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RESUMEN 

La resonancia magnética (RM) es una técnica de imagen médica crucial que ha 

revolucionado el diagnóstico y tratamiento de enfermedades. Especialmente, la segmentación 

de la próstata en RM ayuda a detectar precozmente el cáncer. Las redes neuronales 

convolucionales (CNN) han sido efectivas en la segmentación, pero los Vision-Transformers 

(ViT) emergen por su habilidad para mejorar la comprensión contextual, unificando el 

procesamiento del lenguaje natural (NLP) con tareas visuales. A pesar de su dependencia en 

grandes datos, el aprendizaje por transferencia permite entrenar modelos en datos específicos. 

Este estudio investiga si el aprendizaje por transferencia beneficia a modelos pequeños 

entrenados con imágenes no médicas para la segmentación de la próstata en RM. Se analizó el 

impacto del aprendizaje por transferencia en el rendimiento de los Transformers, concluyendo 

que no hay diferencias estadísticas significativas en la precisión de la segmentación, lo que 

sugiere un potencial para la implementación de IA en medicina sin la necesidad de grandes 

conjuntos de datos médicos especializados. 

Palabras clave: Resonancia Magnética, Próstata, Inteligencia Artificial, Segmentación 

Semántica, Decatlón de Segmentación Médica, Redes Neuronales Convolucionales, 

Transformadores de Visión, Aprendizaje por Transferencia. 
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ABSTRACT 

Magnetic resonance imaging (MRI) is a crucial medical imaging technique that has 

revolutionized the diagnosis and treatment of diseases. In particular, MRI segmentation of the 

prostate helps to detect cancer early. Convolutional neural networks (CNNs) have been 

effective at segmentation, but Vision-Transformers (ViT) emerge for their ability to improve 

contextual understanding by unifying natural language processing (NLP) with visual tasks. 

Despite its reliance on big data, transfer learning allows models to be trained on specific data. 

This study investigates whether transfer learning benefits small models trained with non-

medical images for prostate segmentation on MRI. The impact of transfer learning on 

Transformers' performance was analyzed, concluding that there are no statistically significant 

differences in the accuracy of segmentation, suggesting a potential for the implementation of 

AI in medicine without the need for large specialized medical datasets. 

Key words: Magnetic Resonance, Prostate, Artificial Intelligence, Semantic Segmentation, 

Medical Segmentation Decathlon, Convolutional Neural Networks, Vision-Transformers, 

Transfer Learning. 
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INTRODUCCIÓN 

Medical imaging is essential for the accurate diagnosis of diseases, as it offers detailed, 

non-invasive information about the anatomy and functioning of the organs and systems of the 

human body. Magnetic Resonance Imaging (MRI) is an advanced medical imaging technology 

that has transformed the diagnosis and treatment of various medical conditions. It takes 

advantage of the phenomenon of atomic nuclei resonating in a magnetic field to produce 

detailed images of the body. Using radio waves and magnetic fields, it generates high-

resolution images of anatomical structures and soft tissues, such as the brain, spinal cord, 

muscles, and internal organs (Mayo Clinic, 2021). This imaging modality allows healthcare 

professionals to detect abnormalities, track disease progressions, and design the most 

appropriate treatment strategies, thereby improving care and outcomes for patients. 

 

The prostate is a gland in the male reproductive system that plays a crucial role in semen 

production, and is located just below the bladder, surrounding the urethra. The prostate is 

divided into 3 glandular zones and a non-glandular zone called the anterior fibromuscular 

stroma (Ortiz-Hidalgo & Heredia-Jara, 2022). The glandular areas are the peripheral zone (PZ), 

central zone (CZ), and transitional zone (TZ) (Ortiz-Hidalgo & Heredia-Jara, 2022).  The PZ 

is the largest region of the prostate and is located at the back of the gland and is where 

approximately 70-80\% of prostate cancers originate (Lee et al., 2014). The CZ is the second 

largest region and surrounds the urethra (Ortiz-Hidalgo & Heredia-Jara, 2022)., it is located in 

the central part of the prostate. The TZ is the smallest region, surrounding the urethra just below 

the bladder and is where 20 \% of the cancers originate, plus is prone to pathologically grow 

over time (Lee et al., 2014). 
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According to the American Cancer Society, on average, approximately 1 in 44 men will 

succumb to prostate cancer (American Cancer Society, 2024). The SEER database statistics 

from 2013 to 2019, shows that the 5-year relative survival rates were over 99\% for localized 

and regional prostate cancer, but drop to 34\% for distant-stage cases (American Cancer 

Society, 2024). Image segmentation has helped for more precise targeting during treatments 

such as radiation therapy, ensuring that the maximum dose is delivered to the cancer cells while 

minimizing damage to healthy tissue(Grégoire et al., 2020) and helping in monitoring the size 

and shape of the tumor during the treatment to assess how well the treatment is working to 

make the necessary adjustments (Beaton, Bandula, Gaze, & Sharma, 2019). 

