We observed that Ω is depen-

dent on the exciting field frequency ω and, within our specified parameter range, it

falls within the interval of −0.2 eV< ℏΩ < 0.2 eV. This indicates that the rotating

wave approximation introduced in our model is suitable when working in the visible
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range (i.e., 1.63 to 3.26 eV). However, it also suggests that nanoparticles resonating

in the infrared may necessitate a different approach.

In Figure 4.4(a), we depict the super-emissive behavior of the time-dependent

polarizability. Notably, (I) the polarizability never appears to reach a genuine steady

state, and (II) its behavior is distinctly different from the steady state calculated us-

ing Equation 4.50 and presented in Figure 4.4(b) for reference. This suggests that

above the emission threshold, employing expression for the permittivity of the gain

medium in the steady-state polarizability, formula 4.50 is not physically accurate

and may lead to artifacts.
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Figure 4.1: Analytical and Numerical solutions calculated for ℏω = 2.811 eV with
a sub-emissive gain quantity (G = 0.033). The pump is switched on at t = 10 ps.
We present the real and imaginary part of: (a) q0; (b) q1; (c) q2. The numerical
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and brown respectively for the real and imaginary part).
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Chapter 5

Thermal Behavior

Recalling that the plasmonic nanoparticle as supporting plasmonic resonance of lo-

calized surface present interesting phenomenons such as heating. The thermal be-

havior of a plasmonic nanoparticle in recent years has been a interesting topic in

which several researches are focused. This interest in thermo-plasmonics had lead

to the development of noble applications like the plasmonic photothermal cancer

therapy and useful technological applications like the improvement in optical trap

efficiency.

5.1 Heat dissipated by a nanoparticle

Regardless the size of the nanoparticle, the polarizability is responsible for a reso-

nance both in absorption and scattering. Recalling that the absorption cross section
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quantifies the amount of luminous energy that is absorbed by the nanoparticle, we

can model the power dissipated as heat by the nanoparticle as

Q̃ = CabsI, (5.1)

where I is the intensity of the incident light.

5.2 Temperature in a nanosphere

We begin out analysis by consider the simplest configuration, i.e a nanosphere par-

ticle. This is a model that have been widely studied analytically and experimentally.

In this case, we will base our work in the one develop by Baffou [6].

Let us considers a metal nanoparticle of radius a in which the temperature inside

and outside the sphere is given by:

For r < a

T1(r) =
Q̃

4πaK2

[
1 +

K2

2K1

(
1− r2

a2

)]
+ T0, (5.2)

for r > a

T2(r) =
Q̃

4πK2r
+ T0. (5.3)

where r is the radial distance, Q̃ is the power absorbed as heat, K1 and K2 are the

thermal conductivity of the nanoparticle and the surrounding medium respectively,

and T0 is the laboratory temperature. Let us analyze a graph for the temperature

inside and outside a gold nanoparticle of 10 [nm] of radius surrounded by water.
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Figure 5.1: Temperature inside and outside a gold nanoparticle with radius 10 [nm]

in the spectrum from 1.5 [eV ] to 3 [eV ], also we present the temperature in function

of the radial distance for 2.639324 [eV ] (dark pink line) and 2.339324 [eV ] (cyan line)
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Given an incident wavelength of λ = 530 [nm] which is ℏω = 2.339324 [eV ] we

can observe that near the plasmonic resonance it is possible to achieve temperatures

of 10 [◦C] greater than the laboratory temperature, which in this case is fixed as 25

[◦C]. Meanwhile, for a incident wavelength that is far from the resonant frequency

we just obtain an increment of approximately 3 [◦C] in the temperature.

Now, it will be interesting to extend this model for nano-shell particles since this

configurations are used in medical applications.

5.3 Temperature in a nano-shell

Considering the heat transfer equation

∇ · [−K(r)∇T (r, t)] + ρ(r)c(r)
∂T (r, t)
∂t

= Q(r, t), (5.4)

where T (r, t) is the local temperature, K(r) is the thermal conductivity, ρ(r) is the

mass density of the nanoparticle, c(r) is the specific heat of the nanoparticle and

Q(r, t) is the heat coming out from the energy dissipation inside the nanoparticle.