 

However, when segmentation tasks are done manually by health specialists, errors can 

be made because it is subject to subjectivity and could depend on human factors, as well as 

being laborious which can adversely affect the diagnosis and treatment of diseases. With the 

growing research and development of artificial intelligence in areas such as computer vision, 

the segmentation of medical images has aroused particular interest, because the accuracy of 

computers can surpass that of humans. For this reason, AI is becoming an essential tool to 

guide and correct the errors made. 

 

In recent decades, numerous models and techniques have been developed to address 

this challenge. Early image segmentation approaches were based on classical image processing 

techniques, such as threshold (Karasulu & Korukoglu, 2011) and edge-based (Pujar, Gurjal, 

Kunnur et al., 2010) segmentation. Although effective under controlled conditions, these 

methods had limitations in terms of accuracy and generalizability (Palomino & Concha, 2009).  

With the advent of deep learning, especially convolutional neural networks (CNN), significant 

advances were made in the segmentation of medical images, as they demonstrated an 
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impressive ability to learn hierarchical representations of visual features, which allowed them 

to overcome challenges associated with variability in the appearance and morphology of 

anatomical structures. 

 

In 2013, the architecture of R-CNN was published, this was one of the first CNN used 

for object detection and also for semantic segmentation RCNN, this architecture is known as a 

two-stage detector, that uses region proposals to localize objects within an image and then 

classifies those regions using a CNN. R-CNN proved that CNN's have a great potential for 

complex computer vision tasks. In FCN, Long et al. proposed the first CNN targeted 

specifically to segmentation tasks, called Fully Convolutional Networks (FCN).  (LONG, 

SHELHAMER, & DARRELL, 2015) was composed entirely of convolutional layers to 

produce dense predictions over input images of arbitrary size. Ronneberger & Brox 

(Ronneberger, Fischer, & Brox, 2015) proposed a CNN targeted for biomedical image 

segmentation called UNet, named for the U-shape of its architecture that consists on a 

contracting path to capture context, encoder, and an expansive path to enable precise 

localization, decoder. This architecture has proven to be so effective that is still used and 

studied today. In 2017 Mask RCNN, Kaiming et al. proposed a CNN architecture based on 

Faster R-CNN called ``Mask R-CNN'' by adding a parallel branch for predicting segmentation 

masks alongside object detection, enabling instance segmentation with precise pixel-level 

delineation, and making clear that CNN's are the best suited architecture for any segmentation 

task. Later in 2018 UPerNet, Xiao et al., proposed an architecture called UPerNet that 

incorporates a Unified Perceptual Parsing (UPP) module and a Pyramid Attention (PA) module 

to enable efficient segmentation of various visual concepts within images through 

heterogeneous image annotations. The backbone of the network in the original paper was a 
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fully convolutional feature extractor based on the based on the Feature Pyramid Network (FPN) 

UPerNet, but this can easily be replaced by another pre-trained backbone. 

However, in an effort to achieve a generalized artificial intelligence model that could 

integrate vision and language tasks, Dosovitskiy proposed the architecture of Vision-

Transformers porting the attention mechanism of Transformers used for Natural Language 

Processing (NLP) to vision tasks. Vision-Transformers (ViT) is a structure first used for image 

classification, in which an input image is divided into fixed-sized patches, and each patch is 

represented as a vector, simulating the tokens of a sequence of text characters in a Natural 

Language Processing (NLP) network. These vectors feed through multiple layers of attention, 

where the network learns to capture complex features and spatial relationships between the 

pixels in the image. Finally, the output from the network is fed through a classifier layer to 

produce the final output (Dosovitskiy et al., 2021). 

 

While segmentation models with Transformers  are being extensively researched due 

to their ability to capture long-range relationships in images and to model the overall context 

of the scene, they require more training data to reach acceptable accuracy values (Thisanke et 

al., 2023). 

To combat this problem, architectures that combine convolutional layers plus Vision-

Transformers in their architecture started to be researched. 

 

One network that mixed the concepts of CNN's and ViT to target a variety of tasks 

including semantic segmentation was Deep Prediction Transformer (DPT) DPT. DPT consist 

of a ViT based Encoder and a convolutional Decoder, this network showed state of the art 

results while not needing as many images as pure ViT. On the other hand on 2021 the 

architecture of Segformer Segformer came out featuring a hierarchical Transformer encoder 



    13 
 

 

for multi-scale feature extraction paired with a simple and efficient Multilayer Perceptron 

(MLP) decoder, eliminating the need for positional encodings and making the computations 

faster. On 2022, Mehta \& Rastegari published an architecture called MobileViT that was 

intended to be used on mobile devices, making it lightweight and portable. To accomplish this, 

the authors created a ViT block called MobileViT-Block that used the attention mechanism of 

ViT and was placed between some convolutional blocks along the network MobileViT. Later 

the same year, the authors published an improvement on the MobileViT-Block MobileViTV2 

by using a new mechanism called Separable-Self attention, that reduces the computational 

complexity in the transformer from a quadratic to a linear factor, making the network much 

faster and smaller, they named this improvement as MobileViT-V2. Another approach taken 

by Russakovsky et al., was to adapt a ViT based architecture as the backbone of a CNN for 

semantic segmentation. To accomplish this, they used an architecture called Swin and 

leveraged it as the backbone of UPerNet UperNetSwin, getting state of the art results for 

semantic segmentation. 

 

All of the above mentioned networks were trained on big datasets for segmentation of 

natural images.  However, due to  the cost and complexity of acquiring and labelling medical 

imaging, MRI datasets are commonly small. Therefore, a method used to train a model in 

medical images and achieve a good performance is transfer learning. Transfer learning is a 

technique where a model trained for one task is adapted to perform another related task. This 

process involves taking a model that has already been trained on a large dataset (the source 

domain) and fine-tuning it with a smaller dataset for the new task (the target domain). By doing 

so, it leverages the features and knowledge the model has already learnedTransferLearning. 

The key idea is that instead of starting training from scratch, the pre-trained model has already 

learned general characteristics and features that can adapt more easily to specific tasks with 
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smaller datasets. This allows for faster and more efficient training, especially when training 

data is limited. 

The aim of this work is to statistically analyze the effect transfer learning has on the 

performance of Transformer architectures on the task of prostate MRI segmentation. We test  

the Mobile ViT, Mobile ViT V2 and UPerNet with the Swin backbone in the Medical 

Segmentation Decathlon's Prostate challenge datasetDecathlon using the dice coefficient 

metric for evaluation. To obtain statistically significant results we perform a paired t-test. Our 

experiments demonstrate that there is no statistical difference on the mean Dice coefficient per 

class by using transfer learning, having values closer to 0.676 for the PZ region and 0.706 for 

the TZ region for the networks trained without transfer learning and  

and 0.673 and 0.712 for the ones trained with transfer learning on the PZ and TZ regions 

respectively, on the validation dataset. 
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METHODOLOGY 

In the next subsections we describe the dataset selected and pre-processing operations 

applied. We then proceed to explain the architectures tested and training hyper-parameters. 

Subsequently the evaluation metrics utilized are explained, and finally the statistical test 

performed is presented. 

Dataset and Pre-processing 

The Medical Segmentation Decathlon database Decathlon was part of the 2018 

Decathlon challenge and has been largely used in various researches, becoming a standard for 

testing new segmentation models or techniques for medical image segmentation. For this 

reason, this database was selected in this study. 

 

The prostate dataset from the Medical Segmentation Decathlon databaseDecathlon 

consists of 32 4D multiparametric magnetic resonance images (mpMRI) of the prostate, the 

two channels of the 4D volume consist on the transverse T2-weighted and the apparent 

diffusion coefficient (ADC), along with the ground truth segmentation masks of the peripheral 

(PZ) and transitional (TZ) regions. The majority of the images are of 320x320 pixels height 

and width, with a variable number of layers, ranging from 15 to 24 slices. This images were 

obtained from the Radboud University Medical Center and the Nijmegen Medical Centre in 

the Netherlands Decathlon. 