Since our system is a nano-shell it has spherical symmetry, i.e f(r) = f(r), we

rewrite the equation as

−K(r)∇2T (r, t) + ρ(r)c(r)
∂T (r, t)

∂t
= Q(r, t). (5.5)

Therefore, recalling the Laplacian in spherical coordinates and assuming that the
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heat energy is constant in time, i.e Q(r, t) = Q(r), we obtain

−K(r)
1

r2
∂

∂r

[
r2
∂T (r, t)

∂r

]
+ ρ(r)c(r)

∂T (r, t)

∂t
= Q(r). (5.6)

Now, we solve the equation inside and outside the nanoparticle.

For 0 ≤ r ≤ a1, with Q(r) = 0 and K(r) = K1, we have

−K1
1

r2
∂

∂r

[
r2
∂T (r, t)

∂r

]
+ ρ1c1

∂T (r, t)

∂t
= 0, (5.7)

thus we find the steady state solution:

T1(r) =
c1
r
+ c2. (5.8)

For a1 ≤ r ≤ a2, with Q(r) = q, K(r) = K2, we have

−K2
1

r2
∂

∂r

[
r2
∂T (r, t)

∂r

]
+ ρ2c2

∂T (r, t)

∂t
= q, (5.9)

thus we find the steady state solution:

T2(r) = − qr2

6K2

+
c3
r
+ c4. (5.10)

For r ≥ a2, with Q(r) = 0 and K(r) = K3, we have

−K3
1

r2
∂

∂r

[
r2
∂T (r, t)

∂r

]
+ ρ3c3

∂T (r, t)

∂t
= 0, (5.11)
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thus we find the steady state solution:

T3(r) =
c5
r
+ c6. (5.12)

We find the constants by applying the boundary conditions.

First applying the boundary condition

dT1(r)

dr

∣∣∣∣∣
r=0

= 0, (5.13)

we obtain c1 = 0, therefore (5.8) becomes

T1(r) = c2. (5.14)

Then, applying the boundary condition that the temperature outside the nanopar-

ticle needs to reconnect with the laboratory temperature, i.e

T3(r → ∞) = T0, (5.15)

we obtain c6 = 0, therefore (5.12) becomes

T3(r) =
c5
r
+ T0. (5.16)
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Now, applying the radial continuity for the core of the nanoparticle

T1(r = a1) = T2(r = a1), (5.17)

we obtain that c2 = − qa31
6K1

+
c3
a1

+ c4.

And, applying the radial continuity for the shell of the nanoparticle

T2(r = a2) = T3(r = a2), (5.18)

we obtain that c5 = − qa32
6K2

+ c3 + c4a2 − T0a2.

Therefore, considering the energy conservation which imposes that the total heat

power crossing the interface equals the heat power Q̃ delivered by the nanoparticle

{
j(r) · n̂ds = Q̃. (5.19)

Even though our system is a nano-shell, since the local temperature in the core is

constant therefore, there will be heat flow only through the outside of the nanopar-

ticle

j(r) = j(r) · r̂(θ, φ). (5.20)

Then, considering that the system has spherical symmetry, then the power that cross

the interface of the shell does it in radial direction, hence

j(a2) =
Q̃

4πa22
. (5.21)
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Now, considering that the Fourier’s law states that the heat flux density vector j(r, t),

i.e the power per unit area, is proportional to the temperature gradient

j(r, t) = −K(r)∇T (r, t). (5.22)

Therefore, we have

j(r) = −K3∇T3(r), (5.23)

j(r) =
K3c5
r2

. (5.24)

Using (5.21) and (5.24) evaluated in r = a2, we obtain c5 =
Q̃

4πK3

.

Equaling both expressions of c5, we find that

c3 =
Q̃

4πK3

+
qa32
6K2

− c4a2 + T0a2.