 

To train and test the accuracy of the models, the images were divided randomly into 

85\% observations for training and 15\% observations for validation, ending up with 28 MRI 

images for training and 4 for validation. 
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Each MRI image is a 4D volume with 2 channels containing measurements of the T2 

and ADC protocols used in MRI imaging, figure \ref{fig:channels shows the two protocols on 

a slice of three patients, plus the ground truth labels of the whole prostate, and the PZ and TZ 

classes. The segmentation networks selected need two-dimensional images, so each slice of 

the volumes needed to be passed as a single image. To use the information of the two protocols, 

the T2 znd ADC modality are inserted in the channel dimension.  Figure \ref{fig:data shows 

the images exported for the final dataset. 

 

Fig. 1. MRI Protocols of the dataset on a slice of the same patient. 

 

  

Fig. 2. Final dataset used for training and testing. 
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After exporting every slice of each volume as RGB images, the total number of png 

files was of 502 for the training dataset and 100 for the validation dataset. The architecture 

sizes tested for MobileViT and MobileViT V2 have input layers that accept images of size 

$512\times512$, on the other hand, UPerNet with the Swin Backbone requires input images of 

size $224\times224$ therefore the training and validation datasets were resized using the bi-

linear interpolation method to match it. Furthermore, all the pre-trained backbones were trained 

on the Imagenet1kimagenet dataset and then fine-tuned to the pascal VOC2012 dataset for the 

semantic segmentation taskMobileViTMobileViTV2UperNetSwin, therefore every network 

was resized to the mean and standard deviation of the Imagenet1K dataset withpascal_voc: 

ℎ𝑒𝑖𝑔ℎ𝑡 =  512, 𝑤𝑖𝑑𝑡ℎ =  512 

𝜇_𝐼 =  [0.485, 0.456, 0.406] 

𝜎_𝐼 =  [0.229, 0.224, 0.225] 

During training, data augmentation operations were applied to increase the size and 

diversity of the images using the albumentations library. The augmentation transformations 

used were: 

• Center Crop: with (height=225, width=225, p=0.5). 

• Affine Transformation: with (scale=0.8, translate_percent=0.2, rotate=0, shear=(-10, 

10), p=0.5). 

• Rotation: between -45 and 45 degrees, with p=0.5. 

• Horizontal and Vertical Flips: with (p=0.5). 

• Blur: with (blur_limit=7, p=0.5). 

• Color Jitter: with (brightness=0.8, contrast=0.5, saturation=0.8, hue=0, p=0.5). 
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Selected models and Training details 

The ViT architectures selected for comparison are the MobileViTMobileViT, 

MobileViT V2MobileViTV2, and UPerNet with Swin Backbone UperNetSwin. These models 

were chosen because they are efficient and lightweight, making them suitable for deployment 

in environments with limited computational resources such as mobile devices or embedded 

systems commonly used in healthcare settings EmbeddedAI; Despite their smaller size, these 

models can achieve high enough accuracy to be used in a professional setting; And because 

they are flexible and can be trained with less data, being well suited for the limited amount of 

images of the selected dataset. The weights for transfer learning were the available on the 

hugging face ``transformers'' library. A brief description of each architecture is presented 

below: 

• MobileViT: Uses the MobileViT transformer block between some convolutional 

layers to move the attention mechanism to a lightweight architecture. The model had 

a total of 6,353,315 trainable parameters. 

• MobileViT V2: An enhancement of the original MobileViT architecture, it uses the 

separable self-service mechanism to reduce the complexity of the MobileViT block, 

making it faster and less computationally expensive. The model had a total of 

9,757,612 trainable parameters. 
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• UPerNet: Uses the Swin architecture as the foundation of the original fully 

convolutional UPerNet network to improve accuracy while keeping it small and fast. 

The model had a total of 59,828,672 trainable parameters, making it the largest model 

tested. 

Fig. 3. MobileViT architecture, image from the original paper MobileViT 

 

The training hyper-parameters for all the evaluated architectures are presented in Table 

\ref{table:hyperparams and were taken based on the ones used on the original papers. All 

implementations used Python 3.9.13, Pytorch 2.2.1 and run in a Nvidia GPU GTX4070. To get 

an easy interface and the availability to have pre-trained weights, the hugging face library 

called ``transformers'' was used. From the models available in the library, the following three 

were selected with the smallest version of each architecture: 

• MobileViT: weights "apple/deeplabv3-mobilevit-small" 

• MobileViT V2: weights "apple/mobilevitv2-1.5-voc-deeplabv3" 

• UPerNet with the Swin Transformer Backbone: "openmmlab/upernet-swin-tiny" 

weights 
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Fig. 4. Separable self-attention mechanism for the MobileViT-V2 architecture, image from the 

original paper MobileViTV2. 