Then, considering (5.14) therefore j(r) = −K1∇T1(r) = 0, which means that

there is no heat flux flowing inside the core. Hence c3 = − qa31
3K2

.

Now, equaling bot expressions of c3, we obtain that

c4 =
Q̃

4πK3a2
+

q

3K2

(
a22
2

+
a31
a2

)
+ T0.

Substituting c3 and c4 in c2 we got

c2 =
Q̃

4πK3a2
+

q

3K2

(
a22
2

+
a31
a2

− 3a21
2

)
+ T0.



80

Therefore, considering that the total heat power Q̃ delivered by the nanoparticle

is nothing but the integral of q over the spatial domain ν delimited by the volume of

the metal shell
y

qdν = Q̃, (5.25)

we obtain that q =
2Q̃

4π(a32 − a31)
.

Replacing q in c2, c3 and c4, we finally obtain:

T1(r) =
Q̃

4πK3a2

[
1 +

K3

K2

a2
a32 − a31

(
a22
2

+
a31
a2

− 3a21
2

)]
+ T0 (5.26)

T2(r) =
Q̃

4πK3a2

[
1 +

K3

K2

a2
a32 − a31

(
a22
2

+
a31
a2

− a31
r

− r2

2

)]
+ T0 (5.27)

T3(r) =
Q̃

4πK3r
+ T0 (5.28)

Let us first, visualize the temperature inside an outside a gold nano-shell with a

silica core with the same size to the gold nanoparticle considered before, i.e a2 = 10

[nm]. Additionally, we will vary the ratio between radius, i.e the amount of gold or

the amount of metal.
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Figure 5.2: Temperature inside and outside a nano-shell particle with silica core

embedded by gold with external radius 10 [nm] and ρ = 0.4 in the spectrum from

1.5 [eV ] to 3 [eV ], also we present the temperature in function of the radial distance

for 2.63326 [eV ] (dark pink line) and 2.33326 [eV ] (cyan line)
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Figure 5.3: Temperature inside and outside a nano-shell particle with silica core

embedded by gold with external radius 10 [nm] and ρ = 0.6 in the spectrum from

1.5 [eV ] to 3 [eV ], also we present the temperature in function of the radial distance

for 2.50974 [eV ] (dark pink line) and 2.20974 [eV ] (cyan line)
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Figure 5.4: Temperature inside and outside a nano-shell particle with silica core

embedded by gold with external radius 10 [nm] and ρ = 0.8 in the spectrum from

1.5 [eV ] to 3 [eV ], also we present the temperature in function of the radial distance

for 2.18608 [eV ] (dark pink line) and 1.88608 [eV ] (cyan line)
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Based on Figures 5.2, 5.3 and 5.4 we can observe that for nano-shell particles

with more metal, i.e lower ρ, the increment of temperature at the resonance is similar

to the nanosphere. Meanwhile, by increasing ρ we can achieve higher temperatures

without changing the size of the nanoparticle. Also, it is worth to notice that by

changing ρ there is a shifting in the place of the spectrum where the resonance occur.
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Chapter 6

Trapping behavior

The last chapter of this thesis will be focused in a direct application, which is the

trapping behavior of a plasmonic nanoparticle, based on the following work from

[26]. In which they use a silica-silver nano-shell with an external radius of 20 [nm]

and trapping light with a wavelength in the visible range, to calculate the optical

forces within a dipole approximation and expressed in terms of the linear effective

complex polarizability, α. In this system the trapping light provides the probe field,

exciting the plasmonic resonance of the nanoparticle, leading to express the dipole

moment p of the nanoparticle in the following way

p = αE (6.1)

where E is the electric field associated with the trapping light. Therefore, the time-

average optical force experience by the nano-shell when illuminated by the incident
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light is

FDA =
1

2
Re

{∑
i

αEi∇E∗
i

}
(6.2)

here Ei are the electric field components. This formula allow us to write the optical

force in terms of the extinction cross-section σext and the nanoparticle’s polarizability

α:

FDA(r) =
ns Re{α}
2cε0εs

∇I(r) + nsσext
c

S (6.3)

where ns is the solvent refractive index (water in our system, ns=1.33), c is the light

velocity, the intensity of the electric field is given by

I(r) =
nsc|E(r)|2

2

and the time-averaged Poynting vector of the incoming wave is given by

S =
1

2
Re {E×H∗}

which is related to the light intensity, |S| = I(r).