 

 

Fig. 5. Swin transformer architecture, image from the original paper UperNetSwin. 

 

MobileViT was pre-trained from scratch on the Imagenet1K dataset for image 

classificationMobileViT which is a dataset comprised of approximately 1.2 million natural 

images for training, 50,000 for validation, and 100,000 for testing, with 1000 (1k) 

classesimagenet. To perform semantic segmentation, the trained model was integrated with 

DeepLabv3 and fine-tuned on the pascal VOC 2012 datasetMobileViT, that contains 11,540 
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natural images with 20 different object classes, including vehicles, household items, animals, 

and others. The training and validation set add to a total 11,530 images for object detection and 

segmentation tasks fsupervisedSurvey. 

 

Using the same methodology, MobileViT V2 was trained exactly the same but was also 

tested being implemented with PSPNet and DeepLabv3 and on the ADE20k and PASCAL 

VOC 2012MobileViTV2, in this study, and to be consistent across models, we only considered 

the DeepLabv3 with VOC pretrained weights. Finally, UPerNet with the swin transformer 

architecture was trained on the ADE20k UperNetSwin that consists of 27,574 natural images, 

divided on 25,574 for training and 2,000 for testing, on 365 different scenes ADE20K. 

 

 

Fig 6: Table 1 Hyper-parameters used. 

 

Evaluation Metrics 

The Dice coefficient for semantic segmentation tasks can be expressed as: 

 

 
It is the intersection of both areas divided by the total area of each mask being 

compared; notice that the sum of both areas is not the same as the joint area, as it's given from 

the set-theory that: 
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Thus the Dice coefficient needs the normalization factor of 2 in the numerator to be 

bounded between 0 and 1 with 0 meaning no similarity, and 1 a perfect match. 

 

The Dice coefficient has some advantages like being differentiable, allowing it to be 

used as a loss function during training, or its correspondence to Precision being equivalent to 

the F1 measure, which is the harmonic average of precision and sensitivity, and thus providing 

a balance between precision and retrieval of relevant information LossAndMetrics. 

Statistical Test 

A paired t-test was conducted to test if the difference on Dice coefficient obtained by 

training a network with and without transfer learning was statistically significant. The number 

of samples for this test is the number of images on the validation dataset, therefore $n=100$. 

 

The null hypothesis of the paired t-test states that the mean Dice coefficient of a network 

trained with Transfer Learning is the same as the mean Dice coefficient of a network trained 

without Transfer Learning, and can be expressed as: 

 

This is a two tailed test, where: 

 

𝑡1 ∧ 𝑡2 correspond to the mean dice of the network trained with and without transfer 

learning respectively. Under the assumption that the null hypothesis is true, the unbiased t 

statistic for the difference $d$ on this test can be calculated as: 
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RESULTS 

The training loop was run for each of the 3 defined networks with and without pre-

trained weights, giving a total of 6 training processes. Figure 6 shows that the training 

progressed correctly on every step of the training loop, by reducing the loss function to values 

close to 0. Figure 7 shows the inference of every neural network with and without transfer 

learning at some steps of the training loop for one layer of a patient in the validation dataset to 

graphically have a sense of the effectiveness of it in the training process. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Loss functions of every experiment conducted. 
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Fig. 8. Inference Results during training. 

 

During training, a validation loop calculated the Dice co- efficient on the validation 

dataset and the step with the best weights was saved into memory, the results of the validation 

loops for the best Dice coefficients are reported in table II. 

 

Fig 9: Table 2 Training loop report. 

 

These weights were used to make inference over all the validation dataset and save the 

dice coefficients per patient and per class. In figure 8 we present examples of segmentation 

obtained from every network studied with and without transfer learning, we could observe that 

the segmentation inference for the middle layers was almost perfect, whereas the majority of 
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inference errors were made for the initial and final layers where the segmentation area was 

very small or irregular, this is shown in figure 9. 