The first term of (6.3) is responsible for the particle confinement in optical tweez-

ers and represents the gradient force. Which is conservative since it arises from the

potential energy of the induced dipole immersed in the electric field. The second

term of (6.3) , responsible for the radiation pressure, is the scattering force which is

not conservative and is directed along the direction of propagation of the laser beam.

Since we want to describe a trapping behavior, we will work in a configuration

aimed to minimize the latter. For this reason, we will model a double-beam OT
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in standing wave configuration. This is reaalized by considering counterpropagat-

ing Gaussian beams in paraxial approximation along the z axis, where their waist

coincide with the origin of the laboratory reference system. Furthermore, the polar-

ization directions of the two beams are colinear and lie on the xy plane. Hence, the

total light intensity, that is a function of the radial, ρ, and axial, z, directions, assumes

a standing wave profile:

I(ρ, z) =
4I0w

2
0

w2(z)
e
− 2ρ2

w2(z) cos2(Φ(z)) (6.4)

where

Φ(z) = ksz − ζ(z) +
ksρ

2

2R(z)
,

such that the wavefront radius is given by

R(z) = z

(
1 +

z2

z20

)
,

and the phase correction is

ζ(z) = atan

(
z

z0

)
,

also the resulting maximum intensity is given by

I0 =
2P

πw2
0

,

P is the single Gaussian laser beam power, w0 = 0.5[λ/NA] is the beam waist eval-

uated by the Abbe criterion, λ is the wavelength in the vacuum, the beam width is
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given by

w(z) = w0

√
1 +

z2

z20
,

and z0 is the Rayleigh range which denotes the distance from the beam waist at z = 0

to where the beam width has increased by a factor
√
2, so

z0 =
ksw

2
0

2
.

In (6.4) , the interference between the two Gaussian beams generates a standing wave

with a modulation of intensity along the z-axis that results in a strong wavelength-

dependent modulation of the axial optical force. Therefore, using (6.3) and (6.4)

we get an expression of the gradient force components:

⟨F ⟩DA,ρ(ρ, z) = −4Re{α}I0w2
0ρe

− 2ρ2

w2(z)

cε0nsw4(z)

(
cos2(Φ(z)) +

z sin(2Φ(z))

ksw2(z)

)
(6.5)

⟨F ⟩DA,z(ρ, z) = −4Re{α}I0w2
0e

− 2ρ2

w2(z)

cε0nsk2sw
2(z)

[(
1− 2ρ2

w2(z)

)
2z cos2(Φ(z))

w2
0w

2(z)

+

(
k2s
4

− 1

2w2(z)
− ρ2

w2(z)− 2w2
0

w2
0w

4(z)

)
ks sin(2Φ(z))

] (6.6)

We will use the spring constants associated with small displacements from the equi-

librium trapping point, where the gradient force can be approximated by an har-

monic force to characterize the effect of the gain medium on the optical forces. Thus,

in the xy transverse plane (z = 0), the radiation intensity (6.4) can be approximated

as

I(ρ) ≈ 4I0

(
1− 2

ρ2

w2
0

)
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hence the radial component of the gradient force in (6.3) can be written as

⟨F ⟩DA,ρ(ρ) = −κρρ (6.7)

where the trap stiffness is given by

κρ =
8Re{α}I0
cε0nsw2

0

. (6.8)

Correspondingly, along the z axis (ρ = 0), the radiation intensity (6.4) can be ap-

proximated as

I(z) ≈ 4I0

[
1−

(
2z2

z20

)(
1− ksz0 +

k2sz
2
0

2

)]
hence the axial component of the gradient force in (6.3) can be written as

⟨F ⟩DA,z(z) = −κzz

where the associated spring constant is given by

κz =
8Re{α}I0
cε0nsz20

(
1− ksz0 +

k2sz
2
0

2

)
(6.9)