 

 

 

 

 

 

Fig. 10. Good Inference Results on middle layers of the volumes. 

 

 

 

 

 

 

 

Fig. 11. Error Inference Results on initial layers of the volumes. 

 

Statistical Test results 

The results of the Hypothesis tests for the three networks are shown above. Tables 

\ref{table:PZTests \& \ref{table:TZTests show the p-values for the hypothesis on the dice 

coefficients for the PZ and TZ classes respectively, whereas table \ref{table:meanTests show 

the results of the test for the overall mean dice obtained for each network. We appreciate that 
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the p-values reported in every table is greater than 0.1, therefore, using the standard confidence 

value of $\alpha = 0.05$, we fail to reject the null hypothesis that transfer learning was 

significant for MobileViT, MobileViT V2 and UPerNet with Swin Transformers among every 

class, thus forcing us to conclude that there are no statistical differences in the mean Dice for 

the tested architectures if transfer learning is used to train them. This is further supported on 

mean dice coefficients that were obtained when extracting the weights on table 

\ref{table:ValDice where can be seen that they are indeed very similar to one another, except 

maybe for UPerNet, where the mean values seem to have increased when transfer learning was 

used. However, the paired t-test gives more insight as just the mean value. 

 

Fig 12. Table 3 Hypothesis testing report for the pz class. 
 
 

 

Fig 13. Table 4 Hypothesis testing report for the tz class. 
 

 

Fig 14. Table 5 Hypothesis testing report for the mean dice coefficient. 
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DISCUSSION  

The architectures tested in this study correspond to the smallest ones for each of their 

types, this was done to meet the requirements of time and hardware needed for this study. On 

the other hand, as was explained, many transformations for data augmentation were used to 

combat the problem of a small training dataset by adding more diversity to it, therefore, it is 

possible, that it is more effective to have Data Augmentation in small architectures than to use 

transfer learning. Similar studies such as that of Ferguson, et al., DefectsMenufacturing on 

detection and segmentation of defects in manufacturing with CNNs showed that the result of 

using transfer learning was effective, improving the final precision of the models from 0.874 

to 0.957. But RCNN is a fairly big architecture. 

Another study by Zhang, et al.BreastMRI showed that in medical MRI imaging with 

convolutional networks 2 and 3D (U-NET \& nnU-NET) showed that the result of using 

transfer learning was effective, on segmenting the lungs and heart, muscles and bones, solid 

tissues with cancer, and on skin and fat by running a Wilcoxon test on the dice similarity 

coefficient, jaccard coefficient and the Hausdorff distance having p-values $<0.05$. This may 

be the case because there are multiple and different segmentation tasks to be tested that have 

more intrinsic variability, while in this study we only tested for a monotone task of 

segmentation of prostate regions, and the variability needed for this task may have been entirely 

addressed by the data augmentation. 
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CONCLUSION  

Magnetic resonance imaging (MRI) is a useful technology used for medical diagnosis 

and treatment. It is widely used on segmenting prostate regions to help healthcare professionals 

make better diagnoses and safer procedures. In this context, many artificial intelligence models 

like convolutional neural networks have proven to be very effective, however, the architecture 

of Vision Transformers that ported the attention mechanism has allowed them to understand 

context and let them be able to perform vision alongside with natural language tasks. 

Due to the nature of ViT, large datasets are required for their training, however, when 

large amounts of data are not available, like on medical imaging, Transfer learning can be an 

effective training strategy, however it may not be very effective for smaller and optimized 

architectures. To test this, we selected the smallest versions of MobileViT, MobileViT-V2 and 

UPerNet with the Swin transformer Backbone architectures from the hugging face 

``transformer'' library and trained them with and without transfer learning, using standard data-

augmentation techniques. 

The Dice coefficients per prostate class were calculated on the validation dataset with 

the best performing trained weighs, the mean values are reported on table \ref{table:ValDice. 

To test if the dice coefficients have improved by using transfer learning, paired t-tests were 

conducted per model, resulting on p-values of 0.4435, 0.1926 an 0.1975 for MobileViT, 

MobileViT-V2 and UPerNet respectively, and by using a standard confidence value of 0.05 we 

failed to reject the null hypothesis, concluding that transfer learning was not effective. This 

may imply that for small models like those tested, the variability of the training dataset is more 

important than transfer learning, but further research should be done to test this new hypothesis. 
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