By means of these approximations it is evident the radial an axial components

of the force are directly proportional to the real part of the polarizability, α. We

can now compare these coefficients with the power absorbed as heat of the particle,

which will represent the heat dissipated by the nanoparticle and it is proportional to

the real or imaginary part of the same quantity. The effect of the externally pumped

gain medium is accounted through the permittivities of the mediums. Furthermore,
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since we are working on a 20 [nm] particle we will use the Mie theory to model α and

to find the absorption coefficients. This in order to compare the interplay between

the gain pumping and the heat dissipated in both cases.

First, for a passive nano-shell i.e G = 0 we will increase the laser power in order

to visualize the interplay between the optical forces and the heat dissipated by the

nanoparticle.

According to Figure 6.1 we can observe that as the power of the laser increase

with the purpose to obtain higher optical force, it also increase the power dissipated

as heat, which result in higher temperatures. Notice that if the nanoparticle and its

surroundings have higher temperatures, even though the optical force is stronger,

the efficiency in the trap will be reduced.

In order to obtain higher optical force, we will need to turn on the gain in the

active medium. Therefore, we will analyze a gain enhanced nano-shell at the fixed

power of P = 50 [nm].

According to Figure 6.2 we can observe as the gain pumped to the system in-

crease, and thus the optical force, the maximum of power dissipated as heat is ap-

proximate the same. Also, it is worth to notice that there are some regions in which

this heat dissipation is reduced, as is evident in the middle and lower rows. Thus,

by pumping gain into the system it is possible to obtain higher optical force without

having an massive increased on the heat dissipated by the nanoparticle.

Now, considering a fixed wavelength of λ = 580 [nm] in which we can observe

more clearly the relationship between the gain pumped to the system, the laser power
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Figure 6.1: Radial and axial components of the optical force, power dissipated as
heat of a passive silica-silver nano-shell of radius a2 = 20 [nm] for P = 50 [mW ]
(upper row), P = 120 [mW ] (middle row) and P = 2000 [mW ] (lower row).

and the heat dissipated by the nanoparticle. According to Figure 6.3 we can observe

that it is possible of obtain the same amount of optical force with a minimum heat

dissipated by injecting the appropriate amount of gain into the system.
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Figure 6.2: Radial and axial components of the optical force, power dissipated as
heat of a gain enhanced silica-silver nano-shell at P = 50 [mW ] for G = 0 (upper
row), G = 132 (middle row) and G = 0.21 (lower row).
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Figure 6.3: Axial component of the optical force related to the heat dissipated by
the nanoparticle as we increase the gain pumped to the system, (a) and (b), and the
power of the laser, (c) and (d).
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Chapter 7

Conclusions

The comparison between the quasistatic approximation and the Mie theory by the

theoretical analysis of the absorption cross section has lead us to the conclusion that

in nano-shell particles the quasistatic regime breaks not only when the size of the

particle is increased, but also when gain is pumped into the system. Additionally it

is worth to consider that this point of breakage also depends on the amount of metal

that has the nanoparticle, i.e the ratio between radius.

Considering that in this study we are working with gain enhanced metal nano-

shells we have applied the Mie theory for the electromagnetic response in the charac-

terization of the thermal behavior. Based on the Baffou model for the temperature

inside and outside the nanoparticle we have successfully extended it for the nano-

shell particle. Obtaining that when comparing a nanosphere and a nano-shell parti-

cle of the same size, by changing the ratio between radius of the nano-shell particle

the increment of temperature is significantly bigger.
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This model was applied for the analysis of the efficiency of an optical trap. As

result, we obtain higher optical forces by pumping gain into the nano-shell particle

than by increasing the laser power of the trap.

This thesis contains a complete characterization of the temperature in a system

that consist of a plasmonic nano-shell particle and its surrounding medium, which

is relevant for applications like Plasmonic Photothermal Therapy.
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